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ENTROPY VERSIONS OF ADDITIVE INEQUALITIES

ALBERTO ESPUNY DÍAZ AND ORIOL SERRA

Abstract. The connection between inequalities in additive combinatorics and analogous ver-
sions in terms of the entropy of random variables has been extensively explored over the past
few years. This paper extends a device introduced by Ruzsa in his seminal work introducing
this correspondence. This extension provides a toolbox for establishing the equivalence between
sumset inequalities and their entropic versions. It supplies simpler proofs of known results and
opens a path for obtaining new ones.

1. Introduction

In recent years, several authors realized that there exist certain analogies between many of the
cardinality inequalities in additive combinatorics that have been developed over the years and
some entropy inequalities. These analogies appear, for instance, with many important sumset
inequalities such as the Plünnecke-Ruzsa inequalities, or with traditional entropy results such as
Shearer’s inequality. In the past decade, several papers exploring these analogies have appeared
and many insightful results have been produced. The seminal work of Ruzsa [7] on this topic
was extended by Balister and Bollobás [1], Kontoyiannis and Madiman [4], Madiman, Marcus
and Tetali [5], Madiman and Tetali [6] or Tao [8], among many others. All these papers present
different techniques with which the analogy between sumset inequalities and entropy inequalities
can be studied. These techniques are used to obtain many new results, especially in the form
of entropy inequalities.

In this note we concern ourselves with entropies of discrete random variables. Let X be a dis-
crete random variable taking values x1, x2, . . . , xn with probabilities p1, p2, . . . , pn, respectively.
The Shannon entropy of X is defined as

H(X) :=
n
∑

i=1

pi log
1

pi
.

The definition is analogous if X takes countably many values. This is a concave function, and
Jensen’s inequality gives

H(X) ≤ log n, (1)

where n is the cardinality of the range of X. Moreover, equality holds if and only if X is
uniformly distributed over its range. This is the key property which allows one to translate
entropy inequalities to combinatorial ones. From this perspective, entropy inequalities can be
seen as generalizations of their combinatorial counterparts. One of the first examples in the
literature is the translation of the classical inequality of Han,

(n − 1)H(X1, . . . , Xn) ≤
n
∑

i=1

H(X1, . . . , Xi−1, Xi+1, . . . , Xn),
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which provides a simple direct proof of the inequality of Loomis and Whitney

|A|n−1 ≤
n
∏

i=1

|Ai|,

where A ⊂ E1 × · · · × En and Ai denotes the projection of A to the i-th coordinate hyperplane.
This example opened the path to obtaining combinatorial inequalities from entropy ones.

Ruzsa [7] introduced a device to walk the path backwards and obtain entropy inequalities
from combinatorial ones, by establishing in fact the equivalence between the two versions. In his
paper, he restricted the device to linear functions of two variables in abelian groups. Ruzsa used
this technique to prove the equivalence between Han’s inequality and the Loomis and Whitney
theorem mentioned above. This same technique was later used by Balister and Bollobás [1] to
prove the equivalence between Shearer’s inequality and the Uniform Covering inequality.

The main goal of this note is to extend the device of Ruzsa to arbitrary functions. By doing
so we obtain a more flexible tool. Our hope is that this will allow to give new combinatorial
proofs of entropy inequalities, and also to obtain new ones.

Given a function f : X → Y, we denote by fk the function fk : X k → Yk induced on the
k-fold cartesian power X k, namely, fk(x1, . . . , xk) = (f(x1), . . . , f(xk)) for x1, . . . , xk ∈ X . The
main result of this note is the following one.

Lemma 1. Let f, f1, . . . , fn be functions defined over a set X . Let α1, . . . , αn be real numbers.
If for all positive k and every finite set A ⊆ X k we have that

|fk(A)| ≤
n
∏

i=1

∣

∣

∣fk
i (A)

∣

∣

∣

αi

,

then, for every discrete random variable X taking values in X , the entropy of f(X) satisfies

H(f(X)) ≤
n
∑

i=1

αiH(fi(X))

whenever H(fi(X)) is finite for every i ∈ [n].

Lemma 1 is complemented by the following partial converse, which can be obtained from the
concavity of the entropy function.

Lemma 2. Let f, f1, . . . , fn be any functions defined over a set X . Let α1, . . . , αn be positive
real numbers. If the inequality

H(f(X)) ≤
n
∑

i=1

αiH(fi(X))

holds for every random variable X with suport in a finite set A ⊆ X , then we have that

|f(A)| ≤
n
∏

i=1

|fi(A)|αi .

We will first present the technique developed by Ruzsa in section 2, as well as its generalization.
We also provide proofs for lemma 1 and lemma 2. Lemma 1 is actually shown through two
technical lemmas, lemma 5 for random variables taking a finite number of values with rational
probabilities, and an extension to discrete random variables in lemma 6. In section 3 we present
an application of our technique to prove a new result which generalises the example of the
equivalence between Han’s inequality and the Loomis and Whitney inequality to fractional
coverings.
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2. The Ruzsa device

Obtaining cardinality inequalities analogous to entropy inequalities, as in lemma 2, is based
on the fact that uniform random variables capture the information of their range sets. In order
to invert the analogy and obtain entropy inequalities from cardinality ones, Ruzsa [7] proposed
a construction of sets which captures the probability distribution of a given random variable.

Assume we are given a random variable X defined over a set X that takes a finite number
of values, each of them with a rational probability. We can then construct a set Rk(X) ⊆ X k,
to which we will refer as the k-Ruzsa set of X, for infinitely many values of k. The vectors in
Rk(X) have the property that, if a coordinate in one of them is chosen uniformly at random,
then we are choosing an element x ∈ X with the same probability as the random variable X
does (we may say that the “density” of x in the vector equals the probability that it is the
outcome of X).

Definition 3. Let X be a random variable taking values {x1, . . . , xn} ⊆ X , each with probability

pi =
qi

ri
for some qi, ri ∈ N, and let k be a common multiple of r1, . . . , rk. For any vector

v = (v1, . . . , vk) ∈ X k and each i ∈ [n], let Ji(v) := {j ∈ [k] : vj = xi}. The k-Ruzsa set of X
is the set of vectors

Rk(X) := {v ∈ X k : |Ji(v)| = pik ∀ i ∈ [n]}.

We call an integer k suitable for the random variable X, or X-suitable, if it is a common
multiple of r1, . . . , rk.

With this definition we have that

|Rk(X)| =

(

k

p1k, . . . , pnk

)

,

and, by using Stirling’s formula, one can readily check that

log |Rk(X)| = k H(X) + O(log k). (2)

This is the construction Ruzsa used to prove the equivalence between Han’s inequality and
the Loomis and Whitney theorem. The main idea behind the proof came from observing that
one can build a set from a random variable, a different set from its projection onto a certain
subspace, and that the resulting set in the latter is precisely the projection of the first one. In
other words, the following diagram is commutative (here, πi stands for the projection onto the
i-th coordinate hyperplane):

X Rk(X)

πi(X) Rk(πi(X))

Rk

πi πk

i

Rk

Using this fact, one can separately compute the sizes of Rk(X) and its projections in terms
of the entropy of the random variables through (2). If a relationship between the sizes of the
set and its projections is known, a relationship between the entropies of the variable and its
projections follows (by letting k tend to infinity).

Ruzsa took the idea behind these commutative diagrams a bit further. Instead of consider-
ing simple projections, he took linear functions defined over two variables, and again proved
that constructing the Ruzsa set and applying linear functions commute. He used this fact to
prove an equivalence theorem between inequalities of cardinalities of sumsets along graphs and
entropy inequalities. In this paper we go even further, and see that the above diagram is always
commutative, no matter which function f is considered.
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We say that a random variable taking values in a set X is an X -random variable. Let X
be a discrete X -random variable that takes finitely many values, each of them with rational
probability. Let k ∈ N be suitable for X. Let Rk(X) ⊆ X k be X’s k-Ruzsa set. Let f : X → Y
be any function. Let us denote by fk : X k → Yk the function induced by f on the k-fold
cartesian power X k, namely fk(x1, . . . , xk) = (f(x1), . . . , f(xk)) for all x1, . . . , xk ∈ X . The
diagram now looks as follows:

X Rk(X)

f(X) fk(Rk(X))

Rk

f fk

Rk

Lemma 4. Let X be an X -random variable taking finitely many values, each of them with a
rational probability, and let f : X → Y be a function defined over X . Then, for each X-suitable
k,

Rk(f(X)) = fk(Rk(X)). (3)

Proof. Assume that X takes values {x1, . . . , xn}, each with probability pi =
qi

ri
for some qi, ri ∈

N, and construct the k-Ruzsa set Rk(X) for some suitable k.

Let {y1, . . . , ym} be the range of Y = f(X). Every value yi is taken by Y with a rational
probability p′

i = q′
i/r′

i :=
∑

x∈f−1(yi) Pr(X = x), where lcm(r′
1, . . . , r′

m) divides lcm(r1, . . . , rn),
so that k is suitable for Y and we can construct the k-Ruzsa set of Y .

The image by fk of a vector x ∈ Rk(X) is a vector in Yk in which every yi ∈ f(X ) appears

precisely k
∑

x∈f−1(yi)

Pr(X = x) = kp′
i times. Hence fk(x) ∈ Rk(Y ) and fk(Rk(X)) ⊆ Rk(f(X)).

Reciprocally, let y be a vector in Rk(f(X)). We now construct a vector x ∈ X k such that
fk(x) = y. For each i ∈ [m] let Ji(y) := {ℓ ∈ [k] : yℓ = yi} (note that |Ji(y)| = kp′

i). For each yi

let f−1(yi) = {xi
1, . . . , xi

ni
}. Partition Ji(y) into ni sets J i

1, . . . , J i
ni

such that |J i
j | = k Pr(X = xi

j)

for all j ∈ [ni] (note that this can be done as p′
i =

∑

x∈f−1(yi) Pr(X = x) and kpℓ ∈ N for all

ℓ ∈ [n]). Construct x by adding, for each i ∈ [m] and j ∈ [ni], xi
j to the coordinates whose

indices are in J i
j . For this vector we have fk(x) = y. This shows that Rk(f(X)) ⊆ fk(Rk(X)).

Hence, we have fk(Rk(X)) = Rk(f(X)). �

Once we have shown that the diagram is commutative, we can provide a proof of lemma 1. We
first consider random variables with finite support taking their values with rational probabilities.

Lemma 5. Let f, f1, . . . , fn be any functions defined over a set X . Let α1, . . . , αn be real
numbers. Let X be a random variable with support in X that takes a finite number of values,
each of them with a rational probability, and let Suit(X) ⊆ N be the set of all X-suitable integers.
If we have that

|fk(Rk(X))| ≤
n
∏

i=1

∣

∣

∣fk
i (Rk(X))

∣

∣

∣

αi

∀ k ∈ Suit(X), (4)

then the entropy of f(X) satisfies

H(f(X)) ≤
n
∑

i=1

αiH(fi(X)).

Proof. For each k ∈ Suit(X), build the set Rk(X) ⊆ X k, and consider fk(Rk(X)) ⊆ f(X )k and
fk

i (Rk(X)) ⊆ fi(X )k for each i ∈ [n]. By lemma 4, these sets are the Ruzsa sets of f(X) and
fi(X) for each i ∈ [n], respectively.
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By the hypothesis of the statement and (2), for every suitable k we have that

H(f(X)) + O

(

log k

k

)

≤
n
∑

i=1

αiH(fi(X)) + O

(

log k

k

)

.

The conclusion follows by letting k tend to infinity. �

A standard limit procedure extends lemma 5 to general discrete random variables.

Lemma 6. If the hypothesis of lemma 5 hold for every random variable taking a finite number of
values with rational probabilities, then its conclusion also holds for any discrete random variable
X such that the entropies H(fi(X)) are all finite.

Proof. We can write X as the limit of a sequence Xi of random variables taking a finite number
of values with rational probabilities. By lemma 5, for each i > 0 we have that H(f(Xi)) ≤
∑n

j=1 αjH(fj(Xi)). As the discrete random variables Xi converge to X in distribution, the
corresponding entropies also converge and

H(f(X)) = lim
i→∞

H(f(Xi)) ≤ lim
i→∞

n
∑

j=1

αjH(fj(Xi)) =
n
∑

j=1

αjH(fj(X)). �

Let X be the set of all random variables taking finitely many values in X , each of them
with rational probability. By lemma 6 we can restrict the proofs of our statements to random
variables in X. We will use this fact in all the proofs.

Note that lemma 6 is in fact stronger than lemma 1, in the sense that the inequalities (4) in
the former are only required to hold for Ruzsa sets. However, in the applications we will usually
have the more restrictive conditions. The conditions in lemma 1 trivially imply those imposed
in lemma 6.

Finally, for the sake of completeness, we provide a proof for lemma 2.

Proof of lemma 2. For the proof one needs to define an appropriate random variable X. Con-
sider f(A) and, for each b ∈ f(A), choose a unique representative a∗ ∈ f−1(b) of its preimage.
Let the set of these representatives be A∗, so that f(A∗) = f(A). Define a random variable X
having probability 1

|f(A)| of taking each value in A∗, and zero probability otherwise. Thus f(X)

is uniformly distributed over f(A). By (1),

log |f(A)| = H(f(X)) ≤
n
∑

i=1

αiH(fi(X)) ≤
n
∑

i=1

αi log |fi(A)|, (5)

as it is clear that fi(A
∗) ⊆ fi(A) for all i ∈ {1, . . . , n}. �

The reason that the numbers α1, . . . , αn have to be positive in lemma 2 is that the inequality
in (5) is not guaranteed to hold otherwise. However, the proofs of lemmas 5 and 6 also hold
when these values are negative. The fact that we have negative coefficients is what prevents
us from directly proving many sumset versions of entropic results. We observe that this same
problem extends to the general use of Ruzsa’s device.

There is an additional reason which prevents from a straight application of lemma 2. Some
entropy inequalities hold under independence constraints; this may render lemma 2 ineffective,
as the proof relies strongly on some non independent random variables. Likewise, when using
lemmas 5 and 6, there are applications in which set cardinality inequalities for the Ruzsa sets of
random variables can only hold (or are only known to hold) when the random variables involved
are independent. In these cases, an equivalence theorem using this method may not be possible.
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3. Projections and entropy

As we already mentioned in the Introduction, Ruzsa proved that the Loomis and Whitney
inequality and Han’s inequality are, in fact, equivalent. Balister and Bollobás [1] generalised
this result. In order to state it, we must introduce some notation. Let B1, . . . , Bn be arbitrary
sets, and let X = B1 × . . . × Bn. Given a set A ⊆ X , we denote its projection to the i-th
coordinate by Ai and, in general, its projection to coordinates indexed by S ⊆ [n] as AS . In
particular, A = A[n]. The same notation holds for random variables X = (X1, . . . , Xn) taking
values in X : for each subset S ⊂ [n] we denote XS := (Xi : i ∈ S).

A k-cover of [n] is a multiset S of subsets of [n] such that each i ∈ [n] appears in at least k
members of S. If each i ∈ [n] appears in exactly k members of S, we say that the k-cover is
uniform. Balister and Bollobás provided the following equivalence.

Theorem 7 ([1]). Let n ≥ 2, B1, . . . , Bn be arbitrary finite sets, and let X := B1 × . . . × Bn.
For every uniform k-cover S of [n], the following two statements hold and are equivalent:

(i) for any set A ⊆ X ,

|A|k ≤
∏

S∈S

|AS |.

(ii) for any random variable X taking values in X ,

kH(X) ≤
∑

S∈S

H(XS).

We recall that the first result is the well-known uniform cover inequality [2], whereas the
second is the famous Shearer’s inequality [3]. What Balister and Bollobás proved is their
equivalence.

In this same spirit, we show a further generalisation of this equivalence result using an entropic
inequality of Madiman and Tetali [6]. In order to state this result, we introduce some further
notation. Given a multiset S of subsets of [n], a function α : S → R+ is called a fractional cover
if for each i ∈ [n] we have that

∑

S∈S:i∈S

α(S) ≥ 1.

As an analogy with random variables, given sets A ⊆ X , S ⊆ [n] and y ∈ AS , we define the
set A | AS = y (and read A conditioned to AS = y) as the subset of A such that the coordinates
indexed by S take the value y. We then define an average size of the conditioned set by

∣

∣A | AS

∣

∣ :=
∏

y∈AS

∣

∣A | AS = y
∣

∣

p(y)
,

where p(y) is the probability that πS(x) = y when choosing a point x ∈ A uniformly at random.

Given two sets S, T ⊆ [n], we write AT | AS to mean AT | AS∩T , with a slight abuse of
notation. The average size of AT | AS is then

∣

∣AT | AS

∣

∣ =
∏

y∈AS

∣

∣AT | AS = y
∣

∣

p(y)
.

By convention, when S = ∅ we set |AT | A∅| = |AT |.

For a set S ⊆ [n] with minimal element a ≥ 1, we define S∗ := [a − 1]. When a = 1, we
understand that S∗ is empty.

Theorem 8. Let n ≥ 2, B1, . . . , Bn be arbitrary finite sets, and let X := B1 × · · · × Bn. Let S
be a multiset of [n]. For any fractional covering α : S → R+ the following statements hold and
are equivalent:
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(i) for any set A ⊆ X ,

|A| ≤
∏

S∈S

∣

∣AS | AS∗

∣

∣

αS .

(ii) for any random variable X = (X1, . . . , Xn) taking values in X such that H(X) is finite,

H(X) ≤
∑

S∈S

αSH(XS | XS∗
).

Proof. Statement (ii) is a result of Madiman and Tetali [6, Theorem I’]. Statement (i) follows
from (ii) by taking f to be the identity and fS to be projections onto the coordinates indexed
by S ∈ S in lemma 2.

For the converse implication, choose f to be the identity and let fS be the projections onto
the coordinates in S. Assume first that X takes finitely many values, each with a rational
probability. For each X-suitable k, fk

S(Rk(X)) = Rk(XS) by lemma 4. By statement (i),
|fk(Rk(X))| ≤

∏

S∈S |fk
S(Rk(X))|αS holds, so lemma 5 directly yields the result. The case

when X is any discrete random variable follows by lemma 6. �

We note that statement (i) in theorem 8 generalizes and improves previous bounds on the
sizes of sets based on the sizes of their projections. The result can be derived from the more
general results by Madiman and Tetali [6].
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