
Please do not remove this page

Adding debugging support to the Prometheus
methodology
Padgham, Lin; Winikoff, Michael; Poutakidis, David
https://researchrepository.rmit.edu.au/esploro/outputs/journalArticle/Adding-debugging-support-to-the-Prometheus/9921858157101341/filesAndLink
s?index=0

Padgham, L., Winikoff, M., & Poutakidis, D. (2005). Adding debugging support to the Prometheus
methodology. Engineering Applications of Artificial Intelligence, 18(2), 173–190.
https://doi.org/10.1016/j.engappai.2004.11.018

Published Version: https://doi.org/10.1016/j.engappai.2004.11.018

Document Version: Accepted Manuscript

Downloaded On 2024/04/27 09:49:45 +1000
Copyright © 2004 Elsevier Ltd All rights reserved
Repository homepage: https://researchrepository.rmit.edu.au

Please do not remove this page

https://researchrepository.rmit.edu.au/esploro/outputs/journalArticle/Adding-debugging-support-to-the-Prometheus/9921858157101341/filesAndLinks?index=0
https://researchrepository.rmit.edu.au/esploro/outputs/journalArticle/Adding-debugging-support-to-the-Prometheus/9921858157101341
http://doi.org/doi:https://doi.org/10.1016/j.engappai.2004.11.018
https://researchrepository.rmit.edu.au

Adding Debugging Support to the

Prometheus Methodology

Lin Padgham, Michael Winikoff, David Poutakidis

School of Computer Science and Information Technology

RMIT University, Melbourne, Australia

Abstract

This paper describes a debugger which uses the design artifacts of the Prometheus
agent oriented software engineering methodology to alert the developer testing the
system, that a specification has been violated. Detailed information is provided re-
garding the error which can help the developer in locating its source. Interaction
protocols specified during design, are converted to executable Petri net representa-
tions. The system can then be monitored at run time to identify situations which do
not conform to specified protocols. A process for monitoring aspects of plan selection
is also described. The paper then describes the Prometheus Design Tool, developed
to support the Prometheus methodology, and presents a vision of an integrated
development environment providing full life cycle support for the development of
agent systems. The initial part of the paper provides a detailed summary of the
Prometheus methodology and the artifacts on which the debugger is based.

1 Introduction

Prometheus is a methodology which has been developed to support the build-
ing of intelligent agent systems. An important aspect of this methodology is
the focus on covering all phases of development. In particular it has a well
developed detailed design phase, leading easily into code, which is absent in
a number of agent oriented software engineering methodologies (e.g. GAIA
(Wooldridge et al., 2000), Tropos (Bresciani et al., 2002)) The artifacts de-
veloped during Prometheus’ detailed design phase map directly to concepts
provided by a range of agent implementation platforms. In particular, skele-
ton code for JACKTM agents can be readily produced from a Prometheus

Email address: linpa@cs.rmit.edu.au, winikoff@cs.rmit.edu.au,

davpout@cs.rmit.edu.au (Lin Padgham, Michael Winikoff, David Poutakidis).

Preprint submitted to Elsevier Science 25 September 2005

E72418
Typewritten Text
Citation: Padgham, L, Winikoff, M and Poutakidis, D 2005, 'Adding debugging support to the Prometheus methodology', Engineering, vol. 18, no. 2, pp. 173-190.

E72418
Typewritten Text

E72418
Typewritten Text

E72418
Typewritten Text

E72418
Typewritten Text

E72418
Typewritten Text

E72418
Typewritten Text

E72418
Typewritten Text

E72418
Typewritten Text

design by mapping the detailed design into the JACK Development Envi-
ronment (JDE) provided with JACK. Also, Sudeikat et al. (2004) mention
that they have developed a tool for translating design files produced with the
Prometheus Design Tool (PDT) into Jadex Agent Definition Files.

This paper discusses work to extend the Prometheus methodology and the
Prometheus Design Tool, to cover the testing and debugging activities of the
software development lifecycle. Testing and debugging is linked to analysis
and design, and to the artifacts developed through these activities. Use of this
process can also ensure that implementation and design artifacts are in fact
consistent, making code more maintainable over the long term.

2 System Specification

The system specification phase, as with all software engineering methodolo-
gies, is about clarifying and developing a clear high level view of the expecta-
tions of the system. In Prometheus this phase 1 focuses on:

• Identification of actors and their interactions with the system.
• Developing scenarios illustrating the system’s operation.
• Identification of the system goals and sub-goals.
• Specifying the interface between the system and its environment in terms

of actions, percepts and any external data.
• Grouping goals and other items into the basic functionalities of the system.

These steps are not sequential, but rather, one shifts between them, using
one aspect to help develop others. There are especially strong links between
goals and scenarios, with each scenario being linked to a goal of the same
name. Although the description of these steps follows a stepwise process in
developing the system specification, it is important to stress that in fact the
process can be started at any step, and always involves shifting back and forth
until the overall picture is sufficiently complete.

2.1 Actors and their use-cases

The first step is to identify which actors (these may be people, agents, or other
systems) will interact in some direct way with the system to be developed.

1 This phase as described here has been further refined since publication of Devel-

oping Intelligent Agent Systems: A practical guide by the authors. We acknowledge
and thank Mikhail Perepletchikov for his work on this aspect of the methodology,
during his honours project.

2

Each of these actors is identified, along with use cases or interactive situations
each will be involved in. This identifies some initial use cases of the system.

Communications between the actors and the multi agent system being devel-
oped are identified as inputs (to the system) and outputs (from the system).
Following standard practice in agent systems (e.g. (Russell and Norvig, 1995))
the system inputs are referred to as percepts, and the system outputs as ac-

tions. This information can be shown graphically, as in figure 1 in much the
same way as actors and use cases are depicted in object oriented analysis.

Fig. 1. Actors and use cases, with percepts and actions identified

2.2 Development of scenarios

Each use case defined as part of the actor identification is then developed
as a detailed scenario. The aim of scenario development is to identify the
steps that describe what may happen in a typical scenario. This provides an
accessible and easy to understand view of system operation, that can easily
be understood by clients or co-developers. The steps within a Scenario can
be of five different types: Goal, Scenario, Action, Percept or Other.
(Other can be useful occasionally for capturing such things as a wait). Thus
scenarios in Prometheus are more structured than those in object oriented
design. This structure supports automated reasoning to ensure consistency
between the different views of the system.

Scenarios (like all entities in the design) also have a descriptor which carries
additional information regarding the scenario, including information about
scenario variations.

3

2.3 Identification of goals

Goals provide a useful, succinct, high level description of both the motivation
for developing the system, and more operationally, what it is expected to do.
An initial set of goals can be obtained by defining a goal for each initial use
case identified in the process of identifying actors and interactions. Further
initial goals can be extracted from a textual description of the system.

Additional goals can be identified by a process of abstraction and refinement
with respect to the initial set of goals. Asking the question “how?” can provide
either a sequence of subgoals that can accomplish the given goal, or alternative
ways of achieving the goal. Asking “why?” can provide more abstract goals,
which with further “why?” questions may facilitate identification of alternative
ways of achieving these goals (van Lamsweerde, 2001).

The process of abstraction and refinement leads to goal hierarchies. Some goals
arising in different contexts can also then be coalesced, giving a (directed
acyclic) graph, rather than a tree. Figure 2 gives an example of a partially
developed goal hierarchy.

Adequate
fuel

Separate Monitor
weather

Land
safely

Assign
altitude

Assign
runway

Assign
time

Land
quickly

Minimize
separation

Determine
runway

Get wind
speed

Calculations

…

Fig. 2. Example of goal hierarchy

There are no hard rules as to when to stop with goal refinement. While it is
important to ensure that one identifies sufficient goals, producing overly low-
level goals, such as “obtain preferred hour for meeting”, is not useful. Refining
below the level needed as steps to explain scenarios is usually not useful at
this stage.

2.4 System interface - percepts, actions, data

Agent systems are always situated in an environment. Interaction with a
changing environment during runtime is expected, and typically the agent

4

system also affects that environment. Thus it is critically important early on
to identify and obtain clarity on the interface between the agent system and
the hardware, software, or people that make up its environment.

As mentioned previously the interface is defined primarily in terms of actions

(ways that the agents affect the environment), and percepts (incoming infor-
mation from the environment). External data that is used or produced by the
agent system is also a part of the interface.

Percepts and actions should be identified as part of the process of identifying
actors and their interactions with the system. However sometimes necessary
percepts or actions are identified separately from this process, which then may
lead back to actor identification to determine whether new actors should be
identified as the source or recipient of the action/percept. Scenario develop-
ment can also lead to identification of the need for a new percept or action
which may require revisiting actor identification.

2.5 Grouping into functionalities

Functionalities 2 are chunks of system behaviour which logically belong to-
gether. Functionalities allow for grouping entities into modules that have a
specific purpose, but which are more comprehensive than a single goal. In
identifying functionalities we follow the basic software engineering principle of
modularity. Specifically, functionalities should be cohesive and easy to describe
fully in two to three sentences 3 .

To obtain functionalities we start by grouping goals into natural subgroups.
This usually involves taking lower level goals from different places in the goal
hierarchy to achieve sensible groupings. Figure 3 illustrates this principle with
a simple example. Actions and percepts are then also placed into functionali-
ties.

Functionalities are related back to scenarios by requiring that each step in a
scenario is annotated with the functionality it belongs to (this can be auto-
mated by a support tool, based on membership of goals, percepts and actions
in functionalities). Data used and produced at each step in a scenario is also
identified, and this is added into the relevant functionalities.

2 For those familiar with other agent oriented design methodologies, functionalities
are quite similar to roles. However it was deemed preferable to reserve the term role
for use in the agent team setting, where it has a somewhat different meaning.
3 Coupling is considered when grouping functionalities into agents (see section 3.1).

5

Adequate
fuel

Separate Monitor
weather

Land
safely

Assign
altitude

Assign
runway

Assign
time

Land
quickly

Minimize
separation

Determine
runway

Get wind
speed

Calculations

…

Observing
weather

Runway
management

functionality

functionality

Fig. 3. Grouping goals into functionalities

3 Architectural Design

The architectural design phase refines the system specification to determine
the agent types within the system, and fully specifies the interactions between
these agent types. The main steps in this phase are as follows:

• Deciding what agent types will be implemented and developing the agent

descriptors

• Describing the dynamic behaviour of the system using interaction diagrams

and interaction protocols.
• Capturing the system’s overall (static) structure using the system overview

diagram.

As with the system specification phase, although we present these steps in a
workable sequence, the reality is an iterative process where work on one aspect
affects other aspects. It is also very common that at the architectural design
phase some modifications may be made, or issues identified, which lead back
to further work or modifications in the system specification phase.

6

3.1 Deciding on the agent types

The major decision to be made during the architectural design is which agent
types should exist. This is done by grouping functionalities into agent types,
with each type consisting of one or more functionalities.

Given a set of functionalities there is a large number of possible groupings.
Deciding on a reasonable grouping is guided primarily by considerations of
data coupling and cohesion, although in particular application areas other
issues may also be important, such as the coupling arising due to participation
in decision making in control systems (Bussmann et al., 2004).

Prometheus provides the concept of a data coupling diagram to help guide the
decision process regarding groupings of functionalities, and an agent acquain-

tance diagram to help in comparing different possibilities.

The data coupling diagram represents the functionalities, with links showing
the use and production of groups of data. This diagram can help in finding
groupings which are relatively loosely data coupled. Various design decisions
can be made to eliminate some data sharing, and in particular functionalities
which write to the same data store should be in the same agent. Figure 4
shows a simple data coupling diagram and two possible groupings.

A

B

C

D

E

F

G

W

X

Y

Z

data

functionality

alternative
groupings

read
write

A

B

C

D

E

F

G

W

X

Y

Z

Fig. 4. Data coupling diagram showing different groupings

For example functionalities A, D and E seem to group together, as do B and
C. Functionalities F and G could be grouped with each other, or F could
be combined with B and C, with G standing alone. This gives two possible
groupings which can then be compared using an agent acquaintance diagram.
The cohesiveness of the groupings is also a critical (and in fact an overriding)
factor in deciding whether a given grouping is appropriate.

7

P

RQ

1

n

nn

Fig. 5. Agent acquaintance di-
agram

Agent X Agent Y Agent Z

message A

message B

message C

message D

message E

message F

message G

Fig. 6. Interaction diagram

The agent acquaintance diagram simply represents each grouping as an agent,
places a link where there is communication between the agents 4 , and then
(optionally) annotates the links with information regarding the number of
instances of each type of agent. For example figure 5 shows an agent acquain-
tance diagram based on one of the suggested groupings from figure 4, where
it is assumed that there is one agent of type P in the system, and multiple
agents of type Q and R.

All else being equal, designs with fewer links in the agent acquaintance diagram
are preferred, as are ones where the links are not one to many, due to potential
bottleneck problems. However there are no hard and fast rules and these are
only tools to help in the analysis regarding suitability of possible groupings.

Once the agent types are decided a descriptor should also be filled in for each
agent type, covering a range of information. Some of this is automatically filled
in if using the PDT support tool, while other things need to be considered as
part of the design. Items in the latter category include such things as agent
initialisation and demise.

3.2 Agent interactions

Once the agent types have been decided it is possible to start to define the
interactions between them. The scenarios developed earlier assist in this pro-
cess. The first step is to convert each scenario to an agent interaction diagram.
This is not something which can be automated, but there are heuristics which
can be used to assist in the process.

Taking the scenario steps, annotation with functionalities is replaced by anno-
tation with agent types, based on the groupings determined. At each transition
between steps it can then be asked whether any message is necessary between
agents for that step to be carried out. If a transition between steps involves

4 Which is implied by a link existing on the data coupling diagram, since an agent
can only access data in another agent by communicating with it.

8

also a transition from one agent to another, this is an indication that a mes-
sage is likely to be required. Certainly each agent must receive some message
within the interaction before it is involved in a scenario step.

This process results in a number of interaction diagrams, which are similar to
UML sequence diagrams but with agents rather than objects. Like scenarios,
interaction diagrams show only particular instances of system behaviour. They
do not capture the full system behaviour, nor do they show alternatives. An
example interaction diagram is shown in figure 6.

The developed interaction diagrams are generalised to interaction protocols
which fully define the interactions between agents. This is done by consider-
ing at each point in the interaction diagram, what else could occur at that
point. AUML-2 (Huget and Odell, 2004) is the current notation used to spec-
ify interaction protocols as it appears to be an emerging standard. However
any similar notation would be suitable.

Figure 7 shows an example AUML-2 protocol 5 . AUML-2 shows roles, although
Prometheus uses agents for tagging the lifelines, which are the dashed verti-
cal lines. Messages are directed arrows between lifelines. Time increases down
the page, although various boxes modify this, showing such things as alterna-
tives and parallel statements (such as the alternative box labelled alt in figure
7). Padgham and Winikoff (2004) Appendix C, provides an introduction to
the AUML-2 constructs used in Prometheus, while Huget and Odell (2004)
provides full details.

3.3 System overview

The system overview diagram is perhaps the single most important product of
the design process. It ties together agents, data, external input and output, and
shows the communication between agents. It is obtained by linking interface
entities (percepts, actions and external data) to specific agent types, and by
showing the interaction protocols connecting agent types. Shared internal data
can also be shown.

Figure 8 shows an example system overview diagram. It should be noted that
all information for the system overview diagram exists within the design speci-
fied so far, and can be automatically assembled via a support tool. The system
overview diagram simply brings information together in an easy to visualise
summary.

5 It is the AUML-2 version of the Request protocol approved as standard by
FIPA (Foundation for Intelligent Physical Agents), a standards body for agents,
(http://www.fipa.org/specs/fipa00026/)

9

Initiator Participant

request

refuse

accept

alt

failure

inform-done:inform

inform-result:inform

alt

FIPA Request Protocol

Fig. 7. FIPA Request Protocol using AUML-2 notation

4 Detailed Design

The focus of detailed design is on developing the internal structure of each
agent and how it will achieve its functioning within the system. The details
of agent functioning are specified using plans, which are essentially recipes for
agent acting. Plans may be abstract, referring to subgoals, or subtasks. The
process allows for progressive refinement, first defining capabilities (modules
within the agent), and then plans along with internal messages or events, and
detailed data structures. We also use the protocols to define process diagrams
showing the internal processing within each agent. Process diagrams in turn
guide the development of plans. The various aspects of the detailed design
process are as follows:

• Identifying and developing capabilities and their inter-relationships.
• Development of process diagrams showing the internal processing of each

agent related to the protocol specifications.
• Development of plans, events and data and their inter-relationships.
• Finalising details for all entities.

4.1 Identifying Capabilities

The detailed design process begins by describing agents’ internals in terms
of capabilities. The internal structure of each capability is then described,

10

Fig. 8. System overview diagram for electronic bookstore

optionally using or introducing further capabilities 6 . These are refined in turn
until all capabilities have been defined. At the bottom level capabilities are
defined in terms of plans, events, and data. Capabilities are essentially an
encapsulation mechanism and non-encapsulated plans, events and data can
also be included alongside capabilities at any level.

These specifications are developed using agent overview diagrams and capa-

bility overview diagrams, which are similar to the system overview diagram in
form, except that they contain individual messages rather than protocols, and
capabilities and plans rather than agents. Figure 9 shows an example of an
agent overview diagram.

The incoming and outgoing entities in each agent/capability overview diagram
must always be the same as the inputs and outputs to that entity within its
parent diagram. These nested overviews with increasingly narrower focus and
greater detail allow for a systematic development of detailed design. They also
provide a way of partitioning the system, allowing different people to work on
different agents/capabilities.

6 Capabilities are allowed to be nested within other capabilities and thus this model
allows for as many layers within the detailed design as are needed in order to achieve
an understandable level of complexity at each level.

11

KEY

Message

Capability

Action

Data

Fig. 9. Agent overview diagram: stock manager

4.2 Agent Processes Using Activity Diagrams

The protocols produced during the architectural design give a “global” view
of the interaction showing all agents and the interactions between them. In
proceeding towards implementation process specifications are derived which
are local to a given agent. Each global protocol will have a number of corre-
sponding local views that define the process from the point of view of different
agents.

For describing the process a slight variant of UML activity diagrams is used 7 .
Figure 10 illustrates the concepts and the notation of the extended variant of
activity diagrams. Rather than using swimlanes to separate activities of dif-
ferent agents, as would perhaps be the most obvious modification of UML, the
focus is only on the activity within a single agent, indicating interaction with
other agents via the inclusion of messages within the diagram. This avoids
diagrams being overly cluttered, and perhaps more importantly, it allows for
modular development of agents, with shared knowledge only about the inter-
face.

4.3 Plans, Events and Data

The detailed design process continues with design of the plans that each ca-
pability contains, along with the triggering events and the associated data

(or beliefs). The relationships between these are captured in the capability

overview diagram, while the details are in the various descriptors.

7 For further information on standard Activity Diagrams see (Fowler and Scott,
2003).

12

X Z

Y

A true

A false

Do X, followed by Y if A is
true, Z if A is false.

X Z

Y

A true

A false

Secondary decision: Do X, followed by Y
if A is true If A is false, follow X by W
if B is true, and by Z if B is false.

W

B true

B false

X

Y

Do X, followed by Y
and Z in parallel.
When Y and Z both
finish, do Z.

Z

Z

Send message P
to another agent,
in parallel with
doing Y.

X

Y

Z

P

Q

After Y is
completed, and
message Q is
received, do Z.

start

end

activity

secondary
choice

parallel

message

KEY

merge

fork

Fig. 10. Diagram illustrating notation for Process diagrams

It is only at this stage that a commitment is made to a particular implemen-
tation platfrom. Specifically, there is an assumption that plans are triggered
by events and that it is possible to have multiple plans that handle a given
event type, where the choice of plan to be used is determined at run-time.
This assumption corresponds to a whole class of implementation platforms in-
cluding BDI systems such as JACK (Busetta et al., 1998) and systems based
on hierarchical task networks such as RETSINA (Sycara et al., 2003).

Plans are dynamic, and in developing them one must take into account both
their static context (i.e. what triggers them, what actions they can perform,
what messages they can send/receive) and also the process specifications.

Events/messages must be specified in detail regarding what information they
carry as well as indicating coverage (whether there will always be an appro-
priate plan to respond to this event) and overlap (whether it is possible there
will be more than one plan available to respond to this event). Data must
also be specified in detail, typically using either database or object oriented
specifications. Plan descriptors contain pseudo-code describing how the plan
will operate.

13

4.4 Finalising Details

The descriptors for the various entities provide the details necessary to move
into implementation. Exactly what are the appropriate details for these de-
scriptors will depend on aspects of the implementation platform.

As well as finalising descriptors for all entities in the system, the data dictio-
nary (or entity dictionary) should be updated and checked for completeness.

5 Debugging Using Design Artifacts

An important phase of developing software is debugging it. This is often de-
scribed as the process of locating and fixing a specific piece of code responsible
for the violation of a known specification (Hailpern and Santhanam, 2002).
Thus it includes detecting errors, identifying what is causing them, and then
fixing them. It is suggested that debugging and testing may occupy between
25 and 50 percent of the total cost and time of system development with much
of this time spent locating the cause of a problem (Boehm, 1981; Zelkowitz,
1978).

A common technique for debugging multi-agent systems involves the collection
and visualisation of information to improve the understanding of the execution
of multi-agent systems, in the hope that this will assist in both identifying that
an error exists, and also identifying its source. For example, it may be possible
to see that no messages are directed to a specific agent.

Communication is integral to a multi-agent system and therefore the exchange
of messages between agents is the typical candidate for visualisation (Liedek-
erke and Avouris, 1995; Ndumu et al., 1999), although other properties are
gathered and visualised such as the decomposition and status of tasks, or the
internal states of individual agents as identified in (Nwana et al., 1999). These
methods all rely on the developer observing errors, which may be very difficult,
given the amount of information being shown.

One way to address this problem of information overload, is to automate
detection of errors, and to present information only when there is a poten-
tial problem identified. The possibilities for automatic detection of bugs have
been traditionally limited to environments where the requirements have been
formally specified. However, structured non-formal specifications of system
behaviour, such as those found in Prometheus also offer opportunities for de-
tecting run-time executions inconsistent with the specification. Using the de-
sign specifications for this purpose, in addition to aiding debugging, also helps

14

to ensure that design models and code remain consistent with one another.
The benefits of linking the debugging process to the overall software devel-
opment process have in fact been recognised since the early days of Software
Engineering Development Environments (Müllerburg, 1983).

The debugging mechanisms described in the following sections have been im-
plemented and were introduced in (Poutakidis et al., 2002). They have also
been tested on a substantial implementation project of a meeting scheduler,
originally implemented as a class assignment. Work is currently underway to
experimentally evaluate, with a range of developers, to what extent the de-
bugging tool actually expedites the identification and location of some of the
typical agent system problems described in (Poutakidis et al., 2003).

The following sections describe first how protocol specifications are used to
identify and locate interaction errors. Section 5.4 then describes how event
and plan descriptors developed during detailed design in Prometheus, can be
used to identify common errors in plan specification leading to unintended
consequences for plan selection.

5.1 Debugging agent interactions using protocol specifications

The protocols developed during design specify allowable message exchanges
between agents. Proving that a system implemented with an arbitrary pro-
gramming language is correct with respect to a particular protocol is typically
not possible. However, it is possible to check that a given execution of a system
does not violate existing protocols. A debugging tool which monitors execu-
tion can therefore detect violations of the protocols as specified and can notify
the developer.

Violations of an interaction protocol, such as a failure to receive an expected
message or receiving an unexpected message can be both automatically de-
tected and precisely explained (e.g. “agent X received message m which was
unexpected – the agent was participating in protocol P and was expecting
either n or l”). The information both identifies that there is a problem and
assists in locating the cause of the problem.

Monitoring can be done via eavesdropping on the communication medium
(e.g. Heselius (2002)), or more directly by requiring that carbon copies of any
messages sent also be sent to the debugging agent as done in the ZEUS toolkit
(Nwana et al., 1999). The approach developed in relation to Prometheus in-
volves automatically adding code that sends copies of messages to a monitoring
agent (Poutakidis et al., 2002).

For the debugger to reason about the correctness of a message within a par-

15

ticular conversation it needs to compare it against the protocol specification.
AUML-2 protocols are a useful artifact for describing interactions between
agents but they are not readily machine understandable. Instead Petri nets are
used internally by the debugging agent to represent the interaction protocols.
A range of notations for representing interaction protocols can be translated
into Petri nets, including the original AUML notation which was initially used
by Poutakidis et al. (2002), as well as the AUML-2 notation used here.

Additionally, Petri nets have clear formal semantics and provide both a static
and dynamic view of the protocols they represent. The debugger monitors
the executing system and is able to track interactions and detect problems by
comparing the interactions against the protocol specifications.

5.2 Converting from protocol specifications to Petri nets

A Petri net (named after Carl Adam Petri) consists of places (depicted as
circles) and transitions (depicted as rectangles) which are linked by arrows
(Reisig, 1985). Additionally, places may contain tokens. The placement of
tokens on a net is its marking, and executing (“firing”) a Petri net consists of
moving tokens around according to a simple rule; the places, transitions, and
the links between them remain unchanged.

A transition in a Petri net is enabled if each incoming place (i.e. a place with
an arrow going to the transition) has at least one token. An enabled transition
can be fired by removing a token from each incoming place and placing a token
on each outgoing place (i.e. each place with an arrow from the transition to
it). For example, in figure 11, the transition is enabled; and fires by removing
a token from a and from P and placing a token on Q.

P

Q

a P

Q

a

Before firing After firing

Arc

Token

Transition

Place

Fig. 11. Example of a Petri net firing

5.2.1 Translation process

The process of converting an AUML-2 protocol to an equivalent Petri net
involves first converting protocol fragments to Petri net fragments, and then
merging these into a single Petri net for the protocol. The derived Petri nets

16

contain two different kinds of places: message places and state places. Con-
nections between the places are represented using Petri net transitions, with
particular patterns identified by the protocol operators such as ALTernative,
PARallel, OPTional, etc.

Message places are labelled with the message name appended to the role of
the message sender. For example, a message of type A, sent by an agent of
type B, would result in a message place with name B:A. State places are
identified and named by a process of labelling the start and end points of
messages in the protocol, and then using this labelling in forming the Petri
net state places. The operator within which a protocol fragment exists affects
the labelling of the protocol, as well as affecting the way in which places are
linked via transitions.

Figure 12 shows the process for converting the most simple protocol – a single
message – to a Petri net suitable for use by the debugger. The resulting Petri
net has three places, the two state places, A and B, for the start and end of the
message, and one message place, Initiator:request. The underlying intuition in
connecting the places is that the place representing the receiving end of a
message should receive a token when the place representing the initiating end
of that message and the place representing the message itself are both marked
with a token. In this example the transition T1 is therefore introduced with
places A and Initiator:request as incoming places and B as an outgoing place.

B

Stage 1 Stage 2 Stage 3

A

B

A

B

A

Initiator Participant Initiator Participant
request

Initiator:
request

Initiator:

T1requestrequest

Stage 0

Fig. 12. Process of converting a single message to Petri net representation

The following sections describe the process of labelling and converting a subset
of AUML components to their equivalent Petri net fragments 8 . Merging of
Petri net fragments into the Petri net representing the complete protocol is
done by merging places with the same name, and is trivial. An example is
given when discussing the OPTional component.

8 Due to space limitations it is not possible to show all patterns. The reader is
referred to the upcoming thesis (expected 2004) by the third author for full details

17

5.2.2 ALTernative

Alternative (or selection), shown in figure 13, provides the agent with a choice
as to which message can be sent. If the protocol is in state P the agent can send
message x in which case the protocol will advance into state Q. Alternatively
the agent can send message y and the protocol will advance into state R.
The Petri net version of the ALTernative fragment is presented alongside the
AUML-2 version. As the places representing the start of message x and the
start of message y are alternatives available at a single point in the protocol,
a single state place is used in the Petri net. The two alternative transitions
enable the executing Petri net to follow either the branch into state Q, or into
state R.

RQ

yx

P

P

P

T2T1

R

Q

Initiator Participant

x

y

alt

example

Fig. 13. ALTernative interaction operator

5.2.3 PARallelism

The PARallelism connector as shown in figure 14 requires that both message
x and message y are sent when in state P , but the order is not specified. The
translation adds two extra places, P ′ and P ′′, these places are intermediate
places that take input from T1 and T2 respectively. The Petri net works
as follows: when in state P either an x or a y message is expected. If, for
example, an x messages is received then T1 will be enabled. Following the
Petri net rules, tokens will be removed from place P and place x, a token will
be deposited on each of P ′ and Q. The conversation has now split into multiple
states, since multiple tokens now exist in the Petri net. After receiving the x

message there is still the need to receive the y message. When the y message
is received it is placed in the y place, since a token is on place P ′ transition
T4 is enabled resulting in a successful firing of the net and a token being
deposited on place R. It should be evident that this Petri net will also receive
the opposite sequence of y followed by x, in which case T2, P ′′ and T3 will be
utilised.

A conversation may not proceed beyond a parallel region until all of the mes-
sages inside that region have been sent. Therefore, if figure 14 had a message,
say z, being sent from the Initiator to the Participant after the parallel region,

18

T1

T3 T4

T2

R

P

P’ P’’

Q R

Q P

P

x y

Initiator Participant

x

y

par

example

Fig. 14. PARallel interaction operator

then z can only be sent after both x and y have been sent. Furthermore, after
the parallel region has been processed the conversation no longer has multiple
paths of execution. Therefore the tokens from each of the final state places
of the parallel paths need to be collected into a single intermediate state. A
single transition takes input from the final states, Q and R, and will only fire
when each input place contains a token. A single output place ensures that
multiple tokens are merged into a single token representing a single possible
path of execution.

5.2.4 OPTional

The optional operator shown in figure 15 specifies that everything bound by
the optional box may or may not be executed. Thus when the protocol reaches
state Q, it can either be followed by message y leading to state R, which is in
turn followed by message z leading to state S; or it can be followed directly
by message z leading to state S. This can be captured by a labelling that
indicates that the start state for message z can be either Q or R. The initial
message x from state P to state Q is exactly analogous to figure 12 and is
not shown in the resulting Petri net. The three simple Petri net transitions
shown in figure 15 immediately below the protocol, represent the three single
message representations, where the multiple place labelling at the initiation
of z leads to two separate Petri net fragments involving the message place z.

By merging both state and message places with the same names the Petri net
shown in figure 16 is obtained. As can be seen this allows place S to receive a
token by combining message place z with either state place R (resulting from
the optional interaction) via transition T3, or with state place Q via transition
T2. A similar mechanism is used to merge all the fragments obtained from
mapping the protocol fragments into the final protocol.

19

Q y

R

zQ

S

R

S

z

T1 T2 T3

Initiator Participant

x

y
opt

z

example

P Q

R Q

Q,RS

Fig. 15. OPTional operator affecting la-
belling process.

Q

S

zR

y

T1

T2T3

Fig. 16. Merged Petri net fragments.

5.3 Monitoring and reporting

The debugger has a library of the specified interaction protocols that it uses to
detect errors. The debugger keeps a list of active conversations so that it can
monitor multiple interleaved conversations simultaneously. When a message
is received from an agent it is added to the appropriate conversation 9 (or a
new conversation is instantiated), and is then processed by firing any enabled
transitions.

For any given conversation the debugger does not know what protocol the
agents are following. Therefore the debugger keeps a list of possible proto-

cols, instantiated from the interaction protocol library, which currently match
the sequence of messages within the conversation 10 . As the conversation pro-
gresses the possible protocols list is reduced whenever a message is received
that causes an error in the individual protocol. The conversation is still con-
sidered valid as long as there is at least one entry in the possible protocols
list.

Each time the debugger receives a message for a specific conversation an anal-
ysis is done on each protocol within the possible protocols list of that conver-
sation to identify error situations. As long as there is more than one protocol
in the possible protocols list, errors simply lead to the conclusion that this
protocol was not in fact the one that was being followed, and it is discarded
from the list. However if an error is detected in the only remaining protocol,

9 Conversations are identified by a conversation id which is added automatically
when compiled with the debugger option.
10 FIPA allows for the inclusion of a protocol name in their mes-
sages and if it is included then this list would not be needed, see
http://www.fipa.org/specs/fipa00061/XC00061E.html# Toc505483417

20

T6T5T4

T3

T2

T1

A

place)
(Start

Initiator:request

Participant:inform−doneParticipant:inform−result Participant:failure

Participant:accept
Participant:refuse

GFE

D

C

B

Fig. 17. Request protocol converted to equivalent Petri net

then this is reported.

An example error situation is when the Petri net has no message place match-
ing the incoming message, on which a token could be placed. Another is when,
after firing the Petri net, a token remains on a message place. Correct func-
tioning leaves tokens only on state places 11 .

Figure 17 shows the request protocol from figure 7 converted into the Petri
net representation. When the first request message is received, the protocol is
initialised by placing a token in the start place A and in the message place
Initiator:request. Transition T1 then fires, placing a token in state place B. At
the next step in this protocol either a refuse or an accept message is expected.
Receiving either message will place a token on the corresponding message
place, causing either T2 or T3 to fire. Assume that an accept message is
received and the conversation advances to state D. If there were a bug in
the system, causing a refuse message to be sent erroneously, this will cause
a token to be placed on the refuse message place. However, since there is no
token on state place B (the token was removed when T3 fired), no transition
is enabled. The token is left on the message place after the net fires, indicating
an error, an unexpected message was received.

11 Recall that the Petri net places were identified as either state places or message
places in section 5.2.1.

21

An additional aspect of the debugger ensures, prior to placing a token on a
message place, that a message being sent is appropriate for the role the agent
has taken on in the protocol. For example, once it has been determined that
agent A is playing the initiator role, and agent B is playing the participant

role in the request protocol, then agent A sending a result message would be
detected as an error. Roles are assigned to agents when the first message for
a role within the protocol occurs. An agent can take on multiple roles within
a single protocol.

Error detection based on reception of messages, as described, will fail to detect
conditions where a message should be sent but is not. In order to detect such
problems, whenever a token is placed on a new state place, a timer is set
for that state place. If this timer expires then it is inferred that a message
that should have been sent has not been sent. The debugger identifies that a
problem could exist in the system and a warning is reported. If the message
arrives after the warning is given, the conversation once again becomes valid,
and is resumed.

The semantics of time within a protocol is currently not well specified in
AUML-2. If a protocol were to specify that a message must be received before a
particular time then the debugger could report an error rather than a warning.

This technique of monitoring conversations between agents is capable of au-
tomatically identifying incorrect interaction patterns. An incorrect execution
pattern is typically the result of a lower level coding error in one of the agents.
The debugger provides information about the protocol that the agents were
engaging in, the agent types and instances that were executing, and the point
at which a conversation diverged from the allowed behaviour. This provides
valuable information to the developer to assist in locating the exact cause of
the error.

5.4 Debugging plan interrelationships

In BDI agent systems such as JACK (Busetta et al., 1998), JAM (Huber,
1999), and JADEX (A. Pokahr, 2003) which choose an appropriate pre-defined
plan from a plan library, one common cause of errors is incorrect specification
of when a plan should be used. This often results in one of two situations:
either there is no plan suitable to respond to a given goal or event, resulting
in the goal not being attempted or the event not being reacted to; or alterna-
tively there may be multiple suitable plans, and the one chosen is not the one
intended.

The detailed design part of the Prometheus methodology focuses on BDI style
implementation platforms, which use a plan library. Each plan is tagged as

22

being relevant to a particular goal or event. Usually there will be multiple plans
relevant for any given goal/event. A context condition in the plan specifies
the particular environmental situation in which that plan can be used for
responding to the event/goal for which it is relevant. The set of plans which
are relevant for a particular goal/event, and whose context conditions are true
at a particular time, are referred to as the applicable plans at that time. These
are the plans suitable for responding to the event/goal.

The Prometheus methodology prompts the developer to consider how many
plans are expected to be suitable for various situations. For each event the
developer is asked to specify whether it is ever expected that either multiple
plans will be applicable, or that no plans will be applicable. Two concepts
are introduced within Prometheus in order to facilitate this consideration.
They are coverage and overlap. Having full coverage specifies that the event is
expected to have an applicable plan found under all circumstances. Overlap
specifies that it is possible, although not required, that multiple plans are
applicable at the time the event occurs.

Full coverage means that the context conditions of the plans relevant for that
event must not have any “holes”. A typical unintended hole that can occur is
when two plans are specified for an event, one with context say temperature <

0◦ and the other with context temperature > 0◦. Temperature = 0◦ is then
a “hole” and if that is the situation when the event occurs, no plan will be
applicable. If at design time the developer specifies that an event type has full
coverage, and yet at runtime a situation occurs when there is no applicable
plan for an event of that type, then an error can be reported.

For an event to have no overlap requires that the context conditions of plans
relevant for that event are mutually exclusive. If overlap is intended, the de-
veloper is prompted to specify whether plans should be tried in a particular
order, and if so how that will be accomplished. Overlap can occur due either
to two or more plan types being applicable, or due to there being multiple in-

stances of a single plan type, due to different variable bindings. The developer
is also prompted at design time to specify which of these situations is expected
if overlap is possible.

Violations of expectations regarding coverage and overlap can both be accom-
plished in theory by simply examining the applicable plan set at the appro-
priate point after an event has been processed. However, depending on the
implementation platform being used, the applicable plan set may not be di-
rectly available. In the implemented debugger two different mechanisms are
used for detecting overlap and lack of coverage. This is due to the fact that
access to the applicable plan set in JACK is only supported when the plan set
is non-empty.

23

If an event is specified as having no overlap, but the applicable plan set for that
event is at some point found to be greater than one, then an error is reported,
along with information regarding the event and the applicable plans.

In cases where an event is specified as having full coverage, a small piece of code
is inserted when compiling with the debugger, to ensure that the debugger is
notified each time an event of this type occurs. Code is also inserted within
all plans defined as relevant for that event, so that when they are executed,
the debugger is notified. If the debugger is notified that an event occurred,
but there is no corresponding notification that a relevant plan has started
executing (within a given time period), then it can be assumed that there is
an error and this is reported.

The overhead in detecting coverage and overlap problems is very small. Only a
few statements for each of the events and plans that are specified as having full
coverage or no overlap and a small monitoring module local to the running
application needs to be added. The reporting of the coverage and overlap
bugs is integrated with the interaction monitoring tool at the user interface,
although the two debugging modules are currently independent of each other.
Monitoring of coverage and overlap very easily detects at an early stage, a
class of bugs often found in (BDI style) agent systems.

6 The Prometheus Design Tool

The Prometheus Design Tool (PDT) is a prototype tool designed to provide
support for the Prometheus methodology. It is under ongoing development
and the vision is for it to provide, or be integrated into, a full development
environment.

The current version of the tool provides a graphical user interface which sup-
ports developers in designing most of the design artifacts within the Prometheus
methodology, including form based descriptors for the various entities. It
also does a range of automated propagation where possible, as well as cross-
checking to help ensure consistency and completeness. In addition PDT can
produce diagrams for inclusion in a report, or a full HTML design document.

The following sections describe the support provided for various aspects of the
Prometheus design process, the automation and cross checking, and the envi-
sioned extension to a fuller development environment, including the debugging
and testing described in the previous sections.

24

6.1 Developing Prometheus Artifacts with PDT

Figure 18 shows a screen shot of the interface to PDT. As can be seen, the
three main phases of system specification, architectural design and detailed
design each provide a range of diagrams which can be chosen from the menu
on the left hand side. Below this menu is a scrollable list of all the individual
entities within the project being developed, organised by entity type. This list
can be filtered to provide only certain entity types, for example only goals
and scenarios. The bottom right hand window provides the descriptor form
for whichever entity is selected, either from the diagram above this window,
or from the entity list to the left.

Fig. 18. Screen shot of Prometheus Design Tool

All diagram types allow the user to place already created entities available for
that diagram type, onto the canvas, or to instantiate and place new entities of
an appropriate type. Linking and unlinking of entities is supported and only
legal links are allowed.

25

6.1.1 System Specification

The actors or stakeholders diagram allows developers to place actors, scenar-
ios, percepts and actions onto the canvas, thus creating the initial top level
view of the system. Identification of scenarios leads also to automatic creation
of corresponding goal entities. Percepts and actions which are the inputs to
and outputs from a scenario are automatically inserted as initial steps into
the scenario representation, which is available by either double clicking on the
icon in a diagram, or from the “edit” menu.

The goal diagram allows the user to arrange existing goals, identified via cre-
ation of scenarios, and to add and link in new ones, identified by asking “how?”
and “why?”. The functionality diagram allows the user to group goals, per-
cepts and actions into functionalities.

6.1.2 Architectural Design

The main support for architectural design is the ability to produce the system
overview diagram, and to maintain the consistency of this diagram with the
protocol specifications with respect to interactions between agents.

Currently there is no graphical editor for interaction diagrams or for the full
protocol specification. This must be done outside PDT. However, protocol
entities can be created and edited, either via the system overview diagram,
or the entities menu. Information stored within the protocol representation
indicates which messages pass between which agents. The messages can be
ordered to assist in capturing some intuitive understanding of the possible
full specification of the protocol. The information represented is sufficient to
support generation and consistency maintenance of the system overview dia-
gram, which is the central visual representation of the overall system and its
subsystems.

There is not really any significant support for making decisions regarding agent
types, although it is possible to produce data coupling diagrams within the
tool, and relationships between data and functionalities described in the data
coupling diagram are propagated into descriptors.

6.1.3 Detailed Design

The primary support for the detailed design are the agent and capability
overview diagrams, available from the detailed design menu, after the agents
and the capabilities have been identified. The interface elements for an agent

26

overview diagram 12 are automatically propagated from the system overview
diagram. The developer can then add from the graphical interface, the inter-
nals of the agent, in terms of capabilities, plans and within-agent messages (or
events). There is currently no support for process diagrams within PDT.

6.2 Checking for Consistency and Completeness

One of the most important advantages of using PDT is the assistance it pro-
vides in developing a consistent design. It reduces a large number of small er-
rors which can cause considerable confusion when multiple people are working
on a design and must understand each others thinking by reading the doc-
umentation provided via the design artifacts. Even the simple functionality
of ensuring naming consistency by offering menu choices, rather than requir-
ing the user to recall and type in the names of various entities, is extremely
helpful.

There are also a number of checks that are done to help ensure consistency
and completeness. These include such things as checking that all data is used
somewhere and produced somewhere; checking for interface consistency be-
tween the detailed specifications of entities (such as agents or capabilities)
and their specification within a parent entity (such as system or agent); and
checking that all functionalities are included in some agent. There are a wide
range of consistency checks that are able to be run in PDT, producing a list
of errors and warnings.

6.3 Integrating Debugging and Testing into PDT

The vision is that PDT should support all stages of system development,
from specification through to implementation and testing and debugging. The
debugging work that has been developed within the methodology lends itself
to being incorporated as it is based on the design artifacts of the methodology.
However it is not yet incorporated within PDT. There are a number of pieces of
software development that must be accomplished before that will be achieved.

Firstly, it must be possible to generate code. This has not been a high priority
to date for two reasons: reluctance to be too closely tied to a particular agent
development environment; and the fact that once the design is developed in
PDT it can fairly easily be manually transferred to the Jack Development

12 Capability overview diagrams operate in the same way as agent overview dia-
grams, but with the interface taken from the relevant agent overview, rather than
from the system overview.

27

Environment (JDE) produced by Agent Oriented Software, which does pro-
duce skeleton code. Of course in the longer term, manual translation between
different systems is not sufficient.

Secondly it must be possibly to more fully specify protocols. This has also
been a lower priority than other things due to the desire to conform to stan-
dards (AUML) that are still emerging. The hope is that PDT will be able to
incorporate an AUML tool developed elsewhere.

Finally there are still some parts of the conversion process from protocols to the
Petri net representation used for debugging which require manual processing.
Either these must be successfully automated, or an appropriate interface to
allow specification of necessary information by the developer must be added.

Thus it appears that the research issues have been sufficiently addressed that
debugging could certainly be included within PDT already. However due to
the resources required for the actual development of the software there will be
some delay before it is incorporated.

6.4 Future Developments

PDT is under ongoing development, driven in part by research goals, and in
part by feedback from users. Currently it is too focussed on documentation of
the final (or interim) design artifacts, with too little support for exploration of
design possibilities. For example there is currently no mechanism for identify-
ing explicitly, within the data coupling diagram, potential alternate groupings.
Neither is there any real support for exploring potential groupings using an
agent acquaintance diagram. This is a priority to address, in order to better
support the approach of the Prometheus methodology.

Also, there is currently no support for multiple users working on the same
design. This is clearly an area that needs to be addressed to some extent if it
is to be more widely useful. The ability to read in partial files and add them
to the design may be a way to relatively simply address this at some level. In
this way developers could at least work separately on the design of individual
agents, combining them with the system specification and architectural design,
to build the overall system.

7 Related Work

A large number of agent-oriented methodologies have been proposed in recent
years (Bergenti et al., 2004). Compared with other methodologies, Prometheus’

28

distinguishing features are that it is aimed at industrial practitioners (as well
as students), that it aims to be detailed and complete, that it emphasises the
importance of tool support and automated consistency checking, and that it
supports the detailed design of plan-based agents. The structured nature of
the design artifacts allow for development of support structures for debugging
as demonstrated in this paper.

Prometheus has some similarities with the Gaia methodology (Wooldridge
et al., 2000), for example, our agent acquaintance diagrams are essentially the
same as those used by Gaia, and the roles of Gaia are somewhat similar in
concept to functionalities in Prometheus. However Gaia’s lack of a detailed
design process means it does not provide sufficient guidance for inexperienced
agent developers.

Similarly, Prometheus provides a more detailed process than the Tropos

methodology (Bresciani et al., 2002; Giunchiglia et al., 2002), and provides
tool support and cross checking. Tropos provides an early requirements pro-
cess that goes beyond that provided by Prometheus, but we have found that
the somewhat simpler process of the current Prometheus approach is prefer-
able.

The MaSE methodology (DeLoach et al., 2001) is one of the few methodolo-
gies with significant tool support. However, the fact that MaSE views agents
“. . .merely as a convenient abstraction, which may or may not possess intel-
ligence” (DeLoach et al., 2001, p232) makes it less suitable than Prometheus
for detailed design of plan based agents, including BDI systems.

PASSI (Cossentino and Potts, 2002; Burrafato and Cossentino, 2002) also
provides tool support and processes for going from requirements to code. It
is based on UML and particularly focuses on supporting reuse of agent pat-
terns (Cossentino et al., 2003), which is an interesting area to incorporate into
methodologies.

Comparisons of Prometheus with other agent-oriented methodologies can be
found in Dam and Winikoff (2003), Dam (2003) and Sudeikat et al. (2004).
Other comparisons between agent-oriented methodologies include Shehory and
Sturm (2001), Cernuzzi and Rossi (2002) and Sturm and Shehory (2003).

In the area of debugging of agent systems, most work has been in the area of
visualisation to present a graphical depiction of system behaviour to the pro-
grammer, so they can understand how the system and the agents are behaving
and interacting. The focus is on the collection of information, usually agent
messages, and the presentation to the user with filtering applied to the mes-
sages (Ndumu et al., 1999; Nwana et al., 1999; Liedekerke and Avouris, 1995).
This approach does not provide rich enough debugging information and does
not address the issue of knowing what information is necessary for debugging.

29

The result is that the programmer is presented with too much information
and experiences information overload reducing the effectiveness of the visu-
alisation technique. Liedekerke and Avouris (1995) tried to overcome this by
using abstractions and omissions in the form of selective information hiding to
try and regulate the amount of debugging information being presented to the
user. However, it was found that it was still too difficult to get a clear picture
of overall system behaviour.

Nwana et al. (1999) provide debugging tools based on multiple views of the
computation. The intention is that by combining results from different views,
the programmer will be better able to identify incorrect system behaviour.
Providing different views does limit the information flow to some degree, how-
ever, it does not overcome the problem.

Other researchers have also used Petri nets for specifying agent communication
(see e.g. (Cost et al., 1999; Nowostawski et al., 2001)). Nowostawski et al.
(2001) use their Petri nets for conversation modelling to support the run-time
execution of protocols. Some examples for converting from AUML protocols to
an equivalent Petri net representation are provided yet there appears to be no
systematic approach for converting or developing the protocols. More recent
work by Ehrler and Cranefield (2004) proposes directly executing Agent UML
diagrams by linking application specific source code to execution occurrences
on the AUML protocols. This approach is in the early stages of development
and requires significant infrastructure for conversation management. Many
platforms do not support conversations and protocols at the level required
and as such other techniques for understanding or debugging interactions are
required.

Other approaches to debugging include the use of model checkers and declar-
ative debuggers to automate the process of verifying that a given implemen-
tation matches a specification (Wooldridge et al., 2002). These techniques are
typically limited to finite state systems and suffer from a state space explosion
making verifying real systems difficult (Walton, 2004). Furthermore verifying
the correctness is done using a logic specification of the problem, which is
typically beyond the expertise of many developers.

References

A. Pokahr, L. Braubach, W. L., 2003. Jadex: Implementing a bdi-
infrastructure for jade agents. EXP - In Search of Innovation (Special Issue
on JADE) volume 3, Nr. 3, 76–85.

Bergenti, F., Gleizes, M.-P., Zambonelli, F. (Eds.), Jul. 2004. Methodologies
and Software Engineering for Agent Systems. The Agent-Oriented Software
Engineering Handbook. Kluwer Publishing, ISBN 1-4020-8057-3.

30

Boehm, B. W., 1981. Software engineering economics. Prentice Hall, Engle-
wood Cliffs, NJ.

Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A., 2002.
Tropos: An agent-oriented software development methodology. Tech. Rep.
DIT-02-0015, University of Trento, Department of Information and Com-
munication Technology.

Burrafato, P., Cossentino, M., May 2002. Designing a multi-agent solution for
a bookstore with the PASSI methodology. Proceedings of the Fourth Inter-
national Bi-Conference Workshop on Agent-Oriented Information Systems
(AOIS-2002).

Busetta, P., Rönnquist, R., Hodgson, A., Lucas, A., 1998. JACK Intel-
ligent Agents - Components for Intelligent Agents in Java. Tech. rep.,
Agent Oriented Software Pty. Ltd, Melbourne, Australia, available from
http://www.agent-software.com.

Bussmann, S., Jennings, N. R., Wooldridge, M., 2004. Multiagent Systems for
Manufacturing Control. Springer-Verlag.

Cernuzzi, L., Rossi, G., November 2002. On the evaluation of agent oriented
modeling methods. In: Proceedings of the OOPSLA 2002 Workshop on
Agent-Oriented Methodologies. Seattle, pp. 21–30.

Cossentino, M., Potts, C., Jun. 2002. A CASE tool supported methodology
for the design of multi-agent systems. Proceedings of the International Con-
ference on Software Engineering Research and Practice (SERP’02).

Cossentino, M., Sabatucci, L., Sorace, S., Chella, A., October 2003. Patterns
of reuse in the passi methodology.

Cost, R. S., Chen, Y., Finin, T., Labrou, Y., Peng, Y., 1999. Using colored
petri nets for conversation modeling. Workshop on Agent Communication
Languages at the Sixteenth International Joint Conference on Artificial In-
telligence (IJCAI-99).

Dam, K. H., Jun. 2003. Evaluating agent-oriented software engineering
methodologies. Master’s thesis, School of Computer Science and Information
Technology, RMIT University, Melbourne, Australia, (supervisors: Michael
Winikoff and Lin Padgham).

Dam, K. H., Winikoff, M., Jul. 2003. Comparing agent-oriented methodolo-
gies. In: Giorgini, P., Winikoff, M. (Eds.), Proceedings of the Fifth Inter-
national Bi-Conference Workshop on Agent-Oriented Information Systems.
Melbourne, Australia, pp. 52–59.

DeLoach, S. A., Wood, M. F., Sparkman, C. H., 2001. Multiagent systems
engineering. International Journal of Software Engineering and Knowledge
Engineering 11 (3), 231–258.

Ehrler, L., Cranefield, S., 2004. Executing agent uml diagrams. Proceedings of
the Third International Joint Conference on Autonomous Agents and Multi
Agent Systems (AAMAS’04).

Fowler, M., Scott, K., Sep. 2003. UML Distilled: A Brief Guide to the Stan-
dard Object Modeling Language (third edition). Object Technology Series.
Addison-Wesley.

31

Giunchiglia, F., Mylopoulos, J., Perini, A., Jul. 2002. The Tropos software
development methodology: Processes, models and diagrams. Third Interna-
tional Workshop on Agent-Oriented Software Engineering.

Hailpern, B., Santhanam, P., 2002. Software debugging, testing, and verifica-
tion. In: IBM Systems Journal. Vol. 41. pp. 4–12.

Heselius, J., 2002. Debugging parallel systems: A state of the art report. MRTC
Report ISSN 1404-3041 ISRN MDH-MRTC-63/2002-1-SE, Mlardalen Real-
Time Research Centre, Mlardalen University.

Huber, M. J., May 1999. JAM: A BDI-theoretic mobile agent architecture. In:
Proceedings of the Third International Conference on Autonomous Agents
(Agents’99). pp. 236–243.

Huget, M.-P., Odell, J., 2004. Representing agent interaction protocols with
agent uml. Proceedings of the AAMAS04 Agent-oriented software engineer-
ing (AOSE) workshop.

Liedekerke, M., Avouris, N., 1995. Debugging multi-agent systems. Informa-
tion and Software Technology 37(2), 103–112.

Müllerburg, M. A., 1983. The role of debugging within software engineering
environments. In: Proceedings of the ACM SIGSOFT/SIGPLAN software
engineering symposium on High-level debugging. pp. 81–90.

Ndumu, D., Nwana, H., Lee, L., Collins, J., 1999. Visualising and debugging
distributed multi-agent systems. Proceedings of the Third Annual Confer-
ence on Autonomous Agents, 326–333.

Nowostawski, M., Purvis, M., Cranefield, S., 2001. A layered approach for
modelling agent conversations. In: Proceedings of the 2nd International
Workshop on Infrastructure for Agents, MAS, and Scalable MAS, 5th In-
ternational Conference on Autonomous Agents, Montreal. pp. 163–170.

Nwana, H. S., Ndumu, D. T., Lee, L. C., Collis, J. C., 1999. ZEUS: a toolkit
and approach for building distributed multi-agent systems. In: Proceedings
of the Third International Conference on Autonomous Agents (Agents’99).
ACM Press, Seattle, WA, USA, pp. 360–361.

Padgham, L., Winikoff, M., 2004. Developing Intelligent Agent Systems: A
practical guide. Wiley Series in Agent Technology. John Wiley and Sons.

Poutakidis, D., Padgham, L., Winikoff, M., 2002. Debugging multi-agent sys-
tems using design artifacts: The case of interaction protocols. Proceedings of
the First International Joint Conference on Autonomous Agents and Multi
Agent Systems (AAMAS’02).

Poutakidis, D., Padgham, L., Winikoff, M., Oct. 2003. An exploration of bugs
and debugging in multi-agent systems. In: Proceedings of the 14th Interna-
tional Symposium on Methodologies for Intelligent Systems (ISMIS). Mae-
bashi City, Japan, pp. 628–632.

Reisig, W., 1985. Petri Nets: An Introduction. EATCS Monographs on Theo-
retical Computer Science. Springer-Verlag.

Russell, S., Norvig, P., 1995. Artificial Intelligence: A Modern Approach. Pren-
tice Hall.

Shehory, O., Sturm, A., May 2001. Evaluation of modeling techniques for

32

agent-based systems. In: Proceedings of the Fifth International Conference
on Autonomous Agents. ACM Press, pp. 624–631.

Sturm, A., Shehory, O., Jul. 2003. A framework for evaluating agent-oriented
methodologies. In: Giorgini, P., Winikoff, M. (Eds.), Proceedings of the
Fifth International Bi-Conference Workshop on Agent-Oriented Information
Systems. Melbourne, Australia, pp. 60–67.

Sudeikat, J., Braubach, L., Pokahr, A., Lamersdorf, W., Jul. 2004. Evaluation
of agent-oriented software methodologies: Examination of the gap between
modeling and platform. Agent Oriented Software Engineering (AOSE).

Sycara, K., Paolucci, M., van Velsen, M., Giampapa, J., July 2003. The
RETSINA MAS infrastructure. Journal of Autonomous Agents and Multi-
agent Systems 7 (1 and 2).

van Lamsweerde, A., Aug. 2001. Goal-oriented requirements engineering: A
guided tour. In: Proceedings of the 5th IEEE International Symposium on
Requirements Engineering (RE’01). Toronto, pp. 249–263.

Walton, C. D., 2004. Model checking agent dialogues. Proceedings of the AA-
MAS04 Declarative Agent Languages and Technologies (DALT) workshop.

Wooldridge, M., Fisher, M., Huget, M.-P., Parsons, S., 2002. Model check-
ing multi-agent systems with mable. In: Proceedings of the first interna-
tional joint conference on Autonomous agents and multiagent systems. ACM
Press, pp. 952–959.

Wooldridge, M., Jennings, N., Kinny, D., 2000. The Gaia methodology for
agent-oriented analysis and design. Autonomous Agents and Multi-Agent
Systems 3 (3).

Zelkowitz, M. V., 1978. Perspectives on software engineering. ACM Computing
Surveys,10(2), 197–216.

33

