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Abstract

Current fuzzy control research tries to obtain the less conservative conditions to prove sta-
bility and performance of fuzzy control systems. In many fuzzy models, membership func-
tions with multiple arguments are defined as the product of simpler ones, where all possible
combinations of such products conform a fuzzy partition. In particular, such situation arises
with widely-used fuzzy modelling techniques for non-linear systems. These type of fuzzy
models will be denoted as tensor-product fuzzy systems, because its expressions can be un-
derstood as operations on multi-dimensional arrays. This paper discusses the generalisation
to tensor-product fuzzy systems of the results in [5,18]. The procedures here will allow to
set up LMI conditions which are less conservative than the cited ones, by exploiting the
tensor-product structure of the membership functions. A numerical example illustrates the
achieved improvement.
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1 Introduction

Fuzzy control started as an heuristic methodology in the 1970’s, coding by hand
control rules provided by experts to control nonlinear systems. However, in three
decades, state-of-the-art research has become more and more formal and rigorous
using advanced mathematical tools, in order to guarantee control specifications ex-
pressed in terms of stability, performance, robustness to modelling estors,

Nowadays, Linear Matrix Inequality (LMI) techniques have become the tool of
choice in order to design fuzzy controllers in most application areas where a fuzzy
model of the process is available in the Takagi-Sugeno formX$} §_; 1 fi,

Xgr1 = z{:1 i fi with fj linear). Such fuzzy models may come from nonlinear first-
principle equations and from data. LMIs were introduced by [12] in the fuzzy com-
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munity. The reader is referred to [7] for a review of the current trends and open
issues in fuzzy modelling, identification and control.

Most LMI control design techniques are based on proving positiveness (or nega-
tiveness) of a so-called double fuzzy summation [11,5,4,14], in expressions such
as zir:lzlj:luiHjXTQin > 0, related to decrescence of an associated Lyapunov

function?.

Early sufficient conditions in literature for positivity of the above fuzzy summations
wereQj; > 0 (the most elementary ones), @4 > 0, Qjj + Qji > 0 [12]; they have

been later improved, achieving less conservative results. In particular, nowadays,
the most widely-used conditions are those in [18] (generalising [5]). These condi-
tions will be later discussed in this paper, and a more powerful version of them will
be stated for a particular class of fuzzy systems.

Note, importantly, that all the above cited conditions are independent of the mem-
bership functions: that fact is a source of conservativeness in some cases. For in-
stance, the system= 11 (2) - x+ (1— 11(2)) - (—x) cannot be proved stable for an
arbitrary g, 0 < p1(z) < 1 (it is unstable foru(z) = 1). However, itis stable for,

say, U1 = 0.2+ 0.2sin(x) asX = (—1+ 2uq)x is, trivially, an exponentially stable
first-order nonlinear systemwhen < b < 0.5,be R.

Another example of such a conservativeness, as this paper will show, occurs when
the membership functions can be expressed as the “tensor product” of simpler parti-
tions, so that the fuzzy system can be written as a multi-dimensional fuzzy summa-
tion, for instancex= y{_; 25:1 S k1 MiMj Hic(Aijx+ Bijku). The tensor notation to

be used in this paper is motivated by the use of multidimensional arrays to describe
this class of fuzzy systems (see Appendix and [1]).

Removing part of the conservatism in current solutions for the tensor-product case
above is indeed of interest; this product structure is often the case in many engi-
neering applications of fuzzy control:

e in the systematic “sector nonlinearity” fuzzy modelling techniques reported in
[12];

e in many man-made rulebases for multi-input fuzzy systems, where the rules are
built via the conjunctionof simpler concepts arising from fuzzy partitions on
each of the input domains. A typical example are rulebases formed with rules in
the form “if z; is large andz, is smalland .. .then ...”, “ifz; is mediumandz,
issmalland ...then ... etc, with the antecedents covering all combinations of
fuzzy sets orry, 2, etc.

1 Other settings, such as fuzzy observers, descriptor systems and fuzzy Lyapunov func-
tions, may require higher summation dimension, for instance triple fuzzy summations ap-
pearing in [12,10].



e in approximate interpolation and model reduction techniques based in gridding
and tensor-SVD algebra in [1].

These settings will give rise to a particular class of fuzzy models which will be
denoted, following the nomenclature in [1], @nsor-produc{TP) fuzzy systems.

The reader is referred to the above references and later sections in this paper for a
more precise definition of TP fuzzy systems. In particular, a tensor-product struc-
ture of Takagi-Sugeno fuzzy systems will be the object of study, denoted as tensor-
product Takagi-Sugeno fuzzy systems (TPTS).

In summary, the objective of this contribution is defining and analysing the tensor-
product fuzzy systems, presenting fuzzy control design tools for them which ex-
plicitly use the tensor-product structure. The study of the properties of this class of
systems is very relevant, in the authors’ opinion, as most of the fuzzy systems in
nontrivial engineering applications of fuzzy control belong to this class, as above
discussed.

In particular, a generalisation of Theorem 2 in [18], exploiting the particular struc-
ture of the TPTS systems will be presented. The result provides less conservative
conditions than other approaches in literature in closed-loop analysis and controller
design problems. A numerical example will illustrate the achieved improvement.

The structure of the paper is as follows: next section discusses preliminary con-
cepts, in particular the well-known double fuzzy summations, arising from closed-
loop fuzzy systems. In addition to that, the section reviews the literature results
which will be later extended. Tensor product fuzzy systems are defined in Section
3. Section 4 generalises the results in Section 2 to this class of fuzzy systems. Sec-
tion 5 presents an example of the proposed methodology, showing that significative
improvements are possible. A conclusion section closes the paper. Tensor notation
and properties are discussed in an appendix.

2 Preliminaries

Let us consider a Takagi-Sugeno (TS) fuzzy system [9], expressed in rule-based
form as a set of rules, being rule, 1 <i <r stated as:

IF zis M thenX= Ajx+ Bju

wherezis a suitable set of variables to describe the system’s nonlineargythe
process state (a vector with length and u is the process input (a vector with
lengthw). The variablez may include some (or all) of the componentsxpi.
Denoting byu; (z) the membership function of the fuzzy 94t, the above rule base



is interpreted as the expression [12]:
r
X = Zui (2)(Aix+ Bju) (1)
i=

On the following i (z) will be assumed to belong to a fuzzy partitiom (2), Ux(2),. .., 4 (2) },
i.e., fulfilling

r
S (@ =1 05k <1 v
i=

Shorthandy; denotingy;(z) will be used in the sequel.

Widely-used controllers for TS systems (wheis measurable) are the so-called
parallel distributed compensato(®DC) defined by:

u=—% HhxX 3)
=1

which yield a closed-loop [13] given by:
r

X — Ui (A — BjF; 4
=55 (-6 @

A simple condition to ensure closed-loop stability of (4) can be derived from a
quadratic Lyapunov functiorlM(= x"PX) as shown in [17,12], based on the posi-
tivity of V and—V, i.e,,

r r
-V = leuiquT(—A,-TP—PAi+PI3Fj+FjTBiTP)X>O (5)
i=1j=1

After a standard change of varialile= P~1x, the result is that stability (moreover,
decay rate performanae) is proved [12] if:

r r
ZlZ—uiuij(AqX+XAT—BiMj—MjTBiT+20!X)w>0 (6)
i=1j=1
for ¢ # 0, whereP~1 = X > 0 andM; = F;X are LMI decision variables and is

a user-defined decay-rate parameter.

This is the simplest example of a class of widely-used conditions for stability or
performance of a closed-loop fuzzy control system. These conditions may be ex-
pressed, for some matric€¥;, in the form

-

X' Qijx >0 (7)
1

==y

r
i=1j=



The left-hand term of expression (7) will be denoteddasible fuzzy summation
For instance, in the above decay-rate fuzzy control problem,

Qij = —(AX+XAT —BM; —M[ B +2aX) (8)

Note, importantly, that iQQ;j are linear in some matrix unknowns, then linear matrix
inequality (LMI) techniques [12] may be used to check condition (7) by restating it
as the requirement of positive-definiteness of the matfix y_; pi i Qij.-

Example 1 Another example of performance-related condition dses
PAT +RIBJ; + AP+B2R;j By PG +RD],
Qij = Bl —yi DI )
CiP+D1sR; D1ij -

in order to prove that the K norm (i.e.,.% to % induced norm) of a TS fuzzy
system given by:

X= illli(z)(AiX-i- Baiv+ Baiu) (10)

;
y= Zui (2)(Cix+ D13v+ D1gu) (11)
i=
is lower thany. The reader is referred to [16] for details on hd®) is obtained.

Other well-known performance and robustness requirements for fuzzy systems can
also be cast as similar expressions, as well as conditions for discrete-time TS sys-
temsxnr1 = Si_1 Hi(AiXn+ Bjun). The reader is referred to [11,6,12], etc. for de-
tails.

2.1 Sufficient Positivity Conditions

Sufficient conditions for positivity oE in (7) are discussed in [11,5,18]. For con-
venience, some of them are reviewed below.

Lemma 1 If there exist matricesX= XJ-Ti such that:
Xii < Qi (12)
Xij+Xji <Qij+Qji i< (13)

2 In this casexin (7) does not represent the state vector; it must be understood as a vector
of artificial variables arising from Schur complements [2].




defining
o) =3 3 m(z(t)u(t)X(t) X x(t) (14)

then=(t) in (7) fulfills
=(t) > o(t) (15)

Proof: The proof is evident after reordering (7) and (14) as

=(t) = Er uiszQiix-i- Er Er i (Qii + Qi )x (16)
( ) i= i=1lj=1+1 : ( ] : )

o) = zr p2xT X x + zr zr i X" (X + Xii)x a7
( ) i= i= j:|+1 : ( . : )

respectively. In this way, (12) and (13) indicate that each term in the summations in
= in (16) is larger than the corresponding one in the reord@ed(17). O

Note that, in addition to an expression in the form (17), another expressi@ for
is:

Ha1X
X11 ... Xqr Lo
. . 2
Ot) = (uax" pox" x| F el . (18)
X1 oo Xir |
HnX

which yields the well-known result below.

Theorem 1 [18]. Expression(7) under fuzzy partition condition holds if there exist
matrices X = X;| such that:

Xii < Qi (19)

Xij +Xji <Qij+Qji i#] (20)
X11 ... Xin

Y= : . : Y>0 (21)
Xn1 -+ Xon

Note: In [5], all X;j are forced to be symmetricg., Xj; = Xji = X”T). The authors

in [18] realised that only symmetry of the larger matrix in (21) is needgd=

XJ-Ti stated above); such minor amendment provided significantly less conservative
conditions than in the earlier reference.



3 Tensor-product fuzzy systems

This section will first present the fuzzy systems and fuzzy summations in Section
2 with tensor notation, and then generalise the expressions via a new definition,
which will encompass widely used classes of fuzzy systems. Basically, a so-called
rank-p tensor will denote g-dimensional array of real numbers. The reader is
referred to the Appendix for tensor definitions, notation and operations with them.

3.1 Tensor expression for fuzzy systems

Note that the Takagi-Sugeno system (1) may be considered, by juxtaggsindg
Bi as a matrix with size x (n+w), as:

=S mae) (22)

i=1 u

Consider now the one-dimensional array of matriggsB;) to be the components

of a suitably defined rank-3 tens8so that the elemersji is the elementj, k) of

the matrix(A Bi),forj=1,...,n,k=1,...,(n+w). Consider also the membership
functions to be arranged as a vector (rank-1 tensor). Then, (22) may be written as a
tensor product

x=(u19 [ (23)
u

because the tensor prodyct; Sproduces the so-called system matrix (rank-2 ten-
sor):

H1S= Y H(AB) (24)

As the memberships are a rank-1 tensor, the above fuzzy systems will be also de-
noted as rank-1 fuzzy systems. The case of higher dimensionality (higher tensor
rank) will be discussed later in this section.

It's also straightforward to check that the double fuzzy summations in (7) may also
be expressed as:
E=(HRUEX®X)4Q (25)

whereQ is a rank-4 tensor (a “matrix” of matric&g;j), i.e., elementg;j is equal
to the element at positiofk, | ) of the matrixQj;. Note that= is a scalar.



3.2 Multi-dimensional tensor-product fuzzy systems

In many applications, membership functions in a multi-input fuzzy model are cho-
sen to be the product of simpler memberships with a linguistic interpretation, and
all the possible products of such simpler memberships appear as rule anteéedents
Let us discuss a couple of simple motivating examples.

Example 2 Consider a so-called fuzzy-PD regulator built by setting up a fuzzy
partition on an “error (e)” variable (say, a partition with 5 sets given Kyegative
large, negative, zero, positive, positive large}), and another (different) partition in
the “error derivative (de)” (say, a partition with 3 setsegative, zero, positive }).

For convenience, the membership functions on the error partition will be denoted by
(H11(e),..., Uis(e)), respectively, and those on the error derivative( by (de), too(de), pos(de)).
The partitions are assumed to verify_; ugi = 1, 33, poi = 1.

Once such partitions have been defined, rules are stated in a form such as:

IF e isnegative largeandde ispositive THEN u = u;3
IF e isnegativeandde iszeroTHEN u = uy»

In this example, the total number of rulesbs 3 = 15. If the conjunction is in-
terpreted as the algebraic product, the output of the controller may be expressed

as.
5 3

u= % > Hi,(€)pz,(de)uij, (26)

i1=1liy=1

Now, consider the tensor outer product of the vectors (i.e., rank-1 tengors)

(H11(€),...,U15(€)) and uo = (u21(de), upo(de), tp3(de)). Then, considering the
following “membership tensor”,

(€) p2a( () p2a( () p23(

(€) p2a( () p2a( () p23(
H1(€) @ H2(d€) = | 3(e)paa(de) pas(€)pzz(de) piz(€)pza(de)

(€) p2a( () p2a( (€) pas(

(€) p2a( () p2a( () p23(

3 Such simpler functions usually refer to a reduced number of input variables (but the
definitions later in this section allow for any set of variables in any membership).



it's easy to see thgR6) may be expressed as an inner product of two tensors:

U= (U1 ® o) -2U (27)

for a suitably crafted matrix (rank-2 tensor) U of siz& 3 whose elements are the
corresponding rule consequentg fori=1,...,5, j=1,2,3.

Example 3 Consider a nonlinear model= A(x)x-+ B(x)u where

A(X) = 0.75x — 2.25sin(x) + sin(x)x— 2.5 (28)
B(x) = 0.42x+ 1.25sin(x) — 0.42sin(x)x — 0.25 (29)

for which a fuzzy model is to be set up far %11, 11. In this case, x may be written
as x= Y2, vipi, and sin(x) as sinx) = S2_, niq;, with:

X = Vi(X) - T4 V2() - (—10),  Sin(x) = 12(x) - 1+ N2(x) - (~1)

where membership functions arg= 5= (x+ 1), Vo = 1— iy, N1 = 3(sin(x) + 1),
N2 = 1—n1, resulting in

2 2 2 2
AX)=0.75% vipi—225% nigi+ (Y ma)(H vip)—
i=1 i=1 i=1 i=1

2 2

2 2
:ZZ vin;(0.75p; — 2.25qj+piqj—2.5):ZZvinja;j
i=1j=1 i=1j=1

where
a;1 =0.748 a;o = —1.035ay; = —10.247,a2 = 0.536

and similarly

N

2 2 2

where;:
b]_]_ = 1, b12 = 1.139, b21 = 1, b22 =-4.139

Hence, the fuzzy system can be expressed as:

x:ZlZv.nJ ajj X+ bjju) Zu, (ayx+ bju) (30)

i€l

wherei is a two-dimensional index variablgs,i2) taking values in the s =
{1,2} x {1,2}, and [ij = v, n}i,, using the multiindex notation in the Appendix. In
an analogous way t(26)in the previous example, a tensor notation can be thought
of (see below).



Motivated by the above examples, let us consider now a definition for a general
tensor-product fuzzy model in the Takagi-Sugeno (TS) framework (TS fuzzy sys-
tems are the most frequently used process model for fuzzy control in current lit-
erature), in order give a compact notation to fuzzy systems whose expression is a
multi-dimensional sum, as in the above examples.

Definition 1 (tensor-product Takagi-Sugeno fuzzy systems.Lonsider a vector
of measurable variables, z, in an universe of discourse Z. Consider also p fuzzy
partitions defined on Z, each of them with n.. n, fuzzy sets, respectively.

The fuzzy sets will be assumed to have linguistic labels denoted;byi=
1,...,nq for the first partition, M;,, i> = 1,...,ny for the second partitionetc.
and membership functions arranged in rank-1 tensors:

p1 = (M11(2) H12(2) - .. Hany (2))
p2 = (H21(2) H22(2) - .. piny(2))

: (31)
Hp = (Hp1(2) HUp2(2) .. Ilpnp(ZD
fulfilling

n

> Hk=1 O0<pe<1 I=1..p

Then, a rank-p continuous-time tensor-product Takagi-Sugeno fuzzy system (TPTS)
built on the above fuzzy sets will be defined as the one described by th&:rules
IF zis (M1;; and My, and Mpip) THEN x = Ailig...ipx+ Biliz...ipu

being its output evaluated with:

Z [:1 A|X—|— B| (32)
€lp

where x and u are the TPTS state and input variables, respectiveljis. . .ip,
and

p
fi = [ i (33)
| l(l:ll Ik

4 In many applications, such as the one in Example 2, the rules have the form:
IF z; is My, and z; is Mg, and ... and zp is Mpj, THEN X = Ajj, i X+ Bijj, i u

i.e,, fuzzy partitions are defined over universes of discurse of smaller dimension, so that
Z =171 xZyx...Zp. However, that's not necessary, in principle, for the results in this paper
to apply. For instance & is R?, we could havep = 3, with three fuzzy partitions defined

on, say,z1 + 2, z1 — /22 and (sin(zy) + 1) /(cosz) + 1). Hence, the rules above in this
footnote are a particular case of the ones in Definition 1.

10



Remark: Analogous definitions may be cast for discrete-time TPTS systems and
also for systems incorporating output equations, but they are omitted for brevity.

Using tensor notation, the following definition for TPTS systems is equivalent to
the previous one (proof is omitted as it is just an issue of notation).

Definition 2 Consider a state vector x with dimension d, and an input vector u
with dimension w, and form a vector of dimensio# w by juxtaposing x and u.
Consider a set of p fuzzy partitions defined on a universe Z, each of them arranged
as arank-1tensog,i=1,...,p,i.e,asin(31)above. Then, a TPTS fuzzy system

is described by:

, . X
u
where S is a tensor with rank p2 and dimensionsn np, ..., Ny, Npy1 = d,

Np+2 = d+w and

=@ @
is a tensor with dimensiong ny, ..., n, (Whose elements are, evidently, given by
(33)), denoted asnembership tenso8 will be denoted asonsequent tenseét

An example of a membership tensor elementis, for insta|ae 1 = Hi3Ho4l31 a1,
which will denote a particular rule in a rank-4 TPTS fuzzy system.

Note thatfi -, Sis a rank-2 tensori.e., a matrix which multiplies the state-input
vector with the ordinary matrix-vector multiplication).

Obviously, the notations (32) and (34) are equivalent to an expression such as:

o n Np

X= % > > HaigHaiy- - Mpip (Aigip.ipX+ Bijis..ipU) (35)
iS1im1 Q=1

For instance, the fuzzy system (30) may be considered a rank-2 TPTS one.

Remarks on TPTS modelling: Many fuzzy systems in practice have the tensor-
product structure:

e Example 2 shows how they naturally arise from man-made rules.

e Another paradigmatic example is the “sector nonlinearity” modelling methodol-
ogy in [12]; Example 3 in this work is one of the simplest cases of the referred
modelling technique. The reader is also referred to Example 3, in section 2.2.1 of

5 Notation in (34) is somehow different from that in [1], but equivalent. We wanted to
emphasise the concept of “membership tensor” (generated via an outer product) whereas
Baranyi usedh-mode products [3] for subsequent singular-value-related computations.

11



the referred book, which results in a 16-rule model TPTS described by a mem-
bership tensor of dimensions<22 x 2 x 2 (of course, the authors there do not
use the notation introduced hereg,, a rank-4 TPTS system.

e Last, [1] proposes a tensor-product based methodology to approximate func-
tions of multiple variables via Takagi-Sugeno fuzzy systems. The procedure,
instead of being based on the previously-discussed sector-nonlinearity approach,
is based on multi-dimensional gridding, lookup and interpolation. A subsequent
step of complexity reduction based on higher-order singular value decomposition
[3] is needed in order to get a reduced number of rules.

In fact, fuzzy system without a TSTP structure are seldom present in applications,

except in the simplest cases (even some first-order single-input TS systems can
be better modelled as TSTP, by using the sector-nonlinearity methodology above
cited, as demonstrated in Example 3 in this work).

Proposition 1 Standard TS fuzzy systems are rank-1 TPTS fuzzy systems. Con-
versely, TPTS systems are a subclass of standard TS fuzzy systems.

Proof: The first affirmation is evident from the definitions, and it has already been
discussed in Section 3.1. Regarding the second one, consider the well-known iden-
tity

n

Np
> > > Mg Hpip =1 (36)
i1=1li)=1 ip=1

It shows that the tensor product conforms a fuzzy partition composgd=afi; x

np X --- X Np fuzzy sets. Such partition is given by the rank-1 membership func-
tions obtained by unfolding (flattening) the tengbonto a vector. The idea can be
formalised by using proposition 3, as:

. X - X
u u

Hence, the original TPTS fuzzy system is expressed as a standard TS one because
the membership tensor has been unfolded onto a vector, and the consequent tensor
S has been suitably rearranged by tHeoperator as a rank 3 tensor. Such rank-3
tensorfl;_.._pSproduces an ordinary matrix when subject to the product with the
unfoldedfly_.._pfi (rank 1). O

Example 4 Consider a TP fuzzy system with=p2, m; = 2, n, = 3. It may be
equivalently considered as an “unfolded” fuzzy system with 6 membership func-
tions, denoted aBx(z) given by:

12



k=1 pi(2) = t11(2)H21(2)
k=2 B2(z) = p11(2) t22(2)
k=3 B3(2) = H11(2)H23(2)
k=4 Ba(2) = t12(2) H21(2)
k=5 PBs(z) = t12(2) t22(2)
k=6 Bs(2) = U12(2) H23(2)

As another example, consider the fuzzy model of Example 3. In the same way as
above, ifuy = vin1, U = vino, Uz = Von1 and U = vono were defined, a fuzzy TS
with four models:

4
X = Zui (ax+bju) (38)

=
a; = 0.748 ap — —1.035 ag = —10.247, a5 = 0.536 (39)
by =1b,=1,139bg=1,b; = —4.139 (40)

will exactly describe the nonlinear system under analysis fof %11, 71).

The reader is referred to [12] for more examples of this tensor-product nonlinear
modeling methodology (although tensor notation is not used and the final model is
always unfolded).

Remark: Proposition (1) seems to make ill-fated any attempt to approach fuzzy
control design for TPTS systems because TPTS are TS systems and vice-versa.
However, a crucial fact is overlooked in this argumentation: most results for sta-
bility and performance of TS fuzzy systems ameependenbf the membership
shapes — particularly those in [12,5,18]. However, an unfolded TPTS system does
notsweep over all possible membership valtiedence, such membership-independent
stability and performance conditions are conservative in the case of TPTS systems.
This is the key issue motivating the work in Section 4 in this paper.

3.3 Closed-loop tensor-product fuzzy systems

Definition 3 (tensor-product controller) Given arank-p TPTS systgBR), a con-
troller in the form:
u=-S F(@Fx=—(f1-pF)x (41)
i€Bp
will be denoted as rank-p tensor product PDC controller (F is a rdpk-2) tensor
formed by suitably arranging matrices)F

6 for instance, it's impossible to hay& = 0.1 andf, or Bz larger than QL in Example 4.

13



By analogy with (4), it is straightforward to prove that, when a rgntensor-
product PDC controller is used to control a raplsystem (32), the closed loop
equations are given by:

x=5 > WGy =((E®[m)2pG)x (42)
i€BpjeBp
whereGj; = A — BjF defines a tensoB with rank 20+ 2 (note that, for fixed

andj, B andF; are rank-2 tensors, following notation (66), so the product is well
defined, being the usual matrix product).

In general, analogously to (7), many stability and performance criteria for tensor-
product closed-loop fuzzy systems can be expressed as requiring, ioeady

0=>% > [ X" Qx> 0 (43)
i€Bpj€Bp

For instance, it's almost evident to check that a condition for quadratic stability of
a TPTS fuzzy system is (43) wit®; given by (6) but replacing thieand j with its
boldfaced counterparts.

In tensor notation, stability and performance conditions (43) look like
O=(I@ARXRX) 2p12Q >0 (44)
for a suitably defined tens@ with rank 2p+ 2. Indeed,

0= igpj;péﬂiﬂi %X Qi

Unfolding to a TS system A possibility to work with TPTS systems is considering
them as ordinary TS systems (Proposition 1) and design fuzzy controllers for them.
Indeed, this is the commonly considered option in literature which this paper seeks
to improve.

The above argumentation may be equivalently stated by using Proposition 3 on
(44), which results in stating:

O=(fli o pli® flic . pH@XDX) -4 flicpflipiay .. 2pQ  (45)

wherefli_.._pfl is a rank-1 tensori.€., the memberships of an ordinary TS sys-
tem arranged as a vector, suitably ordered) so (45) may be written as€2%Y,).
Hence, LMIs for such conditions can be applied, such as Theorem 1 (details are
omitted for brevity).

The next section discusses an explicit use of the tensor-product form of the mem-
berships in order to produce conditions less conservative than the “unfolding +
Theorem 1” procedure used in literature.

14



4 Main Result: relaxed stability and performance conditions for TPTS fuzzy
systems

Theorem 2 Expression(43) (equiv.(44)) holds if there exists a rank2f + 2) ten-

sor X such that the conditions stated below hold. For ease of notation, note that
Xiksi,] € Ip_1, k;s€ Ipis a rank-2 tensor (matrix), and the same applies {gQ

The conditions are:

Xijs = Xigk (46)

Xikik < Qikjk (47)

Xikjs + Xisik < Qikjs + Qisik (48)

Y= flpH2p+1f|2p92p+2X, i.e.,

Xigj1 -+ Xigjn,

Yi = SR (49)
xinpjl Xinpjnp

Y EEEDTYE®) >0 (50)

iGBp,leBp,l
where Y is a rank2p) tensor (hence;yis a matrix).

If (50) can be proved by a set of LMI sufficient conditions, then such conditions
jointly with (47)}49)are still an LMI problem stating sufficient conditions {@?3).

Proof. Note that, foi € I,_1, k € I, for any tensoil of rank greater thap:

Np Np
finTh = [k Tik = By ppkQ;
h;p h Th ie%lkzl ik Tik iE%I .k; okQik

Similarly, (43) may be written as:

Np Np
_ Y TO., .
©= ie%lje%l Hi 1 kZlS;Hkalst QikjsX (51)
Then, Lemma 1 can be applied to
Np Np T
O = kZlS;IkaUst QikjsX (52)
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considering andj as fixed, so that, if (47), (48) hold, then (considering the analo-
gous formulas to (16) and (17)):

Np Np

& = pj=) ZlUpkUstTXikjsX (53)

k=1s=

and, hence, building the matrig in (49),
pj =&Y & (54)

whereé = fli o(Up ®X) = (Hp1X1 ... Mp1Xn MUp2X1 - .. Ilpann) expressed as a
column vector. As the elements of the membership tensors are all positive, we have

©= > > mip (55)

iG]Ip,lj G]Ip,l
and the proof is complete. O

The above theorem is a generalisation of Theorem 1. It provides a sufficient condi-
tion which transforms computation of positivity conditions for a “douti@imensional
sum” (43) into computations with a “doub(g — 1)-dimensional sum” and larger
matrices (the size of; is (np-n) x (np-n), wherenis the size of the square matrices

Qj)-

From a computational point of view, recursive application of the above theorem al-
lows to reachp = 1, and directly applying Theorem 1 as a last step. Then, Theorem
2 allows to assert that (43) holds if a certamx ng matrix is positive definite.

Note that the size of the final matrix is the same as the one obtained by unfolding
(43) and applying Theorem 1: the number of elements of ten§ofsandQ are the
same, but arranged diferently. However, the larger number of relaxation variables
X in Theorem 2, with various sizes, allows to produce less conservative results as
the example in next section shows.

Recursive application of Theorem 2 for a rapKFP fuzzy system needs — 1
tensors of decision variables (of rang2 2, 2p, ..., 4). All of these tensors have
the same number of elements as the origial

5 Example

The following example illustrates the effectiveness of the new stability condition
(Theorem 2) compared to the usual approach in literatiege Theorem 1 applied
after unfolding to a standard fuzzy system. Consider a continuous fuzzy plant com-
posed of the following four rules:
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Ri1: IF X1 is M1 and x2 is Mp1 THEN X = Aj1X+ Bqqu
Ri2: IF X1 is M11 and X2 is My2 THEN X = Ajox+ Biou
Ro1: IF X1 is M12 and X2 is M>1 THEN X= Ao1X+ Boqu
Roo: IF X1 is M12 and X2 is M>> THEN X= AooX+ Boou

where

0.5 —-0.05 a

A= ,B11=
-5 0.1
-10 0 1

Ap = ,B1o=
0-10 0.2
-101 1

Ao1 = ,Bo1 =
0-2 0.4
b -0.01 1

Ao = ,Boo =

0 -3 0.05

represented by the equations:

2 2
X= > [(AX+BiU) = % > iy Haip (AigipX+ BigipU) (56)

i€l> i1=1lip=1

wherely = {1,2} x {1,2}. Membership functiong ti11, 12} and {1, oo} are
supposed to be fuzzy partitions on the domaimicdindx, respectively. Hence, the
system conforms to the definition of a rank-2 TPTS one. The shape of each of the
four membership functions is arbitrary as longas = 1 — 12 andps; = 1 — Lipo.

A stabilising PDC controller with 4 rules is to be designed; — ¥ <, [iFx. The
stabilization conditions expressed in the form (43) are obtained from (5) via a
change of variable [12], resulting in:

Qj =—ZA—A'Z+BiN +NB;i" (57)

wherei,j € Ip, andZ, N; are LMI decision variablesZ should be a symmetric
positive-definite matrix, and the PDC controller is providedFpy= N,Z 1.

The parameterain B11, andb in Ay, will take values in a prescribed grid, in order
to check the feasibility of the associated fuzzy control synthesis problem under two
different approaches.

Usual approach.A first possibility in order to design the above regulator would be
considering the fuzzy system to be a four-rule standard one (unfolding)Awith
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A11, A2 = A1o, Az = A1 andA4 = Ayp, using a similar notation foB, generating
Qij, i,j=1,...,4.

This well-known approach has been compared to the one proposed in this work.
Note that 16 Lyapunov matrices (57) are defined in both approaches, the only dif-
ference is how they are indexed (via two integer indices from 1 to 4, in the usual
approach; via two rank-2 indices of sigé, 2} x {1,2} in this work).

Proposed approach.Applying Theorem 2, expression (43) holds if there exist a
rank-6 tensor X from which matrice§y;s can be extracted so thafis = Xi;-k for
eachi,j €I, k;sely (I; =11 ={1,2}), and

X1 < Qigj1,  Xizj2 < Qigj2 (58)
Xizj2 + Xizj1 < Qigj2 + Qizjn (59)
Y, = Xizj1 Xigj2 (60)
Xizj1 Xigj2
% Hilh €Yy >0 (61)
i€B1j€By

Then, regarding the positivity &ficg, ¥jcp, Hi quTYij & Theorem 1 is directly ap-
plied, because andj are now one-dimensional indices: Theorem 1 requires the
existence of matrices; :V\/ijT for eachi, j € {1,2}, such that

Wit < Y11, Woo < Ya2» (62)
Wi2+Wo1 < Y12+ Y1 (63)
Wy W,
Wiz | 64)
Wo1 Woo

Note that the set of conditions (57) jointly with (58)—(60), (62)—(64) are LMIs.

ResultsFigure 1 shows the values aindb where a stabilising controller is found,
based on either Theorem 1 (after unfolding) or Theorem 2, using a suitable LMI
solver.

In this figure, theo mark indicates the existence of feasible stabilising regula-
tors proved by Theorem 1 (and, of course, also by Theorem 2)xtheark in-
dicates parameter values for which stabilizability is proved from Theorem 2, but
not from Theorem 1. Hence, substantially better results are obtaining by exploiting
the tensor-product structure of the four involved TS rules.
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Fig. 1. Parameter values for which feasible stabilising regulators are found: unfolding +
Theorem 14¢); Theorem 2¢, x).

Similar results are obtained when the methodology is applied to the nonlinear sys-
tem in Example 3 expressed as a rank-2 TPTS fuzzy system: the usual approach
does not find a stabilising controller, whereas the one proposed in this work does.

6 Conclusions

This paper has provided a generalisation of double-fuzzy summation results in lit-

erature to multiple summations with a tensor-product structure. Such structure is
indeed common in many fuzzy models and, hence, this paper allows for less conser-
vative results in fuzzy controller designs for such systems, as demonstrated in one
numerical example. Although, for simplicity, the chosen example only considers

stabilisation, the presented procedure applies to other more sophisticated perfor-
mance/robustness requirements, by considering well-known different choices for

Qjj -
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Appendix: Tensor and multi-index notation

Tensor calculus originated in 19th century physics as a way of working with multi-
linear transformations, even in non-Euclidean geometries [8]. When the multilinear
transformations have argumentsRA with the usual Euclidean metric and Hilbert
space structure, tensors may be considered as multi-dimensional arrays. This is the
case in this work.

In the definitions below, the notatidg will refer to array index sets in the form
lg=1{1,2,...,nq} for someng. Several values af will be used in defining multi-
dimensional arrays.

Definition 4 A tensor T is a multilinear application which can be represented as

a multidimensional array Te R'7**!p relative to the basis vectors being chosen

on each array dimension. The number p is denoteteasor rankWhen the ten-

sor structure is to be made explicit, the notatiqqx'.l'.ﬂp will be used, or even

Ty xnyx---xnp tO describe both the rank and the sizes on each dimension. The tensor
elements are real numbers, denoted by a lowercase symbol, indexed by a multi-
dimensional index variable (to be denotednaslti-indeX):

tiliz...ip 1§|q§ Ng; qzlaap (65)

Note that rank-1 tensors may be considered transpose«tersand rank-2 ones
are matrices In the same way that matrices can be considered as a collection of
vectors, a tensor can be considered a collection of lower-rank ones. On the sequel,
when a rankp tensorT € R'**!p js indexed by an index with less thgincom-
ponents, the result will be a tensor (thus, denoted by uppercase), symbolised by the
notation, forq < p:

Tigiy. iq € RI&-1 e (66)
For instance a rank-5 tensor may be considered as a 3-dimensional array of matrices
or a 4-dimensional array of vectors.

Definition 5 (Outer tensor product) . The outer tensor product ofdk....n, and
Ty x.xy, 1S 2 €NSOr Y, ..xnp s =U @ T, Where g = Ng: d=1,...,s. The ele-
ments of V are:

= Ui...ili (67)

V|1|p|p+l|p+s p+1...ip+s

Definition 6 (Multi-indices) On the following, boldface symbols will denote multi-
indices when its structure is clear from the context:

and, similarly, the cartesian product of index sets will be referred to by the notation:
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For instance, if either the dimensions have been suitably defined beforehand or they
are not relevant to a particular discussion, the elements referred to in (65) will be
denoted as;, i € I, for convenience. The multi-index will be said to have ramk

as the tensor it indexes.

Multi-indices of higher rank will also be represented by the juxtaposition of indices
of smaller rank. For instance, the elements of the tensor resulting from the outer
product in (67) will be denoted, when convenienty= uit;, for suitably defined
ielp,jels

The following definition extends the usual matrix product algnghared dimen-
e’
sions’ .

Definition 7 (product) The ordinary product of two tensors YR's<Ip and V €
RI»*Ta, which share the dimensiofig is a tensor Te R *!a which will be denoted
as T=U -,V whose elements are:

n. M Mp
Grrir = Gy ity = Z z z Uiry..i"sigip...ipVigip...ipiy...itp = z UiriVii/
i1=1lir=1 ip:l iEHp

The notation UV (or UV) will be used to represent the product with shared index
ofrank 1,i.,e,UV =U -V =U -1V (ifU andV are rank-2 tensors, UV is the usual
matrix product).

As an example of the use of the product notation, a quadratic fef@xin matrix
notation) may be expressed @ X) -2 Q.

Proposition 2 Given rank-p tensors A Ay, a rank-g tensor B and a rank-(pq)
tensor C, the ordinary product and the outer product verify:

ArL-pAr=Ar-p AL (70)
(A®B) prqC=Ap(CqB) (71)

Note that A -p Az is a real number, which is the generalisation of the vector scalar
product. For a rank-2 tensor (matrixyA-, A is the Frobenius norm.

Definition 8 (unfolding) The unfolding operation (“flattening”), denoted as flV
reduces the rank of a tensor&/R'1<*Irxxlex-xlp hy one, converting it to a new
tensor Ue RIv-xlrxxlg-1xlg1-xlp whose elements are given by:

(72)
’ There are other alternative definitions and notations for (inner) tensor products [3,1], as

the number and position of the shared dimensions may vary. The one presented here has
been adopted for convenience.
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where(ir — 1) = (jr — 1) xng+ (jq— 1),i.e, jr — 1is the integer part of the quotient
(ir —1)/ng, and(jq — 1) is the remainder.

As unfolding can be nested, successive applications of the operator can rearrange
the tensor as a matrix or even as a vector. The notation

will be later used.

Example 5 Consider the tensor of rank 3, with B= 2, n, = 3, nz = 2 given by:
tisisis = 211-1312-1513-1 Then,

153159 45
210630189

flo. 3T =
and
fli o 3T = fli2flo. 3T =(153159452 106 3018 90

Example 6 Unfolding a rank-3 tensor T may produce 6 different matriceg: $T,
fle. 3T, flo. 1T, flo. 3T, fl3. 1T and fk._>T. The n-mode matrix of a rank-p ten-
sor T (Definition 4 in [1]) is, for n> 2, the transpose of the matrix resulting from
the unfolding fi(—l(—3<—4<—vw<fnfl<—n+l<pr'

As unfolding is just a reordering of the tensor elements, it's easy to prove the fol-
lowing proposition (details omitted for brevity).

Proposition 3 The inner product of tensors remains invariant under unfolding on
any of the shared dimensions,.,

(flrqU) -p-1(flrqV) =U pV
In particular, the above proposition generalises the transformation from (17) to (18),
which used the fact that

(MRUBX®DX) -4 X = fli_3floc4(U® U @X®X) -2 flp3flo4X

There are many other definitions in tensor algebrenpde tensor-matrix products
[3,1], etc.) which are out of the scope of this paper. The reader is referred to the just
cited works and textbooks [8,15] for further information about tensor algebra.
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