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Abstract. Inthe process of designing multiagent systems, itis oftercase that
some kind of specification of communication rules (in therfaf protocols, ACL
semantics, etc.) is available. and The question naturatgs how appropriate
agents can be designed to can operate on such a specifiddtiover, if these
multiagent systems are viewed@zen systemshe problem is complicated even
further by the fact that adherence to such a supposedlyagpeeification cannot
be ensured on the side of other agents.

This paper presents an architecture for dealing with a venegc type of pre-
specified communication patterns (which contain surfangcsire and logical
constraint specifications) based onempirical semanticsnodel of communi-
cation. This model allows for flexible adaptation to evotyitommunication se-
mantics by combining existing expectations about the usewimunication with
empirical observation.

This architecture is based on tlé-FrA social reasoning framework and the con-
cept of interaction frames. We show how interaction frarhas tepresent classes
of interaction situations can be used to conduct decidieotetic reasoning about
communication when interpreted using the empirical sefosiapproach.

We introduce the abstract architecture, a formal modeltfoprobabilistic se-
mantics and present results of an experimental validatiasuo approach in a
complex domain that illustrate its effectiveness.

Keywords Agent interaction, agent communication languages, iotina protocols,
multiagent learning, social reasoning

1 Introduction

The process of designing agent communication languagesagtion protocols and
conversation policies is primarily concerned with whatgoabetweerrather tharin-
sideagents. It is therefore only natural that ACL research hedyattacked the prob-
lem of how to build agents in accordance with a given set ofes#in rules, protocol
structures, etc.

In the light of openmultiagent systems, in which agents are not controlled by a
central entity or pursue common goals and need not be bearaydtis design problem



is complicated even further. Not knowing how other agents agiply a given spec-
ification concerning the semantic and pragmatic propedidbe provided means of
communication, the question for an agent is not only how falyajt by himself, but
also whether to comply with the supposedly agreed spedditat all.

This is exactly the issue this paper deals w@liven the specification of a number of
communication patterns together with logical constrafotsheir application, how can
we design an agent that uses them appropriately to furtreohin goals, not knowing
whether other agents will comply®s a possible answer to this question, we propose
an agent architecture based on the concephgbirical semantic§20]. This architec-
ture can be seen as a “communication reasoning” componahtakes as inputs the
belief state and utility function of an agent as well as a $ehodels of communica-
tion patterns (so-calledhteraction framesand outputs communication decisions. The
architecture is characterised by two essential features:

1. It uses decision-theoretic principles to make optimébaadecisions while taking
previous communicatioexperiencénto account.

2. It combines empirical knowledge with priori specified logical constraints for
communication patterns.

Most importantly, the reasoning heuristics used in thifidecture are computationally
tractable and can be implemented directly. We thus contritouthe task of engineering
agents that are able to operate flexibly on a given set of camwation protocols and
semantic rules and under the assumption that the empigngdstics view is followed.

The remainder of this paper is structured as follows: Inisec2 we review the
foundations of the empirical semantics approach. Subseiguee introduce thénF-
FrA social reasoning framework that the proposed archite¢subased on. Section 4
establishes a formal model of empirical semantics catiéarFFrA that usednFFrA
frames to capture probabilistic expectations about comcatinn. In section 5 we then
present the apparatus necessary for making decisionssimthdlel. Experimental re-
sults from a concrete implementation of the model in a comglamain are given in
section 6 to underline its practical usefulness. Sectionunhds up with some closing
remarks and conclusions as well as an outlook to future work.

2 Empirical Semantics

As stated in the introduction, the aim of our research is t@hbgp agents that can reason
about communication inpen systemsn which adherence to a particular communica-
tion semantics cannot be taken for granted. That is, no malktat kind of specification

is provided for the meaning of utterances used in inter-eg@mmunication, a strict in-
terpretation of agerautonomyf12] must include the possibility that agents are entirely
self-interested. For such self-interested agents there aitonomy-respecting way of
imposing behavioural constraints, and hence any defindgfaemantics that includes
someperlocutionaryaspects [1] that affect future actions of an agent (e.goperihg

an action one has promised to perform) may be violated inahctammunication, if
agents decide to deviate from the behavioural pattern sgubpinduced by their mes-
sages that have been previously exchanged. For this reasamly way to obtain more



or less reliable models of the relationship between comoaiiain and agent action in
an entirely open view of communication semantics is throegtpirical observation
and identification of regularities in others’ (and one’s guwahaviour.

At the same time, it makes little sense to assume that agentaralomly and that
the only way to predict their behaviour is to model them astiaty stochastic pro-
cesses. In most systems, sompriori agreement about communication semantics ex-
ists, whether it be defined in terms of mental states of thiégiaating agents (e.g. [22,
4]) or commitments (e.g. [6, 23]) or in some other way. Alsteraction protocols that
are assumed to be common knowledge among agents are usefailyda priori so as
to restrict the range of admissible message sequenceshénwbrds, from the point
of view of a reasoning agent who wants to employ the commtinitanechanisms
provided in a multiagent system, pre-constructed spetificga of communication pro-
cesses and semantics are available, even if their retiabilnges on the ways other
agents will make use of the provided specifications.

These considerations lead us to regard pre-specified mistacd ACL semantics as
communicative expectatiorsther thardefinitions of meanings their properties might
be confirmed or violated in actual (future) communicatiorthie following paragraphs,
we explain (i) how a model of meaning can be developed that ectordance with
this expectation-based view and (ii) what the implicatiofishis model are from the
standpoint of rational agent-level decision making.

2.1 Expectation-Based view

Our approach is based on the notioneshpirical semanticéor multiagent systems,
which was first developed in [20] and [10] (but see also [111#3). The empirical
semantics view is based on the simple idea that if we assuemendaning of agent
communication to be based on expectations (rather thabteland statically verifiable
conditions), we must adapt it according to empirically alsed communication and
action in the system.

As a consequence, communication must be thought of as agsrotexchanged ob-
servable symbols which obtain their meaning through trexaations within which they
occur. The central instrument to establish this meaningrerexpectations constructed
by agents participating in or observing an interaction.sehexpectations “contain” the
current semantics of communication in a given social cdrdaax their evolution over
time mirrors the evolution of meaning.

To make things a bit more concrete, we quote the followindre¢elements of the
empirical semantics approach from [20]:

1. The meaning of a message can only be defined in termsazfrisequencese. the
messages and actions that are likely to follow it. Two lewélsffects can be dis-
tinguished:

(a) The immediate reactions of other agents and oneselétm#ssage.

(b) The “second-order” impact of the message on the expentsiructures of any
observer, i.e. the way the utterance alters the causal neb@deimmunicative
behaviour.



Fig. 1. Empirical semantics and its evolution

2. Any knowledge about the effects of messages must be derivm empirical ob-
servation. In particular, a semantics of protocols caneadiablished without tak-
ing into account how the protocols ansedin practice.

3. Meaning can only beonstructedhrough the eyes of an agent involved in the inter-
action, it strongly relies on relating the ongoing commatin to the agent’s own
goals.

In other words, our view is that the semantics of communicatian be reduced to
its pragmatics as perceived by agents who are using comatioric While this is an
overtly restrictive interpretation of meaning for generaimunication, it can be very
useful for practical agent reasoningapenmultiagent systems, in which “normative”
semantics may be proven wrong by others’ inability or urimglhess to comply with
them.

This is because the empirical semantics view can be usedasmal-assumption
method for reasoning about communication which at leasiressthat the agent will
not compromise his own welfare for the sake of complying vetbre-specified se-
mantics (when others do not comply, either). In other wondscan always “resort to”
observed regularities between utterences and subseagrefiohment-manipulating,
i.e. “physical”) actions if all else fails.

Taking this as a point of departure for reasoning about conication raises the
following question: If the meaning of an utterance (or semgeof utterances) lies in
the expected consequences, how can we capture semantigsausiodel of causal-
ity and correlation that allows to predict these consegesefiar a given (sequence of)
utterance(s)? What is foremostly required to solve thidblem are appropriate rep-
resentations for adaptable communicative expectatiangdpresentations that reflect
expectations and that can be adapted with new observatiasts enable the agent to
extrapolate past correlations into the future.

Expectation network€@ENSs, [9, 13]) have been suggested as a very general method
of capturing this kind of expectations that relies on a pbilistic model of “continu-
ations” between interrelated messages derived from titali®bservation. Instead of
going into the details of this formalism, we sketch the badéa using the illustrations
of figure 1. In this figure, nodes represent communicativeoast edges correlations
between them (variable line width is used to indicate différdegrees of correlation).
The shaded node sequence is used to describe the recemty@dportion of the net-



work, e.g. an ongoing conversation. The decreasingly dzakled regions of predicted
future actions denote that predictions regarding “diStavénts are increasingly vague.
The transition from the situation shown on the left to thatlwaright occurs upon ob-

servation of a new action that is appended to the currentyaat path. With this new

observation, the correlation between the message prdyiobhserved and the current
message increases compared to alternatives that did nat occ

This simple probabilistic process modelling view is obwsiuinadequately sim-
plistic and suggests that agents are nothing but the aforééoned stochastic processes
whose behaviour is arbitrary and not confined in any way byqipies of rationality,
goal orientation or logical inference. In fact, this is guiteliberate for cases in which
other agents do not seem to be behaving according to anyéhighel” models the
observer may have, i.e. if the assumptions he makes reggottier agents, their men-
tal states, the state of commitments in the system etc. andparticular — that part
of these assumptions that is concerned with communicaéipraatics and interaction
rules fails. Hence, the purely probabilistic view is onlgfid in a zero-assumption case
in which all an observer can do is to correlate message armmhasquences.

Yet the expressiveness of ENs goes far beyond that, as thégic@lements that we
have not described in our oversimplified description of thefe@rmalism above: Firstly,
instead of messages agents actually use message pattrmathinvolve variables as
node labels, so that a path can be a generalisation of a sbsefved ground message
sequences. Additionally, sets of instance values for tivas@bles can be stored in
the node to re-construct previous cases generalised ownecdssary (or to enhance
prediction capabilities with the help of similarity conerdtions for new cases in a case-
based reasoning fashion). Secondly, transitions betwedesnhare not only labelled
with numerical probability estimates derived from pastfrency data, but may also
contain logical constraints that restrict the applic&ypilif certain transitions.

With these additional facilities, ENs become a highly pdwiool to add semantic
information to expectations that reflects assumptions tiseiwver makes, thus allowing
for a flexible mix between hard-coded constraints and adaptiobabilistic reasoning.

2.2 Decision-Theoretic view

In principle, adopting the standpoint of empirical semesgnables an agent to adapt
his expectations with new communication experience andijissathis own behaviour
to the expected reactions of others. However, this coneéptew of semantics does
not say anything about how agents can use such expectatipnadtice.

What is therefore required is to integrate expectationséndecision-making pro-
cesses of an agent, and to this end we shall discuss a feviactettigoretic considera-
tions that are related to communication in different int#icn situations.

As two famous examples for strategic interaction situajaonsider the Prisoner’s
Dilemma (PD) game and the Coordination Game (CG), which arenal-form two-
player games characterised by the payoff matrices shovablag 1 and 2.

In the PD game, there is an incentive for both agents to dedewte D is a better
choice whatever the other party chooses (hddzeD) is the only Nash equilibrium in
this game). The dilemma arises because agents could botéttw bnder the (Pareto



ajC D

C (3,3)/(0,5)
D (5,0)/(1,1)

Table 1. Prisoner’s Dilemma payoff matrix. Matrix entriés;, v;) contain the payoff values for
agentsa; anda; for a given combination of row/column action choices, respely. C stands
for each player’s “cooperate” option, D stands for “defect”

aj A B
a;
A [N [EEN)
B (-1,-1) (1,2)

Table 2. Coordination game, in which agents have two choidesnd B and receive a positive
payoff if they opt for the same alternative.

efficient) (C, C') combination, which neither of them is probably going to cémbe-
cause it may imply getting the “sucker’s payoff'if the other defects. So the problem
is that while agents’ interests overlap in this game, coaipan is impeded by the po-
tential for mutual exploitation. In the CG, on the other hamdching an agreement is
trivial in theory, since agents receive the equal rewardsvéver, in the absence of any
means of communication, no agent can know what the othechdbse, resulting in a
(mixed-strategy Nash equilibrium) solution for the gameeveneach agent will playt

or B with equal probability and only obtain an expected payoff.of

Now let us assume prior to actually playing any of these gaagesits may ex-
change a number of messages. According to our consequ&ntialv, the only way
to interpret these messages would be as indicators for thesfpal” actions C/D or
AlB) that they will perform in the actual game. This is also théyapalistic signifi-
cance messages would have in such an interaction scermri@afgame-theoretic point
of view if the interaction situation is completely determéhby the definitions of the
one-shot games (i.e. no externalities have to be taken goouat to which communi-
cation might contribute).

In the PD, obviously, it makes no sense for any one agent ticatel his choice,
because he might be exploited if he is telling the truth, #eddather agent has nothing
to lose by defecting (he can only gain from exploiting thesotishould he be truthful).
In the CG game, on the other hand, truthfully indicating wdrag will do is a dominant
strategy for both agents, and it makes no sense for themto lie

This illustrates the different flavours communication malet on, ranging from
self-enforcing communication sharing (as in the CG) thatalyeserves to synchronise
agent activity to highly contingent exchange of proposaqjpotentially fraudulent)
offers for cooperation that are highly contingent and deljpemthe other’s cooperative
attitude.



But what is the significance of such communication from an ieicgd semantics
point of view? Under a consequentialist view of meaning, twxa can infer from the
above examples is that any symbol uttered by an agent reyseaecourse of joint
future actions (or, a set of different alternatives) in areiiaction situation. Given an
EN-like representation of expectations, any message theegponds to a node in the
network and is being uttered in the context of an ancestdr (gag. by restricting the
temporal scope of what counts as “relevant” to the curraataction situation) denotes
the sum of its descendant paths (again, potentially réstrim depth and breadth by
some notion of interaction scope). So depending on thetaneiof the EN (which may
also suggest that certain paths are valid or invalid at the df utterance depending on
logical constraints or may induce a stochastic distributwer possible continuations
in a probabilistic fashion) the agent uttering a messagelectng a set of possible
continuations, thereby “requesting” a (set of) desireadonte(s) from the other(s). The
message obtains precisely the predicted set of possiblgnoations of the current
message (viz outcomes of the interaction situation) astiéntded meaning. Under this
interpretation, any message is a description of a set oftgp@utcomes as anticipated
by its utterer, and if we trace a sequence of messages, wei@arsubsequent steps
in this sequence as an incremental refinement of requestéféos) for possible states
of the world after the interaction. Along this communicatiencounter”, the agents
make communication decisions according to their subje&ipectations with the goal
of reaching states that are desirable for themselves. Baafions are mutually com-
patible in the sense that the agents understand what easmhi®8aying and trusts that
the expected outcomes will actually occur, and if there figent overlap between
agents’ interests, reliable expectation structures cashtie coordinated behaviour.

As an illustration, let us look at an example of an expectesioucture in which an
agent may indicate he wants to play a PD game by uttering Balimessage, wherupon
the other party may agree or disagree to play. After thisainstage, the agents may
choose from different alternative messages to indicate thieg will do, and the even-
tually occuring actual game moves are performed concuydlitis situation is shown
in figure 2. Depending on the probabilities of all transiqand especially of those

(C.CO)
I'll cooperate, too!
I'll cooperatet (C.D)
I'll defect!
OK, sounds like funt
(©.0)
I'l defect\
Let's play! In that case, I'll defect as well.
Leave me alone! (D,D)

Fig. 2. Expectation structure for pre-play communication in the ¢ine; joint actions occur
concurrently, while communication steps alternate betvthe two agents.



leading to leaf nodes) and the utilities assigned to leaksadhich are omitted in the
figure, agents can calculate best-/worst-case or expetidgzsl depending on their
decision rules so as to make communication and action chaioeach step.

At a more practical level, if communication is inexpensimecomparison to the
outcomes of the physical actions, this leads to a “cheap f2]kwiew of communica-
tion, in which agents engage in conversations to maximisg gwn profit under the
assumptions of their own EN. Obviously, the usefulnessisfiEiN depends strongly on
its reliability, i.e. on how well the symbol meaning is commiaowledge and adhered
to. However, things can go wrong if agents do not share eafiens or are deliber-
ately exhibitingdeviantbehaviour (we refer the interested reader to [18] for a Hethi
discussion of deviance and, as one of its most interestingfesdations i.e. conflict).

To bridge the gap between the expectation-based and thaeaetheoretic views,
we need to devise appropriate representations that agemisse to record and reason
about their interaction experience. For interactions énftrm of two-party, turn-taking
dialogues, we suggestteraction framesas one such representation. The following
sections introduce thi@FFrA architecture that is used for this purpose and discuss the
reasoning mechnisms employed in .

3 The InFFrA Architecture

The Interaction Frames and Framing ArchitectinéFrA [21] has originally been de-
veloped as a meta-framework for social reasoning architestbased on the notions of
“interaction frames” and “framing”. It provides abstramts for the data and processes
involved in reasoning about patterns of communication ateséararchitectural level,
i.e. without pinning down concrete implementation detdiishe following, a brief in-
troduction to the abstract framework is provided. Afteisthive will explain how this
framework can be combined with the empirical semantics Végsvout in the previous
sections.

3.1 Abstract Architecture

The central idea behinbhFFrA is to employ models of classes of interaction called
interaction frames to guide agents’ social behaviour. Tioegss of applying frames
appropriately in interaction situations is referred tor@srfing. In the abstra¢hFFrA
architecture, a frame is a data structure that containsrirdtion about

— the possible courses of interaction (so-catlagectorieg characteristic to a partic-
ular frame,

— roles and relationshipbetween the parties involved in an interaction of this glass

— contextswithin which the interaction may take place, and

— beliefs i.e. epistemic states of the interacting parties.

! We include only so-calledescriptiveframe attributes in our discussion. In the actual model
[18], frames may also contaimeta-levehttributes that describe relationships between frames,
frame history, statements about the extent to which knaydeabout frames is distributed
among agents, etc.



At the conceptual level, this allows for modelling all reden features of a class of
interactions: its participants, its surface structure, ¢context within which instances
of it may occur and the associated beliefs of participatiagigs.InFFrA makes no
assumptions as regards representation, thus also alld@arintgformal and semi-formal
modelling methods where appropriate.

For computational purposes, a representation of a set ofsaiiie message and
action sequences is usually taken to represent the trayetiodel (e.g. a DFA, a Petri
Net, etc.) while the latter three elements can be collaps&da single set of logical
constraints whose fulfillment has to be verified using thentigénternal belief state
(usually represented by some kind of knowledge base fortwtractable proof pro-
cedures are available) if the respective frame is to be densil applicable in a given
situation.

InNFFrA makes use of a number of frame-based data structures to cdhéuwsteps
necessary for framing:

— The active frame the unique frame currently activated to describe the ebeplec
course of events,

— theperceived framgan interpretation of the currently observed state of effai

— thedifference modetontaining the differences between perceived frame ariakact
frame,

— thetrial frame, used when alternatives to the current frame are sought for,

— and theframe repositoryin which the agent locally stores its frame knowledge.

Using these data structures, lafrFrA agent performs the following steps in each rea-
soning cycle:

1. Interpretation & Matching:Update the perceived frame and compare it with the
active frame.
2. Assessmenfissess the usability of the active frame in terms of
(i) adequacy (compliance of frame conditions with the cotrsituation),
(i) validity (the degree to which the active frame'’s trajgy matches the perceived
encounter) and
(i) desirability (depending on whether the implicationfthe frame correspond to
the agent’s private goals).
3. Framing decision:If the active frame seems appropriate, continue with 5. Else
proceed with 4 to find suitable alternatives.
4. Adjustment/Re-framingSearch the frame repository for better frames. “Mock-
activate” them as trial frames iteratively and go back tofIna suitable frame
is found, end the encounter.
5. EnactmentDerive action decisions by applying the active frame.

The entiré framing process is depicted in figure 3. It should be empbdsisatinF-
FrA only describes the social layer of agent reasoning; in dalebtain an integrated

2 This is a largely simplified view of the actumiFFrA-based social reasoning cycle. [18] intro-
duces a much more intricate data flow model that involves ¢exripteractions between the
data structures, a cyclic model of trial instantiation tidguishing between frame enactment
and actual behaviour generation, etc.
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Fig. 3. Overview of the framing process

agent architecture, it has to be combined with a suitablepoorant for local rational
reasoning (e.g. a BDI [16] reasoner), so that the agentafgrigoals and preferences
can be taken into consideration during tesessmemthase.

3.2 Frames as Expectation Structures

Looking atInFFrA from an empirical semantics point of view, we can re-intetphe
frames in an agent’s repository as the expectations abootnemication patterns that
the agent holds.

In retrospectiveterms, the agent can use observed interaction situatiodertee
new frames (or store them as instances of already known &pamel extend his own
repository using new interaction experience. This wilbadlto re-construct interaction
experience (ideally) from a reasonably small set of clas$@#eractions. Irprospec-
tive terms, the agent can apply his repository to determine afsedroissible frames
in any given interaction situation and to use these for ptexi of possible continu-
ations. This enables the application of decision-theotinciples to frame selection
and frame adjustment (and, in very elaborate architectlsesto creative construction
of completely novel frames).

The frame-based approach lends itself to reasoning withirerapsemantics for
two main reasons:

— InFFrA provides us with a practical reasoning scheme for procg®sipectations
which is missing in the pure expectation-based view of etqin networks de-
scribed above.

— InFFrA is ideally suited for combining pre-specified communicatigatterns
(e.g. protocols and ACL rules specified by the designer) ima-griented fash-
ion with empirical knowledge about how the interaction atlfuturns outin the
system.



In the next section, we are going to explain how a formal medein instance of the
INFFrA architecture can be developed that is in keeping with thessiderations.

4 A Formal Model of Frame-Based Empirical Semantics

To obtain a formal computational model for representing eeaboning about com-
municative expectations based FFrA, we have developed’InFFrA, a simple yet
expressive model for describing two-party, discrete,fiaking encountersvhich can
be thought of as conversations between two agents.

4.1 Them?Zinffra model

mInFFrA frames use with linear sequence of message patterns (issages contain-
ing variables) as its trajectory model specifying the stefatructure of the encounters
described by a particular frame, together with a lissaibstitutiongo capture concrete
values of these variables in previously experienced intemas. Each substitution also
corresponds to a set of logicabnditionsthat were required for and/or precipitated by
execution of the trajectory in the respective encounterally, trajectory occurrence
and substitution occurrenceounters record the frequency with which the frame has
occurred in the past. Formally, a framenifinFFrA is defined as follows:

Definition 1. Aframeis atupleF = (T,0,C, hr, ho), where

— T = (p1,p2,--..,pn) is a sequence of message pattesns M, thetrajectoryof

the frame,
- 0 ={(t,...,9,)is an ordered list ofvariable substitutions
- C = {c1,...,cm) is an ordered list ofcondition setssuch thate; € 2¢ is the

condition set relevant under substitution,

— hr € N7l s atrajectory occurrence countlist counting the occurrence of each
prefix of the trajectoryl” in previous encounters, and

— he € N9l s asubstitution occurrence countist counting the occurrence of each
member of the substitution li&t in previous encounters.

In this definition,M is a language of speech-act [1] like message and actiorrpatié
the formperf(A, B, X) ordo(A4, Ac). In the case of messages (i.e. exchanged textual
signals),perf is a performative symbokgquest, inform, etc.),A and B are agent
identifiers or agent variables and is the propositional content of the message taken
from a logical languagé. In the case of physical actions (i.e. actions that mantpula
the physical environment) with the special “performatige; Ac is the action executed
by A (a physical action has no recipient as it is assumed to benaddsle by any agentin
the system). BotlX andAc¢ may contain non-logical substitution variables that aexus
for generalisation purposes (as opposed to logical “canamables” used by agents
to indicate quantification or to ask for a valid binding) . Wether useM,. C M to
denote the language of “concrete” messages that agents cemimunication (and that
do not contain variables other than “content variables”).

To illustrate these concepts and to explain the semanta$rame, we will consider
an example of how the FIPA contract net protocol [5] can bdémgnted ininFFrA.



F., = < < 3, ctp(Ai, A2, (R, P))) 3 propose(Az, A1, Q)
3, accept- proposal(Ai, A2, Q) 2, do(A2, A1, R)>7
(LX(P=Q)=,
—Bref 4, (any X Ia, Done(R, P)) A ~Ba, I, Done(R) @1,
Ba,Ia,Done(R,Q) @2,
Ba,Ia,Done(R,Q) A Ba,I1a,Done(R,Q) @Q3,
Ba,Q @4}, {}, {damaged tires)}),
(=11
EN [A1/agent,, A2/ agenty, P/priceOf (tire, X),
Q/priceOf (tire, 75), R/ sell(tire, 4)],
4 [A1/agents, Az /agent,, P/priceOf (tire, X),
Q/priceOf (tires, 400), R/replace(tires)]>>,

Table 3.Interaction frame for the success path of the FIPA contratprotocol

For ease of presentation, we will wri&(F"), C(F'), etc. to denote the respective el-
ements of a framé” and use the compact notati¢h, (F'), C(F'), ©(F)) instead of
(T,C,0,hr,ho), where

hr(F)[1 hr(F)[2 hr(F)[n
T(F) <O, ke Pl

and
R he(F)[t .
On(F)li] == o(F)il.
Table 3 shows an interaction frame for the success path cfthigact net protocol, the
following should be noted about this example:

— As can be seen, the first condition set (corresponding to tigye substitution)
contains feasibility preconditions of the respective parfatives (in FIPA-SL [4]
with additional timestamps of the formi indicating at which trajectory step a
condition has to hold), as far as they are relevant for fraxeeation.

— Definition 1 does not constrain which conditions are to beestdor a specific
enactment of a frame (even allowing for empty condition)setsd the task of ex-
tractingrelevantor evencrucial information from the agent’'s knowledge is clearly
nontrivial. However, the reasoning framework to be defimatié following section
primarily uses conditions to identify similarities in engters, while expectation
is drawn from utilities obtained during frame execution king this approach less
sensitive to the way conditions are selected.

As for the different failure cases covered by the contratpnetocol, these could ei-
ther be modelled implicitly by using timeouts and interprgt'silence as disapproval”
or explicitly by virtue of additional frames. For exampleetframe of table 4 models
the refusal to submit a proposal.



F,.,. = << 3, ctp(Ai, Az, (R, P)) 2, refuse(Ag,Al,Q)>,

({—Bref 4, (any X 14, Done(R, P)) A —~Ba,Ia,Done(R) @1,
By, (—Feasible(R) A Q A ~Done(R) A —~la, Done(R)) @2},
{Ba, (inStock(tire)) @1}>7

(=10
2 [A1/agent1, P/priceOf (tire, X),

Q/—inStock(tire), R/ sell(tire,4)]

Table 4. Interaction frame modelling the refusal to submit a propaséhe FIPA contract net
protocol

Together,F,,, and F,. capture the following observations about previous encoun-
ters:

— Five encounters started with a message matchifg A1, A, (R, P)), three of
them continued with a proposal by, the other two with a refusal. In two of the
former three cases, the proposal was accepted bgnd the respective physical
action carried out byl,.

— One encounter has terminated after the second message acomtasued with a
message not matchirgcept- proposal(A4;, A2, Q).

— For four of the five encounters, substitutions are availabieo contracts were
made, one about the delivery of four tires for a pricerdfeach, one about the
replacement of a set of tires fé00. Two calls for proposals for the delivery of four
tires were refused because no tires were available (whiahgisneralisation over
two encounters, leaving, unspecified).

4.2 Making predictions with m2inffra frames

To usem’InFFrA frames for the prediction of future encounters we need admodel
of their prospectivaather than theetrospectivesemantics informally described in the
previous section.

Here, the idea is (as in [20]) to use an entire repositbry= {F,..., F,} of
frames, each representing a set of message/action segumneitue of the substitu-
tions that can still be applied to its trajectory. Givenesntounter prefix.e. a sequence
of messages already uttered in the current encounter, armadjnt’s current belief state,
we can filter out those paths that either (a) do not match thewarter prefix or (b) are
labelled with logical conditions not satisfied under cutrknowledge base content.
Considering the remaining (i.e. relevant) paths, we can #ssign probabilities to all
the possibleencounter continuation®r postfixes) using the counter valuesfo F.
Additionally, domain-dependenase-based reasonirig] techniques can be applied by
introducing a similarity measure on messages, such thatelift instances of a postfix
pattern have different probabilities depending on theirilsirity with past enactments



of the respective frame. Hencg, represents a simplified version of an expectation
network that has the form of a tree.
More formally, letw € M? the encounter prefix and

Ofiea (F, w) = unifier(w, T(F)[L:|w]])

the most general unifier (MGU) ofv and the corresponding trajectory prefix
T(F)[1:|w|] of F (whereunifier(-, -) returns the most general unifier for two message
patterns or sequences thereof loif they cannot be unified).

For a given knowledge bagéB < 2 describing the belief state of an ageAtX is
assumed to be encoded in the same propositional langliagéhe content of messages
for reasons of simplicity), this allows us to define

Oposs(F, KB, w) = {0309 = Vfigea(F, w)?' A Fi. KB = Cli]9}

as the set of substitutions stibssibleunderF', KB, andw. The elements ab,,,, are
extensions ofl s, for which at least one condition ii( F') is satisfiec®

For a giversimilarity measurer : M* x M* — R on message pattern sequences,
we can define

similarit frequenc relevance
(F)| Y i

——
oV, F) = Z o(T(F)Y,T(F)O(F)[i]) he(F)[i] c:(F,9,KB)

i=1

to assess to which extetitis “applicable” toF. In this definition,he (F)[i] is used to
take the frequency of a past condition/substitution intcoant andec; expresses how
relevant a particular frame conditi@is] is in determining the applicability of.* This
quantity can be used to derive a conditional probabilityritigtion over the different
substitutiong? F' may be enacted under:

(0, F) if 9 € Oposs(F, KB, w)
otherwise

PI|F,w) = {g‘ 7 (1)

for some normalisation constamt Finally, combining this formula with the frequency

hr () [|T(F)]] i ; .
P(Flw) = {ZF/ef,w,<T<mwm e iy (E) Ll v)

0 else

3 We use the notatio here for the result of applying to each element of a list or sét and
919’ for the substitution that results from applying after 9. Further, we implicitly assume
that only minimal substitutions are considered féf, only replacing variables that actually
occur inT'(F) or in someC'(F)[i].

4 A simple definition ofc;, considering only those conditions currently satisfiedoissxample
given by

1 if KB = C(F)[iO(F)[i]v

(F, 9, KB) = .
il ) {0 otherwise.



of F" matching any past encounter starting witkallows us to compute thepntinuation
probability with which an encounter that started withwill be concluded withw':

P(uw'|w) = > P F,w)P(F|w)
FeF,ww'=T(F)9

Looking back at figure 1, this equation defines a probabilifribution for the
possible continuations of an encounter given a currenhpathe expectation network
induced byZ. Next, we will show how this semantics can be used to condaiiinal
reasoning about communicationifinFFrA.

5 Reasoning About Communication inm2inffra

Based on the formal model presented in the previous sec¢hiergeneral principles of
INFFrA can be concretised and embedded into an agent architeoterelow agents
with the ability to reason and make decisions about comnatioic. To illustrate how

this is done, we will again go through the individual stepshe abstract reasoning
cycle depicted in figure 3.

Interpretation and Matching/AssessmeAt the beginning of each reasoning cycle,
the knowledge bas&B and the encounter prefix are updated from the peer’s last
utterance.

As for matching and assessment, the agent che@®s,if; (F,, KB, w) # 0, i.e. if
the trajectoryl'( F,,) of the active framé’, matchesv and the remaining steps f F,,)
can still be executed undéfB. Considerations about tlesirability of F, could also
play a role in the framing decision, and a possible definifmnsuch a desirability
criterion will be given in our description of frame enactrhen

Returning to the example of the previous section, we consie encounter
with 7 = {F.,,F..} and F, = F,, for both agents and prefiw =
ctp(agent,, agenty, (sell(tire, 1), priceOf (tire, X))), so thatagent,; can success-
fully match F,, againstw. If for exampleagent, did only sell tires in fours, executability
of F,, would still fail and require a re-framing.

Adjustment/Re-Framind he idea behind grouping different courses of interactida i
frames is to exploit the fact that (usually) similar typedsragéraction (e.g. negotiation
dialogues, contracting, etc.) exist which differ only ir tspecific content of messages,
but not in what they achieve for the interacting partiessTiierarchical view enables
agents to optimisevithin the current frame while disregarding other frames during a
conversation. However, if the active frame cannot be cduwigt any longer, the search
space for appropriate continuations has to be expanded.

In this case, a variety of frame selection heuristics can sedluo find suitable
alternatives. In our implementation, experimental resfat which are presented in the
following section, we use hierarchical reinforcement ihéiag techniques [24] to learn
an optimal frame selection strategy over time. Also, we troics new frames through
concatenation in a planning-like manner to achieve themalgyoal of a conversation
that went awry. An extensive treatment of the resulting ieeckure can be found in [3].



At the end of an encounter —in order to maintain a concise hufgast interactions
—the active frame is augmented by a substitution that unifi¢sajectory withw, along
with a set of conditions that were required for or precigithlby the execution.

Enactmentlf the active frame contains no further steps, the agentlsitepminates the
encounter, as is the case if no active frame could be fourse:, Eie next message or
action is chosen by applying the locally optimal substitnt)* to the next step of the
active frame’s trajectory.

To determined*, we assume that the agent’s preference towards differeridwo
states is expressed by means of a real-valuiity functionu : M* x 2¢ — R, where
u(w, KB) is the utility associated with a message sequenbeing executed for initial
knowledge bas& B.

Since some variables af* will be bound by the agent himself, while concrete
values for others will be “selected” by his peer with a certednditional probability,
the optimal substitution is defined as the one with the higkqeecteditility. Normally,
this notion of expected utility will also be used during framssessment to determine
the desirability of a specific substitution or entire frarRer example, one could force
a re-framing unless executing the postfix of the active frameer the most desirable
substitution yields a positive utility.

If we write ©5 and©,, for the sets of possible substitutions the agent and hisipeer
the current encounter can apply, respectively, the exgadthty of executing a frame
F underd, € O, is given by

Elu(0s|F,w, KB)] = Y u(postfiz(T(F), w)d0y, KB) - P(0,|,, F,w),
9,€0,

wherepostfiz (T (F),w) is the postfix ofF corresponding to prefixy (which can be
determined by applying the most general unifierond the corresponding prefix of
T(F) to the respective rest) arfel(d, |95, F, w) is the probability with which the peer
will conditionally choose some substitutialy € ©, depending on the agent’s choice
Yy € O,

An approximation ofP (9, |9, F, w) can be computed from the past cases stored in
F. Using Bayes' rule and applying equation 1 to both numeratar denominator, we
can approximate

U(ﬁﬁcped (F, w)ﬁsﬁp, F)
P09, F,w) =
(Op[Js, F, w) S 0 (0 iwed (F, w)0,9, F)

if Ofiged(F, w)0s9), € Oposs(F, KB, w) (and 0, else). By means of standard expected
utility maximisation, the optimal substitutia# is then given by

9 (F,w, KB) = arg max Elu(9s|F,w, KB)].

Concluding the above example under the assumption that-framreéng was nec-
essaryagent,; Now has to select an appropriate proposal. That is, eacteadéments
of ©,,ss yields a different price for a tire, and the search for thet babstitution is a
search for the highest possible price (asill usually increase with higher profit) such



thatagent, will still accept (as the probability for the accept will wdly decrease with
an increasing price) and will be guided by similar past cateied inO(F.,,), i.e. by
past prices for tires.

6 Experimental validation

In order to show their performance in practice, the conceptsented so far have
been implemented and tested in the multiagent-based lictkagyge simulation system
LIESON [17]. In this system, agents representing Web sites engagermmunication
to negotiate over mutual linkage with the end of increasirgopularity of one’s own
site and that of other preferred sites. Prior to reportinghenactual simulation results
obtained with simple proposal-based negotiation framéssapplication scenario, we
briefly discuss th&lE SON system and howtInFFrA agents are realised in this simula-
tion system.

6.1 TheLIESON system

The LIESON environment is populated by a number of agent who represehtsites
and seek to optimise those web-sites linkage situation talbef human web site
owners. Itis assumed that in-links increase traffic on a aitd that agents are trying to
maximise the popularity of their own site, and that of othiersswhich they rate highly.
Private ratings are not visible to other agents and reptéisersite owner’s opinion of
the content of other sites. In contrast to private ratingsperical link weights can be
used to displaypublicratings that can be observed by anyone in the system.

The only available physical (i.e. utility-affecting) aatis in this domain are the ad-
dition and deletion of numerically rated links originatifrgm one’s own site and the
modification of rating values (where the probability of attiing more traffic through a
link depends on the rating value). Additionally, agents reagage in low-cost commu-
nication with each other to request certain physical astwfrothers.

Thus, the strategic aspect of this application derives tlwaract that agents can use
public weights to influence others’ popularity and that thay employ this “power” to
influence their peer’s behaviours. At the same time, theseddemma between being
honest about one’s own opinion of others (after all, one damfspeak his mind”) and
agreeing to deviate from private belief in selecting puldiings in order to “massage”
the other into a more cooperative stance.

LIESON provides a highly dynamic and complex interaction testtoedHe follow-
ing reasons:

— Agents only have a partial and incomplete view of the linkwaek. In particular,
agents engage in non-communicative goal-oriented aatidrefween encounters,
so that the link network (and hence the agents’ utility dibrg may change while
a conversation is unfolding.

— The number of possible link configurations is vast, and ageah only predict
possible utilities for a very limited number of hypothetifture network layouts.



— There is no notion of commitment — agents choose frames itf-ingerested way
and may or may not execute the physical actions that resutt them. Also, they
may undo the effects of these actions later on.

As utility benchmarks for our experiments we use the avesaped of all agents in
two particular link network layouts:

— Complete, honest linkag@&@he network is fully connected and each link displays
the truthful private rating the source site agent holds eftéiget site.

— Complete, politically correct ratingThe network contains exactly those links
whose private rating values are positive, i.e. if an agestaaositive opinion of
another agents the two sites will be connected by a link digpy the correct pri-
vate rating, if not the source site agent “remains silengareing hisd opinion of
the target site.

Interestingly, the politically correct linkage patterresults in a higher average score
(and higher social welfare) and, although we have not dedwelytical bounds for this
utility function, no other linkage configuration seems torbhere rational at a global
level. In particular, extreme configurations (such as a ogtwith empty link set or
fully connected networks with random/highly positiveignegative link weights re-
gardless of private ratings) yield much smaller utilityues. Hence, attaining the level
of these benchmark values would be an impressive achiewdoresgents given that
they know nothing about this behaviour of the global utifityction.

6.2 mZ2inffra agents inLIESON

LIESON agents consist of a non-social BDI [16] reasoning kerndl phajects future
link network configurations and prioritises goals accogdin utility considerations. If
these goals involve actions that have to be executed by atfents (and the agent is
not already engaged in another conversation)nfive=FrA component initiates a new
framing process.

This framing process begins with an initial message, by e agent contacts
any agent that can perofm the desired action (in the casESON, the appropriate
communication partner can be unambiguously determineg sinly an the agent own-
ing a web-site can modify the outgoing links of that site) ands until either (i) the
goal in question has been achieved and the encounter camnhi@aéed, (i) no ade-
guate frame can be found and the agent chooses to termimatetiersation, or (iii)
the other party terminates the encounter.

® The score of agents in each rounds is calculated by combthiagurrent popularity of their
own site and the popularities of preferred sites, while &dang into account to which ex-
tent these sites express similar opinions (in terms of pualiing values i.e. link weights).
Popularity estimates for hypothetical link configurati@me obtained by using a shortest-path
model of stochastically behaving web users, where linksitaom probabilities depend on the
numerical link weights.



We report on experiments in which agents were equipped vintiple proposal-
based frames with the following six trajectory models:

request(4, B, X) — accept(B, A, X) — confirm(A, B, X) — do(B, X)

request(A4, B, X) — propose(B, A,Y) — accept(A4, B,Y) — do(B,Y)

request(A, B, X) — propose- also(B,A,Y) — accept(4,B,Y) —
do(B,X) — do(A,Y)

request(4, B, X) — reject(B, A, X)

request(A4, B, X) — propose(B,A,Y) — reject(B,A,Y)

request(A4, B, X) — propose-also(B, A,Y) — reject(B,A,Y)

The first three frames allow for accepting to perform a retpeeactionX, making a
counter-proposal in whicl” is suggested instead of, or usingpropose- also to
suggest thaB will executeX if A agrees to execufg. The last three frames can be
used to explicitlyreject a request or proposal. In that, andY are link modification
actions; each message is available in every state and iacost that is almost negligi-
ble compared to the utilities gained or lost through linkaggons (yet high enough to
ensure no conversation goes on forever). Also, agents eatysisend &t op action
to indicate that they terminate an encounter if they canndtdi suitable frame.

After their termination, encounters are stored in the frafnem which
they have originated. For example, ageni would store the encounter
request(ay, as, add(az,a1,2)) — reject(ai,as,add(as,a1,2)) by adding a
substitution[A /a1, B/as, X/add(az2,a1,2)] to the respective frame together with
an automatically generated list of conditions that wereauiregl for physical action
execution.

As state abstraction, we use generalised lists of statemefitthe form
{T}{I,R},{I,R,T},{+,—,7}) representing the physical actions talked about in
an encounter] and | stand for a positive or negative link modification (i.e. addi
tion/deletion of a link or an increase/decrease of its gatialue),//R for the initiator
and responder of the encounté&rfor a third party;+/—/? indicates whether the (learn-
ing) agent likes, dislikes or doesn’'t know the target sitehef link modification. For
example, ifa; andas talk aboutdo(ay, deleteLink (a1, as)) in an encounter initiated
by a; (while the learning agent; is the responder and likes’s site) this is abstracted
to |(I,T,+). If in the same conversatian, suggests to modify his own link toward
a1 (whom he does not like) from a rating value bfo 3, the state (visubjecj of the
encounter becomdd (I, 7T, +), T(R, I, —)}. The intuition behind this state abstraction
method is to capture, in a generalised form, gloal of the conversation that can cur-
rently be realised while at the same time reducing the statessto a reasonable size.

Figure 4 shows a comparison for a population of ten agentsadnad profile of
private ratings (preferences) towards other agents (Hoth phow the performance of
the best and the worst agent in the group as well as the avatitigeover all agents).
The constants “upper benchmark” and “lower benchmark” tkeioe quantities for
politically correct and honest linkage as discussed abregpectively.
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In the first plot, agents employ BDI reasoning and additignsénd requests to
others whenever they favour execution of someone else@neatcording to their BDI
queue. These requests are then enqueued by the recipidiiesad “thought of”
executing the respective action himself. Thus, it depemdhe recipient’s goal queue
and on his utility considerations whether the request véllhonoured or not. As one
can see, after a certain amount of time agents do no longeutxany of the actions
requested by others, and cannot find any profitable actioxetoute themselves, either.
The system converges to a stable state.

The second plot shows the results of a simulation with theesaatup as above
but usingm’InFFrA agents. Again, agents issue requests whenever they iglémaif
someone else could do something useful. Quite clearlyethgents perform much
better than in the BDI case. In fact, more than one hundredlaiions with identical
settings have shown that we can ensure that agents will alveagh a utility level close
to that of the upper benchmark and this is quite impressivisidering thatn’InFFrA
agents know nothing about cooperation potentials, otlpeeserences or the like. As in
the BDI case, they prioritise their goals and actions ontyoading to projected scores
and contact others whenever they need someone else tomexnfoaction that appears
beneficial to them.

Atfirst glance, it may seem only natural tmatnFFrA agents outperform BDI agents
who use very simplistic means of communication. The impiitasight, however, lies
in the fact thatanyrational agent design would perform poorly in this situatibat is
based on an pre-determined specification of communicatimastics. What these sim-
ple BDI agents do is nothing but assess the usefulness oésexjgiven that requestees
always perform the actions others ask them to do. If thisssssent suggests that oth-
ers’ actions are more desirable than those one can perfongelfi it is only rational to
prefer requests to physical actions. And yet, because oftsigegotistical stance, this
results in a complete deadlock of the system where agentsfaildo improve their
situation using those actions they can perform themseMass, implicitly, they are
presupposing that everyone will adhere to a pre-specifigthgtics (namely, that all
agents strictly obey theequest(A, B, X) — do(B, X) pattern) but cannot respond
to a situation in which this is not the case (for example bymgjwip and not issueing
any more requests).

In the light of these results, we can state our main conjectur environments
with (possibly non-benevolent) peer agents showing natiestary behaviour, the per-
formance of agents using prespecified communication potgaar assuming a fixed
semantics of communication can become arbitrarily badlentfinFFrA includes the
ability to learn what to expect from peers in a specific intéoa situation.

Yet another interesting interpretation can be drawn froenfdtt that the average
utility of mInFFrA agents lies within the range of the two benchmark values.fate
that agent utilities evolve around these benchmarks itesctinat they truly strive to
make strategic communication moves and exploit the adgestaf concealing certain
beliefs.



7 Conclusions

In this paper we have presented an architecture for reag@iinut communication
patterns within the framework of empirical semantics. Frepractical point of view,

this contributes to the “agent side” of ACL research, asfiersf methods to construct
and implement agents that are able to deal with given spatiits of rules that govern
the communication in a system. Three features are partigutaeresting about our
approach:

1. ThemInFFrA frames used in our formal model combine information aboet th
surface structure of communication sequences, logicastcaints (frame condi-
tions) and empirical data (counters). This allows for gfeadibility with respect
to whatis defined in commonly agreed protocols, semantics, etcekample, in
non-exploitable protocols as those used in mechanismmlgsigay suffice to just
specify admissible message sequences (because it doeattet what the agents
think, for example), while other types of interactions sashcontracting may re-
guire commitment rules, descriptions of agents’ mentaéstaetc.

2. Agents are capable of exploiting past communication egpee and to combine
this experience with specifications of communication pagé¢hat have been pro-
videda priori. Thus, they are able to “start out” with a predefined set afpas and
to test to which degree their peers comply with them. Thisrsfh major advantage
in open systems where adherence to protocols, truthfubwessraints, etc. cannot
be guaranteed. At the same time, it paves the way for the ussohine learn-
ing methods that make minimal assumptions about others’ betagnd simply
accumulate communication knowledge as they go.

3. The architecture combines decision-theoretic (prdissib) reasoning methods
with symbolic communication. This constitutes an impotteontribution to the
practical design of communicating agents, but also arairstep to explore the spe-
cial character of communication as opposed to generalradtig20], for example,
we have argued for trading off optimality against predidiahin communication
so that more reliable communication patterns can occundJdecision theory as
a firm foundation for rational reasoning can help formatisivhat agents (should)
do in communication and whether and in which way this diffeosn the models
used in, e.g. game theory and economics.

A major advantage of our approach is that it allows us to combiie decision-theoretic
power of RL models with the knowledge-based aspects of slimbgent communica-
tion, interaction protocols and ACL research in generals lthis aspect that makes
rational action and learning possible for high-level agenhitectures that employ log-
ical reasoning.

Not all aspects of research efinFFrA have been covered in the present article. An
extensive treatment of the additional components requaede frame-based learning
as part of a complete agent architecture can be found in [8¢ & the most inter-
esting aspectd discussed there is a generalisation mathérdiine trajectories, which
uses cluster validation techniques [7] on the (possiblgy)zlustering a set of frames
induces on the space of possible message sequences. Tovssamgents with the ca-
pacity to create frames for encounters not matching anyiegiframe and to extend



the use of these frames to similar encounters in the futurabsyracting from indi-
vidual instances. Details of the application of hierarahieinforcement methods on
mInFFrA are covered in [19]. Also, we have tested the architectuirggusiore com-
plex argumentation-based negotiation frames in [18]. dng on the framework of
interest-based negotiatidia5], these frames enable agents to gather informationtabou
other’s goals and assumptions, to argue about the propgbsglsake, to attack others’
claims, etc. To our knowledge, this work constitutes the &iteempt to use learning in
multiagent argumentation, and it can be considered a mdjardage of our frame-
work that it allows for the application of machine learnieghniques to such complex
forms of communication as argumentation-based negatiaimally, in [9] we discuss
the potential of translating general expectation netwéoks InFFrA frames and vice
versa.

In the future, we intend to look at more complex models of raxtéon frames
with trajectory models that are more expressive than sitimpdar message pattern se-
quences. Also, we want to investigate to which degnéerFrA agents are capable of
exchanging meta-frame information to reach consensust alduch frames to use. As
far as learning capabilities are concerned, we would likettoduce methods for induc-
tive learning of context constraints. l.e., rather that generalise over existing frames
in terms of trajectory surface structure and updating fezy counters and substitution
lists, we would like to enable agents to generalise from tiebstates in which frames
where applicable (positive samples) or not (negative sas)pFinally, a lot of work
needs to be done on automatically transforming ACL and &utéwn protocol specifi-
cations into readily usable’InFFrA frames. In particular, the’lnFFrA formalism needs
to be adapted to established frameworks for ACL and proteewlantics specification
to facilitate automated transformation methods.
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