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Abstract
This paper presents an application of genetic programming (GP) to optimally select and fuse
conventional features (C-features) for the detection of epileptic waveforms within intracranial
electroencephalogram (IEEG) recordings that precede seizures, known as seizure-precursors.
Evidence suggests that seizure-precursors may localize regions important to seizure generation on
the IEEG and epilepsy treatment. However, current methods to detect epileptic precursors lack a
sound approach to automatically select and combine C-features that best distinguish epileptic events
from background, relying on visual review predominantly. This work suggests GP as an optimal
alternative to create a single feature after evaluating the performance of a binary detector that uses:
1) genetically programmed features; 2) features selected via GP; 3) forward sequentially selected
features; and 4) visually selected features. Results demonstrate that a detector with a genetically
programmed feature outperforms the other three approaches, achieving over 78.5% positive
predictive value, 83.5% sensitivity, and 93% specificity at the 95% level of confidence.
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1. Introduction
Epilepsy afflicts over 60 million people worldwide and more than 25% of those persons
experience seizures that violently emerge throughout the entire brain and cannot be controlled
by conventional therapies, such as surgery, because the disease manifests in multiple locations
or is too complex to localize by doctors. Although new therapeutic options, such as electrical
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stimulation, appear to be a viable alternative for treating patients with intractable seizures, a
reliable means to automatically isolate the most considerably diseased regions of brain is still
a challenge that needs to be met in order to guide innovative therapies.

It has been suggested that epileptic seizure precursors—abnormal, seizure-like waveforms
preceding a seizure—within electrographic recordings of brain activity known as an
electroencephalogram (EEG) may localize regions important to seizure generation. Despite
the large number of attempts over decades to accurately detect precursors, previous schemes
to detect precursors have exhibited inconsistent performance (i.e., 74–94% sensitivity, 84–90%
specificity, 54–88% selectivity) across small databases of testing records (Clavango 2000,
Hassanpour 2003, Hassanpour 2004, Ossadtchi 2002, Pon 2002, Adjouadi, 2004, Jones,
1996, Ko, 1998, Tarassenko, 1998, Van Hoey, 1998, Van Hese, 2003, Wilson, 1991, Zhang,
1999) without reporting level of confidence in those results. For instance, initial work in
precursor-detection was focused on detecting spikes and sharp-wave transients within the EEG,
yet the various approaches for detection and features for extraction have not cultivated
connections between the precursors and localized epileptogenic zones (Clavango 2000,
Hassanpour 2003, Hassanpour 2004, Ossadtchi 2002, Pon 2002, Adjouadi, 2004, Jones,
1996, Ko, 1998, Tarassenko, 1998, Van Hoey, 1998, Van Hese, 2003, Wilson, 1991, Zhang,
1999). On the other hand, the recent efforts of a few groups have reported more promising
findings concerning precursors other than spikes and sharp-waves. Staba et al. (2002) detected
and analyzed interictal oscillations between 80–500 Hz within the hippocampus and entorhinal
cortex of humans with focal epilepsy. Though only reporting a sensitivity of 84% for their
detector and arbitrarily choosing a feature correlated to a measure of energy, their work
demonstrated an association between the oscillations and epileptogenic regions. Niederhauser
et al. (2003) detected synchronous bursts of activity between 20–40 Hz in humans with focal
epilepsy in the medial temporal lobe. While reliable detection was achieved in five patients
with unilateral seizure onsets, the method did not recognize the precursor in five other patients
more generalized onsets. In 2004 and 2005, Smart et al. investigated epileptiform oscillations
between 60–100 Hz before generalized seizure onsets in humans, reporting that the oscillations
localized regions and moments in time before the earliest electrographic change in depth
recordings in 77% and 61% of the observed onsets, respectively; however, the recommended
oscillation-detector was only 68% selective.

Overall the “state-of-the-art” in precursor detection lacks robust choices for the selection and
combination of quality features that separate precursors from non-precursors. This work
resolves this persistent issue by adopting an incredibly versatile and effective tool for feature-
selection and feature-fusion: genetic programming (GP). Surprisingly no work to date uses GP
to facilitate the detection of seizure precursors, although genetic programming has been applied
to the detection of epileptic seizures with considerable success (Firpi, 2005; Firpi, et al.,
2005a; Firpi, et al., 2005b). This paper proposes an automated methodology to detect seizure
precursors, relying on optimal feature extraction via a genetically programmed feature (GP-
feature). In Section 2, a brief explanation of the theory of GP is provided. In Section 3, the
suggested methodology for robust precursor-detection is described in detail. In Section 4, the
proposed method is implemented using popular approaches for feature-selection (without
feature-fusion), and an analysis of the best technique is performed. Finally, Section 5 contains
concluding remarks for the presented and future work.

2. Theory of Genetic Programming (GP) Algorithm
Genetic programming, which was established by Koza (Koza, 1989, 1992, 1994) is a general-
purpose, global search optimization procedure that computes a solution by imitating three
processes of natural evolution described by Darwin: selection, crossover, mutation, and
survival. More specifically, the algorithm initializes a set (population) of solutions
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(individuals) of size P with each element representing a mathematical operation on the input
of the GP in the form of a tree structure; computes per individual a measure of fitness to an
ideal solution; and executes the selection, crossover, mutation, and survival stages to create
new populations while either maximizing or minimizing the fitness of the best individual,
depending on the formulation of the problem.

Although many variations of the selection, crossover, mutation, and survival operations in GP
exist, the basic concept of each process is constant. In the selection stage, a subset of the current
population (intermediate population) is chosen based upon the fitness of the individual; in the
crossover stage, the GP creates new individuals (children) using combinations of a pair of
individuals (parents) from the intermediate population that will belong to a new population;
the mutation stage introduces diversity into the new population by randomly altering the
makeup of a subset of individuals in the new population; and the survival stage simply selects
the fittest individuals from the new population, creating a new initial population of size P for
subsequent iterations of the GP. The algorithm terminates upon reaching a predefined number
of generations (iterations) or a level of fitness among the present population.

The following figures elucidate the operation and application of a GP. Figure 1 depicts the
overall genetic programming procedure, and Figure 2 is an example of a result from a GP
program for a particular problem. Figures 3 and 4 demonstrate the crossover and mutation
operations, respectively. According to an appropriate fitness measure, the GP algorithm
heuristically finds an optimal solution, or individual, from a set of potential solutions. The
individual is a tree structure that contains two types of nodes: functions that receive a number
of arguments on which they operate and terminals, which are values selected from the input.

For instance, if a three-dimensional regression problem were posed in the framework of GP,
the tree in Figure 2 would be an estimate of the “best” regression equation, likely in a least-
square error sense, and the terminals of this tree would represent known abscissae of the
estimated curve. If instead the problem were feature-fusion, a tree would correspond to a
mapping from the original feature-space spanned by the selected features into the feature-space
of the composite feature, and the terminals would be the selected features. Appendix A provides
more detail on applying GP to feature-fusion.

3. Methodology
3.1 Data Collection

Intracranial electroencephalogram (IEEG) recordings from two patients—one adult and one
pediatric—with neocortical epilepsy who underwent evaluation with EEG electrodes for
resective surgery were studied. The data for each patient were collected using a digital, 64-
channel, 12-bit, Nicolet BMS-5000 (Nicolet Biomedical Inc., Madison, WI) epilepsy
monitoring system. The epilepsy monitoring systems are housed at The Mayo Clinic in
Rochester, MN and the Children’s Hospital of Philadelphia. Referentially recorded EEG was
band-passed filtered from 0.1–100 Hz and digitized at 200 Hz before archiving to CD-ROM
for later processing. Bipolar electrode montages were used to reduce common mode artifact,
and a digital 60 Hz notch filter was implemented to eliminate line noise.

Seizure onsets for the entire data archive were marked by two board-certified epileptologists.
The doctors determined the onset times for each seizure by looking backwards in the record
for the earliest EEG change (EEC) from the baseline activity and identifying a clear
electrographic seizure discharge at the time of “unequivocal EEG onset (UEO).” The seizure
onset zone (SOZ) was chosen as the electrode location(s) with the earliest seizure onset and
represented the most notably diseased sites of epileptic brain. On the other hand, onsets for
seizure precursors—in this case high-frequency epileptiform oscillations (HFEO’s)—were
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marked in only a few (40) records with seizures in the SOZ for a three-minute interval in each
patient. Marking oscillations across sixty-four channels of available recordings in several
patients would have been an impractical task, especially since the duration of the oscillations
was on the order of milliseconds. Therefore, the epileptologists marked and scored with a rating
from 1 (low quality event) to 10 (high quality event) only a small collection of onset times for
HFEO’s for preliminary analyses.

3.2 Data Selection
From the above collection of data, three-minute clippings of continuous IEEG from the SOZ
with epileptic oscillations that manifested intermittently within the electrographic
“background” were made. Using these clippings, two sets of data were prepared for the
suggested approach to detect HFEO’s. A set of training data was used to create a feature with
high separation of classes for the feature extraction module via a genetic programming (GP)
algorithm, generate target vectors for a classifier based on values of that feature, and cross-
validate the classifier. A set of testing data was used to verify that the method could work well
given data that is not known a priori, guide any potential improvements on the method, and
found early observations about high-frequency epileptiform oscillations.

3.3 Signal Processing
All work toward designing an automated HFEO-detector was done using MATLAB version
7.0.4.365 (R14) software on a Dell Dimension 8300 desktop equipped with an Intel Pentium
4 processor (3.2 GHz) and 1 GB of RAM. The four major modules for the detector included a
pre-processing stage to accentuate potential HFEO’s, a processing stage to extract and
transform a chosen set of classical features, a processing stage to classify feature values as
either an HFEO or a non-HFEO, and a post-processing stage to reduce the detection of spurious
events.

3.4 Pre-processing
As remarked by Worrell et al. (2004), the frequency content of the high-frequency epileptiform
oscillations could range from 60 to 100 Hz in adult patients with neocortical epilepsy. In
addition, Marsh (2005) has noticed that similar epileptic waveforms in pediatric patients
oscillate within 50 to 85 Hz. Thus band-pass filtering the IEEG to improve the signal-to-noise
ratio between the activity of an HFEO and non-HFEO, or a signal equivalent to typical
electrographic background, was employed. For the band-pass filtering, a Chebychev filter with
a small pass-band ripple, sharp cut-off frequencies, and narrow transition bands was designed.
Phase distortion—which can introduce time-delay—from each filter was eliminated by
filtering the data, filtering the reverse of the filtered data, then reversing the output of the last
operation of filtering.

Another consideration was that band-pass filtering would augment some broadband,
physiological clatter that could be mistaken for a pathological fluctuation. It was subsequently
presumed that an HFEO is approximately sinusoidal and that time-differentiation (whitening)
of the IEEG would aid in discerning such waveforms. However, whitening would also enlarge
ordinary oscillations within the IEEG. Therefore band-pass filtering and whitening were
combined through a multiplicative operation as illustrated in Figure 5 to exploit the benefits
of each pre-processing technique while reducing the respective disadvantages. Moreover,
Figure 6 shows that this enhancement successfully emphasizes HFEO’s in actual IEEG data.

Juxtaposing the time-aligned subfigures a-c of Figure 6 demonstrates the trade-offs that were
discussed earlier about whitening and band-pass filtering. The red arrow in panel c was a high-
frequency event highlighted through band-pass filtering that was not evident in the original (a)
or time-differentiated (b) IEEG. Thus the product of the signals in plots b and c, which is shown
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in panel d, diminishes the amplitude of the spurious event. On the other hand, the magenta
arrows appear to be events that may have been too difficult to notice by the expert markers.

3.5 Processing: Feature Extraction and Genetic Programming
Feature extraction was the most important module of the method. Recall that feature extraction
is the process of computing quantitative information (features) over a sliding window of data
points, yielding a new time series of scalar quantities. Furthermore, effective classification of
the data greatly depends upon the use of features that adequately discriminate events in an
“HFEO class” and events in a “non-HFEO class.” The genetic programming algorithm was
used to create a highly discriminatory feature from a selected set of features that were generated
by classical feature extraction. Because the expected duration of the HFEO’s was between 100
and 800 milliseconds, a sliding window of 100 milliseconds (20 samples) was selected and
shifted every 60 milliseconds (12 samples) to generate the matrix of classical features. The set
of C-features, which is listed in Appendix B, was chosen based on low computational burden
and ease in comprehension with at least one feature selected from conventional analysis
domains (e.g., statistical, time). Arbitrary values of 35 generations and 350 individuals were
assigned for the genetic programming procedure.

Figure 7 summarizes the general relationship between the genetic programming algorithm and
the C-features, while Figure 8 demonstrates the powerful ability of the GP to improve class
separation given the C-features. Reviewing Figure 6d, it could be assumed that an HFEO was
characterized by activity with much more fluctuation and larger amplitude than moments
without an HFEO. Thus it was expected that curvelength and standard deviation—two classical
features that correlate with the amplitude and variation of a signal—would yield great
separation between classes.

Figure 8a shows that some distinction between classes existed but was insufficient because
several samples from the HFEO-class overlap with samples from the non-HFEOclass,
especially in the non-HFEO region of the feature-space. The deficiency in separation by the
two manually selected features raised the complicated question of what supplementary C-
features were necessary for satisfactory separation. In contrast, Figure 8b exemplifies a
preferred separation of classes in that most values for the features of each class are concentrated
in two distant, disjoint intervals of the real number line— between .45 and .50 for the HFEO’s
and zero for the non-HFEO’s, which was obtained automatically via the genetic program.
Hence the GP algorithm produces a single feature with adequate class-separation in a more
efficient manner than relying the physics of the problem and visual inspection.

The same routine was applied to each patient with the same parameters for the genetic
programming algorithm. The GP outputted two features with appreciably different structures
(trees) and fitness values. As shown in Figure 9, the tree of the GP-feature for the pediatric
training sample (b) had more branches and nodes for functions (e.g., max, times, cube) than
the tree of the GP-feature for the adult training sample (a). Correspondingly, the complexity
of the trees translated to the complexity of the following equations defining the two features,
where all operations (e.g. division, square-root) are protected as in Table A-1:

Figure 9 (c–d) illustrates that distinguishing classes (i.e., HFEO and non-HFEO) should be
easier for the adult data than the pediatric data according to the probability density function
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(PDF) for each class per patient. This result was interesting because apparently a more complex
tree did not produce better class-separation but was expected because the observation coincided
with a visual review of training data, in which the contrast between an HFEO and non-HFEO
was greater in the adult database than in the pediatric database. It was conjectured that the
challenges in achieving equally high fitness values could be attributed to some physiological
or pathological differences between the HFEO’s of each patient.

3.6 Processing: Classification and Detection
A classifier that makes no assumptions about the form of the underlying probability density
functions and the decision-boundary between classes of the given data while possessing
relatively low computational complexity in both the training and testing phases was preferred
for the detector. In view of that goal, a k-nearest-neighbor (KNN) rule was the most suitable
classifier for the HFEO-detector. Applying the GP-feature that was created for each patient
and the k-nearest-neighbor classifier to the testing data, the detector produced a binary sequence
denoting the perceived presence (1) or absence (0) of an HFEO, or the classification of the
IEEG that was inputted to the detector. Regarding the actual detection of an event, the beginning
and ending times of an automatically marked signature were declared as the closest times at
which the binary output transitioned from 0 to 1 and 1 to 0 respectively and stored for future
evaluations.

3.7 Post-processing
The main goal of the post-processing stage was to remove events that were possibly bad
classifications from a list of detections. The following two suppositions were made concerning
the events that were automatically detected using the previously described modules:

1. Some events would be false-positives, or events that were not HFEO’s, with the
remaining events being true-positives; and

2. Although apparently similar to the desired events, false-positives should differ
somehow in a feature-space from correct detections (true positives or true HFEO’s).

Consequently, two questions were considered to improve classification accuracy by avoiding
false-positives: 1) “What feature(s) could reveal a disparity among spurious and true events?”
and 2) “How can a post-processing module exploit the knowledge of this disparity to prevent
or reduce the number of false detections for the overall method?”

Choosing a small subset of records that were processed, resulting detections were labeled
accordingly as either a TP or a FP and compiled. Although training a GP-feature to discriminate
the true-positive (TP) and false-positive (FP) classes was considered as a solution to the first
question, it was desired to investigate the GP-feature that was computed for the processing
module. Figure 10 demonstrates that TP’s and FP’s overlap in the feature-space in a fashion
similar to the overlap of the PDF’s for HFEO’s and non-HFEO’s in Figure 9c. The above figure
portrays the possibility of misclassifying a non-HFEO that may be similar to an HFEO
according to the GP-feature. To remedy this issue—and answer the second question—it was
decided to incorporate another level of classification based upon the above small samples of
data. This post-processing stage computed a GP-feature value for each detected event and
executed a nearest-neighbor rule for each value to identify potential false-positives, which
subsequently were removed from the current list of detections. The main disadvantage of this
approach is that true positives may be removed, thereby reducing the amount of available
information for statistical analyses. However, if the TP’s exhibit a high incidence rate or the
benefit of eliminating FP’s, which can taint the information needed for statistical analyses,
outweighs the risk, then this drawback may be negligible.
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4. Statistical Analyses
The performance of the completed detector as described in the earlier sections but without the
post-processing stage was evaluated for each patient using a set of testing data containing n =
20 clippings of short-duration IEEG. After the detector was applied to the testing files, the
automated markings were manually examined to register the times of any false positives and
false negatives along with the times of the true positives that were automatically detected. The
inventory of markings was then used to calculate the measures of performance (e.g., sensitivity,
specificity) of the method for each record of the testing data, yielding samples of 20 values per
measure from which confidence intervals in performance were computed. In addition, the
proposed technique was compared with standard means to select and transform features for
further evaluation. Thus, the above procedure was repeated for the following three benchmarks:

• The C-features selected by the genetic programming algorithm without the nonlinear
transformation determined by the GP.

• Three C-features selected via an algorithm based on forward sequential selection
(FSS). In FSS, an algorithm initializes an empty subset of features and evaluates a
fitness (e.g. class-separation, error in classification) for all subsets of features with
only one feature, choosing the subset with the best fitness. Repeatedly, a new feature
that increases the fitness more than the other remaining features is added to the current
subset until no significant improvement in fitness results.

• Two C-features selected by visually inspecting a subset of equations presumed to be
quality considering the physics of the problem (and the literature).

Figure 14 illustrates the abovementioned techniques. All four methods relied on a nearest-
neighbor rule as a classifier. The set of selected features for each benchmark were normalized
for both the training and testing samples of the classifier in a “mean-variance” mode, or more
specifically, a subtraction of the sample mean before division by the sample deviation, which
was the most common approach to normalization of data in literature.

An analysis of variance (ANOVA) aptly tested if a statistically significant difference existed
between the proposed method and the benchmarks, where the null hypothesis claimed that all
methods for detecting epileptic oscillations performed equally in terms of sensitivity,
specificity, positive predictive value, and negative predictive value; and the alternate
hypothesis claimed that at least one method differed from the others per metric. The ANOVA
for the pediatric patient determined no statistical equality (P-values <.05) between all of the
methods for each of the four measures, while the ANOVA for the adult patient determined a
statistical equality (P-value >.05) between all of the methods for only the measure of positive
predictive value.

A multiple comparison procedure, specifically a Tukey's least significant difference
procedure, provided information about which pairs of methods significantly differed and which
were essentially equal in performance. Figure 11 represents the observed similarity between
the approaches according to the Tukey’s procedure, where the distance between a pair of nodes
(benchmarks for feature-selection) is inversely proportional to the similarity. The results
revealed that forward sequential search (FSS) and genetic programming (GP) performed
similarly and that the detector using a GP feature outperformed the detector using features from
a sequential search in the most cases across both patients. Additionally, figures 12 and 13
illustrate the relative confidence (at the level of 95%) in the performance of the methods for
the adult and pediatric testing data, respectively. Detectors relying on both the FSS and the GP
exhibited very high (greater than 96 percent) measures of specificity and negative predictive
value. The GP feature demonstrated satisfactory values (greater than ~80%) for the median
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sensitivity and PPV despite a large spread; while the FSS feature set performed equally
regarding sensitivity but yielded a very low median PPV (70%) for the adult data.

In summary, the three previous figures show that feature-selection via GP was more robust
than FSS and performed well. Moreover, it was recognized that choosing a GP over FSS
promoted the advantages of reducing the dimension of the feature-space to a single dimension,
which facilitates more efficient training and testing processes for a classifier, and controlling
the class-separation in the feature-space.

5. Discussion & Conclusion
An automated approach to detect high-frequency epileptiform oscillations was successfully
designed using genetic programming to create optimal artificial features. Overall the algorithm
achieved superb measures of performance at the 95% level of confidence. Notwithstanding
marginal values of 78.5% for the median positive predictive value of the adult testing data and
83.5% the sensitivity of the pediatric testing data, the binary detector boasted values between
93% and 99% for the other metrics across both patients. This work demonstrated that a binary
detector including GP and a k-nearest-neighbor rule for classification could outperform similar
detectors relying on other approaches for selecting features.

The primary advantage of using the GP to craft a single feature was that optimal class-
separation was controllable for the problem, whereas using other techniques for feature-
selection yields an arbitrary multi-dimensional set of C-features for which static, sub-optimal
class-separation and higher computational burden for the classifier were tolerated. Moreover,
with a single feature rather than a set of features—with a typically ambiguous constraint in
size—the curse of dimensionality, which refers to the key fact in pattern-classification that the
number of data samples required to estimate some arbitrary multivariate probability
distribution increases exponentially as the number of dimensions in the data increases linearly,
was directly addressed. The GP-feature computed for the pediatric training data was more
complex than the feature computed for the pediatric adult. This finding unsurprisingly
corresponded to the less obvious separation between an HFEO and background in the IEEG
upon visual review of the data, but raised questions on the dynamics of epilepsy in adults and
children that warrant further investigation.

In closing, this section presented work that advanced the state of the art in the detection and
analysis of seizure precursors by developing a reliable general scheme for a precursor-detector.
With this method better progress can be made toward reliably presenting statistics that aid in
deciphering the mechanisms of epilepsy and establishing a methodical solution to isolating
appreciably epileptic brain so that precise treatment and thorough understanding of epilepsy
may be achieved. In future work, the proposed method will process seizure records with more
IEEG channels and multiple patients to further study the spatial-temporal characteristics of
HFEO’s and investigate the existence of any reproducible outcomes that diagnose regions of
epilepsy or predict the location or time of a seizure onset.
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Appendix A: Proposed Use of the GP Algorithm
A genetic program can be applied for the optimal fusion of conventional features, or C-features.
The input to the GP was an array of the C-features, the terminals are the subset of principal
features chosen upon termination of the genetic program, and the functions are simple
mathematical operations (e.g., addition, division, logarithm, maximum, cosine, square) that
contribute to the nonlinear transformation of the terminals. The GP efficiently finds a multiple-
input, single-output mapping, f, such that the output maximally contains information that
distinguishes between classes of data.

The above expression describes the utility of a GP for feature-extraction, where X is a matrix
of feature-values [x1 x2 … xF] with each column-vector xi a distinct feature; Xp is a matrix of
feature-values  computed from the principal vectors selected by the GP,

, in X; c is a column-vector of labels from the set {0, 1} signifying the
group of each sample of measures with each element corresponding to a row-vector in X and
Xp and, f is the nonlinear transformation associated with the principal features, and y is a column
vector containing the values of the single, supreme feature.

With a training data set and predefined metric for the fitness of a prospective procedure for
fusion, the GP iteratively tunes the parameters f and y by imitating the four processes of natural
evolution (i.e., selection, crossover, mutation, and survival) as described in Section 2. The
following equations describe the fitness measure that is used in this work when the GP generates
and sorts through various options for the optimal synthesis of features.

In the equation for the probability density function (PDF) overlap, p(y | c = c)is the PDF of
the feature y that is created by the genetic program, given that y data belongs to a particular
group c with label equal to 0 or 1. Values for the overlap range between zero and one. Although
two groups with good separation, exhibit low overlap between the PDF’s, low overlap alone
does not guaranteed a feature with high discrimination. In the equation for the K-factor, the
mean and variance for the PDF of each group is denoted by μc and σc respectively. Typically,
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the higher the value for the K-factor, the more separated are the groups; however, this metric
is not as accurate as the PDF-overlap given a feature with a multi-modal PDF for either group.
Nonetheless, combining both metrics counteracts their individual disadvantages and produces
an acceptable measure of fitness, referred to as the overlap-k-factor product, for blending a set
of features. Furthermore, unlike fitness measures in previous work, the overlap-k-factor
product is independent of the type of classifier and consequently provides more computational
efficiency and generality in applying a GP for feature-fusion.

Furthermore, in genetic programming, the user must specify the function set and terminal set
that the GP algorithm will use to create the programs. Appendix B discusses the conventional
features that were candidates for terminals, and Table A-1 shows the functions. Since functions
must satisfy the closure property in GP—not return values on which the GP cannot operate—
certain functions (e.g., logarithm, division) are “protected,” or altered from their ordinary
operation. The protected functions that were used in this work are acknowledged with their
obvious adjustments in Table A-1.

Table A-1
List of the functions and their corresponding symbols and protection (if applicable) to maintain closure that was
available to the GP algorithm of the proposed work.
Function Symbol Protection
Addition + N/A

Subtraction − N/A
Multiplication × N/A

Division ÷ Output 0 when denominator input is zerro
Square ( )2 ( )2

Cube ( )3 ( )3

Square root Apply an absolute value operator before radical

Natural logarithm Log Output zero for an argument of zero; and Apply an absolute value operator to negative arguments
Absolute value | | N/A

Sine sin N/A
Cosine cos N/A

Arctangent atan N/A
Maximum max N/A
Minimum min N/A

Appendix B: Library of C-Features
This section describes the list of conventional, or classical, features (C-features) that were
candidates for the feature-selection component of the genetic programming procedure when
the framework of GP was applied to feature-fusion for detecting an HFEO. Recall from the
theory of GP that the selected candidates (features) are the terminals of the non-linear function
corresponding to the GP-tree.

Let n = {v:v ≥ (i − 1)N + 1 ∧ v ≤ iN, i ∈ ℕ} be a set of time indices in samples and f = {v:v
≥ 0 ∧ v Fs / 2} be a set of frequency values in Hertz indices, where N is the number of elements
in n, M is the number of elements in f, and Fs is the sampling rate for the EEG data. In addition,
denote the IEEG sequence over a certain time interval i as x(n), where x = {v:vj = x(j) ∀ j, 1≤
j ≤ N}, the Fast Fourier Transform (FFT) of x(n) as X(f), and the normalized FFT of x(n) as
X ̂(f). Finally, let xord(n) define the ordered values of x(n), where ,
and pdf(x(n)) = pdf(x) where pdf is the probability density function (PDF) of a set of values.
The following tables (B-1 through B-4) contain the preliminary library of conventional features
that were considered as input to the genetic programming procedure for feature-fusion.

Table B-1
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Time Domain Features

Feature Equation Description

Energy Average instantaneous energy

Nonlinear Energy Change in amplitude and
frequency

Curve Length Length of the curve, similar to
arc length or curvature

Crossings Average number of intersections
across an amplitude reference

Table B-2
Frequency Domain Features

Feature Equation Description

Maximum PSD Maximum value of the estimated power spectral density

Mean PSD Mean value of the estimated power spectral density

Peak Frequency Frequency corresponding to the maximum value of the
estimated power spectral density

Mean Frequency Frequency that is the centroid of power spectral density

Table B-3
Statistical Domain Features

Feature Equation Description

Mean Arithmetic mean or
average of amplitude
values

Standard Deviation Unbiased standard
deviation of amplitude
values

Median Middle value when
amplitude values are
ordered from smallest to
largest

Interquartile Range Spread of the amplitude
values

Table B-4
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Information Theory Domain Features

Feature Equation Description

Shannon Entropy Level of disorder, uncertainty, or randomness

Spectral Entropy Level of disorder, uncertainty, or randomness

Reyi Entropy Level of disorder, uncertainty, or randomness

Complexity* Level of sequence complexity given by the number of
unique subsequences within the sequence

*
Note: The Complexity feature cannot be represented by a simple equation. In lieu of this difficulty, the algorithm SequenceComplexity(x(n)) was written

but the code is omitted. For more details, see Zhang et al, “Detecting Ventricular Tachycardia and Fibrillation by Complexity Measure” IEEE 1999.
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Figure 1.
This figure illustrates the steps of a canonical genetic programming (GP) algorithm. The
variable g denotes the number of generations, or iterations of the procedure, while the constant
G is the desired number of generations. The result of the GP is a function—typically nonlinear
—of the input data. The fitness measure depends upon the GP application.
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Figure 2.
This figure exemplifies a solution from a particular GP procedure. The tree structure represents
the following expression: .
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Figure 3.
This figure demonstrates a typical cross crossover operator in a GP procedure: a) the over
parents swap subtrees at random randomly selected nodes from each parent tree; and b) the
children are the result after crossover is perform performed.
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Figure 4.
This figure demonstrates a typical mutatation operator in a GP procedure: a) a subtree is
randomly selected from the node of a parent tree; and b) altering the subtree of the parent
produces a child.
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Figure 5.
This figure illustrates the pre-processing technique for highlighting an HFEO in a signal
inundated with waveforms that are not high-frequency epileptiform oscillations. The
enhancement is a simple multiplication of whitened and filtered data followed by a rescaling
operation to preserve the true order of magnitude of the IEEG.
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Figure 6.
This figure shows the effectiveness of the pre-processing technique for emphasizing the activity
of an HFEO contained within IEEG with low SNR (a). Although a trained reviewer identified
three occurrences of an event (arrows), differencing (b), or whitening, and filtering (c) revealed
two or three additional events (diamonds) in the unprocessed signal, respectively. The
enhanced IEEG (d) contains six events that could be automatically detected: three known
precursors (arrows), two potential false-negatives (diamonds) and one false-positive
(octagon) due to filtering. Consequently, the suggested enhancement reveals the possibility
that potential false positives (negatives) for the binary detector could actually be false negatives
(positives) by the expert, giving value to the method still as a means to register putative events
that may not be visually possible by the expert despite the few spurious events.
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Figure 7.
This figure shows that the GP algorithm fuses a matrix (X) of values computed from a set of
distinct, multiple features into a one-dimensional vector (y) for a single feature, f, which
generally speaking is a nonlinear transformation of X.
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Figure 8.
This figure exhibits that a GP-feature (b) was more apt for the distinction between an HFEO
and a non-HFEO than two intelligently selected features (a).
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Figure 9.
This figure shows the trees and probability mass functions with corresponding fitness values
obtained using the GP algorithm on training data for the adult (a, c) and the child (b, d) patients.
A tree represents the nonlinear transformation of the C-features that were selected by the GP
and the corresponding fitness value measures the level of discernment between binary classes
based on the probability distribution of each class. Despite using the same parameters in the
GP, a feature with a higher fitness and less complex tree resulted for the training sample of the
adult patient. This was attributed to the very low signal-to-noise ratio (or contrast between
background and oscillations) of the pediatric data.
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Figure 10.
This figure captures the feature-space for a sample of detected events from the adult (a) and
pediatric (b) testing data. Each sample was stratified as a spurious (triangle) or a correct
(dot) detection. The overlapping of the probability mass functions in Figure 9 leads to the
overlapping of spurious and correct events above illustrated.
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Figure 11.
This figure demonstrates the likeness between the methods for feature-selection (lines between
nodes) as well as the method with the statistically highest measure of performance (node with
an underscore). The figure is sketched to scale such that the distance between connected points
is inversely related to the similarity between methods according to a Tukey’s ranking test.
Isolated nodes possess absolutely no similarity to any other method. The methods are
symbolized by the following numbering: 0) features selected, transformed, and fused via GP;
1) features selected via GP and normalized in a mean-variance fashion; 2) features selected
upon visual review considering the physics of the problem an assumption on the epileptic
oscillations; 3) features selected via a forward sequential search algorithm.
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Figure 12.
This figure illustrates the performance of the HFEO-detector when verified using three types
of feature-selection approaches for the adult testing data. For each subfigure a–d, the x-axis is
the approach (from left to right: GP selection and transformation, GP selection and mean-
variance normalization, “intelligent” selection, forward sequential search) and the y-axis is the
value of a particular performance metric. Four metrics were considered: sensitivity (a), positive
predictive value (b), specificity (c), and negative predictive value (d).
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Figure 13.
This figure illustrates the performance of the HFEO-detector when verified using three types
of feature-selection approaches for the pediatric testing data. For each subfigure a–d, the x-
axis is the approach (from left to right: GP selection and transformation, GP selection and
mean-variance normalization, “intelligent” selection, forward sequential search) and the y-axis
is the value of a particular performance metric. Four metrics were considered: sensitivity (a),
positive predictive value (b), specificity (c), and negative predictive value (d).
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Figure 14.
This figure ill illustrates the role of three techniques to use features in the feature-extraction
module of a binary detector for epileptic seizure-precursors: genetic programming (GP),
forward sequential selection (FSS), and visual review (VR). According to a predefined measure
of fitness, each technique returns the best subset of features, , from a list of features, , in a
training set with a vector of values, , for each feature, , and a corresponding vector of labels,
c. Preferably, a rule or operation, f, to fuse a feature-matrix obtained after applying the feature
in to an enhanced time-series of IEEG, z(t), yields the vector, y, to be classified such that a
precursor (one) are discerned from background activity (zero).
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