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a b s t r a c t

This paper presents a new approach to design controllers for time-delay systems by using genetic

algorithms (GAs) together with the solvability of linear matrix inequalities (LMIs). Both of the state-

feedback controller and the static output feedback controller can be designed with this approach. It is

confirmed by numerical examples that this approach achieves less conservative results than previously

existing methods on the given examples.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, much efforts have been done on the problem of
controller design for time-delay systems and various approaches
have been proposed to reduce the conservatism of delay-
dependent conditions by using new bounding for cross terms or
choosing new Lyapunov–Krasovskii functional. In particular, a
new inequality was introduced for bounding cross terms and a
new delay-dependent stabilisation condition using a memoryless
controller for state-delayed systems were presented in Moon et al.
(2001). It was shown that the proposed stabilisation method can
be less conservative than previously existing results. In addition, a
less conservative delay-dependent H1 control was proposed in
Lee et al. (2004) for linear systems with a state-delay based on a
new Lyapunov–Krasovskii functional. It was also shown that the
proposed method is much less conservative than previously
existing results presented in Fridman and Shaked (2002a). Further
improving conditions for the delay-dependent stabilisation
problem and the solvability of the delay-dependent H1 control
are given in Zhang et al. (2005), Palhares et al. (2005) and Xu et al.
(2006), etc., where the newly less conservative results are shown.

However, in above-mentioned research works, controller
synthesis conditions are always presented in terms of nonlinear
matrix inequalities in order to reduce the conservatism. Although
an iterative algorithm has been developed to solve the nonlinear
matrix inequalities due to the nonconvex feasibility problem, the
conservativeness still exists since the iterative algorithm can only

find the suboptimal solution. On the other hand, for neutral
systems with time-delays, genetic algorithm (GA) has been used
to find the feasible solutions for controller design (Chen, 2004,
2006, 2007; Lien, 2007). But, the potential of GA in finding
solutions to time-delay systems has not been emphasised in these
works. In addition, the above-mentioned works only focused on
the memoryless state-feedback control. Less efforts have been
made in designing the static output feedback controllers for time-
delay systems in spite of its importance in real-world applications.

This paper develops an algorithm to design both of the state-
feedback and the static output feedback controllers for time-delay
systems. The GA is used to search for the possible solutions due to
its high potentialities in global optimisation, and hence, the
nonlinear matrix inequalities problem is avoided, where convex
optimisation algorithm can be used. Numerical examples show
that the presented approach obtains less conservative results than
the previously existing results on the given examples.

2. Problem formulation

Consider the following state-delayed systems:

_xðtÞ ¼ AxðtÞ þ BwwðtÞ þ A1xðt � tÞ þ BuðtÞ,

zðtÞ ¼

C0xðtÞ þ DwwðtÞ

C1xðt � tÞ

DuðtÞ

2
664

3
775,

yðtÞ ¼ CxðtÞ,

xðtÞ ¼ fðtÞ; t 2 ½�t;0�, (1)

where xðtÞ 2 Rn is the state, uðtÞ 2 Rm is the control input, wðtÞ is
the disturbance input that belongs to L2½0;1Þ; zðtÞ is the controller
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output, t40 is the delay of the system state, fðtÞ is the initial
condition, A, A1, B; Bw, C0, C1, D, Dw and C are known real constant
matrices with appropriate dimensions. In this paper, we are
considering the following two problems:

Problem 1 (Stabilisation of state-delayed system). Assume B ¼ 0,
C0 ¼ 0, Dw ¼ 0, C1 ¼ 0; D ¼ 0 in (1), we are interested in designing
a memoryless controller

uðtÞ ¼ KyðtÞ ¼ KCxðtÞ, (2)

where K 2 Rm�n is a constant gain matrix to be designed, such
that the closed-loop system is stable for any time-delay t
satisfying 0ptpt̄; where t̄ is the designed upper bound of the
delay.

Theorem 1. If there exist P40, Q40, Z40, X, and Y such that

ðAþ BKCÞTP þ PðAþ BKCÞ þ t̄X þ Y þ YT
þ Q �Y þ PA1 t̄ðAþ BKCÞTZ

� �Q t̄AT
1Z

� � �t̄Z

2
64

3
75o0,

(3)

X Y

� Z

� �
X0, (4)

then Problem 1 is satisfied.

The proof of this theorem, which can be directly derived from
Moon et al. (2001), is omitted here for brevity.

Problem 2 (H1 control of linear system with state delay). For
system (1), we are interested in designing controller (2) such that
the closed-loop system is stable, while the closed-loop system
guarantees, under zero initial condition, kzðtÞk2ogkwðtÞk2, g40 is
a prescribed constant, for all wðtÞ 2 L2½0;1Þ and any time-delay t
satisfying 0ptpt̄:

Theorem 2. If there exist P140, Q40, Z40, P2, P3, X11, X12, X22,
Y1, and Y2 such that

C11 PT
0

A1

" #
�

Y1

Y2

" #
PT

0

Bw

" #
þ

CT
0D

0

" #

� �Q þ CT
1C1 0

� � �g2I þ DT
wDw

2
666664

3
777775o0, (5)

X11 X12 Y1

� X22 Y2

� � Z

2
64

3
75X0, (6)

where

C11 ¼

ðAþ BKCÞTP2 þ PT
2ðAþ BKCÞ þ t̄X11 ðAþ BKCÞTP3 � PT

2

þQ þ CT
0C0 þ ðDKCÞTDKC þ Y1 þ YT

1 þPT
1 þ t̄X12 þ YT

2

PT
3ðAþ BKCÞ þ P1 � P2 þ t̄XT

12 þ Y2 �P3 � PT
3 þ t̄X22 þ t̄Z

2
6664

3
7775,

P ¼
P1 0

P2 P3

" #
,

then Problem 2 is satisfied.

The proof of this theorem, which can be directly derived from
Lee et al. (2004), is omitted here for brevity.

3. Algorithm

GA is a probabilistic search procedure based on the mechanism
of natural selection and natural genetics. In the following, an

algorithm which combines the random search of GA and the
feasible solution of linear matrix inequalities (LMIs) will be
proposed to find a desirable controller gain matrix K by solving
the maximisation problem of

max
K2Rm�n

t̄ subject to LMIs ð3Þ and ð4Þ or ð5Þ and ð6Þ, (7)

where n is the number of state variables used for control, m is the
number of input. In this problem, GA is used to randomly generate
a matrix K 2 Rm�n initially which changes thereafter within the
evolution procedure according to objective (7). If (7) is feasible for
an evolved K ; which has the maximum t̄; then this K satisfies the
specifications and thus constitutes a solution to the design
problem. Note that the matrix inequalities (3)–(6) are LMIs once
the control gain matrix K is known, and these LMIs can be solved
efficiently by using Matlab LMI toolbox.

Since the standard GAs can be found in most related textbooks,
an outline of our algorithm is given as:

Step 1: Use the binary string to encode the feedback gain
matrix K.

Step 2: Randomly generate an initial population of Np

chromosomes.
Step 3: Evaluate the objective and assign fitness. Decode the

initial population produced in Step 2 into real values for every
controller gain matrix Kj; j ¼ 1;2; . . . ;Np. For every Kj, use the
bisection method to search for the maximum delay tj such that
with such a delay tj and Kj, LMIs (3) and (4) or (5) and (6) are
feasible. Take every delay tj as the objective value corresponding
to Kj and associate every Kj with a suitable fitness value according
to rank-based fitness assignment approach, and then go to Step 4.
If for a Kj; there is no feasible delay can be found such that LMIs
(3) and (4) or (5) and (6) are feasible, the objective value
corresponding to Kj will be assigned a large value in order to
reduce its opportunity to be survived in the next generation.

Step 4: Use tournament selection approach to choose the
offspring.

Step 5: Perform uniform crossover with probability pc to
produce new offspring.

Step 6: Do bit mutation in the population of chromosomes with
a small mutation probability pm.

Step 7: Retain the best chromosomes in the population using
elitist reinsertion method.

Steps 3–7 correspond to one generation. The evolution process
will repeat for Ng generations or will end when the search process
converges with a given accuracy. The best chromosome is decoded
into real values to produce again the control gain matrix.

Remark 1. In this paper, two problems for time-delay systems are
considered and one computational algorithm is presented. For the
considered problems, the systems are assumed as certain systems,
that means, the systems have no parameter uncertainties. Since
system uncertainties cannot be ignored in practice, robust
controllers should be designed to tolerate both the time-delays
and the system uncertainties. Generally, for stabilisation and
control of uncertain systems with time-delays, the related matrix
inequalities are firstly derived based on the use of Lyapunov–
Krasovskii functional or other techniques. Then, an iterative
algorithm is used to find the possible suboptimal solutions. And,
the parameter uncertainties dealt with are assumed as norm-
bounded or polytopic type (Moon et al., 2001; Lee et al., 2004; Xu
et al., 2006; Palhares et al., 2005). In fact, for these problems, the
presented algorithm can be certainly used to replace the iterative
algorithm for finding solutions based on the derived matrix
inequalities. For brevity, these problems will not be discussed in
this paper.
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4. Examples

The basic GA parameters used in this paper are as follows:
Np ¼ 80, pc ¼ 0:8, pm ¼ 0:01, Ng ¼ 50.

Example 1. For Problem 1, we set A ¼ 0
0

0
1

� �
; A1 ¼

�2
0
�0:5
�1

� �
; and

B ¼ 0
1

� �
. Using our algorithm, we obtain different results as

compared with the existing results in Table 1. It can be seen that
our approach can obtain more larger delay for the state-feedback
case than the existing methods. As expected, we can find the static
output feedback controllers with appropriate delays as well.

Example 2. For Problem 1, considering the system matrices as
A ¼ 0

0
0
1

� �
; A1 ¼

�1
0
�1
0:9

� �
, B ¼ 0

1

� �
. The comparison results between

our method and other existing methods are listed in Table 2.
Clearly, our method produces much less conservative result.
As another illustration, the time response of the closed-loop
system subject to the constant time-delays of 6 and 33.2207 s

when considering the controllers ½�70:18 � 77:67� and
½�96:1294 � 97:4899�, respectively, and the initial state
xð0Þ ¼ 1, are plotted in Fig. 1. It is not hard to see the better
stabilising performance of our approach.

Example 3. For Problem 2, we set A ¼ 0
0

0
1

� �
, A1 ¼

�1
0
�1
0:9

� �
,

Bw ¼
1
1

� �
, B ¼ 0

1

� �
, C0 ¼ ½0 1�, D ¼ 0:1, Dw ¼ 0 and compare our

results with the existing results in Table 3. It can be seen that for
the same performance bound g, our method can find the state-
feedback controllers that allow larger delays than the existing
methods. Even for some obtained static output feedback con-
trollers, they can allow larger delays under the same performance
bound as well. Furthermore, it is noted that the state-feedback
gains obtained by our method are all smaller than the corre-
sponding ones presented in Lee et al. (2004), Xu et al. (2006)
and Palhares et al. (2005) since we can naturally constrain the
search range for the controller gain in our algorithm. The unit
impulse time response of the closed-loop system subject to
the constant time-delays of 6 and 9.8185 s when considering the
controllers ½�279:35 � 343:63� and ½�261:2491 � 282:4425�,
respectively, are plotted in Fig. 2. From Fig. 2, it can be seen that
under the constant time-delay 6 s, our controller ð½�261:2491 �
282:4425�Þ can achieve better performance than controller
½�279:35 � 343:63�, which was obtained in Palhares et al.
(2005). Even under the constant time-delay 9.8185 s, our
controller can still stabilise the system without much decrease
in performance. The better performance of our approach is easily
observed.
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Table 1
Comparison results for different stabilisation controllers, Example 1

Methods Maximum t̄ allowed Feedback gain matrix K C matrix

Moon et al. (2001) 0:383 ½�0:8266 � 3:0988� I2�2

Moon et al. (2001) 0:45 ½�4:8122 � 7:7129� I2�2

Our method 1:0186 ½�8:0171 � 2:4245� I2�2

Our method 0:4999 �0:4564 ½0 1�

Our method 0:2881 4:909 ½1 0�

Table 2
Comparison results for different stabilisation controllers, Example 2

Methods Maximum t̄ allowed Feedback gain matrix K C matrix

Fridman and Shaked (2002b) 1.51 ½�58:31 � 294:9� I2�2

Gao and Wang (2003) 3.2 ½�7:964 � 14:77� I2�2

Zhang et al. (2005) 6 ½�70:18 � 77:67� I2�2

Our method 33.2207 ½�96:1294 � 97:4899� I2�2

0 50 100 150 200 250 300 350 400 450 500
-2

-1

0

1

2

x(
t)

Time (s)

0 50 100 150 200 250 300 350 400 450 500
-5

0

5

x(
t)

Time (s)

Fig. 1. Time response of closed-loop system with controllers ½�96:1294 � 97:4899� (solid line) and ½�70:18 � 77:67� (dotted line) when xð0Þ ¼ 1 for time-delay t ¼
6:000 s (top) and t ¼ 33:2207 s (bottom).
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5. Conclusion

This paper presents an algorithm in designing delay-dependent
memoryless controllers for time-delay systems. By using GAs to
search for the possible controller gain and solving a set of LMIs,
the required controller gain matrix can be determined. Some
structure-specified controllers can be obtained as well. Although
somewhat computational efforts are required to obtain such
controllers, the obtained results on the numerical examples are
less conservative than those obtained by previously existing
methods in that the obtained controllers allow larger delays
bound under the same performance requirements.
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Comparison results for different H1 controllers, Example 3

Methods Given g Maximum t̄ allowed Feedback gain matrix K C matrix
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Fig. 2. Unit impulse time response of closed-loop system with controllers ½�261:2491 � 282:4425� (solid line) and ½�279:35 � 343:63� (dotted line) for time-delay

t ¼ 6:000 s (top) and t ¼ 9:8185 s (bottom).
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