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Abstract

In any network, the interconnection of nodes by means of geodesics and the num-
ber of geodesics existing between nodes are important. There exists a class of central-
ity measures based on the number of geodesics passing through a vertex. Between-
ness centrality indicates the betweenness of a vertex or how often a vertex appears
on geodesics between other vertices. It has wide applications in the analysis of net-
works. Consider GP (n, k). For each n and k (n > 2k), the generalized Petersen graph
GP (n, k) is a trivalent graph with vertex set {ui, vi | 0 ≤ i ≤ n − 1} and edge set
{uiui+1, uivi, vivi+k | 0 ≤ i ≤ n − 1, subscripts reduced modulo n}. There are three
kinds of edges namely outer edges, spokes and inner edges. The outer vertices generate
an n-cycle called outer cycle and inner vertices generate one or more inner cycles. In
this paper, we consider GP (n, 2) and find expressions for the number of geodesics and
betweenness centrality.

Keywords: Petersen graph, geodesics, wicket, Möbius strip, betweenness central-
ity, induced betweenness centrality.

1 Introduction

Generalized Petersen graphs were first defined by Watkins [1] who was interested in trivalent
graphs without proper three edge-colorings. For integers n and k with 1 ≤ k < n/2, the
generalized Petersen graph GP (n, k) has been defined as an undirected graph with vertex-
set V = {u0, u1, . . . , un−1, v0, v1, . . . , vn−1} and edge set E consisting of all pairs of the three
forms (ui, ui+1), (ui, vi) and (vi, vi+k) where i is an integer and all subscripts are read modulo
n. The above three forms of edges are called outer edges, spokes, and inner edges respectively.
In this original definition, GP (n, k) is a trivalent graph of order 2n and size 3n. It can be
seen that when n is even and k = n/2 the resulting graph is not cubic. And because of
the obvious isomorphism GP (n, k) ∼= GP (n, n − k), k < n/2. In GP (n, k), there exist one
outer cycle and one or more inner cycles. In this paper we may refer even (odd) subscripted
vertices by even (odd) vertices.

∗The work of the author is supported by the University Grants Commission (UGC), Government of India,
under the scheme of Faculty Development Programme (FDP) for colleges.
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Theorem 1.1. [2] If d denotes the greatest common divisor of n and k, then the set of
inner edges generates a subgraph which is the union of d pairwise-disjoint (n/d)-cycles.

A graph is said to be vertex-transitive if its automorphism group acts transitively on the
vertex set.

Theorem 1.2. [2] G(n, k) is vertex-transitive if and only if k2 ≡ ±1( (mod n)) or n = 10
and k = 2

The well known Petersen graph GP (5, 2) is the smallest vertex-transitive graph which
is not a Cayley graph [3]. It has many interesting properties and can be taken as counter
examples for many conjectures [4, 5]. The generalized Petersen graphs GP (n, 1) are prisms,
isomorphic to the Cartesian product Cn�K2. It can be easily seen that for even values of n
i.e, n = 2k, GP (2k, 2) is planar for each k. Again Robertson [6] has shown that GP (n, 2) is
Hamiltonian unless n ≡ 5 (mod 6). A set of vertices of the form {vi, ui, ui+1, . . . , ui+n, vi+n}
in a generalized Petersen graph is called an n-wicket(or simply a wicket) [7].

The number of shortest paths or geodesics between two vertices u and v in a graph will
be denoted by σ(u, v).

2 Generalized Petersen graph GP (n, 2)

The graph GP (n, 2) is defined for n ≥ 5. It contains either one or two inner cycles according
as n is odd or even (See Fig.1). If n is odd, the inner cycle contains even vertices followed
by odd vertices and when n is even there are two inner cycles - the cycle of even vertices
and the cycle of odd vertices each having n/2 vertices. (See Fig3). Two inner vertices vi
and vj are consecutive if |i− j| = 1 or |i − j| = −1 mod (n) and adjacent if |i− j| = 2 or
|i − j| = −2 mod (n). If n is odd, say n = 2k + 1, then for each vertex ui there are two
eccentric vertices ui±k in the outer cycle as diametric vertices. The vertices on either side of
ui are identical with respect to the metric. When k is increased by one, the eccentric pair
advances one more distance away from ui. If n is even, say n = 2k, then these diametric
vertices coincide to a single vertex.
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Figure 1: Labelling : GP (10, 2) and GP (11, 2)
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GP (n, 2) when n is odd can be viewed as a Möbius strip with outer vertices lying in the
middle and inner vertices lying on the border. If n = 2k + 1, it is easy to see that there are
k odd vertices lying on the upper ends and k+1 even vertices lying on the lower ends of the
strip (See Fig2). Moving along the middle of the Möbius strip, the outer vertices comes in
a regular manner as u0, u1, u2, . . . , u2k and along the border of the strip, odd vertices follow
the even vertices. One movement along the edge in the border of the strip is equivalent to
two movements along the edges in the middle. Hence shortest paths prefer edges along the
border when the number of vertices increases.

v1 v3 . . . vk . . . v2k−1

u0 u1 u2 u3 u4 . . . uk−1 uk uk+1 . . . u2k−1 u2k

v0 v2 v4 . . . vk−1 vk+1 . . . v2k

Figure 2: Strip for GP (2k + 1, 2), when k is odd
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Figure 3: A representation of GP (2k, 2) when k = 4

3 Geodesics in GP (n, 2)

3.1 Geodesics in GP (n, 2) when n is odd

3.1.1 Number of geodesics between a pair of vertices in the outer cycle of
GP (n, 2) when n is odd

In GP (n, 2) where n = 2k + 1, by symmetry we consider the vertices u0 and ur where
1 ≤ r ≤ k, k ≥ 2 and any shortest path joining them may be denoted by P (u0, ur).

Lemma 3.1. In GP (2k+1, 2), k ≥ 2 for the vertices u0 and ur in the outer cycle, 1 ≤ r ≤ k,
there is always a geodesic joining them contained in the outer cycle for r ≤ 5.
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Proof. By symmetry, we consider r for 1 ≤ r ≤ k. It is obvious for r = 1 since (u0, u1)
makes an outer edge. For r = 2, the only geodesic is the one joining {u0, u1, u2} since
any path intersecting the inner cycle contains two spokes and atleast one inner edge. For
r = 3, the only geodesic is the one joining {u0, u1, u2, u3} since the inner vertices v0 and v3
are non-adjacent, they make a path of minimum length 4 joining either {u0, u1, v1, v3, u3},
{u0, v0, v2, u2, u3} or {u0, v0, v5, v3, u3} in the case k = 3. For r = 4 there are two geodesics
of length 4, one joining {u0, u1, u2, u3, u4} and the other joining {u0, v0, v2, v4, u4}. For r =
5(< k), there are three geodesics joining {u0, u1, u2, u3, u4, u5}, {u0, u1, v1, v3, v5, u5} and
{u0, v0, v2, v4, u4, u5} each of length 5. When r = 5(= k), u0 and u5 become the extreme
vertices and hence there are four geodesics between u0 and u5 including the one passing
through the inner cycle in the reverse direction.

Lemma 3.2. In GP (2k+1, 2), for even r ≤ k, there is a unique geodesic joining u0 and ur

for r > 5 and it passes through the spokes at u0 and ur and the inner vertices lying between
v0 and vr.

Proof. Consider ur where r is even and r > 5. Let P (u0, ur) be any geodesic joining u0

and ur contained in the outer cycle. If P (u0, ur) is contained in the outer cycle, its length
becomes r. Since r is even, v0 and vr are even vertices and they lie on a unique shortest
path of length r/2 contained in the inner cycle. Considering the spokes at v0 and vr, the
length of the path P (u0, ur) becomes r/2 + 2 < r for r > 5. Thus P (u0, ur) passes through
the inner vertices and the spokes at u0 and ur for r > 5.

Lemma 3.3. In GP (2k + 1, 2), for odd r, there are two geodesics between u0 and ur for
5 < r < k and three for r = k all passing through the inner vertices.

Proof. When r is odd and 5 < r < k, it can be easily seen that P (u0, ur) contains exactly two

spokes either at u0 and ur−1 or at u1 and ur having length
r − 1

2
+3. Otherwise r <

r − 1

2
+3,

a contradiction. When r is odd, the distance between v0 and vr in the inner cycle is k−
r − 1

2
.

When r = k, including the spokes at u0 and ur, the distance becomes
r − 1

2
+ 3. Thus there

are three geodesics between u0 and ur when r = k.

Proposition 3.1. In GP (2k + 1, 2), k ≥ 2, for the vertices u0 and ur in the outer cycle,
1 ≤ r ≤ k, there is no geodesic joining them contained in the outer cycle for r > 5.

Theorem 3.1. If ui and uj are any two distinct vertices in the outer cycle of GP (2k+1, 2)
where |i− j| = r ≤ k, then the number of geodesics σ(ui, uj) between ui and uj is given by

σ(ui, uj) =



















































1 for r = 1, 2, 3

2 for r = 4

3 for r = 5; r < k

4 for r = 5; r = k

1 for r = 6, 8, 10, . . .

2 for r = 7, 9, 11, . . . ; r < k

3 for r = 7, 9, 11, . . . ; r = k
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Proof. By symmetry, we consider r ≤ k. When n is odd, there exists only one inner cycle in
GP (n, 2). There is a unique geodesic between ui and ui+r for r = 1, 2, 3 lying on the outer
cycle (Lemma 6.2) and two geodesics joining ui and ui+4 namely,

{ui, ui+1, ui+2, ui+3, ui+4} and {ui, vi, vi+2, vi+4, ui+4}

When r = 5(= k), the vertices ui and ui+5 becomes diametric pair on the outer cycle
and hence there are four geodesics joining them namely, {ui, ui+1, ui+2, ui+3, ui+4, ui+5} lying
on the outer cycle and {ui, ui+1, vi+1, vi+3, vi+5, ui+5}, {ui, vi, vi+2, vi+4, ui+4, ui+5}, through
inner cycle in the forward direction and {ui, vi, vi−2, vi−4, vi−6, ui−6(= ui+5)} in the reverse
direction.

But when r < k, the path in the reverse direction does not become a geodesic. Therefore
there are only three geodesics between ui and ui+5 when r < k.

When r > 5, all geodesics pass through the inner cycle and no geodesic lies entirely on
the outer cycle.

When r(> 5) is even, ui and ui+r have the same parity and hence there exists only one
geodesic joining ui and ui+r namely,

{ui, vi, vi+2, vi+4, . . . , vi+r, ui+r}

When r is odd and 5 < r < k, there are two geodesics namely,

{ui, ui+1, vi+1, vi+3, . . . , vi+r, ui+r} and {ui, vi, vi+2, vi+4, . . . , vi+r−1, ui+r−1, ui+r}.

When r = k, there is one more geodesics in the reverse direction i.e,

{ui, vi, vi−2, vi−4, . . . , vi−r−1, ui−r−1(= ui+r)}

3.1.2 Number of geodesics between a pair of vertices in the inner cycle of
GP (n, 2) when n is odd

Theorem 3.2. If vi and vj are any two distinct vertices in the inner cycle of GP (2k+1, 2)
where |i− j| = r ≤ k, then number of geodesics σ(vi, vj) between vi and vj is given by

σ(vi, vj) =



























1 for even r

1 for odd r, r > k − 2
r + 1

2
for odd r, r < k − 2

r + 3

2
for odd r, r = k − 2

Proof. When n is odd, there exists only one inner cycle in GP (n, 2) containing all even ver-
tices followed by all odd vertices.

When n = 2k + 1, there are k + 1 even vertices and k odd vertices in the inner cycle.
Consider two consecutive inner vertices vi and vi+1. Since vi and vi+1 are non adjacent
inner vertices, there is a unique geodesic between vi and vi+1 passing through the 1-wicket
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{vi, ui, ui+1, vi+1} containing two spokes and an outer edge.

When r is even, both vi and vi+r have the same parity and therefore there is a unique
geodesic P (vi, vi+r) of length r/2 namely {vi, vi+2, vi+4, . . . , vi+r}.

When r is odd, r < k− 2; vi and vi+r have opposite parity and a geodesic from vi to vi+r

passes through the 1-wicket at any one of the consecutive pairs

(vi, vi+1), (vi+2, vi+3), . . . , (vi+r−1, vi+r) and thus there exist
r + 1

2
geodesics joining vi and

vi+r having length
r + 1

2
+ 3. When r = k − 2, the pair (vi, vi+r) lies sufficiently apart so

that there is one more geodesic in the reverse direction. When r > k−2, the geodesic in the
reverse direction alone exists.

3.1.3 Number of geodesics between a pair of vertices in the outer and inner
cycle of GP (n, 2) when n is odd

Theorem 3.3. If ui and vj are any two vertices in the outer and inner cycles respectively
of GP (2k+1, 2) where |i− j| = r ≤ k, then the number of geodesics σ(ui, vj) between ui and
vj is given by

σ(ui, vj) =











1 for r < k

1 for even r, r = k

2 for odd r, r = k

Proof. When n is odd, there exists only one inner cycle in GP (n, 2) containing all even
vertices followed by all odd vertices. Consider ui and vi+r. If both vertices are either even or
odd, vi and vi+r are also the same and there is a unique geodesic of length r/2 + 1 passing
through the spoke (ui, vi) joining vi and vi+r along the inner cycle . Otherwise the geodesic
passes through the outer edge (ui, ui+1), the spoke (ui+1, vi+1) and joins vi+1 to vi+r along

the inner cycle. It is of length
r − 1

2
+ 2. In the extreme case r = k, there is one more

geodesic in the reverse direction passing through the spoke (ui, vi).

3.2 Geodesics in GP (n, 2) when n is even

3.2.1 Number of geodesics between a pair of vertices in the outer cycle of
GP (n, 2) when n is even

Theorem 3.4. If ui and uj are any two distinct vertices in the outer cycle of GP (2k, 2),
k ≥ 3 where |i − j| = r ≤ k, then the number of geodesics σ(ui, uj) between ui and uj is
given by
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σ(ui, ui+r) =















































































1 for r = 1, 2, 3; r < k

2 for r = 3; r = k

2 for r = 4; r < k

4 for r = 4; r = k

3 for r = 5; r < k

6 for r = 5; r = k

1 for r = 6, 8, 10, . . . ; r < k

2 for r = 6, 8, 10, . . . ; r = k

2 for r = 7, 9, 11, . . . ; r < k

4 for r = 7, 9, 11, . . . ; r = k

Proof. Since n is even, there are two inner cycles - the cycle of even vertices and the cycle of
odd vertices. When r = 1, 2, 3; r < k, there is a unique geodesic between ui and ui+r lying
on the outer cycle and in the extreme case, i.e, when r = 3, r = k, the outer cycle itself
makes two geodesics on either sides.

When r = 4, r < k, there are two geodesics of length 4, one over the outer cycle and
the other over the inner cycle of even or odd vertices according as i is even or odd by means
of the two spokes at the given vertices. In its extreme case there are two more geodesics
passing over the outer cycle and the inner cycle in the reverse direction.

When r = 5, r < k, there are 3 geodesics of length 5. One lying on the outer cycle
and the others passing through the spokes either at ui+1 and ui+5 or at ui and ui+4. In its
extreme case when r = k, there are 3 more geodesics passing over the outer and inner cycles
in the reverse direction.

When r = 6, 8, . . . ; r < k, there is no geodesic passing over the outer cycle. Since vi and
vi+r lie on the same inner cycle, there is a geodesic joining them of length r/2. Therefore
there is a unique geodesic of length r/2 + 2 joining ui and ui+r when r = 6, 8, . . . ; r < k.
In the extreme case there is one more geodesic passing over the inner cycle in the reverse
direction.

When r = 7, 9, . . . ; r < k, vi and vi+r lie on different inner cycles and therefore there
are two geodesics one joining the vertices {ui, ui+1, vi+1, vi+3, . . . , vi+r, ui+r} and the other
joining the vertices {ui, vi, vi+2, vi+4, . . . , vi+r−1, ui+r−1, ui+r}. In the extreme case, reversing
the direction over the outer and inner cycles, there lie two more geodesics.

3.2.2 Number of geodesics between a pair of vertices in the inner cycle of
GP (n, 2) when n is even

Theorem 3.5. If vi and vj are any two distinct vertices in the inner cycle of GP (2k, 2),
k ≥ 3 where |i− j| = r ≤ k, then the number of geodesics σ(vi, vj) between vi and vj is given

7



by

σ(vi, vj) =























1 for even r, r < k

2 for even r, r = k
r + 1

2
for odd r, r < k

r + 1 for odd r, r = k

Proof. When r is even and r < k both the vertices vi and vi+r lie on the same inner cycle.
Therefore, there exists a unique geodesic lying on the same inner cycle. In the extreme case,
there is one more geodesic on the reverse side of the inner cycle.

When r is odd and r < k the vertices lie on different inner cycles and hence joined by
a wicket containing two spokes and an outer edge at any vertex vi, vi+2, . . . , vi+r−1. Hence

there are
r + 1

2
geodesics. In the extreme case the above method can be repeated along the

reverse side of the inner cycle.

3.2.3 Number of geodesics between a pair of vertices in the outer and inner
cycle of GP (n, 2) when n is even

Theorem 3.6. If ui and vj are any two vertices in the outer and inner cycles respectively
of GP (2k, 2), k ≥ 3 where |i− j| = r ≤ k, then the number of geodesics σ(ui, vj) between ui

and vj is given by

σ(ui, vj) =

{

1 r < k

2 r = k

Proof. When r is even and r < k, both vi and vi+r are either even or odd and hence there
is a unique geodesic joining the spoke (ui, vi) to vi+r. In the extreme case there is one more
geodesic along the opposite side of the same inner cycle.

When r is odd and r < k, ui and vi+r lie on different inner cycles. So there is a unique
geodesic passing through {ui, ui+1, vi+1}. In the extreme case there is one more geodesic
lying in the opposite direction.

It can be seen that in GP (n, 2) when n is even, the outer and inner cycles are even and
hence the number of geodesics in each of the extreme cases doubles.

4 Distance between two vertices in GP (n, 2)

Theorem 4.1. The distance between a pair of vertices (ui, uj), (vi, vj) and (ui, vj) in GP (n, 2)
is given by

d(ui, uj) =



















r for r ≤ 5
r + 4

2
for even r, r > 5

r + 5

2
for odd r, r > 5
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d(vi, vj) =







r

2
for even r

r + 5

2
for odd r

d(ui, vj) =











r + 2

2
for even r

r + 3

2
for odd r

where |i− j| = r ≤

⌈

n− 1

2

⌉

Proof. For r ≤

⌈

n− 1

2

⌉

, from any vertex ui to ui+r (or ui−r) for r ≤ 5 there is a geodesic of

length r lying on the outer cycle. When r is even, r > 5 there is a geodesic of length
r

2
+ 2

joining ui and ui+r passing through {vi, vi+2, . . . , vi+r} and the two spokes at ui and ui+r.

When r is odd, there is a geodesic of length
r − 1

2
+ 3 joining ui and ui+r passing through

{ui+1, vi+1, vi+3, . . . , vi+r−1, ui+r−1}.

If both vi and vi+r are either odd or even there is a unique geodesic of length r/2 joining
them along the inner cycle, if not so, there is a geodesic {vi, ui, ui+1, vi+1, vi+3, . . . , vi+r} of

length
r − 1

2
+ 3.

If r is even, ui and vi both are either odd or even and there is a geodesic of length
r

2
+ 1,

otherwise there is a geodesic of length
r − 1

2
+ 2 including a spoke and an outer edge.

Corollary 4.1. The diameter of GP (n, 2) when n ≥ 8, is given by

diamGP (n, 2) =

⌈

n− 1

4

⌉

+ 2

5 Betweenness centrality

Betweenness centrality [8–11] measures the relative importance of vertex in a graph. A ver-
tex is said to be central if it can effectively monitor the communication between vertices. It
describes how a vertex acts as a bridge among all the pairs of vertices. Betweenness central-
ity of a vertex x is the sum of the fraction of all-pairs shortest paths that pass through x. It
has wide applications in the analysis of networks [12–16].

Betweenness centrality of a vertex in a graph

Definition 1. [17]. Let G be a graph and x ∈ V (G), then the betweenness centrality of x
in G denoted by BG(x) or simply B(x) may be defined as

BG(x) =
∑

s,t∈V (G)\{x}

σst(x)

σst

9



where σst(x) denotes the number of shortest s-t paths in G passing through x and σst, the

number of shortest s-t paths in G. The ratio
σst(x)

σst

is called pair dependency of {s, t} on x,

denoted by δG(s, t, x).

We may now define the following terms related to betweenness centrality.

Definition 2. Let G be a graph and H a subgraph of G. Let x ∈ V (H), then the betweenness
centrality of x in H denoted by BH(x) may be defined as

BH(x) =
∑

s,t∈V (H)\{x}

σH
st (x)

σH
st

where σH
st (x) and σH

st denotes the number of shortest s-t paths passing through x and the
number of shortest s-t paths respectively, being their vertices in H.

Definition 3. Let G be a graph and H a subgraph of G. Let x ∈ V (G), then the betweenness
centrality of x induced by H denoted by B(x,H) may be defined as

B(x,H) =
∑

s,t(6=x)∈V (H)

σst(x)

σst

Definition 4. Let G be a graph and S a subset of V (G). Let x ∈ V (G), then the betweenness
centrality of x induced by S denoted by B(x, S) may be defined as

B(x, S) =
∑

s,t(6=x)∈S

σst(x)

σst

Definition 5. Let G be a graph and x, x0 ∈ V (G), then the betweenness centrality of x
induced by x0 in G, denoted by BG(x, x0) or simply B(x, x0) is defined by

BG(x, x0) =
∑

t∈V (G)\x

σx0t(x)

σx0t

It can be easily seen that in any graph G, the betweenness centrality induced by a vertex
on its extreme vertex or an end vertex is zero. B(xi, xj) = 0 for complete graph Kn. Let Pn

be a path on n vertices {x1, . . . , xn}, then

B(xi, xj) =

{

i− 1 if i < j

n− i if j < i

If Cn is a cycle on n vertices {x0, . . . , xn−1}, then
if n is even,

B(xi, x0) =







n− 1− 2i

2
if 1 ≤ i < n/2

0 if i = n/2

10



if n is odd,

B(xi, x0) =
n− 1− 2i

2
if 1 ≤ i ≤

n− 1

2

By symmetry,
B(xi, x0) = B(xn−1, x0)

For a star Sn with central vertex x0,

B(xi, x0) = 0 B(x0, xi) = n− 2

B(xi, xj) = 0 for i, j 6= 0

For a wheel Wn, n > 5 with central vertex x0,

B(xi, x0) = 0, B(x0, xi) = n− 5

B(xi, xi±1) = 1/2, B(xi, xi±j) = 0 for j ≥ 2

Theorem 5.1. Let G be a graph and xi ∈ V (G), then

BG(xi) =
1

2

∑

j 6=i

BG(xi, xj)

Definition 6. Let G be a graph and x ∈ V (G). Let S, T be two disjoint subsets of V (G),
then the betweenness centrality of x induced by S and T denoted by B(x, S, T ) may be defined
as

B(x, S, T ) = B(x, S) +B(x, T )

Definition 7. Let G be a graph and x ∈ V (G). Let S, T be two disjoint subsets of V (G)
where s( 6= x) ∈ S and t( 6= x) ∈ T , then the betweenness centrality of x induced by S and T
one against the other denoted by B(x, S|T ) may be defined as

B(x, S|T ) =
∑

s∈S, t∈T

σst(x)

σst

6 Betweenness centrality of a vertex in GP(n,2)

Let us consider the betweenness centrality of GP (n, 2), where the vertices lie on two vertex
transitive subgraphs namely the outer cycle generated by U = {u0, u1, . . . , un−1} and the
inner cycle generated by V = {v0, v1, . . . vn−1}.
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6.1 Betweenness centrality of an outer vertex in GP(n,2)

Theorem 6.1. The betweenness centrality of an outer vertex u in GP (n, 2) is given by

B(u) =































1

4
(5n+ 1) for n = 13, 17, 21, . . .

15n2 + 32n− 79

12(n+ 1)
for n = 15, 19, 23, . . .

1

4
(5n+ 14) for even n, n ≥ 12

Proof. The betweenness centrality of a vertex in G is the sum of the betweenness centralities
induced by U , V and U V s V determined in lemma 6.2 -6.4.

Lemma 6.1. For any vertex u0 in the outer cycle of GP (n, 2), n ≥ 6, there are 10 pairs of
outer vertices, and for each pair there is a geodesic lying on the outer cycle with u0 as an
internal vertex. More over, these pairs contribute the value 6.5 for its betweenness centrality.

Proof. Consider GP (n, 2), n ≥ 6. Now for any vertex u0 ∈ U , followed by lemma 6.2, it can
be easily seen that there exists a geodesic joining u−1 to ur and u−2 to us where r = 1, 2, 3, 4
and s = 2, 3 lying entirely on the outer cycle, contributing 1, 1, 1/2, 2/3 and 1/2, 1/3
respectively to the betweenness centrality of u0. Hence by the symmetry of metric, there are
10 pairs of vertices with total contribution 13/2.

Lemma 6.2. In GP (n, 2), the betweenness centrality of an outer vertex u0 induced by the
outer cycle is given by

B(u0, U) =



























1

4
(n + 13) for n = 13, 17, 21, . . .

1

12
(3n+ 41) for n = 15, 19, 23, . . .

1

4
(n + 14) for even n, n ≥ 12

Proof. Consider an outer vertex u0 ∈ U in GP (n, 2) for n ≥ 12. First we take all possible
U -U pairs of outer vertices and find their contributions to B(u0). By lemma 6.1 the outer
cycle contains 10 geodesics passing through u0 contributing 13/2. When n = 2k + 1, for
even k, k ≥ 8, the pair (u−1, ur), r = 6, 8, . . . , k − 2 contributes 1/2 for each r and when
k is incremented, there is one more pair (u−1, uk−1) with contribution 1/3. Therefore, by

symmetry, the outer pairs contribute the sum
1

2
(k+7) when k is even and

1

6
(3k+22) when k

is odd. When n = 2k, for even k, k ≥ 8, the pair (u−1, ur), r = 6, 8, . . . , k−2 contributes 1/2
for each r and when k is incremented, there is one more pair (u−1, uk−1) with contribution

1/4. Hence by symmetry, it can be seen that outer pairs contribute
1

2
(k + 7) for k, even or

odd.
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Lemma 6.3. In GP (n, 2), the betweenness centrality of an outer vertex u0 induced by the
inner cycle is given by

B(u0, V ) =























1

2
(n− 5) for n = 13, 17, 21, . . .

n2 − 2n− 19

2(n+ 1)
for n = 15, 19, 23, . . .

n/2 for even n, n ≥ 12

Proof. Consider the possible V -V pairs of inner vertices. When n = 2k + 1 for even k,
k ≥ 6, the pair (v0, vr) for r = 1, 3, . . . , k − 3 contributes the betweenness centrality 1/t
where t = (r + 1)/2. By the symmetry of the metric, there are 2t similar pairs with a total
contribution 2 for each r. Since there are (k−2)/2 of such (v0, vr) pairs, the total contribution
of V -V pairs is k− 2. When k is incremented, there is one new pair (v0, vr) where r = k − 2
with contribution 1/t where t = (k + 1)/2 and there are k − 1 similar pairs. Therefore,

by symmetry, inner pairs contribute the sum
k2 − 5

k + 1
. Consider the case n = 2k, for even

k, k ≥ 6 the inner pairs (v0, vr) for r = 1, 3, . . . , k − 1 contributes 1/t where t = (r + 1)/2.
Because of symmetry, each pair (v0, vr) belongs to a set of 2t similar pairs giving 2 and these
sets contributes a total k to the centrality of u0. When k is incremented, the leading pair
(v0, vr) for r = k gives 1/t where t = (k + 1)/2 and so get the total contribution as k.

Lemma 6.4. In GP (n, 2), the betweenness centrality of an outer vertex u0 induced by the
vertices of outer Vs inner cycle is given by

B(u0, U |V ) =







1

2
(n− 1) for odd n, n ≥ 13

n/2 for even n, n ≥ 12

Proof. Consider the possible U -V pairs. When n = 2k + 1, for even k, k ≥ 6, the pair
(u1, v−r) for r = 0, 2, 4, . . . , k − 2 contributes 1, When k is incremented, the leading pair
(u1, v−r) makes the contribution 1/2 for r = k − 1. Therefore by symmetry, in either case
the total contribution can be found as k. Similar argument is there for n = 2k.

6.2 Betweenness centrality of an inner vertex in GP(n,2)

Theorem 6.2. The betweenness centrality of an inner vertex v in GP (n, 2) is given by

B(v) =































1

4
(n2 − n− 26) for n = 13, 17, 21, . . .

3n3 − 83n+ 16

12(n+ 1)
for n = 15, 19, 23, . . .

1

4
(n+ 5)(n− 6) for even n, n ≥ 12

Proof. The betweenness centrality of v ∈ V is the sum of its betweenness centralities induced
by the subsets U , V and U V s V in G determined in lemma 6.5 -6.7.
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Lemma 6.5. In GP (n, 2), the betweenness centrality of an inner vertex v0 induced by the
outer cycle is given by

B(v0, U) =



























1

16
(n2 + 6n− 127) for n = 13, 17, 21, . . .

1

48
(3n2 + 18n− 377) for n = 15, 19, 23, . . .

1

16
(n2 + 6n− 128) for even n, n ≥ 14

Proof. Consider all outer pairs (ui, uj) such that v0 lies on atleast one geodesic joining them.
Let d = d(ui, uj), then clearly 4 ≤ d ≤ D, where D = diam(G). Let Bd(v0) denotes the
total contribution of those pairs at a distance d towards the betweenness centrality B(v0) of
v0. Consider n = 2k + 1 where k = 2l, l ≥ 3. Now for d = 4, there exists 3 pairs of 1/2 and
for d = 5, there exists 6 pairs of 1/3 and 4 pairs of 1. For 6 ≤ d ≤ D, there exist 2d − 4
pairs of 1/2 and d− 1 pairs of 1 giving the sum 2d− 3. Therefore,

B(v0, U) =

D
∑

d=4

Bd = 15/2 +

D
∑

d=6

(2d− 3) =
1

16
(n2 + 6n− 127)

In the case n = 2k+1, when k is incremented from odd to even, the leading diametric pairs
(ui, uj) i.e, vertices at a distance D = (n+9)/4, contains 2 pairs of 2/3 and 3(n− 3)/4 pairs
of 1/3 and hence there is a contribution of an extra sum (3n+ 7)/12. Therefore,

B(v0, U) =
1

16
(n2 + 2n− 135) + (3n+ 7)/12 =

1

48
(3n2 + 18n− 377)

Consider the case n = 2k where k = 2l, l ≥ 3, then D = (n + 8)/4 and when d = D, there
are (3n− 4)/4 pairs of 1/2 and a single pair of 1 giving the sum (3n+ 4)/8. Therefore,

B(v0, U) = 15/2 +

D−1
∑

d=6

(2d− 3) + (3n+ 4)/8 =
1

16
(n2 + 6n− 128)

Consider the case n = 2k where k = 2l + 1, l ≥ 3, then D = (n + 10)/4 and when d = D,
there are (n − 2)/2 pairs of 1/4 and one diametric pair of 2/4 giving the sum (n + 2)/8.
Therefore,

B(v0, U) = 15/2 +
D−1
∑

d=6

(2d− 3) + (n + 2)/8 =
1

16
(n2 + 6n− 128)

Lemma 6.6. In GP (n, 2), the betweenness centrality of an inner vertex v0 induced by the
inner cycle is given by

B(v0, V ) =































1

16
(n2 − 6n + 21) for n = 13, 17, 21, . . .

n3 − 5n2 + 3n+ 137

16(n+ 1)
for n = 15, 19, 23, . . .

1

16
(n− 2)(n− 4) for even n, n ≥ 12
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Proof. We consider all inner pairs (vi, vj) such that v0 lies on their shortest paths. Let
d = d(vi, vj) and D = diam(G), then clearly 2 ≤ d ≤ D. Let Bd(v0) denotes the total
contribution of pairs at a distance d towards the betweenness centrality B(v0) of v0. Let
n = 2k + 1 where k = 2l, l ≥ 3, then D = (n + 7)/4. For d = 2, there exists a pair
contributing 1 and for 2 ≤ d ≤ D − 1 we have Bd(v0) = 2d− 4. Therefore,

B(v0, V ) =

D−1
∑

d=2

Bd = 1 +

D−1
∑

d=3

(2d− 4) =
1

16
(n2 − 6n+ 21)

In the case n = 2k + 1 where k = 2l + 1, Gplay l ≥ 3, we have D = (n + 9)/4 and

B(v0, V ) =

D−1
∑

d=2

Bd = 1 +

D−2
∑

d=3

(2d− 4) + (D − 4) + 4(D − 2)−1 =
n3 − 5n2 + 3n+ 137

16(n+ 1)

Consider n = 2k where k = 2l, l ≥ 3. There are two inner k-cycles. Since v0 lies on a k-cycle,
subscripted with even numbers, we need not consider the pair (vi, vj) with odd subscripts i
and j. The even subscripted pairs (vi, vj) give the betweenness centrality (k − 2)2/8. Now
for j = 2, 4, 6, etc, the pair (v−1, vj) gives 1/2, 1/3, . . . , 1/l; (v−3, vj) gives 2/3, 2/4, . . . , 2/l
and finally (v−(k−3), v2) gives (l − 1)/l. Considering vertices of these two inner k-cycles.
Bd(v0) = d− 3 for 4 ≤ d ≤ D where D = k/2 + 2. Therefore,

B(v0, V ) =
D
∑

d=4

Bd +
(k − 2)2

8
=

1

16
(n− 2)(n− 4)

In the case n = 2k where k = 2l + 1, l ≥ 3, the vertices of the same cycle contribute
(k−1)(k−3)/8 to v0 and for the vertices of the different cycles Bd(v0) = d−3 for 4 ≤ d ≤ D−1
and BD(v0) = (k − 1)/4 where D = (k + 5)/2. Now

B(v0, V ) =
D
∑

d=4

Bd +
(k − 1)(k − 3)

8
=

1

16
(n− 2)(n− 4)

Lemma 6.7. In GP (n, 2), the betweenness centrality of an inner vertex v0 induced by the
vertices of outer Vs inner cycle is given by

B(v0, U |V ) =



























(n− 1)2

8
for n = 13, 17, 21, . . .

1

8
(n2 − 2n+ 5) for n = 15, 19, 23, . . .

n(n− 2)

8
for even n, n ≥ 12

Proof. In GP (n, 2) where n = 2k + 1, k = 2l, l ≥ 3, consider the possible u-v pairs deter-
mining the value of B(v0). From u0 there are k/2 geodesics passing through v0 to either
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sides. For an even index i ≤ k − 2, from ui and ui−1 there is an equal number of geodesics,
i.e, (k− i)/2 passing through v0 and therefore, by symmetry, there exists k2/2, u-v geodesics
through v0. Hence

B(v0, U |V ) =
(n− 1)2

8
for n = 13, 17, 21, . . .

In the case of odd k, i.e, k = 2l+ 1, l ≥ 3 there is one more geodesic of 1/2 from each outer
vertex and the expression k2/2 turns to be (k − 1)2/2 + k Hence

B(v0, U |V ) =
1

8
(n2 − 2n+ 5) for n = 15, 19, 23, . . .

Consider the case n = 2k, k ≥ 7. From u0 to any inner even vertex vj , (j 6= 0) there is a
unique geodesic passing through v0, and from ui to vj there are two if vi and vj are diametric
pairs of the inner even cycle. Thus k(k − 1)/2 stands for B(v0). Hence

B(v0, U |V ) =
n(n− 2)

8
for even n, n ≥ 12

7 Conclusion

Here we found the number of geodesics between two vertices and the betweenness centrality
of GP (n, k) for k = 2. The study of geodesics is extremely important in the context of
interconnection networks and it has wide applications in routing , fault-tolerance, time delays
and in the calculation of many centrality measures. This work may be extended for any
k < n/2.
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[3] Marko Lovrečič Saražin. A note on the generalized petersen graphs that are also cayley
graphs. Journal of Combinatorial Theory, Series B, 69(2):226–229, 1997.

[4] David Cruz-Uribe, Alberto Fiorenza, Michael Ruzhansky, and Jens Wirth. Examples
and counter-examples. In Variable Lebesgue Spaces and Hyperbolic Systems, pages 157–
162. Springer, 2014.

[5] Derek Allan Holton and John Sheehan. The Petersen Graph, volume 7. Cambridge
University Press, 1993.

16



[6] GN Robertson. Graphs under girth. Valency, and ConnectivityConstraints (Disserta-
tion), University of Waterloo, Waterloo, Ontario, Canada, 1968.

[7] S Stueckle and Richard D Ringeisen. Generalized petersen graphs which are cycle
permutation graphs. Journal of Combinatorial Theory, Series B, 37(2):142–150, 1984.

[8] Linton C Freeman. Centrality in social networks conceptual clarification. Social net-
works, 1(3):215–239, 1978.

[9] Stephen P Borgatti and Martin G Everett. A graph-theoretic perspective on centrality.
Social networks, 28(4):466–484, 2006.

[10] Per Hage and Frank Harary. Eccentricity and centrality in networks. Social networks,
17(1):57–63, 1995.

[11] Noah E Friedkin. Theoretical foundations for centrality measures. American journal of
Sociology, 96(6):1478–1504, 1991.
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