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ABSTRACT 

 
This paper proposes a multi-section vector quantization approach for on-line signature recognition. We 

have used the MCYT database, which consists of 330 users and 25 skilled forgeries per person 

performed by 5 different impostors. This database is larger than those typically used in the literature. 

Nevertheless, we also provide results from the SVC database. 

Our proposed system outperforms the winner of SVC with a reduced computational requirement, which 

is around 47 times lower than DTW. In addition, our system improves the database storage requirements 

due to vector compression, and is more privacy-friendly as it is not possible to recover the original 

signature using the codebooks. Experimental results with MCYT provide a 99.76% identification rate 

and 2.46% EER (skilled forgeries, individual threshold). Experimental results with SVC are 100% of 

identification rate and 0% (individual threshold) and 0.31% (general threshold) when using a two-

section VQ approach. 

 

Keywords: on-line signature recognition, vector quantization, DTW. 

 

1. INTRODUCTION 

 

Handwritten signatures have a long tradition of use in commonly encountered verification tasks 

such as financial transactions and document authentication. They are easily used and well 

accepted by the general public, and signatures are straightforward to obtain with relatively 

cheap devices. These are important advantages of signature recognition over other biometrics. 

Yet, signature recognition also has some drawbacks: it is a difficult pattern recognition problem 

due to possible large variations between different signatures made by the same person. These 

variations may originate from instabilities, emotions, environmental changes, etc, and are 

person dependent. In addition, signatures can be forged more easily than other biometrics. 

 

The signature recognition task can be split into two categories depending on the data 

acquisition method: 

 

• Off-line (static), the signature is scanned from a document and the system recognizes the 

signature, analyzing its shape (Tylan, 2009; Frias-Martinez, 2006). 
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• On-line (dynamic), the signature is acquired in real time by a digitizing tablet and the 

system analyzes shape and the dynamics of writing, using for example: position with 

respect to the x and y axes, pressure applied by the pen, etc. 

Using dynamic data, further information can be extracted, such as acceleration, velocity, 

curvature radius, etc. (Plamondon, 1989). In this paper, we will focus on the online (dynamic) 

signature recognition task. 

 

For a signature verification system, depending on the test conditions and environment, three 

types of forgeries can be established (Plamondon, 1989): 

 

• Simple forgery, where the forger makes no attempt to simulate or trace a genuine signature. 

• Substitution or random forgery, where the forger uses his/her own signature as a forgery. 

• Freehand or skilled forgery, where the forger practices imitating as closely as possible the 

static and dynamic information of the signature to be forged. 

 

From the point of view of security, the last one is the most damaging and, for this reason, some 

databases suitable for system development include some trained forgeries (Ortega-Garcia et al, 

2003; Yeung et al, 2004). 

 

The remaining sections of this paper will be devoted to the task of dynamic signature 

recognition. Section 2 looks at our proposal in greater detail, showing the similarities and 

differences with other related works. The experimental setup is shown in Section 3. The results 

can be seen in Section 4, as well as a comparison with other proposals. Finally, the conclusions 

and future work can be seen in Section 5. In the Appendixes show the VQ and DTW algorithms 

(appendix 1 and 2 respectively) and the computation burden comparison between our proposal 

and the state-of-the-art system (appendix 3).     

 

2. SIGNATURE RECOGNITION BASED ON VQ 

 

In this section we present several vector quantization algorithms for on-line signature 

recognition. 

 

It has recently been found that the Dynamic Time Warping algorithm outperforms HMM for 

signature verification (Houmani et al., 2009). For this reason, we will use DTW as the baseline 

algorithm for performance comparison. 

 

Appendix 2 describes the DTW algorithm. In our case, we will use five signatures per person, 

acquired during enrollment. DTW works out the distance between the test set of vectors and 

each of the five training sets. 

 

Distance computation implies a warping by means of dynamic programming. We compute five 

distances, each one being the result of comparing the test sequence with each of the five training 

repetitions. These five distances are combined using different approaches, such as min{}, 

mean{}, and median{}, in order to obtain the final distance. A more detailed explanation of 

VQ and DTW algorithms can be found in (Faundez-Zanuy, 2007). 
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Template matching approaches are especially appropriate when a small number of samples are 

available for training a model. This is the case with on-line signature recognition. VQ 

(Faundez-Zanuy, 2007) does not model the temporal evolution of the signature because, when 

averaging the vectors, the time ordering is lost (the vectors are all mixed together, discarding 

the temporal instant of their generation). This is a drawback that can be solved in at least a 

couple of ways that we introduce next: 

a) The inclusion of temporal information of feature vectors: one of the components of the 

feature vector is the time instant of acquisition, as will be shown in section 3.3, table 2. 

b) Using a multi-section approach: This method is an improved version of the classical 

vector quantization approach proposed in (Faundez-Zanuy, 2007), which can also be 

interpreted as a variant of the split-VQ (Gersho and Gray, 1991). This proposal is 

described in the next section. 

 

2.1 Proposed algorithm based on Multi-section Codebook approach 

 

DTW offers one advantage over VQ: it takes into account the temporal evolution of the 

signature. However, a simple model called the multi-section codebook (Burton et al., 1983; 

Buck et al., 1985) was proposed in the mid-eighties in speech and speaker recognition. 

Although this approach was discarded due to the higher accuracies of HMM, we should take 

into account the fact that signature recognition differs from speech/ speaker recognition, as the 

length of the training set is rather short and it is hard in this situation to estimate an accurate 

statistical model. This observation is well known in the field of speaker recognition, where 

higher recognition rates using VQ, as compared with HMM, have been reported for short 

training/ testing sets. 

 

The multi-section codebook approach consists of splitting the training samples into several 

sections. For example, figure 1 represents a three-section approach, where each signature is 

split into three equal length parts (initial, middle and final sections). In this case, three 

codebooks must be generated for each user, each codebook being adapted to one portion of the 

signature. Each branch works in a similar fashion to the VQ approach, and the final decision is 

taken by combining individual contributions of each section by simple averaging. 

 

Claimed identity 

Section 3 

Section 2 

Section 1 

DYNAMIC 
FEATURE 

EXTRACTOR 

C
O

M
B

IN
E

R
 A

N
D

 D
E

C
IS

IO
N

 M
A

K
E

R
 

A
c
c
e

p
t/

 R
e

je
c
t  

S
P

L
IT

T
E

R
 

d2 VECTOR 
QUANTIZER 

Codebooks S2 

d1 VECTOR 
QUANTIZER 

Codebooks S1 

d3 VECTOR 
QUANTIZER 

Codebooks S3 
 

Figure 1. A multi-section codebook approach for signature verification based on 3 sections. 
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If the database contains P users and the splitter provides S sections we will have S codebooks 

for each person. Thus, we will have one codebook per person and section, named 
,p sCB  for 

p=1,..,P and s=1,…,S. 

 

This proposal is a generalization of the VQ approach, which can be seen as a multi-section 

approach with just a single section. The multi-section system will be operated as follows. 

 

 

2.1.1 User model computation 

 

For each person, we split the signature into S sections. We concatenate the feature vectors 

resulting from each of the five training signatures belonging to the same section. Thus, we 

obtain S training sequences per person. In order to obtain one codebook per person and section, 

we have applied a codebook initialization plus Lloyd iteration for codebook improvement. 

Codebook initialization is obtained by splitting the signature in as many segments of equal 

length as the final number of centroids. One centroid per portion is obtained as the average of 

the points belonging to that segment. Our experimental results confirm that this approach 

offers similar results to the classic LBG algorithm, but with less computation time. 

 

Each person is thus modeled by a set of S codebooks. Figure 2 schematically represents the 

process of splitting and generating the training sequences for a given user p. It is assumed that 

five signatures of the same person are used for training the user model. 
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Figure 2. Schematic representation of the procedure followed to obtain the training sequences and the codebooks 

for a given user p. 

 

This strategy is similar to a constrained vector quantization approach named split-VQ (also 

known as partitioned VQ) (Gersho et al., 1991). The simplest and most direct way to reduce 

the search and storage complexity in coding a high dimensional vector is simply to partition 

the vector into two or more sub-vectors. However, rather than splitting vectors, we split the 

training and testing sequences into sections, which have the same original vector dimension. 

 
2.1.2 User recognition 
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The quantization distortion for a given signature and person p must be obtained by computing 

the combination of the distortions obtained for each part. This can be achieved by a 

generalization of the procedure described in (Faundez-Zanuy 2007): 

( )1,...,p Sdist combination d d= . The most straightforward combination is the mean{} function. 

However, several combinations have been evaluated, as described in the next section. 

 

The individual ds values, for s=1,.., S and person p, are obtained by applying the equation  

( ) ( ) 
,

' '

,

1 1

, min ,
j p s

I I

s i p s i j
y CB

i i

d NNER x CB d x y


= =

= =   

where NNER is the Nearest Neighbor Encoding Rule (Gersho and Gray, 1991). It is interesting 

to point out that 
I

I
S

   as we split the whole signature into S sections of equal length. 

 
2.1.3 Multi-section distance fusion 

 

The combination techniques evaluated in the combiner block of figure 1 are as follows: 

 

• Minimum value (min): ( )1min ,...,p Sdist d d=  

• Maximum value (max): ( )1max ,...,p Sdist d d=  

• Sum (S): 𝑑𝑖𝑠𝑡𝑝 =  ∑ 𝑑𝑖
𝑆
𝑖=1 . It is equivalent to the mean{} function, since the number of 

sections is a fixed value. 

• Product (P): 𝑑𝑖𝑠𝑡𝑝 =  log(∏ 𝑑𝑖)𝑆
𝑖=1 =  ∑ log 𝑑𝑖

𝑆
𝑖=1 . To avoid small values, the log function 

was used. 

• Sum using Extreme Values (SEV): 𝑑𝑖𝑠𝑡𝑝 = min(𝑑1, … , 𝑑𝑆) + max(𝑑1, … , 𝑑𝑆). The 

combination of extreme values, which has shown a good performance in previous works 

(Vivaracho et al., 2003), was then tested here. 

• Weighted sum, which can be with user independent weighting: 𝑑𝑖𝑠𝑡𝑝 =  ∑ 𝑐𝑖 × 𝑑𝑖
𝑆
𝑖=1  and user 

dependent weighting: 𝑑𝑖𝑠𝑡𝑝 =  ∑ 𝑐𝑝𝑖
× 𝑑𝑖

𝑆
𝑖=1 . Both have been tested as follows: 

o Based on training samples statistics. Once the model for the person p is trained, the distances 

with regard to each training sample section is calculated. Let us call 𝑑𝑝𝑖

𝑡𝑗
 the distance for 

section i of the training sample tj. From these values, each section mean, 𝜇𝑝𝑖
, and standard 

deviation, 𝜎𝑝𝑖
 are calculated as follows: 

𝜇𝑝𝑖
=  

∑ 𝑑𝑝𝑖

𝑡𝑗𝑇
𝑗=1

𝑇
  1 ≤ 𝑖 ≤ 𝑆 

𝜎𝑝𝑖
= √

∑ (𝑑𝑝𝑖

𝑡𝑗 − 𝜇𝑝𝑖
)2𝑇

𝑗=1

𝑇
  1 ≤ 𝑖 ≤ 𝑆 

 

 

where T is the number of samples used to train the model. Based on these statistics, the 

following combinations were tested: 

▪ Weighted Sum based on Deviation (WSD). The standard deviation can be considered 

as a measure of dispersion, then, the smaller it is, the more stable the section score will 

be. Under this assumption, the user weighting coefficients must be inversely 

proportional to 𝜎𝑝𝑖
:   
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𝑐𝑝𝑖
=

1
𝜎𝑝𝑖

⁄

∑ 1
𝜎𝑝𝑖

⁄𝑆
𝑘=1

   𝑎𝑛𝑑  ∑ 𝑐𝑝𝑖
= 1

𝑆

𝑖=1

 

▪ Weighted Sum based on High Means (WSHM). Those sections with high scores (high 

means) are reinforced: 

𝑐𝑝𝑖
=

𝜇𝑝𝑖

∑ 𝜇𝑝𝑘

𝑆
𝑘=1

   𝑎𝑛𝑑  ∑ 𝑐𝑝𝑖
= 1

𝑆

𝑖=1

 

▪ Weighted Sum based on Low Means (WSLM). Those sections with low scores (low 

means) are reinforced: 

𝑐𝑝𝑖
=

1
𝜇𝑝𝑖

⁄

∑ 1
𝜇𝑝𝑖

⁄𝑆
𝑘=1

   𝑎𝑛𝑑  ∑ 𝑐𝑝𝑖
= 1

𝑆

𝑖=1

 

o Based on recognition errors. The idea is to reinforce those sections with better performance. 

Several implementations of this idea have been tested: 

▪ Weighted Sum based on Random forgery Errors (WSRE). By means of a development 

set, each section i performance, measured by means of the Equal Error Rate (EERi), is 

calculated using random forgeries. Those sections with better performance (lower 

errors) are reinforced: 

𝑐𝑖 =

1
𝐸𝐸𝑅𝑖

⁄

∑ 1
𝐸𝐸𝑅𝑖

⁄𝑆
𝑘=1

   𝑎𝑛𝑑  ∑ 𝑐𝑖 = 1

𝑆

𝑖=1

 

▪ Weighted Sum based on Skilled forgery Errors (WSSE). The same as the previous one 

but using skilled forgeries to compute EERi. 

▪ Weighted Sum based on User dependent Errors (WSUE). Here, we cannot use skilled 

forgeries since, in a real application, we cannot imitate the user signature due to legal 

and social restrictions. To calculate the 𝐸𝐸𝑅𝑝𝑖
, the training sample distances, 𝑑𝑝𝑖

𝑡𝑗
, are 

the target scores and the distances between other user training samples and the user 

model are the impostors. The weighting coefficients are calculated in the same way  as 

in WSRE, but here the coefficients are user dependent,  𝑐𝑝𝑖
. 

▪ Weighted Sum based on User dependent EER Thresholds (WSUT). The problem with 

the previous approach is that most of the  𝐸𝐸𝑅𝑝𝑖
 are 0, fixing the corresponding  𝑐𝑝𝑖

 at 

1. It was observed, by analyzing the system performance, that, in general, low errors 

were associated with low EER thresholds and vice versa. Then, the use of the threshold 

instead of the EER was tested. 

 

3. EXPERIMENTAL SETUP 

 

3.1 Databases 

 

Experimental results, obtained with two publicly available databases, have been achieved. 

 

3.1.1 MCYT Database 

 

We used our previous database MCYT (Ortega-Garcia et al., 2003), acquired with a WACOM 

graphics tablet. The sampling frequency for signal acquisition is set to 100 Hz, yielding the 
following set of information for each sampling instant:  
 

(i) position along the x-axis, xt : [0–12 700], corresponding to 0–127 mm; 
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(ii) position along the y-axis, yt : [0–9700], corresponding to 0–97  mm; 
(iii) pressure pt applied by the pen: [0–1024]; 
(iv) azimuth angle γt of the pen: [0–3600], corresponding to 0 –360; 

(v) altitude angle φt of the pen: [300–900], corresponding to 30 –90; 

 

We have used extended feature vectors from these five measurements. We recruited 330 
different users. Each target user produces 25 genuine signatures, and 25 skilled forgeries 
are also captured for each user. These skilled forgeries are produced by the 5 subsequent 
target users by observing the static images of the signature to be imitated, trying to copy 
them (at least 10 times), and then, producing valid forgeries in a relaxed fashion (i.e. each 
user acting as a forger is requested to sign naturally, without artefacts, such as breaks or 
slowdowns). In this way, highly skilled forgeries with shape-based natural dynamics are 
obtained. Following this procedure, user n (ordinal index) carries out a set of 5 samples 
of his/her genuine signature, and then 5 skilled forgeries of client n–1. Then, again, a new 
set of 5 samples of his/her genuine signature; and then 5 skilled forgeries of user n–2. 
This procedure is repeated by user n, making further samples of the genuine signature 
and imitating previous users n–3, n–4 and n–5. Summarizing, user n produces 25 samples 
of his/her own signature (in sets of 5 samples) and 25 skilled forgeries (5 forgeries of 
each user, n–1 to n–5). In a similar way, for user n, 25 skilled forgeries will be produced 
by users n+1 to n+5. 
 
3.1.2 SVC Database 
 

The SVC database (Yeung et al., 2004) is very similar to MCYT. The sub-database released 

for Task 2 of the First international signature verification competition also includes the same 

five features as MCYT acquired by a WACOM Intuos graphic tablet with a sampling rate of 

100Hz. The complete SVC database had 100 sets (users) of signature data, but just one subset 

of 40 users was made available for research after the competition. 

This database also contains skilled forgery samples produced by the contributors. There are 20 

genuine signatures per user collected through two sessions, 10 signatures per session, with a 

minimum of one week between sessions. Additionally, there are 20 skilled forgeries produced 

by at least four other contributors. The skilled forger was provided with a software animation 

viewer of the signature to be forged. Thus, in this work, we have used a final set of 16,000 

signatures (8,000 genuine signatures plus 8,000 skilled forgeries). This is about 10% of the 

MCYT database size. 

It must be pointed out that the signatures in the SVC database are mostly in either English or 

Chinese, and no ‘real’ signatures were used. Instead, the contributors were advised to design a 

new signature and practice it before the acquisition sessions. 

3.2 Conditions of the experiments 

 

The databases have been split into the following sub corpora: 

 

• Development Set (DS). This is used to optimize the parameters of the system. It consists 

of 80 people from the MCYT database. 
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• Test Set 1 (TS1). It consists of the whole MCYT database except for users of DS, i.e., 

250 people. 

• Test Set 2 (TS2). It consists of a subset of the SVC 2004 that was made available for 

research after the competition, i.e., 40 people. 

 

Training and testing signatures have been chosen in the following way: 

 

• MCYT database 

▪ We performed identification experiments, using the first 5 signatures per person for 

training and 5 different signatures per person for testing (signatures 20 to 24). This 

implies a total number of 80×5 tests for the DS and 250×5 tests for the TS. 

▪ We performed verification experiments, using the first 5 signatures per person for 

training and 20 different genuine signatures per person for testing (signatures 6 to 

24). In addition, we used the 25 available skilled forgeries made by 5 other users 

and 5 genuine signatures from other signatories for impostor tests. This implies a 

total number of 80×20 genuine tests plus 80×25 impostor tests (skilled forgeries) 

and 80×79×5 impostor tests (random forgeries) for the DS and 250×20 genuine tests 

plus 250×25 impostor tests (skilled forgeries) and 250×249×5 impostor tests 

(random forgeries) for the TS1. 

• SVC database 

▪ We performed identification experiments, using the first 5 signatures per person for 

training and 5 different signatures per person for testing (signatures 16 to 20). This 

implies a total number of 40×5 tests. 

▪ We performed verification experiments, using 5 signatures per person for training 

and 15 different genuine signatures per person for testing. In addition, we used the 

20 skilled forgeries made by other users and 5 genuine signatures from other 

signatories for impostor tests. This implies a total number of 40×15 genuine tests 

plus 40×20 impostor tests (skilled) and 40×39×5 impostor tests (random). 

 

However, further study needs to be done on whether this database can produce statistically 

significant results. In (Guyon et al., 1998), the minimum size of the test data set N, which 

guarantees statistical significance in a pattern recognition task, is derived. The goal in this work 

is to estimate N so that it is guaranteed, with a risk α of being wrong, that the error rate P does 

not exceed the estimation P̂  from the test set by an amount larger than ( ),N  ; that is,  

( ) ˆPr ,P P N   + 
 

 

Letting ( ),N P  = , and supposing recognition errors to be Bernoulli trials (i.i.d. errors), after 

some approximations, the following relationship can be derived: 

2

ln
N

P





−
  

 

For typical values of α and β (α =0.05 and β =0.2), the following simplified criterion is obtained: 
100

N
P
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If the samples in the test data set are not independent (due to correlation factors that may 

include variations in recording conditions, in the type of sensors, etc.), then N must be further 

increased. The reader is referred to (Guyon et al., 1998) for a detailed analysis of this case, 

where some guidelines for computing the correlation factors are also given. 

 

Table 1 shows the number of tests done in each condition and, with 95% confidence, the 

statistical significance in experiments with an empirical error rate, down to P̂ . Thus, the 

experiments of this section are statistically significant, because our errors are higher than those 

presented in table 1. 

  
Table 1. Statistical significance in experiments, with 95% confidence. 

 MCYT (250 users) MCYT (80 users) SVC Data Base (40 users) 

Random forgeries P̂ =0.03% P̂ =0.3% P̂ =1.25% 

Skilled forgeries P̂ =0.89% P̂ =2.78% P̂ =10% 

 

 

3.3 Feature selection 

 

The selection of an appropriate combination of features is fundamental in signature recognition, 

so the initial set of features provided by the tablet was optimized to improve the output of our 

system. We compared different combinations of features in the domain of the position and 

velocity, which have been shown to be the most decisive for signature recognition (Pascual-

Gaspar et al., 2009). 

 

We calculated the center of mass of each signature and displaced this point to the origin 
of the coordinates. 
 

Table 2 shows the results of the preliminary tests for feature selection. These tests were made 

with a codebook (single section) of 5 bits, and both substitution and skilled impostors. The 

symbols in the first column of the table have the following interpretation: 

 

- x, y: geometric coordinates 

- p: pressure 

- γ, φ: angular features 

- dx, dy, dp, dγ, dφ: first temporal derivatives of previous features 

- t: timestamp 

 

All features, including timestamp, were normalized through a statistical preprocessing based 

on the standard z-norm. 
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Table 2. Experiments for optimal feature set selection with MCYT. Size of the CB is 5 bits. 

 

Feature set 

EER (%) 

substitution Skilled 

FS1=[x,y,p,γ,φ] 5.07% 13.24% 

FS2=[x,y,dx,dy] 0.85% 4.28% 

FS3=[x,y,p,dx,dy,dp] 0.39% 4.02% 

FS4=[x,y,p,dx,dy] 0.51% 3.56% 

FS5=[x,y,dx,dy,dp] 0.21% 4.25% 

FS6=[x,y,dx,dy,dp,t] 0.19% 2.55% 

 

As can be seen, with the same codebook configuration, results in error terms are strongly 

dependent on the features used. The feature set FS1, the default provided by the tablet, is 

significantly the worst of all the sets. Because of its better performance with both types of 

impostor, the combination finally selected was FS6. 

 

3.4 Performance measure  

 

In identification, the % of signatures correctly assigned (% of success) will be shown. 

 

Verification systems can be evaluated using the false acceptance rate (FAR, those situations 

where an impostor is accepted) and the false rejection rate (FRR, those situations where a user 

is incorrectly rejected), also known in detection theory as false alarm and miss, respectively. A 

trade-off between both errors usually has to be established by adjusting a decision threshold. 

The performance can be plotted on an ROC (receiver operator characteristic) or a DET 

(detection error trade-off) plot. 

 

However, for a better system performance comparison, the use of a single number measure is 

more useful and easier to understand. One of the most popular is the Equal Error Rate (EER), 

that is, the error of the system when the decision threshold is such that the FMR equals the 

FNMR. The EER will be the measure used in this paper. 

 

The EER can be evaluated with a different threshold for each user (Individual threshold, I) or 

with the same for all (General threshold, G). The latter is the less favourable case, due to the 

variability of the scores from one user to another. The first can be considered as the lower limit 

of the second. EER has been evaluated with both thresholds. 

 

4. Experimental results 

 

4.1 Verification task 

 

4.1.1 Development Set 

 
Fig. 3 shows the evolution of the results (EER in %) with respect to the codebook size for the single 

section VQ. Codebook sizes of 1, 2, 4, 8, 16, 32, 64, 128, 256 and 512 were tested. 
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Figure 3. Results achieved with the VQ single section for the development set. The best results are 

emphasized and the corresponding EER (in %) is included. 

 

 

Table 3 shows the results with the multi-section approach. Multi-section sizes from 2 to 8 were 

tested. Column Sec shows the number of sections, FT shows the Forgery (R: Random and S: 

Skilled) and Threshold (I: Individual and G: General) types. The rest of the columns show the 

fusion techniques tested (see Sec. 2.1.3). The row CB shows the optimal codebook size (that 

with the best performance) for each number of sections and combination technique. The best 

results are emphasized in bold. 

 

The best results with multi-section are achieved with 2-3 sections, being close to those obtained 

with a single VQ. The greater the number of sections, the worse the results. With respect to the 

combination techniques, the weighted sum ones proposed work well, but do not significantly 

outperform the sum and product techniques. 
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Table 3. EER (in %) obtained in the multi-section experiments with the development set.  

 Sec FT min max S P SEV WSD WSHM WSLM WSRE WSSE WSUE WSUT 

CB 

2 

 128 64 32 64 32 64 32 32 64 64 64 32 

 RI 0.8 0.6 0.2 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 

 RG 2.2 1.5 0.9 1.1 0.9 1.1 1.0 0.9 1.1 1.1 1.1 0.9 

 SI 4.6 4.2 3.1 2.9 3.1 3.0 3.2 3.2 2.9 3.1 3.1 3.2 

 SG 7.0 6.2 4.8 4.8 4.8 5.0 4.8 5.3 4.8 4.9 4.8 4.9 

CB 

3 

 256 64 32 32 32 32 32 32 32 32 32 32 

 RI 1.5 0.7 0.2 0.3 0.4 0.3 0.2 0.3 0.17 0.3 0.2 0.3 

 RG 3.7 2.0 1.1 1.1 1.2 1.1 1.0 1.2 1.0 1.1 1.1 1.2 

 SI 4.5 4.3 3.0 3.0 3.1 3.0 3.1 3.1 2.8 3.1 2.9 3.1 

 SG 7.7 8.1 5.0 4.9 5.4 5.2 5.2 5.4 4.8 5.2 5.5 5.3 

CB 

4 

 64 64 32 32 32 32 32 16 32 16 32 32 

 RI 2.1 1.1 0.3 0.4 0.7 0.6 0.3 0.5 0.3 0.4 0.4 0.4 

 RG 4.1 2.4 1.3 1.5 1.7 1.7 1.4 1.5 1.3 1.4 1.5 1.6 

 SI 5.5 4.9 3.3 3.3 3.5 3.8 3.4 3.8 3.2 3.6 3.3 3.7 

 SG 7.8 8.7 5.2 5.4 6.3 6.0 5.6 5.6 5.2 5.4 5.4 5.6 

CB 

5 

 64 32 16 32 16 16 32 16 16 32 64 16 

 RI 2.3 1.5 0.3 0.4 0.8 0.5 0.4 0.5 0.3 0.4 0.3 0.5 

 RG 4.8 2.2 1.5 1.5 1.7 2.0 1.6 1.7 1.4 1.6 1.8 1.7 

 SI 5.7 5.7 3.3 3.3 4.2 4.1 3.2 3.7 3.1 3.4 3.2 4.0 

 SG 9.2 9.1 5.4 5.6 7.0 7.2 5.7 6.6 5.1 5.4 6.1 6.7 

CB 

6 

 32 16 32 32 16 16 16 16 64 16 64 16 

 RI 2.5 1.5 0.5 0.5 1.0 0.6 0.4 0.6 0.3 0.6 0.4 0.6 

 RG 4.4 1.7 1.8 1.8 2.0 1.7 1.6 1.9 1.6 1.8 1.9 1.9 

 SI 6.5 3.3 3.4 3.1 4.3 3.3 3.1 3.9 3.1 3.4 3.3 3.9 

 SG 10.1 6.0 5.9 5.9 7.0 7.0 6.0 6.9 5.9 5.9 6.4 6.7 

CB 

7 

 64 128 16 16 128 32 32 32 16 32 32 16 

 RI 2.7 1.4 0.6 0.6 1.2 0.8 0.5 0.6 0.4 0.5 0.5 0.7 

 RG 5.6 2.7 1.8 1.7 2.5 2.0 1.6 2.1 1.6 1.9 2.0 2.0 

 SI 6.9 6.0 3.4 3.7 4.3 3.8 3.8 3.8 3.3 3.4 3.5 3.9 

 SG 11.0 9.3 6.1 6.1 7.4 7.1 5.9 7.6 5.5 6.2 6.1 6.8 

CB 

8 

 32 64 8 32 64 32 16 16 16 16 32 16 

 RI 2.9 1.9 0.5 0.5 1.4 0.7 0.6 0.6 0.4 0.5 0.5 0.6 

 RG 5.3 3.4 1.7 1.9 2.4 3.1 2.6 3.1 1.6 1.8 2.0 2.0 

 SI 7.3 6.5 3.8 3.6 4.8 4.0 3.7 4.3 3.5 3.7 3.8 4.3 

 SG 11.1 9.7 6.3 6.6 8.0 8.6 7.0 8.4 6.3 6.5 6.8 7.3 

 

 

The following system configurations were used with the test sets, from the results of this 

section: 

 

• Single section VQ with codebook sizes of 64 and 128, since the best results were 

achieved. 

• Multi-section VQ, for 2 (codebook sizes of 32 and 64) and 3 (codebook size of 32) 

sections, and Sum and Weighted Sum based on Random Forgery Error fusion 

techniques, since the best results were achieved with the multi-section. 
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It is important to emphasize that the computational burden is directly affected by codebook 

size, rather than the number of codebook sections. This is due to the direct proportionality 

between the number of vectors inside a codebook and the time required to find its nearest 

neighbor. For example, a multi-section approach of two sections and 4 bits per section is two 

times faster than a single codebook with 5 bits. In this case, the total number of vectors is the 

same (24+24=25), but the required time to find a nearest neighbor is only half the amount, 

because multi-section only requires 24 vector distance computation for each vector to be 

quantized. In addition, a multi-section approach can model the time evolution, as it splits the 

signature into initial and final parts, while the single section mixes both parts. 

 

4.1.2 Test sets 

 

Tables 4 and 5 show the results with the TS1 (MCYT database) and TS2 (SVC corpus), 

respectively. The DS has been used to achieve the coefficient values for the WSRE fusion 

technique. 

 

The results with the MCYT corpus are similar to those achieved with the development set, 

getting worse with random forgeries, which is common when the database increases in size. 

However, with the SVC database, the best results are achieved with the multi-section approach, 

more specifically with 2 sections, although the results with a single section are very still good. 

 

From the results in the tables, it is difficult to choose an optimum system configuration. 

However, as can be seen in the next section, all the results achieved are very competitive with 

regard to those achieved with other proposals, while the system requirements are much lower. 

 
Table 4. Results (EER in %) achieved with the test set of MCYT corpus. Best results are bold 

emphasized. 

  Random Skilled 

VQ Conf. CB Size Ind. Thres. Gen. Thres. Ind. Thres. Gen. Thres. 

1 Section 64 0.26 % 0.68 % 2.61 % 5.56 % 

1 Section 128 0.23 % 0.72 % 2.46 % 4.92 % 

2 S. (S) 32 0.30 % 0.83 % 2.85 % 5.76 % 

2 S. (WSRE) 32 0.28 % 0.73 % 2.81 % 6.06 % 

2 S. (S) 64 0.28 % 0.85 % 2.65 % 5.30 % 

2 S. (WSRE) 64 0.27 % 0.85 % 2.66 % 5.63 % 

3 S. (S) 32 0.41 % 0.92 % 2.77 % 5.57 % 

3S (WSRE) 32 0.37 % 0.86 % 2.86 % 5.58 % 
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Table 5. Results (EER in %) achieved with the test set of SVC corpus. Best results are bold 

emphasized. 

  Random Skilled 

VQ Conf. CB Size Ind. Thres. Gen. Thres. Ind. Thres. Gen. Thres. 

1 Section 64 0.038 % 0.31 % 5.58 % 17.29 % 

1 Section 128 0.064 % 0.31 % 5.50 % 15.79 % 

2 S. (S) 32 0.000 % 0.31 % 6.53 % 16.85 % 

2 S. (WSRE) 32 0.000 % 0.33 % 6.52 % 16.85 % 

2 S. (S) 64 0.000 % 0.33 % 5.00 % 15.50 % 

2 S. (WSRE) 64 0.000 % 0.33 % 5.30 % 15.50 % 

3 S. (S) 32 0.026 % 0.31 % 6.17 % 17.50 % 

3S (WSRE) 32 0.026 % 0.31 % 6.17 % 17.50 % 

 

 

4.2 Identification task 

 

4.2.1 Development set 

 

Fig. 4 shows the identification rate with respect to the codebook size with a one section VQ. 

The same codebook sizes as in the verification task have been used. 

 

 
Figure 4. Identification results with the DS when a VQ with a section is used. 

The best result is shown. 

 

Table 6 summarizes the results with the multi-section approach. The Sec column shows the 

number of sections. The other columns show the fusion techniques tested (see Sec. 2.1.3). The 

row CB shows the optimal codebook size (that with the best performance) for each number of 

sections and combination technique. The best results are emphasized in bold. 
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Table 6. Signatures correctly assigned (% of success) in the identification task obtained in the multi-section 

experiments with the development set.  

 Sec min max S P SEV WSD WSHM WSLM WSRE WSSE WSUE WSUT 

CB  32 16 32 32 32 64 32 32 64 32 64 32 

 2 99.25 98.50 99.75 99.75 99.75 99.5 99.75 99.75 99.75 99.75 99.75 99.75 

CB  32 32 16 16 16 16 16 32 16 16 64 32 

 3 98.25 97.5 99.75 99.25 99.5 99.0 99.0 99.25 99.75 99.75 99.5 99.5 

CB  64 16 16 32 16 16 16 64 32 32 32 32 

 4 94.75 97.75 99.0 99.0 98.25 97.75 98.75 98.5 99.5 99.0 98.5 98.5 

CB  32 16 8 32 16 16 16 8 16 8 64 16 

 5 94.25 96.75 98.0 98.5 97.5 97.0 98.25 97.75 98.0 98.0 97.75 97.75 

CB  32 32 8 8 32 16 16 16 16 8 64 16 

 6 94.75 96.25 98.0 98.25 97.25 98.0 98.5 98.0 98.0 97.75 98.25 98.25 

CB  32 32 8 8 16 32 16 8 8 8 32 16 

 7 92.75 96.25 98.75 98.5 97.0 97.25 98.0 97.75 98.5 98.75 98.25 98.0 

CB  16 8 8 8 16 8 8 4 4 4 64 16 

 8 90.0 94.25 98.0 98.25 95.5 95.75 96.75 96.25 98.0 98.0 98.0 97.75 

 

From the results in Fig. 4 and table 6 we can conclude that, as in the verification task, the multi-

section does not outperform the results with the single section. However, with multi-section, 

the same best results are achieved with fewer vectors in the codebook: 64 in the one section 

VQ, 32 in the two sections VQ and 16 in the three sections VQ; then, the smallest number of 

distances calculation (smallest CB) is achieved with the three sections VQ. 

 

This tendency of getting good results with fewer vectors in the codebook, while the number of 

sections is increased, can also be seen in the rest of the results of table 6. It was therefore 

considered interesting to test the multi-section with the TS. 

 

With regard to the fusion techniques, the Sum, WSRE and WSSE are the best. The speed in the 

response is very important in identification, so the simplest, the Sum, was used with the TS. 

 

4.2.2 Test set 

 

Fig. 5 shows the results with the Test Sets for codebook sizes 2, 4, 8, 16, 32 and 64 and 1, 2 

and 3 sections for MCYT and 1, 2, 3 ,4 and 5 for SVC; greater sizes of both parameters do not 

outperform the results shown. The first thing to be emphasized is the very good system 

performance: 99.76% of correct identification is achieved with the MCYT TS and 100% with 

the SVC database.  

 

The tendency seen with the DS is also observed here: the greater the number of sections, the 

smaller the codebook size needed to achieve better performance. Table 7 shows a summary of 

this, since the best results achieved with each number of sections and the corresponding 

codebook size are shown. As can be seen, the use of multi-section supposes a reduction in the 

number of distances calculation (proportional to the codebook size), thus improving the speed 

of the system without performance reduction with SVC, and with a very small one with MCYT. 
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Figure 5. Identification results with the Test Sets. 

 

 
Table 7. Best results achieved in identification with the TSs for section numbers 1 to 5. The corresponding 

codebook size also appears. 

 1 Section 2 Sections 3 Sections 4 Sections 5 Sections 

 Id (%) CB Id (%) CB Id (%) CB Id (%) CB Id (%) CB 

MCYT 99.76 128 99.68 32 99.60 32 99.28 16 99.12 32 

SVC 100.0 16 100.0 8 100.0 8 100.0 8 100.0 4 

 

4.3. State-of-the-art comparison 

 

Tables 8 and 9 show some of the most recent published work with the MCYT and SVC 

databases, respectively. In these tables, the best performance achieved and brief descriptions 

of the main characteristics of each proposal are shown. Nevertheless, it is important to 

emphasize that straightforward comparison is not always possible. This is due to different 

training and testing conditions (which sometimes remain unclear) of different papers. 

 

It can be seen that our system, in general, outperforms the state-of-the-art scores, more so taking 

into account the fact that the results shown in the tables are the best achieved in each work. 

Only very complex systems (Garcia-Salicetti 07), using fusion of classifiers and more features, 

outperform our proposals' performance. We think that our proposals' results would also 

improve if score normalization were applied. Although this is far from the scope of this work, 

it may be a interesting future work. 
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Table 8 Performance achieved for other proposals with MCYT database. The reference to each work appears in 

the first column. 

Work Classifier Features Exp. Environment EER(%) 

Fierrez 2005 
HMM (local expert) + Parzen 
Windows (global) 

7 + 7d 330 users, 5 training signatures, I Thr 
Ra: 0.2 
Sk: 2.1 

Nanni 2005 Ensemble of Parzen Windows 60 best over 100 100 users, 5 training signatures, G Thr 
Ra: 2.9 
Sk: 8.4 

Nanni 2006 Ensemble of one-class classifiers 60 best over 100 100 users, 5 training signatures, G Thr 
Ra: 2.1 
Sk: 6.5 

Ketabdar 05 GMM 12 best over 150 50 users, 5 training signatures, G Thr Sk: 4.5 

Hua 2006 Based on FFT 2 (x and y) 100 users, 5 training signatures, G Thr Sk: 7.0  

Faundez 07 VQ+DTW 5 280 users, 5 training signatures, G Thr 
Ra: 1.4 
Sk: 5.4 

Garcia 2007 
4 expert fusion: 2 HMM+ 2 based on 
distances 

12-25 330 users, 5 training signatures, G Thr Sk: 3.4 

Vivaracho09 
Normalized signatures + fractional 
distances 

5 330 users, 5 training signatures, I Thr 
Ra: 0.5 
Sk: 3.1 

 
Table 9 Performance achieved for other proposals with SVC database. The reference to each work appears in 

the first column. 

Work Classifier Features Exp. Environment EER(%) 

Yeung 2004 Best competition results 2 Task 1 of SVC, Individual Threshold 
Ra: 3.49 
Sk: 5.50 

Yeung 2004 Best competition results 5 Task 2 of SVC, Individual Threshold 
Ra: 3.02 
Sk: 6.90 

Fierrez 2005 DTW + HMM 
3 (local), 7 
(regional) 

Task 2 of SVC, Individual Threshold 
Ra: 0.15 
Sk: 6.91 

Van Bao 07 HMM likelihood information 25 Task 2 of SVC, Individual Threshold Sk: 4.83 

Gruber 2009 SVM, LCSS Kernel 5 Task 2 of SVC, Individual Threshold 
Ra: 0.12 
Sk: 6.84 

 

 

5. CONCLUSIONS 

 

In this paper, we have proposed several VQ based approaches for on-line signature recognition. 

These algorithms enable us to take into account the temporal evolution of the signature, and 

obtain a significant improvement in speed when compared with the state-of-the-art algorithms. 

This improvement is due to the lower computational burden of the VQ approach, which has 

been neglected for signature recognition so far; although it has proven useful in the past for 

other biometric traits, such as speech, especially for short training and testing sets. 

 

Experimental results on MCYT and test sets reveal a very competitive performance: 

 

▪ Identification rates up to 99.76%. 

▪ EER equal to 0.23% (individual threshold) and 0.68% (general threshold) for random 

forgeries. 

▪ EER equal to 2.46% (individual threshold) and 4.92% (general threshold) for skilled 

forgeries. 
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Experimental results on SVC reveal the same competitive results: 

 

▪ Identification rates up to 100%. 

▪ EER equal to 0.000% (individual threshold) and 0.31% (general threshold) for random 

forgeries. 

▪ EER equal to 5% (individual threshold) and 15.5% (general threshold) for skilled 

forgeries. 

 

In addition, our system improves the database storage requirements due to vector compression, 

and is more privacy-friendly, as it is not possible to recover the original signature using the 

codebooks. 

 

In the appendixes, we demonstrate that VQ is around 47 times faster than the classic DTW 

algorithm, which provided verification errors of 1.4% (random forgeries) and 5.4% (skilled 

forgeries) over the MCYT database, when using a general threshold (Faundez-Zanuy, 07). 

 

 

APPENDIX 1: VQ Algorithm 

 

Given a distance measure between vectors i and j, such as, for instance, the Euclidean distance: 

( )
2

,D i j i j= −            (4) 

The distance between a codebook and a candidate’s signature can be computed using the 

following algorithm: 

 

Initialization: 

 0D =  

Recursion: 

For i=1, . . ., I 
 min ( ,1)d D i=  

 For j=2, . . ., L 

  ( ),d D i j=  

  min minif d d d d  =  

 End 

 
minD D d= +  

End 

Termination 

 

The best match has a cost of D . 

 

APPENDIX 2: DTW Algorithm 

 

To find the optimal path to ( ),k ki j , we simply take the minimum over-all distance predecessors: 

( )
( )

( ) ( ) min min

min
, , ,

" , "
k k k k k p k p

k p k p

D i j D i j i j
i j

− −

− −

 =  
     (1) 

The simplest case corresponds to three predecessors. 
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The distance between a reference signature and a candidate’s signature can be computed using 

the following algorithm: 

 

Initialization: 

( ) ( )min 1, 1, , 1, ,ND j d j j = =  

( ) ( )min ,1 ,1 , 2, ,ND i d i i = =  

( ) ( )1 min 1, , 1, ,j D j j J = =  

( )2 0, 1, ,j j J = =  

Recursion: 

 For i=2, . . .,I 

  For j=J, . . ., 2 

   Compute ( )min ,D i j  using equation (1) 

   ( ) ( )2 1j j =  

   ( ) ( )1 min ,j D i j =  

  Next j 

 Next i 

Termination 

 

The best path has cost:  

( )

( )

min

min

, , , ,
min

, , , ,

D I j I j J J
D

D i J I i I I





= −
= 

= −

 

 

This notation is consistent with that provided in (Deller et al., 1987). A complete explanation 

of this dynamic programming technique is beyond the scope of this paper. 

 

APPENDIX 3: COMPUTATIONAL BURDEN COMPARISON 

 

In this appendix we compare the computational burden of the DTW algorithm and the proposed 

codebook approach. We use the following nomenclature: 

 

▪ J is the average single-signature reference template length. 

▪ I is the candidate’s signature length. 

▪ K is the number of reference templates per user. 

▪ L is the number of vectors inside the codebook for the VQ approach. 

▪ S is the number of sections in the multi-section VQ approach. 

 

In our experiments, we have set K=5, and in our database (MCYT), the average length per 

signature is J=454 vectors. 

 

It is interesting to observe that, due to the vector quantization of the K reference templates per 

user, the number of reference vectors has been significantly reduced for the VQ algorithm, 

since all the reference signatures have been clustered together in a single codebook per user. 

For a codebook of 4 to 7 bits, we get L=16, 32, 64 and 128 vectors respectively, while the 

original average number of vectors per signature is 454. In addition, for DTW, the procedure 

must be executed for each reference signature per user (in our experimental data we have used 
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K=5). Thus, even for a 7 bit codebook, the VQ approach requires approximately 18 times 

(5×454/128) less data to be dealt with. 

 

Dynamic time warping requires the computation of KIJ distance measures. However, the 

search region can be restricted to a parallelogram region with slopes ½ and 2. Search over this 

parallelogram requires about ( )3O KIJ  distance measures to be computed and the DP equation 

(1) (see appendix 1) to be used about ( )3O KIJ  times. This latter figure is often referred to as 

the “number of DP searches” (Deller et al., 1987). 

 

VQ requires the computation of O(IL) distance measures. It is interesting to observe that the 

number of computations is the same for VQ and multi-section VQ, because the unique 

difference between them is the change of codebook, depending upon which section a given 

vector belongs to. Taking into account that each DTW distance computation requires the 

computation of at least three distances between vectors, we can establish that VQ is 

approximately 47 times faster than DTW (for a codebook of 4 bits). 

 

In terms of database storage requirements, DTW implies the storage of the whole set of 

reference signatures, which implies KJ vectors per user.  VQ requires L vectors per user, where 

L is the number of vectors inside the codebook, and this figure must be increased by the number 

of sections for the multi-section VQ approach. 

 

The table 10 summarizes the computational and database memory requirements. 

 
Table 10. Database storage and computational requirements for DTW and VQ approaches. It is important to 

emphasize that optimal L values are smaller for Multi-section VQ than for VQ (single section). Typically, 

sec

VQ

VQmulti tion

L
L

S
− =  

Requirements DTW VQ Multi-section VQ 

Database memory KJ L SL 

Computational (Number of distance computations) ( )3O KIJ  O(IL) O(IL) 
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