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ON A STACKELBERG SUBSET SUM GAME

ULRICH PFERSCHY, GAIA NICOSIA, ANDREA PACIFICI

Abstract. This contribution deals with a two-level discrete decision problem, a so-called
Stackelberg strategic game: A Subset Sum setting is addressed with a set N of items with
given integer weights. One distinguished player, the leader L, may alter the weights of
the items in a given subset L ⊂ N , and a second player, the follower F , selects a solution
A ⊆ N in order to utilize a bounded resource in the best possible way. Finally, the leader
receives a payoff from those items of its subset L that were included in the overall solution
A, chosen by the follower. We assume that F applies a publicly known, simple, heuristic
algorithm to determine its solution set, which avoids having to solve NP-hard problems.

Two variants of the problem are considered, depending on whether L is able to control
(i.e., change) the weights of its items (i) in the objective function or (ii) in the bounded
resource constraint. The leader’s objective is the maximization of the overall weight
reduction, for the first variant, or the maximization of the weight increase for the latter
one. In both variants there is a trade-off for each item between the contribution value to
the leader’s objective and the chance of being included in the follower’s solution set.

We analyze the leader’s pricing problem for a natural greedy strategy of the follower
and discuss the complexity of the corresponding problems. We show that setting the
optimal weight values for L is, in general, NP-hard. It is even NP-hard to provide a
solution within a constant factor of the best possible solution. Exact algorithms, based
on dynamic programming and running in pseudopolynomial time, are provided. The
additional cases, in which F faces a continuous (linear relaxation) version of the above
problems, are shown to be straightforward to solve.

1. Introduction

A special class of decision problems in which two competing agents act sequentially are
the so-called Stackelberg Games, a name that has its origins in the early 1930s [13]. In
particular one agent, the leader L, needs to optimally choose the values of some variables
that a second agent, the follower F , uses as parameters of an optimization problem and
the leader’s payoff depends on the solution determined by the follower. These games can
be formulated using bilevel programming (BP). In a bilevel optimization problem some of
the constraints specify that a subset of variables must be an optimal solution to another
optimization problem. This paradigm is particularly appropriate to model Stackelberg
games. From a computational point of view, bilevel programming is a hard task. Jeroslow
[8] showed that even in presence of linear objective functions and constraints, BP is already
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NP-hard. The strong hardness of the same problem was later proved by Hansen et al.
[7]. Further complexity results are presented in, e.g., [10] where the authors state that
most solution techniques for BP have been developed focusing on special cases in which
convenient properties, such as linearity or convexity, can be exploited in order to develop
efficient solution methods.

In the classical Subset Sum Problem (SSP), we are given a set of n itemsN = {1, 2, . . . , n},
each having a positive integer weight wi, i = 1, . . . , n, and a knapsack of capacity c. The
problem is to select a subset A ⊆ N such that the corresponding total weight is closest
to c without exceeding c. SSP is a well known and widely studied problem and can be
considered as a special case of the classical binary knapsack problem (KP) arising when the
profit and the weight associated with each item are identical. Although SSP is a special
case of KP, it is still NP-hard [6], but can be solved to optimality in pseudopolynomial
time and admits a FPTAS (see [9] for a review on solution algorithms for SSP). SSP has
also been studied in the context of game theory [3, 4, 5], social choice, and multi-decider
systems [11, 12].

In this paper, we consider a special Stackelberg game arising in a SSP setting: The leader
L may alter the weights of some items (the leader’s items L ⊆ N), while the follower F
selects a solution set A ⊆ N in order to utilize a bounded resource in the best possible
way. In order to do so, F applies a simple, possibly suboptimal, strategy which is known to
L. The leader receives a payoff only from its own items that are included in the solution,
i.e., from items in A ∩ L. We address two variants of the problem: In a first version the
leader may control, i.e., change, the weights of its items in the objective function (but not
in the knapsack constraint) and wants to maximize the overall reduction in the weights
of its items included in the solution set as much as possible. A second variant considers
pricing items in the constraint only and not in the objective. In this case, the leader aims
at maximizing the total weight increase of its solution items. In both variants there is a
trade-off for each item between the contribution value to the leader’s objective and the
chances of being included in the follower’s solution set.

Our study can be motivated by the application scenarios we sketch hereafter. A financial
trader L (e.g., a bank) offers a number of products (i.e., investments opportunities) to a
client F who also has access to alternative forms of speculations but limited knowledge,
bounded computational capacity, and restricted budget availability. All these products,
either offered by the trader or not, are characterized by a given cost and ROI which are
determined by the market and the client selects a portfolio using simple strategies based
on the efficiency of the financial products at hand. Due to client’s limited information,
the trader may offer its own products at a reduced ROI, taking the difference as a profit.
On the other hand, the trader has to make its investments attractive in order to increase
chances that client purchases these instead of other products. In conclusion, the trader
has to decide, for all its financial products, the (decreased) ROI offered to the client in
order to maximize the overall profit which is in turn given by the overall discount on the
actual ROI values associated to the products the trader has sold. In a slightly different
setting, the trader tries to sell its products at prices larger than the actual costs, while
maintaining their real market profitability valid for the clients. In this case, the trader’s
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profit is associated to the difference between the price set for those items included in the
solution set and their genuine costs. The model presented in this work represents the
special case of a market scenario in which ROI is proportional to the cost of an investment.

A different example, motivating our model in a production planning context, considers
an agent F that controls a processing resource with limited capacity (e.g., total available
processing time) c. The agent performs its own jobs on the machine but also accepts
external orders by a different agent L in order to improve the utilization of its resource. F
wants to decide on a production plan satisfying the capacity constraint while maximizing
its utility which is directly proportional to the overall resource consumption. In a first
setting the leader wants to have some of its jobs processed by F but could also have the
jobs processed at a different workshop, where it has to pay the same proportional price for
each unit of processing time. L might gain something if it manages to have some of its
jobs processed by F at a cheaper price. Even if less profitable, it may be beneficial for F
to devote a fraction of—otherwise unused—resource capacity for processing the external
jobs. In this case L wants to set prices of its jobs to maximize the total saving obtained by
having its jobs processed by F at a cheaper cost than another workshop. An alternative
situation arises if there is no possibility for L to negotiate prices, but F may be willing to
let the leader use the machine for a bit longer than the original processing time of each
job. Then the leader tries to extend this total extra time as much as possible (and use this
time to do some additional work on these machines for free).

The paper is organized as follows. In the following Section 1.1 the addressed problem
is rigorously defined. In Section 2 we consider the first variant of the problem where L is
pricing items in the objective and propose an algorithm that allows the leader to find the
solution in pseudopolynomial time. We also show that, even though the problem admits a
solution algorithm running in O(nc2), it is not possible to obtain an algorithm guaranteeing
a constant as approximation ratio (unless P = NP). Section 3 addresses the second version
of the problem where items are priced in the constraint. Even in this case constant-ratio
approximation algorithms are not possible, however it is possible to find an optimal pricing
for L in a shorter time O(n

3/2c). Oddly enough, a simple variant (quite similar at a first
glance) of the latter problem can be easily solved as discussed in Section 3.1. Section 4
briefly sketches the straightforward solutions for the case in which the follower is allowed
to include fractions of items in the solution set, i.e., F solves the LP relaxation for the
above problems. Finally, in Section 5, some conclusions are drawn.

1.1. Problem Definition. For ease of presentation, we partition the items into two
classes: The set L of items controlled by the leader L and the set F = N \ L of the
remaining items. For simplicity we also refer to L and F as the leader’s items, or L-items,
and follower’s items or F-items. The original SSP posed to the agents can be written as
an integer program:

(1) max







∑

j∈N

wjyj :
∑

j∈N

wjyj ≤ c ; y ∈ {0, 1}n
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As discussed above, the leader L is interested in filling the knapsack with its items (i.e.,
items j ∈ L) and, to this purpose, it may alter the parameters of Problem (1) above in
two different ways, by changing its item weights –as perceived by the follower– either in
the objective function or, alternatively, in the capacity constraint. Note that in this way
we allow the item data to be separated and different in the objective and in the constraint.
Hereafter, we refer to the original and revised values of the leader’s item j by wj and w̃j ,
respectively and limit our analysis to nonnegative weights w̃j ≥ 0.

In this paper we consider the following two models:

1. Objective-control: L may change the weights of its items in the objective of Problem (1).
Then F is confronted with the following KP

max







∑

j∈L

w̃jyj +
∑

i∈F

wiyi :
∑

j∈N

wjyj ≤ c ; y ∈ {0, 1}n







.(2)

Let y∗ be an optimal solution of (2). For each item j ∈ L, the leader L would like to gain
some of the value of j by reducing the item profit (i.e., setting w̃j < wj) for the follower.
The resulting leader decision problem may be expressed via the bilevel program below:

max
∑

j∈L

(wj − w̃j)xj

s.t. x ∈ arg max
y∈{0,1}n







∑

j∈L

w̃jyj +
∑

i∈F

wiyi :
∑

j∈N

wjyj ≤ c







x ∈ {0, 1}n; w̃ ∈ R
|L|
+

(3)

where x and w̃ are the variables of the leader’s problem: x is restricted to be an optimal
solution of the follower’s problem, i.e., x components take the optimal values of the y
variables in the KP faced by F . In particular, the binary variables yj, in the follower’s
problem, indicate whether item j is or is not included in the knapsack. Continuous variables
w̃j indicate the chosen L-item weights.

2. Constraint-control: L may change the weights of its items in the constraint of Prob-
lem (1). Then F is confronted with the following KP:

max







∑

j∈N

wjyj :
∑

j∈L

w̃jyj +
∑

i∈F

wiyi ≤ c ; y ∈ {0, 1}n







,(4)
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while L wants to maximize the weight increase of its items relative to their original values,
in the optimal solution set of F . The corresponding leader decision problem is therefore:

max
∑

j∈L

(w̃j − wj)xj

s.t. x ∈ arg max
y∈{0,1}n







∑

j∈N

wjyj :
∑

j∈L

w̃jyj +
∑

i∈F

wiyi ≤ c







x ∈ {0, 1}n; w̃ ∈ R
|L|
+ .

(5)

Here, increased w̃j values correspond to a higher utility for L. At the same time however,
this lowers the chance that j ∈ L is selected by the follower and thus becomes relevant for
L.

Note that, in both cases, the problem faced by the follower is a binary knapsack problem.
KP is a (binary) NP-hard optimization problem, however we will assume that the follower
has limited computational capability as it was done in [1]. As a consequence, instead of
finding the optimal solution, F determines a feasible solution set of the resulting knapsack
problem by applying the very natural and intuitively appealing Greedy strategy. This
holds for both versions of our problem, namely (3) and (5).

In KP the efficiency ej , measured as the ratio between the profit and the weight of an
item j, indicates how well j utilizes the capacity in a solution set. Greedy follows the
natural idea of sorting the items in non-increasing order of efficiencies and then adding
the items to the solution set in that order. Whenever an item exceeds the current residual
capacity it is discarded. If an item can be added to the current solution it is inserted into the
knapsack and never removed again. For the decision of F on a leader’s item j ∈ L, in the
first variant, i.e., Objective-control, we have ej = w̃j/wj; while for the Constraint-control
variant ej = wj/w̃j. On the other hand, since all items i ∈ F have the same efficiency
ei = 1, it makes sense for a subset sum setting to apply a tie-breaking rule where the
follower selects items of equal efficiency in decreasing order of weights. With reference to
the mechanism implemented by Greedy, we write that an item j is positioned before i if
ej > ei (or, after i if ej < ei.)

In the next two sections, we consider the integer problem and derive solution strategies
for the leader. In Section 4, we briefly consider a continuous model, in which fractions
of items are allowed to be included in the knapsack, and show that both versions of the
problem are easy to solve in this case.

2. Objective-control model

In general, L has the following options for each of its items: (ii) Either j ∈ L is positioned
before all F-items, i.e. with efficiency slightly larger than 1 by setting w̃j := wj + ε and
thus incurring a marginal loss for L, if the capacity permits it to be packed; or (ii) an item
j of L is positioned after all F-items. In this case, the sorting by efficiencies serves only
to implement a certain order of the remaining L-items offered to the Greedy algorithm,
which can also be reached by marginally small values of w̃j . Thus, L gains (almost) wj in
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w4 = 9 w5 = 8 c̄ = 3

w5 = 8 w8 = 3 c̄ = 5w7 = 4

a)

b)

Figure 1. Structure of the solution sets with Greedy

its objective for every packed item j. (iii) A third option is to set w̃j := wj thus inter-
mixing leader and follower items. This choice cannot increase the range of possibilities for
L or improve its objective either. Hence, one may avoid considering strategies for leader
that leave unaltered the efficiencies of its items. As a consequence, an optimal solution can
be partitioned into three (possibly empty) sets of items selected by Greedy: A first set of
L-items, one block of F-items, and a third set of L-items.

Based on the above considerations, the optimal strategy for L is characterized by the
total weight W1 of all items placed before the F-items. Recall that Greedy selects the F-
items—all with equal unit efficiency—in non-increasing order of weights and simply packs
whatever items fit: let F (W1) be the total weight of these included items. Now the residual
capacity c̄ = c−W1−F (W1) is available for packing with the remaining L-items. The total
weight of L-items packed in this step is denoted by W2 ≤ c̄ and constitutes the objective
value of L. It is important to point out that, given the residual capacity c̄, the leader may
actually choose the set S of its items that will be packed by Greedy: This can be done
by slightly increasing the efficiency of such items e.g., setting w̃j := ε for each j ∈ S.

Since the algorithm tries to pack each F-item, the residual capacity c̄ remaining for L
is upper bounded (unless the follower is left with no items at all) by the weight of the
smallest unpacked item of F . In order to maximize the residual capacity for its own items,
it would be natural to think that L would try to reach a capacity c̄ strictly smaller than
wF
min for Greedy. However the following example shows that, if F plays Greedy, L may

obtain better than that.

Example 1. Consider an instance of our problem with c = 20 and 8 items (sorted in non-
increasing weight order) with L = {4, 5, 6, 8} and F = {1, 2, 3, 7}. The item weights are {w4 =
9, w5 = 8, w6 = 5, w8 = 3} for the L-items and {w1 = 12, w2 = 11, w3 = 10, w7 = 4} for the items
of F .

In Figure 1(a), a solution is depicted in which by sequencing 〈w4 = 9, w5 = 8〉 we have c̄ = 3

which is the largest value smaller than wF

min
= 4. L may obtain this solution by setting w̃4 = w4+ ε

and w̃5 = w5 + ε (with cost +2ε) so that W1 = 9+8 = 17, F (W1) = 0, and c̄ = 3 that eventually F

will pack with weight w8 = 3 and L sets w̃8 = 0. The leader objective value is 3− 2ε. However, as

illustrated in Figure 1(b), L may improve its objective by including items w5 = 8 and w8 = 3 with

W1 = 11, then F may only include w7 = 4 so, eventually, c̄ = 5 can be exploited by packing w6 = 5

and the final value for the leader objective is 5− 2ε.
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From an algorithmic point of view1, given W1, the value F (W1) and thus c̄ immediately
follow and it remains for L to solve an instance of a standard SSP with capacity c̄ and the
item set without those items included in W1. In order to do so, we have to consider all
possible candidate values W1 and all weight values W2 reachable after fixing W1. By run-
ning a dynamic programming by reaching algorithm [9] and going through all W1 values,the
final optimal solution can be found easily in pseudopolynomial time.

Theorem 2. In the Objective-control Leader’s problem (3), the optimal values w̃j, j ∈ L
for L can be determined in time O(nc2).

Proof. In order to consider all possible candidate values W1 and we run a dynamic pro-
gramming by reaching algorithm.

More formally, we define a two-dimensional array of reachable weight pairs r(W1,W2)
for W1,W2 ∈ {0, . . . , c}, where r(W1,W2) = 1 iff there exist two disjoint subsets S1, S2 ⊆ L
with

∑

i∈S1
wi = W1 and

∑

i∈S2
wi = W2, and r(W1,W2) = 0 otherwise.

The entries of this array can be found by running a dynamic programming by reaching
algorithm as follows: As an initialization we set all entries of r to 0 except r(0, 0) = 1. Then
we consider all items of L in turn (in arbitrary order). For each item j ∈ L we consider
all pairs (w′, w′′) with w′, w′′ ∈ {0, . . . , c}: If r(w′, w′′) = 1, then we set r(w′ +wj , w

′′) = 1
and r(w′, w′′ + wj) = 1, corresponding to the possibility of adding a weight wj before or
after the F-items.

After r is fully determined we go through all feasible choices of W1, i.e. all values W1

where
∑c

w′′=0 r(W1, w
′′) ≥ 1. For each such candidate W1 the value F (W1) is determined

by executing Greedy with item set F and the value c̄ = c − W1 − F (W1) is computed.
Then, the best solution (given W1) is determined as

W2(W1) := max {W2 | W2 ≤ c̄ and r(W1,W2) = 1} .

Finally, it remains to pick the optimal solution for L by taking the best choice for W1 as

max

{

W2(W1) |
c

∑

w′′=0

r(W1, w
′′) ≥ 1

}

.

The array r has a size of c2. Its computation requires each item in L to be considered
once for every array entry which gives a trivial pseudopolynomial running time bound of
O(nc2). �

Although an algorithm with pseudopolynomial running time exists, there is in fact no
hope to find an efficient algorithm that at least guarantees a constant approximation ratio,
as shown by the following theorem.

Theorem 3. Unless P = NP, the Objective-control Leader’s Problem (3) does not admit
a constant approximation ratio.

1With no loss of generality, in the computations we neglect the ε values, needed to “guide” Greedy in the
selection of the L-items.
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Proof. Hereafter, we show that it is NP-complete to determine weights w̃j in order to
obtain a solution which is within a constant factor of the best possible solution for L.
Consider an instance I of the decision problem Partition [6], where m integer numbers
a1, . . . , am are given and the question is whether there exists a subset of these numbers
with total sum equal to b = 1

2

∑m
i=1 ai.

Starting from I, we define the following instance I ′ of the Objective-pricing Leader’s
Problem, where M is a large enough number: The leader L has m + 1 items with profits
corresponding to the values of instance I, i.e. wj = aj, and one additional item with weight
wm+1 = M . The follower F has only one item of weight wm+2 = M + 1. The knapsack
capacity is set to c = M + b.

As observed above, L can only place its items before the F-item, with a marginal positive
cost in the objective, or after the F-item, with a utility equal to their full weight.

If I is a YES-instance of Partition, then there exists a subset S with
∑

i∈S ai = b. The
optimal strategy of L will submit this set S first, before the F-item of weight M +1. Now
the F-item m+2 is blocked since b+M +1 > c. However, the L-item of weight wm+1 can
still be packed and, by setting w̃m+1 := 0, L gets a “gain” equal to M .

Otherwise, if I is a NO-instance, there are two cases to consider:

(1) L lets F packs its item: Hence, the optimal strategy of L will not submit any items
before wm+2 thus setting W = 0 and gaining at most b− 1.

(2) L blocks the F-item by submitting, beforem+2, a subset of items with total weight
W ≥ b+1. Then the follower item m+ 2 is blocked but also m+ 1 of L with weight
wm+1 = M does not fit anymore. However, L can submit all its remaining items
and gets them packed by Greedy. This results in a gain of at most 2b−W ≤ b−1.

Summarizing, the instance I of Partition has a YES answer if and only if the optimal
weight obtained by the leader in the Stackelberg subset sum problem is equal to M while
it is less than b for any NO answer. This rules out a polynomial time approximation
algorithm with any constant approximation ratio ρ, since we can choose, e.g., M > ρb. �

3. Constraint-control model

We now turn to the Constraint-control model illustrated by Problem (5). In this case
the coefficients in the objective function for F are fixed and equal to the original given
weights wj. Instead, the leader can modify the weights of the L-items in the constraint.

It is not hard to see that, for this version of the problem, the solution structure is
somehow similar to that of Program (3), however this variant is slightly less complex to
solve. As before, recalling that here the efficiency of an item j in the follower’s problem
is ej = wj/w̃j, the leader can position any item j ∈ L before the F-items by accepting a
marginal loss, i.e., setting w̃j := wj − ε < 0. Denote the total weight of these items again
by W1 ≤ c. Then, F will include some of its items following Greedy with total weight
F (W1). Finally, when F has no more items to include, the leader may set its objective
value using the residual capacity c̄ = c − W1 − F (W1). It suffices to pick the smallest
remaining L-item of weight w′ (if it fits) and increase its weight up to c−W1 − F (W1) so
that the capacity is fully consumed. All the remaining L-item weights should be increased
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to a large enough value (e.g., c̄+ 1) in order to guarantee that Greedy actually picks the
desired item w′.

A straightforward algorithm for determining the optimal solution for L would consider
each item w′ ∈ L as a candidate for the smallest remaining item. For each of these
|L| choices, one can run a simple one-dimensional dynamic programming by reaching to
determine all weight values W1 which can be reached by a subset of L\{w′}. By a suitable
implementation of the dynamic programming algorithm, we may state:

Theorem 4. In the Constraint-control Leader’s problem (5), the optimal weights w̃j for

j ∈ L can be determined in pseudopolynomial time of O(n3/2c).

Proof. For each possible candidate as smallest remaining item w′ ∈ L, we may run a
dynamic programming by reaching algorithm in order to determine all weight values W1

that can be achieved by a subset of L \ {w′}. This can be done in O(nc) time e.g. using a
one-dimensional reduction similar to the algorithm devised for the objective-control model.
For every reachable value W1, Greedy can be applied for the F-items yielding F (W1) and
requiring at most O(nc) time (after sorting the F-items once). If c̄ = c−W1−F (W1) > w′,
we keep c̄− w′ as a candidate for the objective function value.

In this way we consider every item in L as a potential candidate for w′ and finally keep
the best objective function value for the optimal solution. All together, this yields an
O(n2c) pseudopolynomial running time.

It is possible to improve the running time of the algorithm by considering a slightly more
involved implementation of the dynamic programming algorithm which works as follows
(we omit the details on the rounding procedure to obtain integer valued quantities when
required): Given a parameter k (to be defined later) the set L is partitioned into k subsets
Li, i = 1, . . . , k, of (roughly) equal size, i.e. |Li| ≈ |L|/k. Instead of running the dynamic
programming iteration separately for each item w′ ∈ L, we perform the computation in k
phases, considering all items w′ ∈ Li in one phase.

In each such phase we first compute an initialization of the dynamic programming ar-
ray taking all items in L \ Li into account which takes O(nc) time. This array remains
unchanged and is stored until the completion of the current phase. Then we pick one
candidate w′ ∈ Li and continue the computation from the above initialization by adding
all items in Li \ {w

′}. This takes O(n/k · c) time and gives all values W1 for the chosen w′.
Iterating this process for all candidates in Li (going back to the precomputed initialization
of the array for each candidate) adds a total running time of O((n/k)(n/k) · c) for this
phase.

Iterating this approach over all sets Li produces the dynamic programming array for all
candidates w′ ∈ L and takes O(k(n · c+n2/k2 · c)) time. Choosing the parameter k ≈

√

|L|

we get an overall running time of O(n3/2c).
It remains to consider the outcome of Greedy and the resulting residual capacity c̄,

resp. the difference c̄− w′, for each candidate w′. To do so, we can precompute the result
of Greedy for every capacity value W1 = 0, 1, . . . , c in O(n ·c) time (after sorting the items
of F ) and store the outcome in an array F (W1). Now it is easy to determine the value
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c̄− w′ in constant time whenever we detect a new reachable value W1 for some candidate
w′ and check for a new objective function value. �

The existence of a pseudopolynomial algorithm which is just linear in the capacity c
would justify an even stronger hope for positive approximation results than for Objective-
pricing. In fact, many discrete optimization problems with a linear pseudopolynomial
algorithm permit even an FPTAS by rounding the objective value space. However, the
following theorem shows that those expectations cannot be fulfilled.

Theorem 5. Unless P = NP, the Constraint-control Leader’s Problem (5) does not admit
a constant approximation ratio.

Proof. Consider again an instance I of Partition, where m integer numbers a1, . . . , am
are given and the question is whether there exists a subset of these numbers with total
sum equal to b = 1

2

∑m
i=1 ai.

In the following we will construct an instance of the Constraint-pricing model such
that L receives an objective function value of (almost) 1 if I is a YES-instance and 0
otherwise. Thus, any polynomial algorithm guaranteeing a constant approximation ratio
for the Constraint-pricing Leader’s problem would also answer the decision problem for I
in polynomial time.

Item set L consists of m items with wj = 2aj and another item wm+1 = ε. Let k :=

min{j : 2j >
∑m+1

i=1 wi} and add one additional item wm+2 = 2k − 2b. Thus, if I is a

YES-instance then there is also a subset of L with total weight 2k. On the other hand, if
I is a NO-instance then no subset of L can have a weight of 2k (consider that wm+2 must

be necessarily included in such a subset since
∑m+1

i=1 wi < 2k).
Item weights in F will be denoted for convenience by vi and F consists of k − 1 items

with weights vi = 2i for i = 1, . . . , k−1. Clearly, the subsets of these items can reach every
even weight value between 2 and 2k − 2. Then we add an item vk = 3 which means that
now every weight value (even and odd) between 2 and 2k + 1 can be reached. Finally, we
add a large item vk+1 = 2k + 2. This means that there are subsets of F with total weight
for every value from 2 to 2k+1 + 3 except for the missing value 2k + 3 which is larger than
∑k

i=1 vi and larger than vk+1 but smaller than vk+1 + v1.

Now we choose c = 2k+1+3. If I is a YES-instance, we argued above that L can submit
items before the F-items with total weight 2k which leaves a residual capacity of 2k+3 for
F . As shown above, there is no way for F to fill this capacity completely but a residual
capacity of c̄ = 1 will remain which L can fill with item wm+1 thus gaining an objective
function value of 1− ε.

If I is a NO-instance, then L can place some subset of items before the F-items with
total weight different from 2k leaving a gap different from 2k + 3. F can fill any such gap
completely with its items leaving an objective value of 0 for L. (In fact F could not fill a
gap of only 1, but L can not enforce a gap of 1 since its sum of weights is < 2k+1.)

Observe that the above reduction is polynomial in the length of the encoded input since
∑m+1

i=1 wi ≤ 2m · amax and thus k can be expressed as a logarithm of m · amax.
�
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3.1. A simple variant. A variant of the Constraint-pricing model in which the leader’s
objective is given by the actual weight values of its items can also be addressed. As we see
below, this problem turns out to be easy to solve. The bilevel program associated with the
leader problem is the following, with the usual variables:

max
∑

j∈L

w̃jxj

s.t. x ∈ arg max
y∈{0,1}n







∑

j∈N

wjyj :
∑

j∈L

w̃jyj +
∑

i∈F

wiyi ≤ c







x ∈ {0, 1}n; w ∈ R
|L|

(6)

As we observed above, if L decreases an item weight, i.e. w̃j < wj , then j is positioned
before all F-items since it has an efficiency larger than 1. In this case, reducing the weights
by a marginal quantity gives L control over the items considered by F but with a minimal
loss in the leader objective. So, by setting w̃j := wj − ε, and thus incurring a marginal loss
for F , item j—if the capacity allows it—will be included in the solution. Clearly, a L-item
j is positioned after all F-items if w̃j > wj.

This allows a very simple solution strategy: L positions all its items before F in arbitrary
order. As soon as an item can not be packed, L reduces its weight to match exactly the
remaining capacity. Thus, neglecting the marginal loss due to the ε, L is guaranteed a best
possible objective function value min{c,

∑

j∈Lwj}.

4. LP relaxation

We now consider the special case in which F faces a continuous (linear relaxation) version
of the above problems (3) and (5) so that variables x and y are continuous and contained in
the interval [0, 1]. F is therefore able to optimally solve the follower problem in polynomial
(in fact linear) time. We now show that in this case both problems are trivial.

Let us first consider the Objective-control model (3). Since F can split items to be
included in the solution set, if

∑

j∈F wj ≥ c then the follower can fill the entire knapsack

capacity with its own items (or some of L with w̃j = wj) and L cannot gain anything.
However, if w(F ) < c, i.e., the capacity exceeds the total weight of the F-items, then L can
set w̃j := 0 for all j ∈ L, and pack as much as possible of its items in the residual capacity.
In conclusion, the optimal solution value for L is always given by min {0, c− w(F )}.

Now let us consider the Constraint-control model (5). If
∑

j∈F wj ≥ c then the follower
will again fill the entire knapsack capacity with its own items. L could only set w̃j := wj−ε
to have an item included in the knapsack before the F-items, which would yield a negative
contribution. Thus, L remains at value 0. If

∑

j∈F wj < c then L can pick an arbitrary

item j′ ∈ L, preferably the item with minimal weight, and set w̃j′ := M . All other items
j ∈ L receive values w̃j yielding an even lower efficiency. Now after packing all items in F ,

F will choose a fractional part of j′ by setting yj′ =
c−w(F )

M to fill the knapsack completely.
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The gain for L is (M−wj′)
c−w(F )

M which tends to c−w(F ) for M → ∞. Hence, the optimal
solution value for L is again min {0, c− w(F )}.

For variant (6) of the Constraint-pricing model, in which the leader is interested in
maximizing

∑

j∈L w̃j, the continuous model works exactly in the same way as the discrete
case treated in Section 3.1. Only for the last item of L which cannot be packed completely,
the continuous model does not require any special weight selection but guarantees the
objective function value min{c,

∑

j∈Lwj} by default (disregarding ε).

5. Conclusions

In this paper we analyzed the complexity of a Stackelberg game for a Subset Sum pricing
problem. We considered two variants of the problem in which the leader may revise the
items weight in the follower objective or in the knapsack (capacity) constraint and the
follower selects the solution items set using the natural Greedy algorithm heuristic. The
objective function of the leader relates to the overall variation operated on the items weight.
We showed that both versions of the problem are binary NP-hard but can be solved by
dynamic programming in pseudopolynomial time. Even though, both versions turn out
to be non approximable within a constant factor. We also characterize some easy cases
and show that the continuous relaxation versions of the problems permit straightforward
solution procedures.

There are a number of open questions directly addressing the results presented here. In
particular, a natural generalization of the addressed problem involves the binary knapsack
problem, so that items are characterized by their weight and profit parameters. We also
assumed that F adopts a computationally-bounded strategy. Removing this constraint and
considering a follower able to optimally solve the resulting optimization problem makes the
leader strategy much harder to be determined.
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