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a b s t r a c t

Coagulation is an important component of water treatment. Determining the optimal coagulant dosage

is vital, as insufficient dosage will result in unqualified water quality. Traditionally, jar tests and

operators’ own experience are used to determine the optimum coagulant dosage. However, jar tests are

time-consuming and less adaptive to changes in raw water quality in real time. When an unusual

condition occurs, such as a heavy rain, the storm water brings high turbidity to water source, and the

treated effluent quality may be inferior to drinking water quality standards, because the conventional

operation method can be hardly in time to adjust to the proper dosage. An optimal modeling can be

used to overcome these limitations. In this paper, artificial neural network (ANN) and adaptive network-

based fuzzy inference system (ANFIS) models were used to model poly aluminum chloride (PAC) dosing

of northern Taiwan’s surface water. Each of them was built based on 819 sets of process-controlled data.

The performance of the models was found to be sufficient. Two simulation tools, ANN and ANFIS, were

developed that enabled operators to obtain real-time PAC dosage more easily. The self-predicting model

of ANFIS is better than ANN for PAC dosage predictions.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The treatment of drinking water provides multiple barriers to
protect public health by removing microorganisms and chemicals
that may cause illness to consumers. The removal of turbidity and
color to produce water that is aesthetically acceptable to
consumers is a very important component of water treatment.
Water treatment consists of a sequence of complex physical and
chemical processes; currently, in many water treatment plants
(WTP), process control is generally accomplished through exam-
ining the quality of the product water and adjusting the processes
through an operator’s own experience and jar tests. This practice
is inefficient and slow in controlling responses. With more
stringent requirements being placed on water treatment perfor-
mance, operators needed a reliable tool to optimize the process
controlling in WTP. Much of the difficulty in modeling water
treatment processes can be related to complex interactions
among many influential water quality factors, and many chemical
and physical reactions. In modeling water treatment processes,
the major challenge is to establish the nonlinear relationships
between the inputs and outputs of each process. In this paper,
one such tool is presented, which is a process control system
ll rights reserved.

: +886 2 23928821.
built with the artificial neural network (ANN) modeling or
adaptive network-based fuzzy inference system (ANFIS) modeling
approach.

The coagulation process is the most important in WTP. The
coagulant of WTP in this study is poly aluminum chloride (PAC).
Traditionally, optimum coagulant dosages are determined using
jar tests. However, jar tests are relatively expensive and time-
consuming. Consequently, jar tests are generally only carried out
periodically (Yu et al., 2000), which means that they are reactive,
rather than proactive, as coagulant dosage is continuously
changing when responding to the occurrence of water quality
problems. In addition, as a result of the amount of time it takes to
conduct jar tests, they cannot be used in responding to rapid
changes in raw water quality (Joo et al., 2000), and thus are not
suitable to real-time control (Yu et al., 2000).

In some previous studies, ANNs were used to develop process
models for simulating the alum dosing process. For example,
Zhang and Stanley (1999) and Baxter et al. (1999) developed ANN
models for predicting treated water turbidity and color, respec-
tively, at the Rossdale WTP in Edmonton, Alberta, Canada. Gagnon
et al. (1997) developed an ANN model for predicting the optimal
alum dosage for the Ste-Foy WTP in Quebec, Canada. Joo et al.
(2000) developed a similar model for Chungju WTP in Korea, and
van Leeuwen et al. (1999) developed an ANN model for the
prediction of optimal alum dosage based on jar tests conducted on
surface waters collected in southern Australia. Holger et al. (2004)
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used the same database as van Leeuwen et al. (1999) to predict
optimal alum dosage and treated water quality parameters.
Deveughele and Do-Quang (2004) developed SUEZ ENVIRONNE-
MENT, which was built by self-organizing features map and multi-
layer perceptron (MLP), to predict the optimal coagulant dosage in
the WTP, which is located at Viry in the vicinity of Paris. Bae et al.
(2006) developed the model in which the coagulant type was
determined by decision tree rules and dosage was estimated by
neural network models that perform mapping between the water
quality (e.g. pH, turbidity, alkalinity, water temperature, etc.) and
coagulants (e.g. PAC, PASS and PSO-M). Chen and Hou (2006)
developed a practical feedforward control system with fuzzy
feedback trim, which is presented for controlling the coagulant
dosage strategy of the Changhsing Water Purification Plant of
Taipei Water Department. Benardos and Vosniakos (2007) devel-
oped a methodology for determining the best architecture that is
based on the use of a genetic algorithm (GA) and the development
of novel criteria that quantify an ANN’s performance (both
training and generalization) as well as its complexity.

In all of the above studies, the model inputs consisted of raw
water parameters, whereas the model output was the optimal
alum dosage needed to achieve the desired treated water quality.
Zhang and Stanley (1999) included the turbidity of the treated
water as an input in addition to a number of raw water quality
parameters in their ANN model for predicting the optimal alum
dosage at the Rossdale WTP. Yu et al. (2000) did the same in their
model for the prediction of optimal alum dosage at a WTP in
Taipei City, Taiwan. Chun et al. (1999) used the ANFIS for
coagulant dosing process in a water purification plant.

In all of the above studies, the raw water quality was more
stable, not changing, e.g. when an unusual condition occurs, such as
a heavy rain, the storm water brings high turbidity to water source.
Otherwise, when influent water does not provide information on
water quality, the predicting model cannot be used. Based on these
concepts, a project was initiated to study the potential capacity of
ANN and ANFIS process control in WTP. This study was conducted
at the WTP in Taipei County, Taiwan, having a water purification
capacity of 1,200,000 CMD. The objective of this study was to select
a section of the water treatment processes, collect real operational
data, build, and test the ANN and ANFIS predicting model. The
treatment processes include the coagulation, flocculation, sedimen-
tation, filtration, and disinfection process (Fig. 1).

In this paper, the principal concepts of using the ANN and
ANFIS in the water treatment modeling and process control are
introduced. The ANN and ANFIS focus on finding a repeated,
recognizable, and predictable pattern(s) between the causes and the
Distribution 
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Fig. 1. The WTP in Taipei Country, Taiwan Layout.
effects from the past operation data records. The ANN and ANFIS
modeling approach does not require a description of how the
processes occur in either the micro- or macro-environments, but
only the knowledge of important factors that governed the process.
This situation makes the ANN and ANFIS modeling approach a
rational choice for process modeling and controlling in water
treatment. Once reliable ANN and ANFIS process models are
developed, it can be integrated into a process-controlled architecture.
2. Methodology

2.1. Data collection

In this research, both ANN and ANFIS models that were
developed are capable of assisting treatment plant operators with
determining real-time PAC dosage for WTP in Taipei County, Taiwan.
The WTP in this study is a conventional treatment facility consisting
of coagulation, flocculation, sedimentation, and filtration.

In order to obtain the input/output data required to develop
and validate ANN and ANFIS models, water samples were
collected from WTP in Taipei County, Taiwan. The desired water
quality parameters were measured, including the turbidity, pH,
color, and temperature of each raw, flocculation, sedimentation,
and treated water (Table 1).

2.2. The index

Inputs to the model predicting PAC dosage parameters were
the water quality parameters of each process in a WTP and prior
PAC dosage. The model output was the PAC dosage. The input
parameters include the PAC dosage of yesterday, PAC dosage
before yesterday, and the temperature, turbidity, color, pH in each
of the raw, flocculation, sedimentation, and treated water. The
input parameters were decided on the Pearson factor (r) with the
real-time PAC dosage:

r ¼
n
P
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y
� �
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where n is the number of data, x, y are the values of parameters. In
this study, x was the input parameter and y was the output
parameter. The Pearson factor of each input and output was
calculated as shown in Table 2.

A root-mean-square normalized error (RMSE) is used as a
performance index to compare the prediction capability of ANN
trained by each data set. The RMSE is known to be descriptive
when the prediction capability among predictors is compared
(Zurada, 1992):

RMSE ¼
1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðop � odÞ
2

vuut (2)

where n is the number of data, op is the predicted value and od is
the real operating value.

The correlation coefficient (R2) indicator compares the perfor-
mance of the model with that of a naive benchmark model, the
output of which is the mean of all samples (Baxter et al., 1999). It
can therefore be used to compare the relative performance of the
models for different model outputs.

2.3. ANN model

The 819 data points were divided into two subsets using the
method proposed. These subsets are: (i) a training set for
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Table 1
The water quality of each process of the WTP in Taipei County, Taiwan

Water sample Raw water Flocculation water Sedimentation water Treated water

Sampling point Distribution Flocculation Sedimentation Reservoir

Temperature (1C) 22.1a 22.1 22.1 22.1

(12–31)b (12–31) (12–31) (12–31)

Turbidity (NTU) 60.4 60.5 4.2 1.6

(3.4–1950) (1.8–2100) (0.6–25) (0.3–16)

Color (HU) 17.9 16.0 5 5

(5–375) (1–350) (1–8) (1–5)

pH 7.8 7.3 7.2 7.2

(7–8.9) (6.3–7.9) (6.4–7.9) (6.3–7.9)

a Average of data.
b Ranges of data.

Table 2
The Pearson factor of each input and output

Tem. Turbidity Color pH

PAC RW FW SW TW RW FW SW TW RW FW SW TW

PAC 1.000 0.133 0.608 0.596 0.302 0.410 0.496 0.500 0.002 0.026 �0.109 �0.424 �0.469 �0.489

Tem. 1.000 0.086 0.080 �0.152 �0.158 0.162 0.163 �0.010 0.015 0.251 �0.310 �0.296 �0.221

Turbidity RW 1.000 0.964 0.483 0.435 0.628 0.628 0.006 0.014 0.018 �0.368 �0.379 �0.414

FW 1.000 0.513 0.415 0.611 0.614 0.005 0.013 0.008 �0.379 �0.390 �0.430

SW 1.000 0.344 0.289 0.282 �0.037 �0.032 �0.018 �0.177 �0.187 �0.253

TW 1.000 0.161 0.153 �0.001 0.032 �0.116 �0.291 �0.319 �0.328

Color RW 1.000 0.991 0.010 0.023 0.045 �0.283 �0.338 �0.392

FW 1.000 0.008 0.021 0.062 �0.263 �0.317 �0.366

SW 1.000 0.800 �0.069 0.026 0.016 0.012

TW 1.000 �0.099 �0.029 �0.031 �0.047

pH RW 1.000 0.385 0.368 0.417

FW 1.000 0.953 0.904

SW 1.000 0.939

TW 1.000

PAC: the PAC dosage, Tem. : temperature, RW: raw water, FW: flocculation water, SW: sedimentation water, TW: treated water.

Table 3
The input of each ANN model

Group Parameter PAC (t�2) PAC (t�1) RWT (t) FWT (t) RWC (t) FWC (t)

r 0.749 0.822 0.608 0.596 0.496 0.500

Code

ANN1 AN001 I I I I

AN002 I I I

AN003 I I

AN004 I

AN005 I

ANN2 AN001n I I I I I

AN002n I I I I

AN003n I I I

AN004n I I

AN005n I I

ANN3 AN001nn I I I I I I

AN002nn I I I I I

AN003nn I I I I

AN004nn I I I

AN005nn I I I

ANN4 AN006n I

AN006nn I I

PAC (t�1): the PAC dosage yesterday, PAC (t�2): the PAC dosage before yesterday,

RWT (t): the turbidity of raw water today, FWT (t): the turbidity of flocculation

water today, RWC (t): the color of raw water today, FWC (t): the color of

flocculation water today; r: the Pearson factor between PAC (t) and each

parameter.
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adjusting the connection weights, and (ii) a testing set for
checking the model ability. The databases were divided into 699
and 120 data points in the training and testing sets, respectively.
The input data were scaled linearly between 0.0 and 1.0 to be
commensurate with the limits of the transfer function in the ANN
output layer (sigmoidal). The training epochs were 1000 times.
According to Pearson factor, the number of model inputs used in
this study ranged from 1 to 6. There were 17 models in this study
(Table 3).

The ANN architecture consisted of a MLP. MLPs have already
been used successfully for the prediction of coagulant dosage
(Baxter et al., 1999). The optimum number of hidden layers and
the optimum number of nodes in each of these was found by trial
and error. Although it has been proven that a network with one
hidden layer can approximate any continuous function, given
sufficient degrees of freedom (Hornik et al., 1989), other studies
have also suggested similar ideologies. Therefore, the use of one
hidden layer was considered.

The optimum number of hidden layer nodes was also found by
trial and error. The maximum number of nodes considered in each
hidden layer was 2I+1, where I is the number of model inputs, as
this has been shown to be the upper limit required to model any
continuous function for networks with one hidden layer (Hecht-
Nielsen, 1987). This was considered reasonable, as similar
relationships are not available for networks with more than one
hidden layer.

The models were calibrated using the back-propagation (BPN)
algorithm, as it has already been used successfully for the
prediction of coagulant dosage (van Leeuwen et al., 1999) and
has the ability to escape local minima in the error surface (White,
1989). Optimal values on the parameters of controlling the size
of the steps taken in weight space as part of the BPN algorithm
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(i.e. learning rate and momentum values) were found by trial and
error. Cross-validation was used as the stopping criterion to avoid
overfitting of the training data.

The models were validated using the 120 validation samples in
order to test the generalization ability of the models over the
range of the data used for training. It should be noted that the
validation data were not used in the model development process
in any capacity. As the test set was used to determine the optimal
network geometry, parameters of controlling the BPN algorithm
and to decide when to stop training.

2.4. ANFIS model

The adaptive ANFIS was developed by Jang (1993). The
architecture of the ANFIS is shown in Fig. 2. Generally,
the premise parameters are tuned by BPN at the backward pass
in the ANFIS model. By using this BPN learning procedure, we can
minimize the error between the desired output and the fuzzy
model output. In another application study, Inan and Elif Derya
(2005) used an adaptive neuro-fuzzy inference system for
detection of ophthalmic arterystenosis, and the results confirmed
input outputmf rule

Layer1 Layer2 Layer3 Layer4 Layer5 

inputmf output 

Fig. 2. The structure of ANFIS when the inputs were two.

Table 4
The input of each ANFIS model

Group Parameter PAC (t-2) PAC (t-1) RWT (t) FWT (t) RWC (t) FWC (t)

r 0.749 0.822 0.608 0.596 0.496 0.500

Code

ANFIS1 FN001 I I I I

FN002 I I I

FN003 I I

FN004 I

FN005 I

ANFIS2 FN001n I I I I I

FN002n I I I I

FN003n I I I

FN004n I I

FN005n I I

ANFIS3 FN001nn I I I I I I

FN002nn I I I I I

FN003nn I I I I

FN004nn I I I

FN005nn I I I

ANFIS4 FN006n I

FN006nn I I
that the proposed ANFIS classifier has potential in detecting the
ophthalmic arterystenosis.

In order to evaluate the resultant model of ANFIS that is not
biased toward the training data set and is likely to have a better
generalization capacity to new data, the data sets were divided
into training and testing data sets. The databases were divided
into 699 and 120 data points in the training and testing sets,
respectively. When the consequent part of ANFIS is composed of
Sugeno-type fuzzy rule with the first-order linear equation, and
three membership functions are used for each input parameters,
and the membership function was Gaussian function. The
training’s epochs were 200 times. According to Pearson factor,
the number of model inputs used in this study ranges from 1 to 6,
where this study consists of 17 models (Table 4).
3. Results and discussion

3.1. ANN model

All ANN models can be divided into four groups including
ANN1, ANN2, ANN3, and ANN4 group (Table 3). The input
parameters of each ANN1 model were the different water quality
parameters not including PAC dosage factor. The input parameters
of both ANN2 and ANN3 models were the same as ANN1, besides
PAC dosage factor. The difference between ANN1’s and ANN2’s
input parameters were the PAC dosage of yesterday. The difference
between ANN1’s and ANN3’s input parameters were the PAC
dosage of yesterday and before yesterday. The input parameters of
ANN4 were the PAC dosage of yesterday and before yesterday. The
R2 and RMSE of each model are shown in Fig. 3.

When the input parameters were only used as the water
quality parameters, the predicting ability of models was lower
than the input parameters, including PAC dosage factor. The group
of ANN2 model was better than the group of ANN1 model.
Because the group of ANN2 model was better than the group of
ANN3 model, it was evident that the input parameters that were
used by PAC dosage of yesterday were better than PAC dosage of
yesterday and before yesterday.

The R2 of model is above 0.85, including the seven models as
shown in Table 5. The optimal coagulant predicting model was the
inputs including the turbidity of raw water and the PAC dosage of
yesterday. The R2 and RMSE were 0.9256 and 0.00356, respec-
tively, as shown in Fig. 4. The optimal self-predicting model was
when the inputs were PAC dosage of yesterday and the PAC dosage
before yesterday. The R2 and RMSE were 0.8685 and 0.00424,
respectively.
3.2. ANFIS model

All ANFIS models can be divided into four groups, including
ANFIS1, ANFIS2, ANFIS3, and ANFIS4 (Table 4). The input
parameters of each ANFIS1 model were the different water quality
parameters not including PAC dosage factor. The input parameters
of each ANFIS2 and ANFIS3 model were the same as ANN1 other
than PAC dosage factor. The difference between ANFIS1 and
ANFIS2 was the input parameter of PAC dosage of yesterday.
Otherwise the difference between ANFIS1 and ANFIS3 were the
input parameters were of PAC dosage of yesterday and before
yesterday. The input parameters of ANFIS4 were the PAC dosage of
yesterday and before yesterday. The R2 and RMSE of each model
are shown in Fig. 3.

When the input parameters were only used as the water
quality parameters, the predicting ability of models was lower
than the input parameters including PAC dosage factor. The group
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Fig. 3. The R2 and RMSE of each model: (a) the R2 and (b) the RMSE.

Table 5
The better model of ANN

PAC (t�2) PAC (t�1) RWT (t) FWT (t) FWC (t) R2 RMSE

r 0.749 0.822 0.608 0.596 0.500

AN005n I I 0.9256 0.00356

AN004nn I I I 0.9125 0.00483

AN005nn I I I 0.9086 0.00476

AN003n I I I 0.8908 0.00717

AN004n I I 0.8778 0.00545

AN006nn I I 0.8685 0.00424

AN002n I I I I 0.8623 0.00650

AN005n, AN004nn, AN005nn, AN003n, AN004n, AN006nn, AN002n: the code of

ANN model.
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of ANFIS2 model was better than the group of ANFIS1 model.
Because the group of ANFIS2 model was better than the group of
ANFIS3 model, it was shown that the input parameter was used by
the PAC dosage of yesterday better than the PAC dosage yesterday
and before yesterday.

The R2 of model is above 0.85, including 6 models as shown
in Table 6. The optimal coagulant predicting model was the
inputs including the turbidity of raw water and the PAC dosage
of yesterday. The R2 and RMSE were 0.8955 and 0.00360,
respectively, as shown in Fig. 5. The optimal self-predicting
model was when the input was PAC dosage of yesterday.
The R2 and RMSE were 0.8744 and 0.00394, respectively, as
shown in Fig. 6.



ARTICLE IN PRESS

0

50

100

150

200

250

300

1

Time(day)

PA
C

 d
os

ag
e(

m
g

/L
) Actual data

Learning data

0

50

100

150

200

1

Time(day)

PA
C

 d
os

ag
e(

m
g

/L
) Actual data

Prediction data

64955 109 163 217 271 325 379 433 487 541 595

11 21 31 41 51 61 71 81 91 101 111

Fig. 4. The optimal model of ANN; the inputs were PAC (t�1) and RWT (t): (a) the

learning sets, and (b) the predicting sets.

Table 6
The better model of ANFIS

PAC (t-2) PAC (t-1) RWT (t) FWT (t) R2 RMSE

r 0.749 0.822 0.608 0.596

FN005n I I 0.8955 0.00360

FN004n I I 0.8822 0.00382

FN005nn I I I 0.8821 0.00399

FN006n I 0.8744 0.00394

FN006nn I I 0.8667 0.00415

FN004nn I I I 0.8655 0.00422

FN005n, FN004n, FN005nn, FN006n, FN006nn, FN004nn: the code of ANFIS model.
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3.3. The comparison of ANN and ANFIS model

The ANN2 model group was the best group out of ANN model
and ANFIS model, where it achieved higher R2 and better RMSE in
the solution (Fig. 3). This was evident as the ANN model usually
achieves better performance when the input parameters include
the water quality and the PAC dosage of yesterday. It means ANN
model is suitable to predict the coagulant dosage when the storm
water brings high turbidity to water source.

The ANFIS4 model group was better than ANN4 model group,
because there was higher R2 and better RMSE in the solution. The
optimal self-predicting model was built upon ANFIS tools. This
lets ANFIS model be suitable to predict the coagulant dosage
when influent water does not provide information on water
quality.
3.4. The application of ANN and ANFIS model

The application of neural network model to WTP is successful.
When the storm water brings high turbidity to water source, the
optimal coagulant predicting model by ANN, which has inputs
including the turbidity of raw water and the PAC dosage of
yesterday, can predict the coagulant dosage. Otherwise, when
there is no information about the influent water, the optimal self-
predicting model by ANFIS, where the input is PAC dosage of
yesterday, can predict the coagulant dosage. Thus it is possible to
perform a multivariant design of water treatment alternatives by
using the proposed model and system and enabling the user to
make computer-aided design using a lot of water treatment
alternatives.
4. Conclusions

In this study, the ANN and ANFIS models are used to obtain the
optimal predicting model for the optimal PAC dosing in real time.
The ANN model is better than the ANFIS model to be used to
achieve the optimal predicting model for the optimal PAC dosing
in real time when the storm water brings high turbidity to water
source. The parameters of optimal model can be decided via
Pearson factor, which can reduce the quantity of input parameters,
and the calculation is done more quickly. In the self-predicting
model, ANFIS tools are shown to have better performance than
those of ANN, because they can only be used as one input
parameter to obtain higher R2 and better RMSE in the solution.
The operator in WTP can use PAC self-predicting model to
determine the PAC dosage daily when influent water does not
provide information on water quality. Thus it is possible to
perform a multivariant design of water treatment alternatives by
using the proposed model and system and enabling the user to
make computer-aided design by a lot of water treatment
alternatives.
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