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a b s t r a c t

The Shortest Common Supersequence Problem asks to obtain a shortest string that is a supersequence

of every member of a given set of strings. It has applications, among others, in data compression and

oligonucleotide microarray production. The problem is NP-hard, and the existing exact solutions are

impractical for large instances. In this paper, a new beam search algorithm is proposed for the problem,

which employs a probabilistic heuristic and uses the dominance property to further prune the search

space. The proposed algorithm is compared with three recent algorithms proposed for the problem on

both random and biological sequences, outperforming them all by quickly providing solutions of higher

average quality in all the experimental cases. The Java source and binary files of the proposed IBS_SCS

algorithm and our implementation of the DR algorithm and all the random and real datasets used in this

paper are freely available upon request.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The Shortest Common Supersequence (SCS) problem asks to
obtain a shortest string that is a supersequence of every member
of a given set of strings. A supersequence of a given string is a
string that can be obtained by inserting zero or more characters
anywhere in the given string. Among various applications of this
problem are data compression (Storer, 1988; Timkovskii, 1989),
AI planning (Foulser et al., 1992), query optimization in databases
(Chaudhuri and Bruno, 2008; Sellis, 1988), and bioinformatics,
particularly DNA oligonucleotide microarray production (Hubbell
et al., 1996; Kasif et al., 2002; Ning et al., 2005; Rahmann, 2003;
Sankoff and Kruskal, 1983). Microarrays are precious tools
successfully used, among others, in gene clustering and identifi-
cation, SNP detection, and fusion transcript detection(Ning et al.,
2005; Rahmann, 2003; Skotheim et al., 2009). Two well-known
types of microarrays are cDNA and oligonucleotide microarrays
(Kasif et al., 2002; Ning et al., 2005), the latter known to be of
higher sensitivity due to its lower cross-hybridization possibility
(Kasif et al., 2002; Ning et al., 2005). Oligonucleotide microarrays
are usually manufactured by the photolithographic method. This
method involves several synthesis steps, each to append a same
nucleotide, which corresponds to a letter in {A,T,C,G}, to several
ll rights reserved.
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designated probes. Since the process is accomplished by means of
light exposure, the other probes, which are not to receive the
nucleotide, are protected by a mask. The sequence of the nucleo-
tides used in the synthesis steps is called the deposition string,
whose length determines the number of the synthesis steps. For
several reasons, it is desirable to keep the deposition string as
short as possible (Kasif et al., 2002; Ning et al., 2005; Rahmann,
2003). First, the masks and the synthesis steps are expensive.
Even a small reduction in the length of the deposition string could
lead to a significant reduction in the production cost (Rahmann,
2003). Second, the total manufacturing time is increased as the
number of synthesis steps is raised. Third, there exist possibilities
for errors in microarray fabrication, because the masking task is
not perfect; the probability for a masked probe to be exposed to
the light is nonzero. Consequently, the probability for fabrication
errors is usually increased as the number of the synthesis steps is
raised. Therefore, a shorter deposition sequence is desirable to
reduce the manufacturing cost, time, and error. On the other
hand, the deposition sequence is a common supersequence of the
underlying probes. This motivates the design of high quality
algorithms for the SCS problem. Fig. 1 illustrates how the use of
a shorter deposition sequence can lead to fewer synthesis steps,
hence reducing the production cost, time, and error.

The SCS problem can be optimally solved in polynomial time
for a fixed number of input strings, but it is NP-hard in general
(Maier, 1978). Consequently, it is highly unlikely to obtain a
polynomial-time exact algorithm for the problem, unless P¼NP
(Garey and Johnson, 1979). Exact algorithms proposed for the
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Fig.1. (a) a given set of 3mer oligonucleotides: TTA, GTG, CGA and GCT. (b–g) A step by step illustration of the synthesis process for these oligos. Partially constructed

oligos are shown below the black line. The order of adding nucleotides is: AGTCGT (6 steps). If the alphabet method is used, it takes 8 steps (A,C,G,T,A,C,G,T) to build

the complete oligos.
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problem include a dynamic programming algorithm (Jiang and Li,
1995) and a branch and bound algorithm (Fraser, 1995), which
are both exponential, the former in the number of strings and the
latter in the size of the corresponding alphabet. Therefore, these
algorithms are especially beneficial when, respectively, the num-
ber of strings or the alphabet size is restricted. Other research has
aimed at devising approximation and (meta) heuristic algorithms,
which achieve ‘good’, but not necessarily optimal, solutions in
acceptable time. Approximation algorithms for the SCS include
Alphabet (Barone et al., 2001), an approximate An algorithm
(Nicosia and Oriolo, 2003), Reduce_Expand (Barone et al., 2001),
and Deposition and Reduction (DR) (Ning and Leong, 2006).
The approximation ratio of the algorithms Alphabet, Redu-

ce_Expand, and DR is 9S9, which is not appealing. The algorithm
DR is in fact a trivial combination of a heuristic mechanism with
Alphabet, which, therefore, guarantees the approximation ratio
of 9S9. The approximate An algorithm provides a 1þe approxima-
tion ratio, for any fixed e40, particularly e¼0.2 in the experi-
ments in Nicosia and Oriolo (2003). However, the algorithm is not
efficient (i.e. is not of polynomial time complexity) and the size of
the search tree can grow exponentially with the size of the given
problem instance.

Among (meta) heuristic algorithms for the SCS are Tournament

and Greedy (Irving and Fraser, 1993), Majority Merge (Branke
et al., 1998), algorithms based on Genetic Algorithms (Branke
and Middendorf, 1996; Branke et al., 1998), Ant System and Ant
Colony Optimization (Michel and Middendorf, 1998; Michel and
Middendorf, 1999), and Min_Height and Sum_Height (Kasif et al.,
2002); the latter two specifically proposed for DNA sequences. More
recent metaheuristic algorithms include a hybridization of Memetic
Algorithms with Beam Search called Hybrid MA_BS (Gallardo et al.,
2007), to which we simply refer as MA_BS, and a randomized Beam
Search called Probabilistic Beam Search (PBS) (Blum et al.,
2007). Another recent algorithm POEMS, together with its variants
POEMS_f and POEMS_fw, was also proposed in Kubalik (2010).
However, as reported in Kubalik (2010), it was outperformed by
MA_BS in all the experimental cases. Based on the results reported in
Blum et al. (2007), PBS outperforms MA_BS in most the experi-
mental cases. On the other hand, DR outperforms Alphabet,
Tournament, Greedy, and Majority merge in all the experimen-
tal cases as reported in Ning and Leong (2006). DR also outperforms
Reduce_Expand for strings of length 50–100 (Ning and Leong,
2006). However, no comparison of DR and PBS has yet been made,
leaving unclear which one is the state-of-the-art. The time complex-
ity of DR, as specified in Ning and Leong (2006), is O(9S93nm2),
where 9S9, n and m are, respectively, the size of the alphabet, the
number of strings and the maximum length of the strings. No
complexity of PBS or Hybrid MA_BS was reported in their proposing
papers (Gallardo et al., 2007; Blum et al., 2007).

In this paper, we provide an improved beam search algorithm
called IBS_SCS for the SCS problem, which, on average, outperforms
all the three recent algorithms, namely DR, MA_BS, and PBS, in all

experimental cases. A similar approach has been successfully used
for the Longest Common Subsequence (LCS) problem in Mousavi



S.R. Mousavi et al. / Engineering Applications of Artificial Intelligence 25 (2012) 457–467 459
and Tabataba (2012). The proposed IBS_SCS algorithm has been
inspired by the Blum et al.’s PBS algorithm but has the following
distinct characteristics. First, it employs a different probability-based
heuristic function than the one used in PBS. Using dynamic
programming and at polynomial time and space costs, an array of
probabilistic values is populated to facilitate the calculation of the
heuristic values. Second, we use a technique called domination to
further prune the search tree. The domination pruning technique
has been inspired by Easton and Singireddy (2007) and Blum et al.,
(2009) used for the purpose of the LCS problem. However, our usage
of this technique is different from those in Easton and Singireddy
(2007) and Blum et al. (2009)). To be precise, in Blum et al. (2009), a
candidate solution is checked for being dominated by every existing
candidate solution, which is rather time-consuming. On the other
hand, in Easton and Singireddy (2007), only the ‘best-so-far’ solution
is used as the potential dominator for a new candidate solution. In
our algorithm, we use the k best-so-far solutions for this purpose,
where k is a control parameter in the algorithm. This approach gives
us a control to achieve a good amount of pruning in reasonable time.
Finally, given the same beam size, PBS does more work than
IBS_SCS, which implies that IBS_SCS can benefit from a larger
beam size than that of PBS, given the same amount of execution
time. The IBS_SCS algorithm outperforms PBS in all the experi-
mental cases, as reported in this paper. It also outperforms MA_BS by
providing solutions of the same or higher (average) quality in all the
experimental cases, including the cases where PBS was outper-
formed by MA_BS as reported in Blum et al. (2007).

Finally, IBS_SCS outperforms DR in all the experimental cases,
which were set up based on the experiments conducted in Ning
and Leong (2006). The DR algorithm consists of two stages called
deposition and reduction. In the deposition stage, a number of
candidate supersequences are created, which are then (tried to be)
improved in the reduction stage. It uses Alphabet and a variant of
Majority Merge in the deposition stage to generate the candi-
date supersequence. In fact, the use of Alphabet makes DR to be
an approximation algorithm, which guarantees an approximation
ratio of 9

P
9. The DR algorithm is not deterministic only because of

using a random tie braking; the rest of the logic is deterministic.
The proposed algorithm IBS_SCS is scalable. Its time com-

plexity is polynomial in input size, and its computational cost can
be arbitrarily reduced by reducing the beam size. The heuristic
function used in the algorithm to evaluate candidate solutions
does not suffer from the scalability issue of the heuristic proposed
in Mousavi and Tabataba (2012) as an estimation mechanism is
used for long strings. While the algorithm is significantly faster
than other recent algorithm for the SCS, it yields superior solution
quality in most of the cases. Because the proposed algorithm is
scalable and sufficiently fast compared to other recent algorithms
for the SCS, the main concentration of the reported experimental
results is on the solution quality, i.e. on the length of the returned
supersequences.

The rest of the paper is organized as follows. Section 2.1
provides the basic notations and definitions used in the paper. In
Section 2.2, we describe how candidate solutions are evaluated
and compared using the employed heuristic function. The pro-
posed algorithm, together with its complexity analysis, is pre-
sented in Section 2.3. Section 3 reports the experimental results,
and Section 4 concludes the paper.
Fig.2. The values pi(x) and the strings ri(x), i¼1,2,3, are illustrated for three input

strings s1, s2, and s3, and a candidate (infeasible) solution x¼CATA.
2. Methods

2.1. Basic notations and definitions

Let s be a string of length m. We denote the length of s by 9s9.
We use s[k], where k is an integer between 1 and m inclusive, to
denote the kth character of s. We also use s[k1..k2], where
1rk1rk2r9s9, to indicate the substring of s obtained by remov-
ing its first k1�1 characters and its last 9s9�k2 characters. Let s1

and s2 be two strings, A1 ¼ fi9iANþ ,ir9s19g and A2 ¼ fi9iA
Nþ ,ir9s29g, where Nþ is the set of integers greater than zero.
We say that s2 is a supersequence of s1, and write s1!s2, if there
exists a monotone increasing total function g from A1 to A2 such
that s1½k� ¼ s2½gðkÞ�,8kAA1. We call such a function g a map of s1 to

s2. Note that such a map is not necessarily unique. Every string is
considered to be a supersequence of the null string, i.e. the string
of zero length. Finally, we say that s1 is a subsequence of s2 if s2 is a
supersequence of s1.

Let x be a string and S¼{s1, y, sn} be a nonempty set of n strings
over the alphabet S. We write S!x if 8siAS,si!x. The Shortest
Common Supersequence (SCS) problem is then defined, given an
input set S of strings, as to obtain a string x of the minimum length
such that S!x. By an input string, we mean a string in S. Since the
SCS can be efficiently solved for n¼2, we assume n42. We use mi to
mean 9si9 and assume mi40,8iAf1,:::,ng. We use m to denote
MaxiA f1,:::,ngfmig. A candidate solution is a string over S. We use
(possibly indexed) x to denote a candidate solution. A candidate
solution x is called feasible if S!x; it is otherwise called infeasible. A
feasible candidate solution x is optimal if no feasible solution of a
shorter length exists.

Let x be a candidate solution. We use pi(x) to denote the
maximum possible integer k such that si[1..k]!x. By ri(x), we
mean the string obtained by deleting the first pi(x) characters
from si (see Fig. 2), and R(x) is defined as the set (ri(x), i¼1, y, n).
By a random string, we mean a string each character of which is
obtained by selecting uniformly at random one of the characters
in S. Finally, we use pr(.) to denote the statistical probability
function. Although there are two types of beam search, namely
constructive and perturbative (local search), we use beam search
in this paper to refer to the former.

2.2. Evaluation of candidate solutions

In this section, we explain how candidate solutions are eval-
uated and compared. The method used here to evaluate candidate
solutions is adapted from Mousavi and Tabataba (2012) where a
similar problem, the LCS, was addressed. To evaluate a candidate
solution x, we use the probability of R(x)!y, where y is a random
string and the strings in R(x) are assumed to be independent in the
sense that PrðriðxÞ!yÞ ¼ PrðriðxÞ!y9rjðxÞ!yÞ,8i,jAf1,. . .,ng,ia j.
Our intuition for this heuristic function is that a candidate solution
x1 is likely to be superior to another candidate solution x2 (of the
same length) if, given a random string y of length k, x1.y is more
likely than x2.y to be a common supersequence of the input
strings, where xi.y, i¼1 or 2, indicates the string obtained by
appending y at the end of xi. Of course, the probability of R(x)!y

depends on the candidate solution x. In the extreme case where x

is a supersequence of all the input strings, i.e., when S!x, this
probability is 1 because R(x) would only include null strings.



S.R. Mousavi et al. / Engineering Applications of Artificial Intelligence 25 (2012) 457–467460
In another extreme, where x is the null string, it become the
probability of a random string being a supersequence of the input
strings. As a rule of thumb, a higher value of Pr(R(x)!y) is
expected for a longer random string y, although this does not
necessarily hold. We use hk(x) to denote the heuristic value of a
candidate solution x. we have used the subscript k to emphasis the
dependency of heuristic values on the length k of the random
string y. Of course, if k is less than the length of the longest string
in R(x), the heuristic value, i.e. the probability of R(x)!y, will be
zero. For a fair comparison of candidate solutions, we use the same
value of k when evaluating the candidate solutions that are to be
compared. A formula used to determine k is presented further in
this section. We now show how to calculate heuristic values.

Theorem 1. Let r be a string of length q and y be a random string of

length k. Then:

Prðr!yÞ ¼

1 if q¼ 0

0 if q4k

1
9S9 Prðr 2::q½ �!y 2::k

� �
Þþ

9S9�1

9S9 Prððr!y 2::k
� �

Þ otherwise

8>><
>>:

ð1Þ

Proof. First note that in the third case (the otherwise case),
0oqrk, and the strings r[2..q] and y[2..k] are well-defined. By
the definition of supersequence, every string is a supersequence
of the null string and a string cannot be a supersequence of a
longer one. Therefore, the first two cases of q¼0 and q4k hold
trivially. In the remaining case, because 0oqrk, the strings r and
y are of at least length 1 and both r[1] and y[1] exist. Depending
on whether or not the characters r[1] and y[1] are equal, exactly
one of the following two cases holds:

Case (i): r[1]¼y[1]. In this case, we will prove that r!y3

r[2..q]!y[2..k]. To than end, we will use the following property, to

which we refer as the concatenation property: 8s1,8s2,8s3,

8s4,ðs1!s2Þ4ðs3!s4Þ3s1:s2!s3:s4.

The ‘‘if’’ direction. We assume r[2..q]!y[2..k] and show r!y:

r½2::q�!y½2::q� ) r½1�:r½2::q�!y½1�:y½2::q�ðby the concatenation propertyÞ

) r½1::q�!y½1::q� ) r!y

The ‘‘only if’’ direction. We now assume r!y and show

r[2..q]!y[2..k]. Because r!y, there is, by the definition of super-

sequence, a total monotone increasing function g(.) from

A1¼{1, y, q} to A2¼{1, y, k} such that r[i]¼y[g(i)], 8i¼ 1,:::,q.

There are two possible cases: either g(1)¼1 or g(1)41. In either

case, g(i)41,8i¼ 2,:::,q (note that g(.) is monotone increasing).

Now let g0(.) be a total function from {1,y,q�1} to {1,y,k�1}

defined as g0(i)¼g(iþ1)�1, 8i¼ 1,:::,q�1. Of course, g0(.) is also

monotone increasing. Let r0 and y0 denote, respectively, r[2..q]

and y[2..k]. Then, we will have r0[i]¼r[iþ1], 8i¼ 1,:::,q�1, and

y0[i]¼y[iþ1], 8i¼ 1,:::,k�1. Therefore, 8i¼ 1,:::,q�1,

y0½g0ðiÞ� ¼ y½g0ðiÞþ1� ¼ y½gðiþ1Þ21þ1� ðby the definition ofg0ð:ÞÞ

¼ y½gðiþ1Þ�

¼ r½iþ1� ðbecause y is a supersequence of r using the mapping gð:ÞÞ

¼ r0½i�

This means y0 is a supersequence of r0 using the mapping g0(.).

That is, r[2..q]!y[2..k].

Case (ii): r[1]ay[1]. In this case, we show that r!y3r!

y[2..k].
The ‘‘if’’ direction. We assume r!y[2yq] and show r!y:

r!y½2::q� ) e:r!y½1�:y½2::q�

ðbecause e!y ½1� and by the concatenation propertyÞ

) r!y½1::q�

) r!y

The ‘‘only-if’’ direction. We assume r!y and show r!y[2..q].

Because r!y, there is a total monotone increasing function g(.)

from A1¼{1,y,q} to A2¼{1,y,k} such that r[i]¼y[g(i)], 8i¼ 1,:::,q.

However, g(1)a1 because r[1]ay[1]. Therefore, g(i)41,8i¼

1,:::,q (note that g(.) is monotone increasing). Now let g0(.) be a

total function from {1,y, q} to {1,y, k�1} defined as g0(i)¼g(i) –

1, 8i¼ 1,:::,q. Of course, g0(.) is also monotone increasing. Let y0

denote y[2..k]. Then, we will have y0[i]¼y[iþ1], 8i¼ 1,:::,k�1.

Therefore, 8i¼ 1,:::,q,

y0½g0ðiÞ� ¼ y½g0ðiÞþ1�

¼ y½gðiÞ21þ1� ðby the definition of g0ð:ÞÞ

¼ y½gðiÞ�

¼ r½i� ðbecause y is a supersequence of r using the mapping gð:ÞÞ

This means y0 is a supersequence of r using the mapping g0(.).

That is, r!y[2..k].

We have so far shown that in Case (i), where r[1]¼y[1],

r!y3r[2..q]!y[2..k] and that in Case (ii), where r[1]ay[1],

r!y3r!y[2..k]. Therefore, Pr(r!y)¼Pr(r[2..q]!y[2..k]) in Case

(i) and Pr(r!y)¼Pr(r!y[2..k]) in Case (i). On the other hand, y is a

random string based on the uniform probability distribution and

the probability for case (i) is 1/9S9. Consequently, the probability

for case (ii) is 1�1/9S9¼(9S9�1)/9S9. Therefore,

Prðr!yÞ ¼
1

9S9
Prðr 2::q½ �!y½2::k�Þþ

9S9�1

9S9
Prðr!y 2::k

� �
Þ & ð2Þ

Proposition. Given a candidate solution x and a positive integer k,

the heuristic value for a candidate solution x is calculated as

hkðxÞ ¼
Yn

i ¼ 1

PrðriðxÞ!yÞ

where y is a random string of length k.

Proof. By the definition of the heuristic function, we have
hk(x)¼Pr(R(x)!y), where y is a random string of length k, and it
is assumed PrðriðxÞ!yÞ ¼ PrðriðxÞ!y9rjðxÞ!yÞ,8i,jAf1,. . .,ng,ia j.
Therefore,

hkðxÞ ¼ PrðriðxÞ!y, 8iAf1,. . .,ngÞ ¼
Yn

i ¼ 1

PrðriðxÞ!yÞ &

Let C be a set of candidate solutions that are to be compared.

Then, we use the formula Max iAf1,:::,ng

xAC

friðxÞg � lg9S9to determine

the value for k. We have used the fact that a greater alphabet size
and longer strings in R(x) usually correspond to a longer super-
sequence of them. However, how to determine the best value for
k requires further investigation and remains as an open question.

2.3. The IBS_SCS algorithm

In this section the proposed algorithm IBS_SCS is proposed,
which is a constructive beam search metaheuristic algorithm. The
standard beam search algorithm is a deterministic heuristic tree
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search. It is similar to the breadth-first search in the sense that it
incrementally constructs partial solutions and explores the search
tree one level at a time. However, contrary to breadth-first search, it
does not keep all the candidate solutions. The maximum number of
candidate solutions to keep is called beam size, which we denote as
b. Informally speaking, in the extreme case where the beam size is
sufficiently large, the algorithm will act as the breadth-first search.
Another extreme case is when the beam size is only 1, in which case
it will act as a purely greedy algorithm. The beam search algorithm
is also similar to the best-first search in the sense that it also uses a
heuristic function to evaluate and compare candidate solutions.

Finally, there exists a scalability issue with the described
heuristic function for large problem instances. To be precise, the
probability Pr(r!y) decreases rapidly as the length of r becomes
close to the length of y, especially when r and y are long strings.
To overcome this issue, we estimate P(q,k) with P(q�cut, k�cut),
where cut is dynamically determined in such a way that q�cut is
positive and is either less than or as close as possible to 100. This
approximation overcomes the scalability issue of the heuristic
function and makes the algorithm sufficiently robust for long
biological sequences.

Algorithm 1 presents a high-level pseudo-code of our pro-
posed IBS_SCS algorithm for the SCS. As a beam search, the
algorithm starts with an initially-singleton (the null string) set B

of candidate solutions and incrementally builds longer ones by
appending to them alphabet characters from the alphabet S, until
a feasible candidate solution is obtained; the feasible solution is
then returned and the algorithm terminates. However, (at most) b
best candidate solutions are kept, using a heuristic function, and
the others are eliminated.

The algorithm consists of an initialization section followed by
a while loop, which consists of four steps. In the initialization
section, the algorithm constructs an efficient data structure to
speed up the calculation of heuristic values. The core idea behind
using this data structure is the property of the heuristic function
hk(.), described in the previous section, that, given an alphabet S,
a string r of length q and a random string y of length k, both over
S, the probability of r!y is only dependent on q and k (see
Theorem 1). Therefore, we construct a two-dimensional array P

such that P[q][k] holds the probability Pr(r!y). Using dynamic
programming, and based on Theorem 1, the array P is populated
by the following recurrence:

Pðq,kÞ ¼

1 if q¼ 0

0 if q4k

1
9S9 Pðq�1,k�1Þþ

9S9�1

9S9 Pðq,k�1Þ otherwise

8>><
>>:

ð3Þ

In the initialization section, the set B of candidate solutions is
also initialized to a singleton containing the null string only.
Having completed the initialization section, the while loop is
run, which consists of four steps. In Step 1, each candidate solution
x in B is extended by appending at its right end a character drawn
from S, so obtaining 9S9 new candidate solutions. The algorithm
ends as soon as a feasible solution, determined using the function
feasible(.), is obtained. Every (infeasible) candidate solution is
added to a set C, provided that it is ‘usable’. More specifically, a
candidate solution xnew obtained by appending a character l to a
string x is called usable if the first character of at least one of the
strings ri(x), i¼1, y, n, is l. This is checked by the function
usable(.) in the algorithm. Therefore, the set C contains at most
b� 9S9 (infeasible yet usable) candidate solutions. In Step 2, the
heuristic values of the candidate solutions in C are computed,
based on which the k best candidate solutions comprise a list
k_Best_List of potential dominators to be used for dominance
pruning. That is, in Step 3, each member of C is checked against the
designated best solutions to decide whether it is dominated by
any of them, in which case it is discarded from C. A candidate
solution xk is dominated by another candidate solution xj if
piðxkÞrpiðxjÞ,8i¼ 1,:::,n. Finally, in Step 4, the (remaining) candi-
date solutions in C are compared and the best b of them are
selected to construct the new set B of candidate solutions. The
proposed algorithm runs in polynomial time in its input size (n, m,
and 9S9) and the values of the parameters b and k.
Algorithm 1: The basic IBS_SCS algorithm for the SCS
problem

Input: S¼{s1,s2,y,sn}, each si is a string of at least one
character

the alphabet of characters used in any of the strings is denoted
by S

Output: a string x such that S!x

Parameter: the beam size b
Parameter: the number k of best solutions used for

dominance pruning
//initialization
For q¼0 to m
For k¼0 to M //M is the maximum value for k, i.e.

M¼m� lg9S9

If q¼0 Then P[q][k]¼1;

Else If q4k Then P[q][k]¼0;
ElseP q½ � k
� �
¼ 1

9S9 P q�1,k�1
� �

þ
9S9�1

9S9 P q,k�1
� �

B¼{e} //the set of candidate solutions initially contains the
null string only

While (true)
{

//Step 1: extension

C¼|

For each xAB
For each letter lAS

xnew
¼the string obtained by adding l at the end of x
If feasible(xnew) Then

return xnew//the algorithm terminates here
If usable(xnew) Then

C¼C[{xnew}//add it to C only if it contributes to

covering a letter in some input strings
//Step 2: Evaluation of candidate solutions
k¼ Max
iAf1,:::,ng

xAC

friðxÞg � lg9S9//determine k
For each xAC
tmpH¼1

For i¼1 to n
tmpH¼tmpH� P[9ri(x)9][k]

hk(x)¼tmpH
//Step 3: dominance pruning

k_Best_List¼a list of k best dominators

For each xAC
If x is dominated by some member of k_Best_List Then

C¼C–{x}
//Step 4: selection
B¼a set of b members of C with the highest heuristic values

//in the case 9C9ob, let B¼C
}

Proposition. Algorithm IBS_SCS (Algorithm 1) is of complexity

O(m2lg9S9þLn(nkb9S9þb9S9lg(b9S9))) in computing time, where Ln

is the length of the returned solution.
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Proof. In the initialization section before the While loop, the
two-dimensional array P is populated using dynamic program-
ming. The value of each entry is determined in Y(1), in terms of
two entries in its previous rows and columns. As can be seen,
there are two nested loops and it takes Y(m�M) to populate the
array. Because M is the maximum value used for k, and that we

have used the formula k¼Max iAf1,:::,ng

xAC

friðxÞg � lg9S9 to deter-

mine the values of k (see Step 2 inside the While loop),
M¼m� lg9S9. Therefore, the array P is populated in
Yðm�m� lg9S9Þ ¼Yðm2 lg9S9Þ.

There are four Steps inside the While loop, which we analyze in

turn. Step 1 consists of two nested For loops, one iterating O(b)

times and the other iterating 9S9 times. Inside these loops, a

feasibility check (using the function feasible(.)) and a usability

check (using the function usable(.)) are performed. The feasibility

check involves checking whether a given candidate solution, here

xnew, is a supersequence of the input strings. If we keep n indices

of pi(x) associated with each candidate solution x in B, then we

only need to update these indices for xnew and check whether

pi(xnew)¼mi, 8i¼1,y,n (recall that mi¼9si9), which are performed

in Y(n). The usability check returns true if, and only if,

pi(xnew)¼pi(x)þ1, (i¼1,y,n, which is also performed in Y(n).

Therefore, Step 1 is run in O(b9S9n).

Step 2 determines the heuristic values for all candidate solu-

tions in C, the number of which is O(b9S9). For each candidate

solution x in C, the For loop iterates n times. Because of using the

array P, each probability value (i.e., (ri(x)!y)) is determined in

Y(1) inside the For loop, which are all multiplied together,

making the heuristic value hk(x) for the candidate solution x.

Therefore, Step 2 requires O(b9S9n) (which is the same as that of

Step 1).

Step 3 first determines the k best solutions in C (stored in the

k_Best_List) and then examines each member of C against the

designated best solutions for dominance pruning. Recall that

there are at most b� 9S9 candidate solutions in C. Therefore, to

determine the k_Best_List can be performed in O(kb9S9). To check

whether a candidate solution in C is dominated by a member of

k_Best_List is performed in O(n); hence all the dominance checks

are performed in O(b9S9kn). Therefore, the total complexity of

Step 3 is O(b9S9kn).

Finally, Step 4 selects the best (at-most) b members of C to

construct the new B, which can also be performed in O(b9S9lg(b9S9))
using red-black trees.1

Therefore, Steps 1–4 inside the while loop are performed in

O(b9S9nþb9S9nþb9S9knþb9S9lg(b9S9)). Because the initializa-

tion section is run in Y(m2lg9S9) and the While loop iterates Ln

times, the whole algorithm is run in O(m2lg9S9þLn(b9S9knþ

b9S9lg(b9S9)), which completes the proof. &

Note that the time complexity of the algorithm is polynomial
in the input size (n, m, and 9S9). Also note that Ln¼O(nm) (recall
that m is the length of the longest input string), because,
informally speaking- each character of a candidate solution must
contribute to covering a character of at least one input string and
there are at most a total of n�m such characters. Therefore, the
time complexity of the algorithm may also be presented as
O(m2lg9S9þn2mb9S9kþnmb9S9lg(b9S9), although this does not
provide a tight bound.
1 The current code of the proposed algorithm does not use red-black trees and

requires O(b29S9) for this step.
How to determine the appropriate values for the parameters k
and b depends on the underlying problem. In particular, a larger
beam size b usually, but not necessarily, corresponds to a more
accurate solution at a greater computational cost. However, if the
solution quality using a specific beam size is near the optimal
value, there will be not much point further increasing the beam
size. On the other hand, using a ‘‘too small’’ beam size may
adversely affect the solution quality. In fact, it depends on the
underlying problem instance and such factors as what level of
accuracy is required and how much run-time is affordable.
Similarly, there is no strict rule for determining the best value
for k. A larger k corresponds to a more computational time spent
for dominance pruning. However, the pruning can lead to the
reduction of computational cost that would otherwise be required
for processing the pruned sub trees.
3. Results

In this section, we report the results of comparing our
proposed algorithm with DR (Ning and Leong, 2006), MA_BS

(Gallardo et al., 2007), and PBS (Blum et al., 2007), as three
recent algorithms proposed for the SCS problem. Although there
are other algorithms proposed in the literature as mentioned
earlier in this paper, we do not compare our algorithm with them,
because the most significant of them have already been shown to
be outperformed by these three recent algorithms as reported in
Ning and Leong (2006), Gallardo et al. (2007), and Blum et al.
(2007).

The implementations of DR, MA_BS, and PBS were not available.
The whole datasets used in Gallardo et al. (2007) and Blum et al.
(2007) were available, and we used the reported results in Gallardo
et al. (2007), and (Blum et al., 2007) to compare our algorithms with
MA_BS and PBS. However, only real instances used in (Ning
and Leong, 2006) were available (http://www.biomedcentral.com/
content/supplementary/1471-2105-7-S4-S12-S1.zip; http://www.
biomedcentral.com/content/supplementary/1471-2105-7-S4-S12-S2.
zip). For random instances, we used their random instance generator
(http://www-personal.umich.edu/�kning/random.html), and to
compare IBS_SCS with DR on random instances, we implemented
DR, precisely based on its specifications in (Ning and Leong, 2006).
We implemented DR and IBS_SCS in Java using the Eclipse Platform
on a Pentium IV machine with 2.4 GHz clock speed, 2 GB of RAM, and
2 MB of L2 cache. We allowed Java to use (at most) 1 GB of RAM.

In order to compare IBS_SCS with DR, the random instances
were generated with exactly the same values for the parameters
n, m, and 9S9 as used in (Ning and Leong, 2006). There are
altogether sixteen problem instances; the first eight, which are
of relatively smaller numbers and lengths of strings, correspond
to those in Table 4 and the other eight correspond to those in
Table 1 of Ning and Leong (2006). The real instances are the DNA/
protein instances used, respectively, in Tables 3 and 5 of (Ning
and Leong, 2006). There are altogether 11 datasets, the first six for
DNA and the other five for protein sequences, and each datasets
includes ten instances. It is important to note that in some of the
sequences in the real data, there were characters such as n-
outside the underlying alphabet. Such characters were randomly
replaced with one of their candidate characters. We ran IBS_SCS

with the parameters b¼100 and k¼7. We ran our implementa-
tion of DR on the random instances but used the reported results
in Ning and Leong (2006) for real instances.

Table 1 provides the comparison of IBS_SCS with DR on
random DNA sequences. The first and the second columns show,
respectively, the number and the length of the sequences in each
problem instance. Each row of the table corresponds to ten
problem instances of the specified n and m. The third and the



Table 1
Comparison of IBS_SCS with DR on random DNA datasets (hence 9S9¼4). Each

row corresponds to a dataset of ten random problem instances, and the average

length of the solutions is reported for each algorithm. IBS_SCS was run with the

parameters b¼100 and k¼7. The run-time (in seconds) of IBS_SCS and the

improvement percentage (r%) are also reported (the last two columns). The

improvement percentage, obtained by IBS_SCS, is defined as the reduction

percentage in the average length of the solution. There are a total of sixteen

datasets. The first eight, which contain relatively small instances, are of the same

specifications (i.e., the same number n and length m of strings) as those in Table 4

(Ning and Leong, 2006). The other eight datasets are of the same specifications as

those in Table 1 of Ning and Leong (2006). As can be seen, IBS_SCS outperforms

DR by providing solutions of higher quality (i.e. with shorter lengths) in all the

sixteen cases.

Number of

strings

Length of

strings

Average length of

the returned

solutions

Run-time of

IBS_SCS

Improvement

percentage

n m DR IBS_SCS TIBS_SCS r%

5 10 21.2 20.1 0 5.18

10 10 25.3 24.2 0 4.34

50 10 30.9 29.6 0 4.2

100 10 32.2 31.1 0 3.41

5 100 196.7 185.5 0 5.69

10 100 228.2 211.8 0 7.18

50 100 262.3 251.9 0 3.96

100 100 269.9 261.6 1 3.07

100 100 268.3 260.6 1 2.86

500 100 278.2 274 4 1.5

1000 100 279.3 276.1 7 1.14

5000 100 282.3 281.7 43 0.21

100 1000 2529.4 2467.6 15 2.44

500 1000 2573.1 2542 44 1.2

1000 1000 2575.5 2557 81 0.71

5000 1000 2580.9 2571.7 469 0.35

Fig. 3. The growth of run-time for both DR and IBS-SCS with n, for the eight

(middle) cases of Table 1, where m¼100. For these datasets, 9S9¼4, and the

number of strings n are 5, 10, 50, 100, 500, 1000, and 5000. IBS_SCS was run with

the parameters b¼100 and k¼7.

Table 2
Comparison of IBS_SCS with DR on real DNA and protein sequences (9S9¼4 for

DNA instances, and 9S9¼20 for protein instances). The datasets are those used in

Tables 3 and 5 in Ning and Leong (2006), whose names are specified in the first

column. Each row corresponds to ten instances, and the average length of the

solutions returned by each algorithm is reported. IBS_SCS was run with

the parameters b¼100 and k¼7. The run-time (in seconds) of IBS_SCS and the

improvement percentage (r%) are also reported. The improvement percentage is

defined as the reduction percentage in the average length of the solutions,

obtained by IBS_SCS. There are a total of 11 datasets, the first six for DNAs and

the other for protein sequences. The results for DR are directly taken from

Tables 3 and 5 in Ning and Leong (2006). As can be seen, IBS_SCS outperforms

DR by obtaining higher quality solutions in all the eleven cases.

Benchmark

name

Number

of

strings

Length

of

strings

Average length of

the returned

solutions

Run-time

of

IBS_SCS

Improvement

percentage

n m DR IBS_SCS TIBS_SCS r%

DNA-1 100 500 1364.4 1284.6 6 5.84

DNA-2 500 500 1420.7 1351.6 22 4.86

DNA-3 100 1000 2675.7 2540.1 16 5.06

DNA-4 500 1000 2769.1 2662.9 48 3.83

DNA-5 100 100 284.4 272.3 1 4.25

DNA-6 500 100 296.8 288.1 4 2.93

PROT-1 100 500 4846.3 4374.9 159 9.72

PROT-2 500 500 5548.6 5162.5 464 6.95

PROT-3 1000 500 5734 5394.5 815 5.92

PROT-4 100 100 1008.7 910.6 16 9.72

PROT-5 500 100 1199.8 1118.1 74 6.8
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fourth columns report the average length of the string returned
by DR and IBS_SCS, respectively, over the ten instances of each
row. The fifth column reports the average run-time of IBS_SCS,
including the time needed to read in the data files. Finally, the last
column calculates the (average) reduction percentage r% in the
length of the string by IBS_SCS, defined as r%¼(LDR�LIBS_SCS)/
LDR�100, where LDR and LIBS_SCS denote the average lengths of
the strings returned by DR and IBS_SCS, respectively.

As can be seen in Table 1, IBS_SCS outperforms DR by
achieving shorter strings in all the sixteen cases. The reduction
percentage r% varies from 0.21 (for the case n¼5000 and
m¼100) to 7.18 (for the case n¼10 and m¼100), with an average
of 2.95 (not shown in the table). No complete run-time report was
provided in Ning and Leong (2006); it was only mentioned that DR
took less than 10 s for the random instance (n¼100, m¼100) and
an average of 5–10 min for the random instance (n¼1000,
m¼1000). The run-time of our (efficient) implementation of DR
observed for these two cases are 20 s and 18091 s (about 30 min),
respectively. However, the run-times of IBS_SCS for the corre-
sponding instances are 1 s and 81 s (less than two minutes). This
suggests that IBS_SCS should be significantly faster than DR. It is
important to note the DR was observed to take more than 27 h for
the last instance (n¼5000, m¼1000), for which no run-time was
reported in Ning and Leong (2006). The time taken by IBS_SCS

for that instance was 469 s (less than 8 min). Fig. 3 depicts the
growth of run-time for both our implemented DR and IBS_SCS

with the number of strings n for a fixed sequence length of
m¼100 (our implemented DR and IBS_SCS algorithms are
available on request).

Table 2 provides the comparison of IBS_SCS with DR on real
biological sequences. The first column in this table represents the
dataset name. The definitions for the second to the seventh
columns are as those for the first to the sixth columns of
Table 1. As indicated by Table 2, IBS_SCS outperforms DR by
obtaining shorter strings in all the eleven cases. The reduction
percentage r% ranges from 2.93 (for DNA-6) to 9.72 (for PROT-1
and PROT-4), with an average of 5.98 (not shown in the table).
Again IBS_SCS was observed to be significantly faster than DR.
An interesting observation is that the reduction percentage
gained by IBS_SCS is significantly higher for real than random
biological sequences. The minimum r% for real instances is, as
already-mentioned, 2.93, which is about the average r% (2.95) for
random instances. This indicates that IBS_SCS is promising for
practical use and further research for this purpose.

To compare our algorithm with PBS and MA_BS, we used the
same random and real instances as used in Blum et al. (2007).The
datasets consist of one random and five biological benchmarks.
The random datasets are categorized into 5 classes, each of which
is specified with a different alphabet size, namely 2, 4, 8, 16, and



Table 4
Comparison of IBS_SCS with MA_BS and PBS on the 158-Nucleotide SARS dataset

(hence 9S9¼4). The dataset and the results for MA_BS and PBS are those in Blum

et al. (2007). The first column shows p, the probability of each letter in a sequence

being deleted. The number of strings is n¼10. Because MA_BS and PBS are not

deterministic, their reported results are statistical values of the best, the mean,

and the standard deviation of their several runs on the same instance. However,

IBS_SCS is deterministic and is run only once on each instance. IBS_SCS was run

with the parameters b¼100 and k¼7. The last column shows the run-time of

IBS_SCS (in seconds). As can be seen, IBS_SCS obtains the optimal solution,

within 1 s, in all of the cases.

Probability Length of

strings

average length of the returned

solutions

Run-time of

IBS_SCS

p m MA_BS best

mean7s
PBS best

mean7s
IBS_SCS TIBS_SCS

0.10 146 158 15870 158 15870 158 0

0.15 137 158 15870 158 15870 158 0

0.20 130 158 15870 158 15870 158 0

Table 5
Comparison of IBS_SCS with MA_BS and PBS on the 1269-Nucleotide SARS

dataset (hence 9S9¼4). The dataset and the results for MA_BS and PBS are those

in (Blum et al., 2007). The first column shows p, the probability of each letter in a

sequence being deleted. The number of strings is n¼10. Because MA_BS and PBS

are not deterministic, their reported results are statistical values of the best, the

mean, and the standard deviation of their several runs on the same instance.

However, IBS_SCS is deterministic and is run only once on each instance.

IBS_SCS was run with the parameters b¼100 and k¼7. The last column shows

the run-time of IBS_SCS (in seconds). It can be seen that IBS_SCS achieves the

optimal solution, within 2 s, in all the cases.

Probability Length

of

strings

Average length of the returned solutions Run-

time of

IBS_SCS

p m MA_BS best

mean7s
PBS best mean7s IBS_SCS TIBS_SCS

0.10 1156 1269 126970 1269 126970 1269 2

0.15 1097 1269 126970 1269 1303.8736.6 1269 2

0.20 1039 1269 126970 1571 1753.2761.0 1269 2
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24. Each class contains five instances, and each instance consists
of eight strings, four of length 40 and the other four of length 80.
On the other hand, each biological instance is characterized by a
biological sequence s and a probability p. More specifically, the
strings within each instance are obtained from the same biologi-
cal sequence s by removing each of its symbols with a fixed
probability p. The number of the strings in each instance is 10.
Five biological sequences each with three probabilities of 0.1,
0.15, and 0.20 have been used to construct a total of 15 instances.
The five biological sequences are two SARS Coronavirus

DNA sequences obtained from a genomic database (http://
gel.ym.edu.tw/sars/genomes.html) and three protein sequences
obtained from Swiss-Prot (http://www.expasy.org/sprot). The
DNA sequences are of the lengths 158 and 1269, and the protein
sequences are Oxytocin, p53 and Estrogen, which are of the
lengths 125, 393, and 595, respectively. The lengths of the optimal
SCSs for these instances are, respectively, 158, 1269, 125, 393, and
595 (Blum et al., 2007).

For MA_BS and PBS, we used the reported results in (Blum
et al., 2007). Contrary to IBS_SCS, MA_BS and PBS are not
deterministic; they were run more than once in Blum et al.
(2007), and the best, the mean, and the standard deviation of
their solution quality and run-time were reported. However, we
ran only IBS_SCS once on each instance. We used k¼7 and
b¼700 for random and b¼100 for real instances.

Table 3 compares IBS_SCS with MA_BS and PBS on the
random datasets. The first column shows the alphabet size. The
second and the third columns show the length of the solutions
returned by MA_BS and PBS, respectively. The fourth column
reports the length of the solutions returned by IBS_SCS. The fifth
column reports the average run-time of IBS_SCS. Finally, the last
column calculates the reduction percentage r% achieved by
IBS_SCS with respect to PBS (which is almost superior to
MA_BS), defined as r%¼(LPBS�LIBS_SCS)/LPBS�100, where LPBS
and LIBS_SCS denote the (average) length of the solutions returned
by PBS and IBS_SCS, respectively.

As can be seen in Table 3, in all the five cases, IBS_SCS
outperforms MA_BS and PBS, even with respect to their best runs.
We do not intend to provide a precise run-time comparison,
because of using different machines. However, it can be inferred
that IBS_SCS should not be any slower than the other two
algorithms; the run-time limit for PBS and MA_BS were reported
in Blum et al. (2007) and Gallardo et al. (2007) as to be 350 and
600 s, respectively, whereas the longest run-time of IBS_SCS is
only 8 s (the last row of Table 3). Note that with a smaller beam
size of 200, the longest run-time of our algorithm was even less
than 1.5 s (not shown in the table), while it still outperformed
PBS in all the five cases. Finally, as can be seen in the last column
of Table 3, IBS_SCS achieves the reduction percentage of
Table 3
Comparison of IBS_SCS with MA_BS and PBS on random instances. There are five diffe

instance consists of eight strings (hence n¼8), four of length 40 and the other four of len

instances are exactly the random instances used in Blum et al. (2007). The results of M

deterministic, their reported results are statistical values of the best, the mean, and t

averaged on all the 5 instances for each row. However, IBS_SCS is deterministic and is

k¼7. The run-time of IBS_SCS (in seconds) and the reduction percentage r% are also

outperforms MA_BS and PBS, even with respect to their best runs.

Alphabet size Average length of the returned solutions

9S9 MA_BS best mean7s PBS best mean7s

2 110.6 110.770.0 110.8 110.971.7

4 145.6 146.470.5 144.8 145.471.5

8 191.6 192.671.4 186.4 187.271.7

16 242.8 244.071.0 240.4 241.973.4

24 280.2 281.270.8 276.4 277.974.0
1.35–3.52 over PBS, with an average of more than 2.5%. Note
that MA_BS outperforms PBS with respect to the average length of
the solutions for the case 9S9¼2, but it is still outperformed by
IBS_SCS in this case.

The results of experiments over the biological sequences are
reported in Tables 4–8. The first columns in these tables show the
value for the probability p. The next column shows the maximum
length m of input strings. The next three columns show the
results of the algorithms MA_BS, PBS, and IBS_SCS, respectively.
The last column shows the run-time of IBS_SCS. Tables 4 and 5
rent alphabet sizes (first column), for each of which there are five instances. Each

gth 80 (hence m¼80 – recall that m is the length of the longest input string). These

A_BS and PBS are taken from Blum et al. (2007). Because MA_BS and PBS are not

he standard deviation of their several runs on the same instance, which are then

run only once on each instance. IBS_SCS was run with the parameters b¼700 and

reported in the last two columns. As can be seen, in all of the five cases, IBS_SCS

Run-time of IBS_SCS Improvement percentage

IBS_SCS TIBS_SCS r%

109.4 1 1.35

142.4 2 2.06

180.6 3 3.52

235.6 6 2.6

268.8 8 3.27



Table 6
Comparison of IBS_SCS with MA_BS and PBS on the 125-Aminoacid Oxytocin

dataset (hence 9S9¼20). The dataset and the results for MA_BS and PBS are those

in Blum et al. (2007). The first column shows p, the probability of each letter in a

sequence being deleted. The number of strings is n¼10. Because MA_BS and PBS

are not deterministic, their reported results are statistical values of the best, the

mean, and the standard deviation of their several runs on the same instance.

However, IBS_SCS is deterministic and is run only once on each instance.

IBS_SCS was run with the parameters b¼100 and k¼7. The last column shows

the run-time of IBS_SCS (in seconds). IBS_SCS obtains the optimal solution,

within 1 s, in all of the cases.

probability Length of

strings

Average length of the returned

solutions

Run-time of

IBS_SCS

p m MA_BS best

mean7s
PBS best

mean7s
IBS_SCS TIBS_SCS

0.10 115 125 12570 125 12570 125 0

0.15 108 125 12570 125 12570 125 0

0.20 102 125 12570 125 12570 125 0

Table 7
Comparison of IBS_SCS with MA_BS and PBS on the 393-Aminoacid p53 dataset

(hence 9S9¼20). The dataset and the results for MA_BS and PBS are those in Blum

et al. (2007). The first column shows p, the probability of each letter in a sequence

being deleted. The number of strings is n¼10. Because MA_BS and PBS are not

deterministic, their reported results are statistical values of the best, the mean,

and the standard deviation of their several runs on the same instance. However,

IBS_SCS is deterministic and is run only once on each instance. IBS_SCS was run

with the parameters b¼100 and k¼7. The last column shows the run-time of

IBS_SCS (in seconds). It is observed that IBS_SCS obtains the optimal solution,

within 1 s, in all the cases.

Probability Length of

strings

Average length of the returned

solutions

Run-time of

IBS_SCS

p m MA_BS best

mean7s
PBS best

mean7s
IBS_SCS TIBS_SCS

0.10 366 393 39370 393 39370 393 1

0.15 348 393 39370 393 39370 393 1

0.20 335 393 39370 393 39370 393 1

Table 8
Comparison of IBS_SCS with MA_BS and PBS on the 595-Aminoacid Estrogen

dataset (hence 9S9¼20). The dataset and the results for MA_BS and PBS are those

in (Blum et al., 2007). The first column shows p, the probability of each letter in a

sequence being deleted. The number of strings is n¼10. Because MA_BS and PBS

are not deterministic, their reported results are statistical values of the best, the

mean, and the standard deviation of their several runs on the same instance.

However, IBS_SCS is deterministic and is run only once on each instance.

IBS_SCS was run with the parameters b¼100 and k¼7. The last column shows

the run-time of IBS_SCS (in seconds). IBS_SCS obtains the optimal solution,

within 1 s, in all the cases.

Probability Length of

strings

Average length of the returned

solutions

Run-time of

IBS_SCS

p m MA_BS best

mean7s
PBS best

mean7s
IBS_SCS TIBS_SCS

0.10 546 595 59570 595 59570 595 1

0.15 522 595 59570 595 59570 595 1

0.20 501 595 59570 596 59670 595 1

Table 9
The average and the variance of the percentage of changes in the length of the

returned solution by IBS_SCS, for different beam sizes of 100, 400, 1000, and

1300, with a fixed k¼7, in comparison with that for the reference beam size of

700. The dataset is the simulated biological sequences used in Blum et al. (2007),

with n¼8, m¼80, and 9S9¼2, 4, 8, 16, and 24, which is also used in Table 3.

9S9 b¼100 b¼400 b¼1000 b¼1300

D V D V D V D V

2 0.4 0.3 0.2 0.2 0 0 0 0

4 �0.2 0.4 �0.3 0.4 �0.8 0.3 �0.6 0.2

8 1.8 1.7 0.6 0.5 0.8 2.4 0.5 0.6

16 2.8 0.3 1.5 2.4 0.3 0.8 0.1 0.6

24 1.6 4.8 0.8 2.1 1 4.1 1.1 1.9

Total average of D 1.28 0.56 0.26 0.22
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report the results of the experiments on the Nucleotide SARS

datasets (hence of 9S9¼4), and Tables 6–8 provide the results for
the Aminoacid protein datasets (hence of 9S9¼20).

As can be seen in Tables 4–8, both MA_BS and PBS obtain
optimal solutions in all but the last two datasets of Table 5 and
the last dataset of Table 8, where PBS is outperformed by MA_BS.
However, IBS_SCS obtains optimal solutions in all the cases in
these tables. As shown in the last columns of Tables 4–8, IBS_SCS
needs, at worst, about a couple of seconds to find the optimal
solutions; the run-time limit reported in Gallardo et al. (2007)
and Blum et al. (2007) are 600 and 350 s, respectively.

Finally, to observe how the performance of IBS_SCS varies
with the parameters k and b, we conducted two more types of
experiments, on the datasets of Table 3. In the first series of
experiments, we used the same value of 7 for k but used the
values 100, 400, 700, 1000, and 1300 for b. We used the results for
the case b¼700 as the reference and calculated the percentages of
the changes due to using the other values of b. To be precise, for
each value v¼100, 400, 1000, 1300, we calculated (L2�L1)/
L1�100, where L2 and L1 are the lengths of the solutions obtained
using, respectively, b¼v and b¼700. Because there are five
instances for each alphabet size 9S9 in Table 3, we then averaged
the percentages of changes over the five instances of each
alphabet size.

The results are shown in Table 9. The first column in this table
shows the alphabet size. The second and the third columns show,
respectively, the average and the variance of the percentages of
changes due to using b¼100, as opposed to 700, over the five
instances with 9S9¼2. These values are denoted by D and V,
respectively. The next three pairs of columns report the respective
values for the other beam sizes of 400, 1000, and 1300. The last
row shows the average of the values D over all the instances.

It can be observed from Table 9 that the results are not much
sensitive to the specified beam size values in that the average
percentage of the changes (D) is under 1% in majority of cases. It is
also observed that there is no obvious pattern for changing the
results with the beam size. However, on average (shown in the
last row of the table), the worst results correspond to the smallest
beam size 100 (with the average D of 1.28%).

Fig. 4 depicts how the average percentage of changes D varies
with the beam size, for different values of alphabet size. As can be
seen in Fig. 4, the curves tend to fall with increasing the beam size,
but a number of exceptions are also observed, e.g. for 9S9¼24.

In the second series of experiments, we used the same beam
size of b¼700 but different values of 3, 5, 7, 9, and 11 for the
parameter k. Similarly, we used the results for the case (b¼700
and) k¼7 as the reference and calculated the percentages of the
changes due to using the other values of k. More specifically, for
each value v¼3, 5, 9, 11, we calculated (L2�L1)/L1�100, where L2

and L1 are the lengths of the solutions obtained using, respec-
tively k¼v and k¼7. Then, we averaged the percentages of
changes D over the five instances of each alphabet size.

The results are presented in Table 10. The layout of Table 10 is
similar to that of Table 9, except that the results in Table 10 are
presented for different values of k, as opposed to b. As shown in
Table 10, except for two cases of k¼3 and k¼5 in the last row
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Fig. 4. The average percentage of changes D versus the beam size b, by running

IBS_SCS on the datasets of Table 3, with n¼8 and m¼80. The beam sizes are 100,

400, 1000, and 1300, with the beam size 700 as the reference. The parameter k is

fixed to 7. For each alphabet size 9S9, a separate curve is shown.

Table 10
The average D and the variance V of the changes in the length of the returned

solution by IBS_SCS, for different values of 3, 5, 9, and 11 for the parameter k,

with a fixed beam size of 700, in comparison with that for the reference value 7 for

k. The dataset is the simulated biological sequences used in Blum et al. (2007),

with n¼8, m¼80, and 9S9¼2, 4, 8, 16, and 24, which is also used in Table 3.

9S9 k¼3 k¼5 k¼9 k¼11

D V D V D V D V

2 0 0 0 0 0 0 0 0

4 0 0 �0.2 0.2 �0.5 0.4 �0.6 0.4

8 0.9 1.4 0.9 0.4 0.1 0.2 0.3 0.7

16 0.8 3.6 0.4 2.9 �0.3 0.8 �0.9 0.8

24 1.5 1.5 1.2 1.1 0.4 3.2 0.2 2.2

Total average of D 0.64 0.46 �0.06 �0.2

-1.5

-1

-0.5

0

0.5

1

1.5

2

3 5 9
κ

11

A
ve

ra
ge

 P
er

ce
nt

ag
e 

of
 c

ha
ng

es
 D

|∑|=2

|∑|=4

|∑|=8

|∑|=16

|∑|=24

Fig. 5. The average percentage of changes D versus k, by running IBS_SCS on the

datasets of Table 3, with n¼8 and m¼80. The values of k are 3, 5, 9, and 11, with

k¼7 as the reference. A fix beam size of 700 is used, and a curve is depicted for

each alphabet size 9S9.
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9S9¼24, the percentage of the changes is under 1%. This suggests
that the algorithm is sufficiently tolerant to the choice of k.
However, the solution quality usually increases with increasing k.
This is better observed in Fig. 5, which shows how the average
percentage of changes D varies with k, for different values of
alphabet size. As can be seen in Fig. 5, the curves tend to fall with
increasing k, although there are still exceptions, e.g. for the case
9S9¼8.
4. Conclusion

In this paper, a deterministic heuristic algorithm for the
shortest common supersequence problem was proposed. The
algorithm is a constructive beam search and uses a heuristic
function different from those already proposed in the literature
for the SCS problem. The algorithm also uses the dominance
property to effectively prune the search tree. However, it does not
check for dominance with respect to every existing candidate
solution as it would lead to a significant time-consumption.
Neither is it restricted to using only the best solution found so
far as it would then be not using the true power of dominance
pruning. Instead, it selects the k best solutions found so far as
potential dominators of candidate solutions at each iteration,
where k is a control parameter in the algorithm. The proposed
algorithm was compared with three recent algorithms proposed
for the problem on both simulated and real biological sequences.
It outperformed all the three algorithms in all of the experimental
cases. This justifies that the proposed algorithm is promising for
further research and improvements.

Possible avenues for future work include (i) to devise a method
to determine appropriate values for k (see Eq. (3)), because its
proper setting can significantly improve the solution quality and
there is enough room for improvement in this regard, (ii) to
generalize the employed heuristic to the case where the input
strings are correlated to further improve the performance of the
algorithm in such domains, and (iii) to dynamically determine the
appropriate values for the control parameters k and b.
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