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Abstract

This paper presents an approach to approximate the forward and inverse dynamic behaviours of a magneto-rheological (MR) damper

using evolving radial basis function (RBF) networks. Due to the highly nonlinear characteristics of MR dampers, modelling of MR

dampers becomes a very important problem to their applications. In this paper, an alternative representation of the MR damper in terms

of evolving RBF networks, which have a structure of four input neurons and one output neuron to emulate the forward and inverse

dynamic behaviours of an MR damper, respectively, is developed by combining the genetic algorithms (GAs) to search for the network

centres with other standard learning algorithms. Training and validating of the evolving RBF network models are achieved by using the

data generated from the numerical simulation of the nonlinear differential equations proposed for the MR damper. It is shown by the

validation tests that the evolving RBF networks can represent both forward and inverse dynamic behaviours of the MR damper

satisfactorily.

r 2006 Elsevier Ltd. All rights reserved.

Keywords: Magneto-rheological dampers; Genetic algorithms; Radial basis function networks

1. Introduction

Due to their wide dynamic range, low power require-
ment, large force capacity, and fast response rate to a
variable control signal, magneto-rheological (MR) dam-
pers have emerged as newly developed semi-active control
devices that have been mass-produced for commercial
applications. In particular, MR dampers have found
considerable attraction in vibration reduction of bridges,
helicopter rotors, truss structures, and buildings. Semi-
active control with MR dampers for vehicle suspensions
has also been studied by many researchers, and many
control strategies such as skyhook, groundhook and hybrid
control, H1 control and model-following sliding mode
control have been evaluated in terms of their applicability
in practice.

The practical use of MR dampers for control is, however,
significantly hindered by their inherently hysteretic and
highly nonlinear dynamics. This makes the modelling of
MR dampers more important for their applications. In
order to characterize the performance of MR dampers,
several models have been proposed to describe their
dynamic behaviours. These include the phenomenological
model proposed by Spencer et al. (1997) based on a
Bouc–Wen hysteresis model, neural network model devel-
oped by Chang and Roschke (1998) and Chang and Zhou
(2002), fuzzy model (Schurter and Roschke, 2000), non-
linear blackbox model (Jin et al., 2001), NARX model
(Leva and Piroddi, 2002), viscoelastic–plastic model
(Wereley et al., 1998), and polynomial model (Choi et al.,
2001), etc. Among these MR models, phenomenological
model and viscoelastic–plastic model can accurately de-
scribe the dynamic behaviours of the MR dampers, but the
corresponding models for the inverse dynamics of the MR
dampers are often difficult to obtain due to their nonlinear
characteristics. A multi-layer perceptron (MLP) neural
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network and an adaptive neuro-fuzzy inference system
(ANFIS) models can be used to emulate the inverse
dynamics of the MR dampers, but the selection of network
structure and training data are essential in order to obtain
accurate results. In fact, the polynomial model is a
convenient and effective choice which can realize the
inverse dynamic of the MR damper in an analytical
form, and is easy to achieve the desirable damper force
in an open-loop control system. However, polynomial
model cannot characterize the behaviour of the MR
damper favourably at relatively low velocity region since
this model does not include variables characterizing
the pre-yield property of the damper force. Since an
open-loop control is easy to implement and cost-effective
comparing with a closed-loop control, it is valuable to
develop the accurate inverse dynamic models of MR
dampers that are required in the realization of semi-active
control.

The artificial neural networks (ANNs) have been
effectively applied to model complex systems due to their
good learning capability. It is possible to model the
dynamic behaviours of the MR dampers by using ANNs.
The MLP neural networks have been used to emulate the
dynamic behaviours of an MR damper. However, the
selection of network structures and training of samples are
often complicated tasks but are essential for setting up an
accurate MLP model. Moreover, the training speed is
normally long due to slow convergence. Instead of using
MLP neural networks to emulate the dynamic behaviours
of an MR damper, this paper presents an alternative
representation for modelling an MR damper in the form of
radial basis function (RBF) networks.

The RBF network is a three-layer feedforward network
that uses a linear transfer function for the output units and
a nonlinear transfer function (normally the Gaussian
function) for the hidden units. The input layer simply
consists of the source nodes connected by weighted
connections to the hidden layer. The net input to a hidden
unit is a distance measure between the input presented at
the input layer and the point represented by the hidden
unit. The nonlinear transfer function (Gaussian function) is
then applied to the net input to produce a radial function
of the distance. The output units implement a linear
weighted sum of the hidden unit outputs. In order to use an
RBF network, we need to specify the hidden unit activation
function, the number of nodes in the hidden layers and
the training algorithm for finding the parameters of the
network.

Compared with other types of ANNs, such as MLP
neural networks, RBF networks have only one hidden
layer, while MLP networks have one or more hidden
layers depending on the application task; the hidden and
output layers of MLP networks are both nonlinear,
while only the hidden layer of RBF networks is nonlinear
(the output layer is linear); the activation functions in the
RBF nodes compute the Euclidean distance between
the input examples and the centres, while the activation

functions of MLP networks compute inner products from
the input examples and the incoming weights, etc. These
characteristics make the RBF networks having more
advantages in, e.g., simple architecture and learning
scheme, fast training speed (the liner output layer may
not be trained), and the possibility of incorporating the
qualitative aspects of human experience in the model
selection and training. Hence, RBF networks are powerful
computation tools and have been used extensively in the
systems modelling.
In spite of a number of advantages compared with other

types of ANNs, such as better approximation capabilities,
simple network structures and faster learning algorithms,
the development of RBF networks still have difficulties in
selecting the network structure (the number of nodes in the
hidden layers, i.e., the number of centres) and calculating
the model parameters (e.g., centres, widths and weights).
Normally, the training procedure of an RBF network is
divided into two phases where the centres and widths are
determined first, followed by the calculation of the weights.
In order to overcome existing difficulties in developing an
RBF network, an evolving RBF network that combines
genetic algorithms (GAs) with other standard learning
algorithms for an RBF network is presented in this paper
to model the nonlinear dynamic behaviours of an MR
damper. The structure of the RBF network is selected by a
trial and error procedure, which only calculates several
cases and compares the sum of squared errors (SSEs)
between the true outputs and the network predictions to
determine which structure is better. Although it is not an
optimal selection for the network structure, it is time-
saving because only several cases are calculated and the
optimization result of SSEs can guarantee that the
obtained SSE is not affected significantly by selecting
different network structures, and hence a relative simple
structure can be used with respect to the modelling
accuracy required. The centres are searched by using
GAs instead of using k-means clustering algorithm or fuzzy
c-means clustering algorithm, where the SSE between the
true outputs and the network predictions are minimized
with respect to the given network structure and the
obtained centre locations. This overcomes the drawback
of standard RBF network in selecting centres using a
clustering approach which is entirely separated from the
actual objective of minimization of the prediction error.
Finally, a uniform width, which is chosen to be the
maximum distance among different centres, is used instead
of using different widths for different centres. This will
simplify the network structure as an uniform width is
sufficient for the RBF network to achieve universal
approximation (Chen et al., 1999). The weights that
connect the hidden layer with the output layer are
determined by calculating the pseudo-inverse matrix
instead of using gradient descent optimization algorithm
to save learning time. The reason that we do not apply GAs
to optimize the network structure and all of the model
parameters is that it is a time-consuming procedure when
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the training data is large in both length and dimension, and
a large search space will unavoidably increase the difficulty
for GAs to find the optimal results. The application
examples presented in this paper show that only using GAs
to search for the network centres can obtain better results
for the modelling of an MR damper. Therefore, using GAs
to search for the network structure, widths and weights is
not necessary here.

In this paper, the developed evolving RBF network with
four input neurons, which relate displacement, velocity,
force and applied voltage, respectively, and one output
neuron, which corresponds to either force or voltage, is
used to emulate the forward and inverse dynamic
behaviours of an MR damper, respectively. Data used for
the training and validating of the evolving RBF network is
generated from numerical simulation of the nonlinear
differential equations proposed for an MR damper by
Spencer et al. (1997). By comparing the SSE results for
different network structures and different approaches in
selecting the network centres, we can see that the resulting
evolving RBF networks are shown to satisfactorily
represent complicated dynamic behaviours of the MR
damper while greatly reducing SSE even when the number
of centres is small. Finally, it is validated by simulation that
both the forward and the inverse dynamics of the MR
damper can be approximated very accurately with the
evolving RBF networks.

The rest of this paper is organized as follows. Section 2
introduces the phenomenological model of the MR
damper presented by Spencer et al. (1997). The basic
structure of the RBF networks and the developed
evolving RBF networks are introduced in Section 3. The
use of the evolving RBF networks in modelling the
forward and inverse dynamic behaviours of an MR
damper is presented in Section 4. Conclusions are given
in Section 5.

2. Phenomenological model of an MR damper

A phenomenological model has been proposed by
Spencer et al. (1997) to portray the behaviour of a
prototype MR damper that was developed by the Lord
Corporation as shown in Fig. 1. This phenomenological
model is based on a Bouc–Wen hysteresis model, which is
numerically tractable and is capable of exhibiting a wide
variety of hysteretic behaviours. The parameters for
the model are determined from the experimental data
with appropriate optimization method. This model is
validated in a variety of representative experimental
tests, including (1) triangular displacement/step voltage
inputs; (2) random displacement/constant voltage inputs;
and (3) random displacement/random voltage inputs.
The validation results indicate that the phenomeno-
logical model of an MR damper is accurate over a wide
range of operating conditions and adequate for control
design and analysis. The phenomenological model of
MR dampers are regarded as the ‘‘state-of-the-art’’ semi-

physical model and has been extensively used in modelling
MR dampers with applications in vibration control
engineering, e.g., see Lai and Liao (2002) and references
therein.
The phenomenological model is governed by the

following seven simultaneous equations:

F ¼ c1 _yþ k1ðx� x0Þ;

_y ¼
1

ðc0 þ c1Þ
½azþ c0 _xþ k0ðx� yÞ�;

_z ¼ �gj _x� _yjzjzjn�1 � bð _x� _yÞjzjn þ Að _x� _yÞ;

a ¼ aa þ abu;

c1 ¼ c1a
þ c1b

u;

c0 ¼ c0a
þ c0b

u;

_u ¼ �Zðu� vÞ;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(1)

where F is the force generated by the MR damper; x is the
displacement of the damper; y is an internal pseudo-
displacement of the MR damper; u is the output of a first-
order filter; v is the command voltage sent to the current
driver. In this model, k1 is the accumulator stiffness; c0 and
c1 are the viscous damping coefficients observed at large
and low velocities, respectively; k0 is the gain to control the
stiffness at large velocities, and x0 is the initial displace-
ment of spring k1 associated with the nominal damper
force due to the accumulator; g;b;A are hysteresis
parameters for the yield element, and a is the evolutionary
coefficient. In this model, there are a total of 14 model
parameters (c0a

; c0b
; k0; c1a

; c1b
; k1;x0; aa; ab; g; b; n; Z and A)

to characterize the MR damper. The obtained values for
the 14 parameters can be determined by fitting the model to
the experimental data obtained in the experiments. As an
example, a set of parameters which is obtained by Spencer
et al. (1997) to characterize one MR damper using
experimental data and a constrained nonlinear optimiza-
tion algorithm is listed in Table 1.

ARTICLE IN PRESS

k
1

k
0

c
0

c
1

y x

Bouc-Wen

F

Fig. 1. Mechanical model of the MR damper.

H. Du et al. / Engineering Applications of Artificial Intelligence 19 (2006) 869–881 871



3. Evolving radial basis function networks

3.1. Framework of RBF networks

A RBF network is a three-layer feedforward neural
network which consists of an input layer of source nodes, a
single layer of nonlinear processing units, and an output
layer of linear weights, as depicted in Fig. 2 (Haykin, 1996),
which includes only one input vector and one output
scalar. The input–output relationship of this RBF network
can be described by

y ¼
XN

k¼1

wkjðu; tkÞ þ w0, (2)

where N is the number of hidden layer neurons; the term
jðu; tkÞ is the kth RBF that computes the distance between
an input vector u and its own centre tk. The scaling factor
wk in (2) represents a weight that connects the kth hidden
node to the output node of the network. The constant term
w0 in Eq. (2) represents a bias.

The most commonly used RBF in practice is the
Gaussian form as shown in the following:

jðu; tkÞ ¼ exp �
1

s2
ku� tkk

2

� �
; k ¼ 1; 2; . . . ;N, (3)

where s is the width, and ku� tkk denotes the Euclidean
distance between u and tk.

Thus, substituting (3) into (2), we may formulate
input–output mapping realized by a Gaussian RBF
network as follows:

y ¼
XN

k¼1

wk exp �
1

s2
ku� tkk

2

� �
þ w0. (4)

RBF networks have proven that they are universal
approximators, that is, given a network with enough
hidden layer neurons, they can approximate any contin-
uous function with arbitrary accuracy (Wasserman, 1993)
and they have the properties of rapid training, generality,
and simplicity. Therefore, using RBF networks to establish
the input–output mapping model of an MR damper will be
an applicable approach. This mapping can be established
by training the RBF networks with appropriate scheme.

3.2. Training of RBF networks

From a design point of view, the training of RBF
networks is to find the number of hidden layer neurons N

and the appropriate parameter set ftk;s;wkg to map a given
input vector to a desired output scalar efficiently with good
accuracy and generalization. Many different approaches
have been proposed in the literature over recent years for
selecting these free parameters and optimizing the complex-
ity of RBF networks (Lee and Hou, 2002; Mao, 2002;
Leonardis and Bischof, 1998). Normally, after the network
structure parameter N is determined, the RBF networks
are trained by using a two-phase approach, where the
centres and width are computed first, and the output
weights are calculated in the second phase.
In the phase of selecting the locations of centres, three

main strategies have been put forward (Leonardis and
Bischof, 1998). The first one is to randomly select a set of
samples from training set and the positions of the centres
are set according to these samples (Lowe, 1989). This
approach can only produce reasonable results when the
training data are distributed in a representative manner.
The second approach is to perform a pre-clustering on the
training set (e.g., k-means clustering, fuzzy c-means
clustering), and the centres of the clusters are used as the
centres of the RBF network (Darken and Moody, 1990).
Since this clustering is performed without the knowledge of
the weights of the output nodes, it is likely that the
selection of the centres is sub-optimal with respect to the
accuracy of the final result. The selection of the initial
values of the centres is also a key problem. The
third strategy is to use a gradient descent algorithm to
determine the centres (Lowe, 1989). Convergence to a
global minimum cannot be guaranteed since the problem
is nonlinear with respect to the centres. Therefore, all
these approaches have various shortcomings in selecting

ARTICLE IN PRESS

Table 1

Parameters for an MR damper

Parameter Value Parameter Value

c0a 21.0N s/cm aa 140N/cm

c0b
3.50N s/cmV ab 695N/cmV

k0 46.9N/cm g 363 cm�2

c1a 283N s/cm b 363 cm�2

c1b
2.95N s/cmV A 301

k1 5.00N/cm n 2

x0 14.3 cm Z 190 s�1

u1

u2

uM

wk

w0

y

input layer output layerhidden layer

RBF network

�(u, t
1
)

�(u, t
2
)

�(u, t
k 
)

Fig. 2. The structure of a radial basis function network.
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appropriate centres. Since the practical signals are inevi-
tably disturbed by stochastic noise, training data cannot
always represent all samples even if they are acquired from
a wide range of amplitude and frequency. Therefore, the
pre-clustering is necessary either for the training data, or
for the simplification of the network.

When the centres are selected, a uniform width can be
heuristically determined from s ¼ dmax, where dmax is the
maximum distance between the chosen centres.

Once the centres and width are fixed, the weights can be
learned very efficiently, since the computation reduces to a
linear or generalized linear model. There are also some
approaches for output layer weights training. One
approach, which is called generalized regression neural
network (GRNN) (Wasserman, 1993), assigns the target
values as the output layer weights and the output of the
network is divided by the sum of the output of a hidden
layer neuron. GRNN is effective when a large amount of
training data is used and no new training data is far from
them. The other approach is to use an iterative training
technique such as gradient descent algorithm. In fact, from
Eq. (4), we can see that when the centres and width are
determined, weights can be trained by solving the system of
linear equations directly. After the final step of calculating
the output layer weights is finished, all parameters of the
RBF network have been determined.

3.3. Evolving RBF networks

More recently, GAs have been used to train RBF
networks, which are called evolving RBF networks. In fact,
GAs can be used to determine the network structure, that
is, the number of hidden layer neurons (centres) and the
network parameters such as centres, widths and weights
in terms of different problems resolved and different
calculation efficiencies required. In this paper, in order to
overcome the existing drawbacks in selecting centres for an
RBF network, the GAs are used for the pre-clustering of
training data. The network structure, width and weights
are not optimized by GAs here due to the consideration of
computational efficiency. The proposed algorithm based
on a binary-coded GA is described in the following steps:

Step 1: Determine network structure. The number of
centres N is specified a priori.

Step 2: Initialize centres. Randomize an initial popula-
tion of P individual chromosomes. Each chromosome
represents a set of centres, which consists of n�N

elements, where n is the dimension of the input data.
Step 3: Calculate objective functions. After the centres

are generated, the objective function of each chromosome
is calculated.

(1) Calculation of width. The width is calculated from
s ¼ dmax, where dmax is the maximum distance between
the generated centres.

(2) Calculation of weights. According to Eqs. (2)–(4), given
two matricesH ¼ ðjðu; tkÞÞk¼1; 2;...;N and y, the matrix of

the output layer weights W ¼ ðwkÞk¼1;2;...;N is the
result of minimization of the error function:
EðWÞ ¼ kHW� yk2. The solution is given explicitly
in the form of W ¼ Hþy, where Hþ denotes the
pseudo-inverse matrix of H and Hþ can be defined as

Hþ ¼ lim
a!0þ
ðHTHþ aIÞ�1HT. (5)

The pseudo-inverse matrix becomes simply
Hþ ¼ ðHTHÞ�1HT, provided the inverse matrix of
HTH is defined, therefore, W ¼ ðHTHÞ�1HTy.

(3) Calculation of objective function. The sum of squares
error (SSE) for the training data or the testing data is
regarded as the objective function of each chromosome
and can be calculated as

JSSE ¼
XL

i¼1

ðyi � ŷiÞ
2, (6)

where L is data length, ŷi is the predicted output and yi

is the target output. Finally, record every objective
function that corresponds to every set of centres
and associate every set of centres a suitable fitness
value according to the rank-based fitness assignment
approach.

Step 4: Based on the fitness obtained in Step 3, the
offspring is chosen for the next crossover and mutation
steps by using the tournament selection approach.

Step 5: Perform crossover and mutation operation on the
current population to generate new individuals in the
search space.

Step 6: Use the elitist reinsertion approach to guarantee
that the best chromosome in the population always
survives and is retained in the next generation.

Step 7: Evaluate the fitness of each individual. Steps 3–7
correspond to one generation. The evolution process will
repeat for a fixed number generations or being ended when
the search process converges with a given accuracy. The
best chromosome will be used to determine the optimal
network centres.

4. Modelling of MR damper with evolving RBF networks

This section presents the application of evolving RBF
networks to emulate the forward and inverse dynamic
models of an MR damper, respectively.
In this section, the development of the evolving RBF

networks for modelling an MR damper is outlined as
follows: (1) collect ample high-quality training and testing
data as produced by the given MR damper model; (2) use
the approach presented in Section 3.3 to create the evolving
RBF networks that relate the displacement xðtÞ of the MR
damper at the location where the damper is attached and
its velocity _xðtÞ, command voltage vðtÞ that is sent to the
MR damper and output force F ðtÞ of the MR damper; and
(3) validate the new model through comparison of its
output to the output of the given MR damper model.
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Before the actual training of the model takes place, it is
necessary to determine which variables of the MR damper
should be chosen as the components of the input vector in
(4). For the current study, it is assumed that the input
vector for the RBF networks consist of the current inputs
and past output of the MR damper. The commonly used
parameters associated with the GA presented in Section 3.3
are given as follows: population size ¼ 100, crossover
probability ¼ 0.8, mutation probability ¼ 0.01, maximum
generation ¼ 250.

4.1. Data collection and pre-processing

In order to obtain a high-quality trained network, a
high-quality training and testing data must be obtained
first. In this paper, data for training and testing of the RBF
networks are obtained from the phenomenological model
of the MR damper proposed by Spencer et al. (1997) as
done in Chang and Roschke (1998) and Chang and Zhou
(2002). A set of typical parameters of the MR damper is
presented in Table 1.

To make the identified model fully represent the under-
lying system, the training samples should cover all possible
combinations and ranges of input variation in which the
MR damper will operate. This is to ensure that the RBF
network models trained using these samples can accurately
represent the behaviours of the MR damper to be
simulated. Normally, the limits of these input signals are
dependent upon the characteristic and specific application
of the MR damper. Advanced knowledge of the input
signals enables the creation of more useful training data.
Given this idea, note that the maximum operational

voltage of the MR damper is 2.25V, which is defined as
the saturation voltage of the damper and is obtained
experimentally, and the situation of zero voltage will also
be common during operation of the MR damper. There-
fore, ranges of the voltage signal and its frequency are set
as 0–2.25V and 0–1Hz, respectively, in this study. Like-
wise, the displacement of the MR damper ranges from
�2 cm and its frequency ranges from approximately 0–5Hz
in this study. Signals of displacement and voltage used for
training are produced using band-limited Gaussian white
noise and some specified filters are used to obtain such
random signals in indicated frequency ranges. Velocity
signal is obtained by differentiating the displacement
signal. In this paper, MATLAB is used to solve the
differential equations of the system for an MR damper as
presented in Section 2 for a simulation time of 8 s. A time
step of 0.002 s is used to produce a total of 4000 data sets.
Fig. 3 shows the histories of displacement, voltage, and
damper force according to the 8 s of data. Out of these
data, the first 2000 data sets are used as the training data
while the remaining 2000 data sets are used as the testing
data for the network. These data are scaled to zero mean
and unity variance before passing into the network for
training and testing. The parameters of the RBF networks
have to be re-scaled proportionally once the training is
completed.

4.2. Forward model

With the training and testing data established, an
evolving RBF network is used to create a mapping model
that emulates the ‘‘forward’’ dynamic behaviour of the MR
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damper. This model shows that the force generated by the
MR damper depends on the command voltage, the
displacement of the MR damper at the location where
the damper is attached and its velocity.

A fully connected RBF network with one hidden layer is
selected to be trained using the training data for the
forward model. The model is determined to have four input
neurons and one output neuron by trial and error. The four
inputs to the model include current displacement xðtÞ,
velocity _xðtÞ, voltage vðtÞ, and past force F ðt� 1Þ, where t

denotes the time variable. The output is the predicted force
F̂ ðtÞ. This can be explained that to predict the force of the
MR damper at time t, the inputs of the RBF network are
taken to be the displacement, velocity and voltage at time t

and the target force at time t� 1.
In order to compare the effectiveness of different

approaches in training the RBF network, the SSE between
the true outputs and the network predictions are calculated
for different approaches and listed in Table 2 where
‘k-means’ approach uses k-means clustering method to
obtain the network centres, ‘Fuzzy c-means’ approach uses
fuzzy c-means clustering method to obtain the network
centres.

Both ‘GA_1’ and ‘GA_2’ approaches use the GA to
obtain the network centres as presented in Section 3.3. The
difference between ‘GA_1’ and ‘GA_2’ is that ‘GA_1’
selects the centres and calculates weights from the training
data but calculates the objective function from the testing
data. This method can avoid the over-fitting problem
if only training data is used to obtain the network
parameters. On the contrary, ‘GA_2’ only uses training
data to obtain all of the network parameters. Certainly,
both ‘k-means’ and ‘fuzzy c-means’ approaches use the
training data to obtain all of the network parameters as
well. In Table 2, ‘training’ means that the calculated SSE is
for the training data and ‘testing’ means that the calculated
SSE is for the testing data. Furthermore, in order to
compare the effect of the number of network centres to the
SSEs, different centre numbers ð20; 50; 100; 200Þ are used.
The width of the network is calculated by s ¼ dmax.

It can be seen from Table 2 that for every given centre
number, both ‘GA_1’ and ‘GA_2’ can obtain small SSE
values for both training and testing data compared with
‘k-means’ or ‘fuzzy c-means’ approach. For ‘GA_1’, we
can see that the SSE values are close for both training data

and testing data. However, for the ‘GA_2’ approach, the
SSE values for the training data are smaller than the
corresponding SSE values obtained by ‘GA_1’, but for
testing data, they are larger than the corresponding SSE
values obtained by ‘GA_1’ which may due to over-fitting of
data. The increase of the number of centres, the SSE values
decrease a little for every approach. Nevertheless, there is
only a small decrease, hence there is a minor trade-off
between the number of centres and the accuracy of the
network. From the results obtained by the ‘GA_1’
approach, we can see that we can obtain small SSE values
even with only 50 centres, and the SSE values do not
decrease too much even when the number of centres
is increased. Therefore, the centre number 50 may be
considered as an ideal selection for the network structure
although it is not optimal, however, it is time-saving for the
training of the network.
When the ‘GA_1’ approach is used and the network

centre number is selected as 50, the evolving RBF network
can be obtained after the training process is finished. Fig. 4
shows the predicted force of the MR damper using the well
trained evolving RBF network for the 2000 data sets of
the testing data sets. Target force generated from the
mathematical model are also plotted for comparison. It can
be seen that predicted force matches quite well with the
target force. The differences between these two forces are,
in general, smaller than 0.1 kN which is about 5% of the
target force. The results suggest that the evolving RBF
network emulates the forward behaviour of the MR
damper quite well.

4.3. Inverse model

The study on control of nonlinear systems through the
use of their inverse dynamics received much of interest
during the past several decades (Lane and Stengel, 1988). It
is very useful to know the inverse dynamics of a system in
order to control it. The main idea of inverse dynamics
identification is to find the inverse mapping of a system.
Following this idea, it also appears possible to use an
evolving RBF network to emulate the ‘‘inverse’’ dynamic
behaviour of the MR damper. This RBF model can
provide a direct estimation of the voltage that is required to
produce a target control force calculated from some
optimal control algorithms. The major objective of this
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Table 2

Comparison of SSEs for different approaches and different network structures

Number of centre 20 50 100 200

Method Training Testing Training Testing Training Testing Training Testing

k-means 1.3459 1.7177 0.9354 1.4809 0.6931 1.3299 0.7073 1.3875

Fuzzy c-means 1.3373 1.7618 1.0470 1.5098 1.0091 1.3840 1.0478 1.3851

GA_1 1.0353 1.1157 0.6032 0.6006 0.5379 0.6525 0.5612 0.9249

GA_2 0.7242 1.3356 0.3339 3.4215 0.3513 2.6685 0.4079 2.7045
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development is to explore whether the semi-active MR
damper can be used to produce an optimal control force
(Chang and Zhou, 2002).

By trial and error, the inputs to the training of this
inverse model include the current displacement xðtÞ,
velocity _xðtÞ, force F ðtÞ and the past command voltage
vðt� 1Þ. The output is the predicted voltage v̂ðtÞ. For
practical use of this inverse model, the estimated voltage
v̂ðtÞ is applied to the MR damper for the generation of the
force to approximate the optimal force designed by the
optimal controller. The training and testing data used are
the same as that used for the forward RBF model.

Similarly, the comparison of the SSE values for the
training and testing data obtained by different approaches
for different centre numbers are listed in Table 3. The same
conclusion can also be drawn such that the ‘GA_1’
approach can obtain better SSE results than the other
approaches for both the training data and testing data. On
the other hand, a centre number of 50 is enough for the

network structure without the optimization procedure and
it is time-saving to finish the training of the network.
Fig. 5 shows the voltage histories predicted by the

evolving RBF network using ‘GA_1’ approach as com-
pared to the target voltage for the 2000 testing data sets. It
is seen that the predicted voltage follow reasonably close to
the target voltage. The maximum error between the
predicted voltage and target voltage is less than 0.02V.
The near perfect match in the testing region indicates that
the evolving RBF model is well trained. The evolving RBF
model illustrates that the inverse dynamic relationship of
the MR damper can be emulated by the evolving RBF
network reasonably well.

4.4. Model validation

To further validate the effectiveness and the accuracy of
the evolving RBF networks in modelling the forward and
inverse dynamic behaviours of an MR damper, two more
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Table 3

Comparison of SSEs for different approaches and different network structures

Number of centre 20 50 100 200

Method Training Testing Training Testing Training Testing Training Testing

k-means 0.0449 0.0908 0.0014 0.0112 0.0013 0.0087 0.0014 0.0094

Fuzzy c-means 0.0826 0.1862 0.0025 0.0108 0.0022 0.0097 0.0018 0.0089

GA_1 0.0032 0.0051 0.0016 0.0037 0.0016 0.0036 0.0014 0.0041

GA_2 0.0020 0.0110 0.0009 0.0075 0.0008 0.0113 0.0009 0.0090
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Fig. 4. Predicted force generated by the evolving RBF network.
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sets of validation data are generated from the same
mathematical model of the MR damper as presented in
Section 2. Validation data I is generated following the
similar conditions as the training and testing data, that is,
the displacement and voltage data are produced by

Gaussian noise but they are all band-limited between
0–2Hz. There are a total of 2000 data points produced
with time increment 0.002 s. Fig. 6 shows the histories of
validation data I for displacement, voltage and force. Fig. 7
shows the predicted force of the MR damper for the 2000
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data points using the well trained forward RBF network. It
can also be seen that the predicted force match quite well
with the target force generated by the mathematical model.
Fig. 8 shows the predicted voltage of the MR damper for
the 2000 samples using the trained inverse RBF network. It

can be seen that the predicted voltage matches quite well
with the target voltage commanded to the MR damper.
Validation data II is generated using a sinusoidal displace-
ment function with an amplitude of �1 cm and a frequency
of 3Hz and a sinusoidal voltage function with mean value
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of 1.6V, an amplitude of 0.5V and a frequency of 0.5Hz.
The time duration for this validation data is 4 s and the
time increment is 0.002 s which amounts to a total of 2000
data points. Fig. 9 shows the histories of validation data II

for displacement, voltage and force. Fig. 10 shows the
predicted force of the MR damper for the 2000 data points
using the trained forward RBF network. It can also be seen
that the predicted force matches quite well with the target
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force generated by the mathematical model. Fig. 11 shows
the predicted voltage of the MR damper for the 2000
samples using the inverse RBF network. It can be seen that
the predicted voltage match quite well with the target
voltage applied to the MR damper except some small
errors existing in the region where the trained data may not
fully cover, however, the maximum absolute errors are
still within the range of 0.03V. It can be seen from the
validation results that the trained evolving RBF networks
can emulate the dynamic behaviours of an MR damper
with acceptance even when the input data are different
from the training data in both frequency and amplitude.

5. Conclusions

In this paper, the evolving RBF networks are developed
to emulate the forward and inverse dynamic behaviours of
an MR damper, respectively. It is certified by the testing
and validation data that the evolving RBF network with
simple structure not only can satisfactorily emulate the
forward but also the inverse dynamic behaviour of the MR
damper. Since RBF networks exhibit many advantages
comparing with other types of ANNs in terms of the
architecture, learning scheme, learning speed, etc., the RBF
networks based modelling of MR dampers are more
feasible to be implemented in practice. Some conclusions
and further work can be given as follows: (1) selecting the
network parameters based on GAs can obtain accurate
modelling of the MR dampers even without the optimiza-
tion procedure of the network structure; (2) the RBF
networks-based approach is a spatial interpolation ap-

proach. If the selected training data can represent the full
operation range of the MR damper, the obtained model
will be more precise in some respects; (3) the past value of
the predicted output, such as F ðt� 1Þ or vðt� 1Þ, is the key
signal to increase the prediction accuracy for the forward
and inverse model. However, more past values do not
further improve the precision in this study; (4) since the
dynamic range of every input signal is different, there
should be some effects on the determination of the distance
between the input vector and centres. A possible way to
deal with this problem is to pre-process the different input
signal at close range or assign the different input signal
with an appropriate weighting coefficient according to its
effect to the output.
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