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Abstract

One of the main problems being faced at the time of performing data clustering
consists in the deteremination of the best clustering method together with defining
the ideal amount (k) of groups in which these data should be separated. In this paper,
a preliminary approximation of a clustering recommender method is presented which,
starting from a set of standardized data, suggests the best clustering strategy and also
proposes an advisable k value. For this aim, the algorithm considers four indices for
evaluating the final structure of clusters: Dunn, Silhouette, Widest Gap and Entropy.
The prototype is implemented as a Genetic Algorithm in which individuals are
possible configurations of the methods and their parameters. In this first prototype,
the algorithm suggests between four partitioning methods namely K-means, PAM,
CLARA and, Fanny. Also, the best set of parameters to execute the suggested
method is obtained. The prototype was developed in an R environment, and its
findings could be corroborated as consistent when compared with a combination of
results provided by other methods with similar objectives. The idea of this prototype
is to serve as the initial basis for a more complex framework that also incorporates
the reduction of matrices with vast numbers of rows.
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1 Introduction

This article presents a proposal, based on evolutionary algorithms, to solve
one of the major known problems in the area of Clustering, which involves
the identification of the most appropriate method to perform unsupervised
clustering data and the estimation of its corresponding parameters [6]. Fur-
thermore, the article intends to work as a basic guide of steps that should be
followed when making Clustering of data, so initially, some elementary aspects
are explained.

The clustering of data is the combinatorial optimization problem of finding classes
of objects in such a way that those objects who belong to a group are more like
each other than the similar they are to objects belonging to other groups. However,
measuring the similarity among objects will depend on the types of clusters present
in the data set on which they work, since data can be grouped into compact shapes,
elongated or forming some kind of stroke within each cluster.

There are several issues that should be considered when choosing the strategy
with which the grouping will be carried out. For example, whether it will be a
strict grouping, in which case each element belongs to a single group. In turn,
if a supervised method can be applied, for which it will be necessary to have
labeled cases, or else if only an unsupervised method must be considered.

As a measure of general interpretation, in this article we will consider that each
row of the data matrix to be processed is an observation, while each column is a
variable. That is, if the data matrix is an n x m matrix, we will be working with
n observations and m variables. It is important to bear in mind that the data
must be standardized prior to the application of the clustering method, in order to
make the variables comparable to each other. Another issue to contemplate is which
metric to measure the distance will be used. The grouping of the observations will
require some method that allows to evaluate the distance (similarity / dissimilarity)
between them. Some clustering methods require a matrix of distances that can
be built by using those distance metrics. Some of the most widely used distance
metrics are Euclidean, Manhattan, Pearson, Kendall and Spearman [14,9,17]. Once
the distance metric is defined, the distance matrix My, of n X n, can be calculated
when necessary, such that the component M [i, j] indicates the distance between
vector 7 and j of our original matrix. As expected, this matrix is symmetric and
with zeros (or ones) on the diagonal.

The classic strategies to identify the characteristics of the underlying data groups
within a particular data set, can be classified into hierarchical and non-hierarchical
(or partitioning) methods [7]. The first ones allow to work with different types of
variables, and are useful when the number of clusters is not previously known, as long
as the data set is not very large. These algorithms can be, in turn, agglomerative or
divisive. In the first case, the clusters are joined in order to obtain a smaller number



of groups at each stage. Meanwhile the divisive ones work in an inverse manner.
In both cases some distance function is minimized (or maximized), for which the
distance (or similarities) matrix is used. On the other hand, non-hierarchical
methods, work trying to reach the best possible partition of the data for a given
number of clusters (k). This number must be known prior to the execution of
the algorithm. In general, these methods do not work on a distance matrix but
on the original data. There is a great variety of non-hierarchical algorithms,
among the most common we can mention K-means [11], K-medoids (PAM) [§],
CLARA [10,17], DBSCAN [5].

It is expected that the found groups meet some basic characteristics, such as a
greater density among the elements belonging to a group than among the ones
belonging to different groups, and evaluating the goodness of a structure is not a
trivial task. In addition, it must be considered that the quality of each group will
be relative to the application or problem under study. There is a large number of
indices that allow evaluating different aspects of the result of a clustering algorithm
and, although they have been classified in several ways [1,17,2], the most widely used
categorization classifies them into internal and external [1,17]. The main difference
is whether the measure uses external information for validation or not, that is,
information that is not a product of the clustering technique. In general, in one
way or another, all internal measures seek to analyze two main characteristics of
the structure: cohesion and separation. The first one looks for the member of each
cluster to be as close as possible to the other members of the same cluster and the
second aims to have widely separated clusters. The most used internal validation
indices are Dunn [4,12] and Silhouette [12,15]. In this work, two additional indices,
FEntropy [13] and Widest gap [18,3], were chosen, which allow a more global analysis
of the final result of the algorithm.

2 Proposed Algorithm

The evolutionary algorithm was implemented in R. After receiving an input
data matrix, it proposes a clustering method and its corresponding parameters.
Until now, the possible methods are K-means [11], PAM [8,10], CLARA[10,17]
and Fanny [10], whose choice depends on the quality of the results obtained
using them for the input matrix. The indices used to evaluate the quality
of the result of the clustering method are: Dunn, Silhouette, Entropy and
Widestgap.

Representation of the individuals. Each individual is represented with the
triple ( MC, K, Algorithm). MC'is an integer that represents the clustering method
(K-means, PAM, CLARA or Fanny). K is the number of clusters to be obtained
(Fanny, CLARA) or a list of centroids (K-means) or a list of medoids (PAM)



depending on the value of MC. Finally, the Algorithm field saves, in the case of
K-means, a reference to the name of the algorithm (Hartigan-Wong, Lloyd, Forgy
or MacQueen), and in the other three cases (PAM, CLARA or Fanny) it keeps the
method used to calculate the distance between two observations.

When creating the individual, it is essential to maintain consistency between the
clustering method and its parameters. Therefore, the validation of the &k value was
carried out according to the restrictions of the corresponding method following these
rules: the K-means, PAM, and CLARA methods require that 0 < & < n. The
Fanny method needs that 0 < k& < (n/2) — 1. These restrictions are considered
throughout the algorithm to preserve the feasibility of the individuals. The initial
population, conformed by 30 individuals, is created in a random manner respecting
in each case the limits mentioned above, according to the parameters required by
each method. The selection method used is the binary tournament.

Crossover. For the crossing of two individuals, parents are selected with

a probability PC = 0.7, and they are crossed randomly using one of the

following options:

e Option 1: The children inherit the value of k£ and receive the parents
clustering method.

)

e Option 2: The children inherit the father’s clustering method and receive
the value of k& exchanged.

This process requires a correction of the value of k to preserve the property of
feasible individuals mentioned above.

Mutation. To mutate an individual, we use a total replacement technique. The
individual is selected with a probability PM = 0.2 and in his position a new
individual is generated. This procedure exhibited better results than different
strategies in which some parts of the individual where randomly changed. It is
important to mention that mutation and crossover probabilities, and popultation
size were tunned after several testing runs.

Fitness Function. The assessment of the fitness of a given individual is
performed in two steps. In the first step, the method pointed by the individual
is executed over the input data, using the parameters specified for it, for
which the {stats} and {cluster} packages of R were used. Then, the function
cluster.stats {fpc} is used to validate the result of the method. This function
calculates several validity statistics for a clustering structure and a dissimilarity
matrix. In this case, all the statistics returned by cluster.stats, the Dunn,
Silhouette, Entropia and Widestgap index values were analyzed. The ultimate
goal of the fitness function is to maximize the first two indices and minimize



the last two. Given that we are facing a problem with several objectives,
the most direct way of joining them is through an aggregation function. It
consists of combining all the objective functions f;(x) into a single function
F(fi(x), ..., fr(z)). This first approach uses a linear aggregation of the
objectives based on the following equation:

F = Z w; fi(x) (1)

Where w; are the weights of each objective function, being common to normalize
them such that the sum of all the weights is equal to 1. In this work all the
objectives have equal weights. The objectives to be maximized are added up
and the rest are subtracted. More specifically, the objective functions were
determined as: fi = D, fo =S5, fs = —H and f;, = —W, based on the
corresponding equations given by the methods Dunn (D), Silhouette (S5),
Entropy (H) and Widestgap (W,).

3 Evaluation

To verify the performance of the algorithm, Ruspini was used [16]. This dataset
constitutes a traditional example in the evaluation of clustering methods. It is
composed of 75 observations on two variables, x and y. In Figure 1 you can see
two possible clustering solutions found with different numbers of clusters. It
can be seen that in the group of four clusters, the separation between clusters
is visually recognizable, whereas as we move to the case of five groups, the
interpretation and even the definition of the groups is less clear.

Experiments design. The experimentation was organized in 100 independent
runs. For each run, the clustering configuration suggested by the best individual
was recorded using the previously mentioned evaluation indices. Once the runs
finished, the result was checked using the NbClust function of the homonymous
package. This function uses 30 indices to determine the best number of
clusters. However, unlike our method, it does not propose the algorithm
that yields the best results. It only performs the analysis using a unique
non-hierarchical algorithm, the k-means, and a hierarchical one, the HAC
(Hierarchical Agglomerative Clustering), without giving the possibility of
varying these methods.

Analysis of results. Table 1 shows a summary of the values obtained in 100
runs of the proposed algorithm. It should be noted that only one of the 100
times, the algorithm suggested a configuration with 2 clusters. The rest of the
runs suggested 4 or 5 clusters. This constitutes a first relevant achievement
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(a) Cluster plot for CLARA with k = 4. (b) Cluster plot for CLARA with k = 5.

Fig. 1. Possible groupings found for the Ruspini data set, for 4 and 5 groups respectivelly.

of our method. It is important to remake that our method decides when one
configuration (MC, K, Algorithm) is better than another in terms of Dunn,
Silhouette, Entropy and Widest gap indices. According to the results, the
algorithm suggests that the best values for the pursued objectives are obtained
using the CLARA method with £ = 5. There were no important differences
when looking at the frequences each metric (Euclidean or Manhattan) reaches
the best cluster for this method. Besides, it can be seen that the PAM method
with Euclidean distance also shows a good performance, for k = 4. At this
point it becomes evident the importance of incorporating external evaluation
measures that, in view of these results, help to complete the analysis. From
the table, it can be seen that regarding the k£ value, the algorithm prefers
predominatly structures with 4 clusters (68 times vs. 31 times). It should be
noted that whenever k£ = 4 was suggested, the structure was identical for all
cases, while for k£ = 5 there were different variants.

As aforementioned, the results of this case study were validated with the NbClust
function. When invoking this function with the dataset of Ruspini and a variation
of k from 2 to 8, the result obtained is that among all the indices: 1 proposes that
the best number of clusters is 2, 3 propose that the best number of clusters is 3, 6
propose that the best number of clusters is 4, 1 proposes that the best number of
clusters is 5, 2 propose that the best number of clusters is 8, and the conclusion is
that “according to the majority rule, the best number of clusters is 4”.

This result reveals two hints: the first is that the new method suggests the
same number of clusters as the NbClust method, which is well known and



Table 1
Number of times that each possible combination of (MC, K, Algorithm) achieved
the best performance. Where, H-W:Hartigan-Wong, L:Lloyd, F:Forgy,
McQ:MacQueen, E:Euclidea, M:Manhattan.

K-means PAM | Fanny | CLARA
HW|L|F|McQ|E M| E/ M| E| M
k=4 5 1|3 14,898 | 8| 12 |68
k=5 5 14 | 12 | 31
9 27 17 46

widely used in the literature. The second is that we correctly have chosen four
indices that summarize the desirable characteristics of a cluster structure. On
the other hand, regarding the suggested clustering method, it cannot be fairly
compared since there is not, as far as we know, an algorithm whose objective is
also to propose the most appropriate clustering method for a given structure.

4 Conclusions

In this article, we present a new evolutionary algorithm that takes as input
a data matrix and returns the best partition clustering method and its cor-
responding parameters. The individuals represent different configurations of
clustering methods, parameters and values of k. The algorithm was validated
with the Ruspini dataset, which is widely used in the clustering testing bib-
liography. The partition methods among which our algorithm suggests the
best performer are K-means, CLARA, PAM and Fanny. To select the best
configuration of method/parameters/k, we use Dunn, Silhouette, Entropy
and Widest gap internal validation indices. The NbClust package of R was
used to validate the results according to those indices. After 100 independent
runs of our algorithm, we could verify that the new proposal suggests the
best configuration for the Ruspini dataset. Therefore we consider that the
method presented in this paper constitutes a good preliminary point for a
future implementation in which, taking this prototype as a basis, we will add
the possibility to evaluate and suggest different reductions of the input matrix.
We also plan to include more clustering methods and, as an additional aim, the
crossing and mutation operators of the genetic algorithm will be optimized.
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