
HAL Id: hal-00676800
https://hal.science/hal-00676800

Submitted on 6 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Logic control law design for automated manufacturing
systems

Henry Sébastien, Éric Zamaï, Mireille Jacomino

To cite this version:
Henry Sébastien, Éric Zamaï, Mireille Jacomino. Logic control law design for automated manu-
facturing systems. Engineering Applications of Artificial Intelligence, 2012, 25 (4), pp.824 à 836.
�10.1016/j.engappai.2012.01.005�. �hal-00676800�

https://hal.science/hal-00676800
https://hal.archives-ouvertes.fr

Logic Control law design for Automated Manufacturing Systems

Sébastien HENRYa, Eric Zamaı̈b, Mireille JACOMINOb

aUniversity of Lyon, Claude Bernard Lyon 1, IUT Lyon 1, DISP Laboratory, Villeurbanne, 69627, France
bGrenoble-INP, G-SCOP Laboratory, 46 avenue Felix Viallet, 38031 Grenoble Cedex 1, France

Abstract

To respond rapidly to the highly volatile market, the reconfigurable manufacturing systems (RMS) have brought forward challenging
issues. First of all there is a need to build a formal model of a manufacturing configuration. Second it has to be rather easy to derive
the models associated to the manufacturing configuration changes (Reconfiguration) from such an initial model. An off-line method
of rapid design of an optimal logic control law (configuration) based on Petri net (PN) is presented in this paper. From a controlled
system modeling point of view, the main characteristics of the level 1 of the CIM architecture are depicted. Subsequently, the
formal tool used in the Automated Planning field is extended to provide a controlled system model. The concept of operation is
structured in order to introduce the behavioral properties of the operations. A four-step method is then proposed to design a logic
control law that satisfies several goals: reduction of the lead time, satisfaction of the work orders objectives, minimization of the
time cycle. Finally, the proposed design method is illustrated on a manufacturing cell.

Keywords:
Logic control law, Design, Manufacturing systems, Programmable Logic Controllers, Petri Nets

1. Introduction

Manufacturers are facing nowadays a market with frequent
fluctuations in product demand. To be competitive in such a
context the flexibility and reactivity of manufacturing systems
have to be properly involved in order to guaranty the productiv-
ity and quality of the production system. To reach this objec-
tive, not only the reactivity of the higher levels of the control
system (Entreprise Resource Planning and Manufacturing Exe-
cution System) but also the real time control level (PLC control
level) has to be improved. This paper is located at this control
level. PLC control level of an automated manufacturing system
is very crucial to ensure the execution of desired manufactur-
ing behaviors by coordinating various machines and operating
a large number of processes. Each time a new product is re-
quested or each time a corrective maintenance is operated, a
new logic control law has to be designed in order to match the
current manufacturing abilities. Then the model reconfigura-
tion problematic should be solved to make change the mod-
els along with manufacturing configuration changes (Li et al.,
2009). Today, from an industrial point of view, practitioners
in industry pursuit more intuitionally standardized modelling
tools, e.g., IDEF family (IEEE-SA Standard Board, 1998),
GEMMA -Study Guide of the Starting and Stopping Modes
(of an automated process), and one or several languages of the
IEC-611313-3 norm (IEC-61131-3, 1993), to design new logic
control code when required. The developer uses the implicit
model of the physical system that is his own knowledge about
the system. Generally speaking this knowledge syntheses the
resources abilities and their possible effects on the product flow
as well as the physical constraints of the system to prevent dis-
ruptive events such as collisions between resources or degrada-

tion of products. The constraints assure the integrity of people
and goods. Depending on the objectives defined by the schedul-
ing level, the developer designs a logic control law that satisfies
the physical constraints and the objectives.

By the end, the following drawbacks of this handmade
method can be mentioned:

• The optimality of the resulting logic control law with re-
gard to a given criteria cannot be ensured. It directly de-
pends on the expertise level of the developer.

• Theoretical tools classically adopted by academia, such
as automata (Linz, 2000), Petri nets (PNs) (Murata,
1989), statecharts (Harel, 1987), and finite state machines
(E.W. Endsley & Tilbury, 2006) to check behavioral prop-
erties have usually not been used due to difficulties for in-
dustry to accept such tools. The languages traditionally
used to code the logic control law (Sequential Function
Chart (SFC) or Ladder Diagram languages (IEC-61131-3,
1993)) do not lend themselves to analytic verification dur-
ing the design step. However, the behavioral properties
like liveness, boundedness (or safety), and reversibility,
are very important to operating and control of production
systems.

• The global design time of a logic control law is the sum of
the three-part time: the design, the verification/validation
steps and the tuning phase. Even if today, the time of the
last two parts can be reduced with the 3D virtual environ-
ment, the global design time is very long. So, the reduc-
tion of the lead time of logic control law, and so production
time, is not guaranteed.

Preprint submitted to Elsevier November 21, 2011

• When a PLC program developer leaves the company, all
the knowledge on the physical system which is not for-
malized and which is known only by the PLC program de-
veloper is lost if a knowledge management is not properly
spread into the company.

• With this time constraint, a logic control law is only de-
signed off-line during the design or re-design of the man-
ufacturing system. Then, on-line, a reaction to an event
that requires a new logic control law cannot be answered
(Herroelen & Leus, 2002), (Davenport & Beck, 2000).

To settle these challenging problems of logic control code
changes and so to contribute at least, not only to reduction of
the production lead time at the real time control level, but also
to give means to test behavioral properties of the resulting logic
control code, a generic logic control law design approach for in-
dustry is proposed. One of the originalities of the proposed ap-
proach is to fill the gap between academia and industry, starting
from a guided and intuitionally modelling tool (issued from Au-
tomatic Planning field of research), dedicated industrial practi-
tioners, and a sub-optimal resulting control code based on for-
mal tool e.g. PNs, allowing behavioral properties processing.

The paper is organized as follows. The main approaches for
logic control laws design are depicted in section 2. The pro-
posed methodology is submitted in Section 3. The proposed
control model is described as well as the operation concept on
which it relies on. The formal definition and derived properties
of operation are given. The design algorithm is displayed in
Section 4. Section 5 is devoted to an illustrative case study. Fi-
nally, conclusions are given and further research is commented
on.

2. Logic control law design in CIM level 1

2.1. Design need

Elementary functions (move a product from one point to an-
other, stop a product, etc.) of an automated system are per-
formed by functional chains. A functional chain includes all
the components required to achieve this function: an actuator
with its effector and elements associated to interface with the
control system (pre-actuators, sensors).

From the functionnal chain level to the highest control level,
the control system of a production system is generally divided
into five levels as proposed by the CIM (CIM, 1989), (ISA-
S95, 2000), (Trentesaux, 2009). Control equipment machines
such programmable logic controllers (PLC) correspond to the
CIM level 1. To design of logic control laws for the PLC, the
level 1 is divided into two sub-levels to separate the constraints:
functional chain and coordination.

At functional chain level, a logic control law is designed to
provide services to coordination such as: extend cylinder, re-
tract cylinder, start conveyor, change the conveyor speed, etc. A
logic control law at a functional chain level has then to include
all the technological constraints required to offer the service.
These technological constraints depend on the type of actuator
(single or double effect cylinder, synchronous motor, etc.), the

type of pre-actuators (bistable or monostable solenoid valve,
starter motor, etc) and information provided by the sensors.

At coordination level, the execution of logic control law
changes the state of the products through the services offered
by the functional chains. At this level, the controlled system
is composed of functional chains and products. The addressed
constraints are interactions between functional chains and prod-
ucts. The optimization of time cycle, that is the main criterion,
is generally obtained by simultaneously performing several ser-
vices.

At the coordination level, our approach aims to design off-
line a logic control law in one IEC 61131-3 langage (Struc-
ture Functional Chart, Ladder Diagram, etc) to modify the state
of functional chains and products from an initial state to a fi-
nal state by optimizing the time cycle. The design approach is
based on a controlled system model, an objective function and a
design algorithm. The controlled system model must represent
the evolutions of the functionnal chains with their effects on the
products. The objective to achieve is the time cycle, the initial
state and the final state of both the product and the functionnal
chains. From these data, the design of a logic control law in
coordination level boils down to determine the set of operations
to be performed with their precedence constraints.

In literature, various models of the controlled system exist
according to the initial data of the problem and the desired re-
sult. In order to establish the foundations of the controlled sys-
tem model needed to design a control law in coordination level,
the next section presents the existing design approaches.

2.2. Design approaches in the literature

We have identified as design approach every method that pro-
vides a law to control partially or entirely a controlled system.
They are used in different CIM levels or in other application
fields than manufacturing. Finally, from this analysis of avail-
able methods, the design principle proposed in this paper is de-
fined to answer some drawbacks highlighted by the analysis.

2.2.1. Scheduling
From the set of operations to be performed with their con-

straints, the scheduling problem consists in finding the chrono-
logical order of operations which is the best feasible calendar
with respect to a given performance criteria (Chretienne et al.,
1997). In the manufacturing field, the scheduling is used in the
CIM level 3. An operation represents the use of a resource (op-
erator or machine) to produce a service. The set of operations
to be performed is determined from manufacturing bill of mate-
rials (mBOM) of each product and the quantities of products to
manufacture. This knowledge of all operations to be performed
is the main difference with the design problem of logic control
law in coordination level.

2.2.2. Supervisor synthesis
The supervisor synthesis is based on the Ramadge and Won-

ham theory (Ramadge & Wonham, 1987). From a state model
of controlled system and the set of prohibited states, the output
called supervisor is the set of prohibited events according to the

2

state of the controlled system. The supervisor observes the state
of the controlled system and limits its evolutions by prohibiting
some events (Charbonnier et al., 1999). From the Ramadge
and Wonham theory, other approaches (Lee & Lee, 2002), (Qiu
et al., 2003) exist that are used in the CIM level 2. This ob-
server role of the supervisor which prohibits some events is the
main difference with the design problem of the logic control law
whose execution imposes evolution on the controlled system.

2.2.3. Automated Control Code Synthesis
This approach proposed by Holloway in (Holloway et al.,

2000) is based on the condition systems that are closely related
to Interpreted Petri Nets. A component model representing a
functional chain is described with this formalism as well as the
associated task blocks. For each output condition of the com-
ponent model and from any marking of the component model, a
task block defines all the control laws to reach the marking for
which the output condition is true. In a condition system, the
output conditions result from marked places. The effects on the
product flow are not modeled in the component model which
represents the state space of a component. Then, a sequence of
product states is initially given to have the expected effects on
the product flow. This approach designs a control code which
defines for an actuator the evolution of the PLC outputs to reach
successively the different component states. According to the
authors, the approach is limited to functionnal chain level with
technological constraints. The need to provide a sequence of
states of the product is the main difference with the design prob-
lem of the logic control law.

2.2.4. Automated Planning
Automated planning is a control law design method devoted

to path and motion planning for mobile systems like trucks or
robots that can be easily extended to assembling operations (Va-
lente & E.Carpanzano, 2011). Automated Planning consists in
defining an organized collection of actions whose global effect
on mobile systems or handling parts satisfies a given objective
(Ghallab et al., 2004). The controlled system model consists in
the set of all available actions, a description of the state of the
controlled system, and some objectives defined by the final state
of the mobile system or parts. The planning algorithm consists
in finding the subset and string of available actions to reach the
final state satisfying the constraints all along the planning. The
automated planning is a sequence of actions that can depend
on the current execution context. No parallelism mechanism is
involved in the automated planning. Then the model and the al-
gorithms used in automated planning cannot be directly used to
design control laws in manufacturing systems in which several
parts have to be processed in the same time. But the controlled
system model based on the available actions is very interesting
because it takes into account constraints on the controlled sys-
tem state using the pre-constraint notion. Moreover the action
model includes the impacts of the action’s execution on the con-
trolled system. Furthermore, with the action concept, the state
space of the controlled system is not explicitly built. The result
as a sequence without parallelism is the main difference with
the design problem of the logic control law.

2.2.5. Analysis
The previous submitted formal approaches do not give a sat-

isfactory solution (Zaytoon, 2002) to design a logic control law
for CIM level 1. Depending on the initial data and results of
the problem defined in paragraph 2.1, the table 1 summarizes
the partial adequacy of the four approaches to design a logic
control law in coordination level.

Input Output

Model Objective

St
at

e
ev

ol
ut

io
ns

In
te

ra
ct

io
n

co
ns

tr
ai

nt
s

In
iti

al
 a

nd
 f

in
al

 s
ta

te
s

O
pt

im
iz

at
io

n
cr

ite
ri

on

Se
t o

f
op

er
at

io
ns

 to
 b

e
pe

rf
or

m
ed

E
xp

lic
it

co
nt

ro
l l

aw

Pa
ra

lle
lis

m

Scheduling x x input x x
Supervisor
synthesis x x x
Code
synthesis x input x x
Automated
planning x x x output x

Table 1: Analysis of available design approaches.

In view of these elements, especially the outputs, the best
approach with reagard to the need expressed in paragraph 2.1
is the automated planning. Indeed, this approach allows one
to determine all the operations to be performed to achieve a
final state of the controlled system. However, optimization of
a criterion is not considered by this approach that generates a
control law without parallelism. The design approach that is
introduced in this paper is based on the automatic planning.

3. Proposed Controlled System Model

In the previous section, all requirements for the automated
control law design are defined. The first requirement is the def-
inition of a controlled system model adapted to the design of
logic control laws. Then the set of information contained in this
model must be specified. It connects directly with both the con-
trol law features, and the constraints satisfied by the controlled
system evolutions imposed by a control law.

3.1. Constraint Levels Satisfied by a Control Law

The basic function of a manufacturing system (defined by the
norm NF X50-100) can be expressed as increasing the value of
the product flow. This basic function is achieved by performing
effects on the product flow. The set of these effects modifies a
product from its input state to its output state. An effect on the
product flow is the result of the conversion by a functional chain

3

of a request emitted by the control system. A functional chain
is generally made up of pre-actuator(s), an actuator, and an ef-
fector, as in a Fig. 1. In the proposed approach, an effector is
always considered to be confused with an actuator. Depending
on the desired effects on the product flow and with the notion
of functional chains, the PLC program developer uses several
points of view to synthesize a control law.

In the manufacturing systems, a control law is generally im-
plemented in a Programmable Logic Controller (PLC). In this
case, the requests are emitted by the PLC outputs depending on
a control law run by the PLC. Then, a control law implemented
in a PLC has a PLC output point of view. But a control law is
never directly designed manually with this point of view. To de-
sign such a control law, the set of constraints (of the objectives
and the controlled system) is taken into account progressively.
Indeed, a PLC program developer begins by defining a control
law from a product flow point of view. This control law defines
the evolutions of the product flow state to modify it from its
input state to its output state. The functional-chain constraints
are progressively taken into account by designing a control law
from an actuator point of view, then from a pre-actuator(s) point
of view, and finally from a PLC output point of view. The com-
ponents of a functional chain are generally standard. And in this
case, they are chosen in a library. Therefore, when starting with
a control law with an actuator point of view, designing a con-
trol law with a pre-actuator point of view and finally with a PLC
output point of view, the new constraints taken into account are
not specific to the manufacturing system. These new constraints
depend only on the functional-chain technology like single or
double cylinder action for the actuator, and one valve with three
positions or two valves with two positions for the pre-actuator.
Finally, all the specific constraints of the manufacturing system
are taken in a control law from an actuator point of view into
account. Thus, the most difficult work of a PLC program devel-
oper is to design a control law from an actuator point of view.
It is the aim of the proposed approach.

The control law design is mainly based on the controlled sys-
tem model. To model the controlled system, the correct point of
view must be determined. The controlled system model must
have a product flow point of view to be compatible with the
objectives. But with only this point of view, the actuator evo-
lutions without effect on the product flow cannot be found. Fi-
nally, to design a control law from the actuator point of view,
the controlled system model must have a double point of view:
actuators and product flow. And the model must give the links
between both points of view. If an operation models the actua-
tor evolutions and possible associated product flow evolutions,
then the links defining the causal relations between two types
of evolutions will be modeled.

This double point of view to model the controlled system is
also required to know the executable operations for a state of
the actuators and the product flow.

To achieve its basic function, the manufacturing system must
control the product flow evolutions. But its control system does
not drive directly the product flow evolutions; it drives the re-
source evolutions. Thus, we propose to represent the controlled
system model by the set of the product flow evolutions, the re-

Pre-actuator

Actuator

Product

F
un

ct
io

na
l

ch
ai

n

a
ct

s
o

n

point of
view

Output

PLC

Control Law

Control Law

Control Law

Control Law

G
ra

du
al

 i
nt

eg
ra

ti
on

 o
f

co
ns

tr
ai

nt
s

C
oo

rd
in

at
io

n
co

ns
tr

ai
nt

s
T

ec
h
no

lo
gi

ca
l

co
ns

tr
ai

nt
s

Figure 1: Functional chain and the different control laws designed by a PLC
program developer.

source evolutions and the links between the product flow and
resource evolutions. With these links and from product flow
evolutions respecting the objectives, the required resources will
be deduced. Then a logic control law will be automatically de-
signed. To define the link between the evolutions of resources
and the product flow, the product flow and resource evolutions
are modeled in the same operation. The operation structuring
is based on the model proposed in automated planning field
(Sandewall & Ronnquist, 1986) (Ghallab et al., 2004) and used
by (Klein, 1999), (Castillo et al., 2000), (Aylett, 2001) in the
manufacturing and batch-process field.

3.2. Formal definition of an operation
Before formalizing the operation behavior, the required no-

tations are defined.

3.2.1. The Automaton Notations
The controlled system is made up of all the resources and the

product flow. The state of a resource or a product is defined by
state variables (sv). A state q of the controlled system is de-
fined by the value of each sv. The set of states of the Controlled
System Model is denoted QCS M . We assume the following par-
tition: QCS M = QA ∪ QF , where QA and QF are the sets of Au-
thorized and Forbidden states, respectively. From the control
law design point of view in the SMC context (Combacau et al.,
2000), the controlled system evolves in accordance with the oc-
currence of events: ”start operation i” ,”end operation i” and
”expected external events”. The state evolution of the resources
and the product flow may be seen as a four-tuple deterministic
automaton: CS = (QCS M ,Σ, δ, q0) where: Σ is the alphabet of
events defined above; δ : QCS M × Σ → QCS M is a partial tran-
sition function; and q0 is the initial state. When the designer
begins the modeling of the controlled system, no operation ex-
ists. Then, QA and QF are empty, and there is no event, and no
δ.

4

3.2.2. The Operation Notations
First, the notation of the different sub-behaviors is submit-

ted. Then, the notation of an operation behavior is presented.
Finally the definition of the sub-behavior structure is given.

An operation i will be denoted Oi. The set of the operations
is O = {Oi}i∈[0,M]. An operation is made up of two kinds of
sub-behaviors (see Fig. 2):

• One basic sub-behavior bbi which defines the effect on the
resource with the associated constraints.

• The extra sub-behaviors. An extra sub-behavior, denoted
ebi, j, defines an effect on the product flow with the as-
sociated constraints. The ebi, j number is not limited, so
j ∈ [0,N].

The set of the extra behaviors of Oi is

EBi = {ebi, j} j∈[0,N]

When an operation is run from a state, the effects defined by
bbi and ebi, j are obtained simultaneously. The description of
bbi and ebi, j is given in the end of this part.

Associated Constraints

Pre-Constraints PeC(bb)i

Constraints Ct(bb)i

Effects on the ressource

Final State FS(bb)i

Intermediate state IdS(bb)i

Condition on the ressource

Initial State IS(bb)i

B
as

ic
 s

u
b

-B
eh

av
io

u
r

(b
b

) i

Associated Constraints

Constraints Ct(eb)i,j

Pre-Constraints PeC(eb)i,j

Effects on a product

Final State FS(eb)i,j

Intermediate state IdS(eb)i,j

Condition on a product

Initial State IS(eb)i,j

th j
 E

xt
ra

 s
u

b
-B

eh
av

io
u

r
(e

b
)

i,j

eb
i,n

eb
i,1

Operation Oi

Resource: RrDuration: dOi

Figure 2: The components of the operations.

Depending on the controlled system state from which Oi is
run, all the extra sub-behaviors are not obtained. However, two
extra sub-behaviors can be not compatible, e.g. they can never
be obtained simultaneously for all the controlled system states.
For the above reasons, it is necessary to consider the sub-sets of
EBi, denoted EBi,k. The number of EBi,k with p ebi, j elements
is the combination of N elements taken p at a time (NCp). If all
the extra sub-behaviors are compatible, the maximum number
of EBi,k is equal to:

NC0 +N C1 + . . . +N CN = 2N

EBi,k is defined by:

EBi,k = {ebi, j/ j ∈ Jk ∧ k ∈ [0, 2N − 1]}, EBi,k ⊂ EBi

To have a concise notation to refer to an operation behavior, the
k index value refers to a behavior. The binary value of k in-
dex is considered and each bit represents an extra sub-behavior.
If the bit equals one, then the associated extra sub-behavior is
included in the operation behavior. So, from the k index, the
numbers of extra sub-behaviors included are formally defined
in the Jk set by:

Jk = {x/(k =

N−1∑
y=0

cy2y/cy ∈ [0, 1]∧ y ∈ N)∧ cy = 1⇒ x = y + 1}

When an operation is run, the basic sub-behavior is always
obtained. Finally, a behavior of an Oi operation is made up of
the basic sub-behavior and a sub-set of EBi. It is denoted Bi,k

and it is defined by:

Bi,k = {bbi} ∪ EBi,k

The set of the Oi behaviors is denoted Bi = {Bi,k}. If all the
extra sub-behaviors are compatible, the number of Bi,k is equal
to the cardinality of EBi,k.

Card(Bi) = Card(EBi,k) =

N∑
p=0

NCp = 2N

For instance, the extra sub-behaviors of the EC1 operation
(OEC1) are:

EBEC1 = {ebEC1,1, ebEC1,2}

Then k ∈ [0, 22 − 1] and the set of Jk is:

J0 = {∅}, J1 = {1}, J2 = {2}, J3 = {1, 2}

Finally, the set of the EC1 behaviors is:

• BEC1,0 = {bbEC1}, no extra sub-behavior is simultaneously
obtained with the basic sub-behavior,

• BEC1,1 = {bbEC1, ebEC1,1}, extra sub-behavior 1 is simulta-
neously obtained with the basic sub-behavior,

• BEC1,2 = {bbEC1, ebEC1,2}, extra sub-behavior 2 is simulta-
neously obtained with the basic sub-behavior,

• BEC1,3 = {bbEC1, ebEC1,1, ebEC1,2}, the extra sub-behaviors
1 and 2 are incompatible, thus the BEC1,3 behavior does not
exist.

It is still impossible to define the operation behavior without
giving details on the sub-behaviors (the basic sub-behavior (bbi)
and the extra sub-behaviors (ebi, j)). The structure of the sub-
behaviors is generic (see Fig. 2). They are made up of:

5

• The sub-behavior effect on the controlled system. The in-
termediate state (IdS) defines the effect that results from
the ”Oi start” event occurrence. After the ”Oi start” event
occurrence, IdS (x) gives the value of each one of sv on
which the sub-behavior has an effect. And the final state
FS (x) defines the effect that results from the ”Oi end”
event occurrence. After this event occurrence, IF() gives
the value of each one of sv on which the sub-behavior
has an effect. The effects (IdS (bbi), FS (bbi)) of the ba-
sic sub-behavior (bbi) can be only on the sv of the Rr re-
source running the operation. And the effects (IdS (ebi, j)
and FS (ebi, j)) of an extra sub-behavior (ebi, j) can be only
on the sv of the product flow.

• The condition on the initial state. For a state q, if the con-
dition (IS) of a sub-behavior is true, then the ”start Oi”
event occurrence will cause the effects defined by the sub-
behavior. The condition is specified by a propositional for-
mula with an elementary proposition defined by the value
of a state variable. The elementary proposition can be ex-
pressed with the sv of the resources or the product flow.
And the sv used to specify the sub-behavior effects must be
used in the condition specification. The conditions of the
basic sub-behavior (bbi) and an extra sub-behavior (ebi, j)
are denoted IS (bbi) and IS (ebi, j), respectively.

• The associated constraints. For the controlled system
evolution resulting from the effects of a sub-behavior,
they insure the respect of the security and environmen-
tal constraints to avoid harmful consequences. The pre-
constraints (PeC) and the constraints (Ct) are specified
by a propositional formula with an elementary proposition
defined by the value of a state variable. The sv used here
must not exist in IS , and IdS of the sub-behavior.

3.3. The Behavior of an Operation

The operation behavior Bi,k is defined when the operation
is the only one to be run. For a state q ∈ QCS M , the effects
of the operation behavior are defined by the effect of the ba-
sic sub-behavior bbi and the simultaneously obtained extra sub-
behaviors {ebi, j/ j ∈ Jk}. From a state q after the ”Oi start” event
occurrence, the effect of a sub-behavior is obtained while re-
specting the security and environmental constraints, if the con-
dition is true and the associated pre-constraints are satisfied.
And from a state q after the ”Oi start” event occurrence, the ef-
fect of an extra sub-behavior is not obtained if the condition is
false.

Definition 1. The set QI(Bi,k) of the initial Bi,k states is the set
of the states from which the ”start of Bi,k” event occurrence is
authorized. Formally, this set is represented by:

QI(Bi,k) = {q ∈ QCS M/IS (bbi) ∧ PeC(bbi)∧
j∈Jk

[IS (ebi, j) ∧ PeC(ebi, j)]
∧
j∈Jk

¬IS (ebi, j) = TRUE}

Definition 2. The set QId(Bi,k) of intermediate Bi,k states is the
set of the states in which the controlled system can be after the
”start of Bi,k” event occurrence and from which the ”end of
Bi,k” event occurrence is authorized. Formally, this set is rep-
resented by:

QId(Bi,k) = {q ∈ QCS M/IdS (bbi) ∧Ct(bbi)∧
j∈Jk

[IdS (ebi, j) ∧Ct(ebi, j)]
∧
j∈Jk

¬IdS (ebi, j) = TRUE}

Definition 3. The set QF(Bi,k) of the final Bi,k states is the set of
the states in which the controlled system can be after the ”end
of Bi,k” event occurrence. Formally, this set is represented by:

QF(Bi,k) = {q ∈ QCS M/FS (bbi) ∧ PoC(bbi)∧
j∈Jk

[FS (ebi, j) ∧ PoC(ebi, j)]
∧
j∈Jk

¬FS (ebi, j) = TRUE}

Definition 4. From a state q ∈ QI(Bi,k) and after the occurrence
of ”start of Bi,k” event, denoted (sBi,k), the controlled system
is in a state q′. The sv values of this state are the sv values
of the state q which are modified by IdS (bbi) and IdS (ebi, j)
for j ∈ Jk. The partial transition function is defined by q′ =

δ(sBi,k , q). From the state q′ and after the occurrence of ”end
of Bi,k” event, denoted (eBi,k), the controlled system is in a state
q”. The sv values of this state are the sv values of the state q
which are modified by FS (bbi) and FS (ebi, j) for j ∈ Jk. The
partial transition function is defined by q” = δ(eBi,k , q). From a
state q ∈ QI(Bi,k), the effect of the Bi,k behavior on the controlled
system can be represented as below:

q
sBi,k
−−−→ q′

eBi,k
−−−→ q”

3.4. Three Types of Operations
In the preliminaries, we have highlighted two sets of opera-

tions: with or without effects on the product. This classification
of operations is not sufficiently accurate towards the product
flow state. Some state variables of the product flow result from
the product specifications like geometric forms, etc. And other
state variables of the product flow result from resources and
their position in the manufacturing system. According to the
state variables modified by an operation running, we have iden-
tified three kinds of operations, presented in Fig. 3.

4. Design algorithm

At the coordination level of the CIM architecture (Trente-
saux, 2009), this section presents the proposed method to au-
tomatically design, for a single product, a control law able to
satisfy one demand provided by the scheduling level.

The global structure of the proposed algorithm is directly
driven by the operations classification presented above. For
each kind of operations, we formulate processes as three op-
timal path searching problems are associated with (Lacomme

6

State Variables of Resources

SVPÏS

SVPÎS

processing
operation

preparation
operation

move
operation

modifies

modifies

modifies

cannot
modify

cannot
modify

cannot
modify

modifies

modifies

modifies

State Variables of Product flow
Î product Specifications

State Variables of Product flow
Ï product Specifications

SVR

Figure 3: The three types of operations.

State transition system D1

Initial state q1,0

states satisfying

the objective Ob1

changes resulting from
behavior of an operation

Figure 4: Reachable states space resulting from the processing of the product.

et al., 2003). At each step, an optimal path is provided includ-
ing constraints depending first on the product processing, sec-
ond on the product moving and third on the preparation of the
functional chain.

By the end, a fourth step is added to optimize the cycle time
of the sequence, studying the available parallelization between
operations. As a result, we generate a control sequence in Petri
Net formalism that can be directly translated into one of the IEC
1131-3 language, as Ladder Diagram (Lee et al., 2004) or SFCs
that are a subset of the more complex Petri net.

4.1. Step 1: Product Processing

4.1.1. Principle
Here, it is proposed to focus on the physical states of the

product to look for a path able to transform it from an initial
state to the final one corresponding to the demand (objectives).

So, only operations with behavior that have an effect on vari-
ables states related to the physical state (form, color, etc) of
products are used.

Let us define the state q1 that represents the controlled system
and its environment in the physical condition of the product
belonging to the set Q1. Q1 =

∏
x∈VE1

Vx where Vx represents
all values of the state variable x.

A state q1 ∈ Q1 is defined by q1 = {(x = c)|x ∈ VE1}, where
c ∈ Vx.

The states space considered in this first step describes the
changes in the physical state of the product. It is a state tran-
sition system noted D1 defined by a triple D1 = (Q1, B1, δ1)
with Q1 the set of states defined above, B1 the set of behaviors
transformation resulting from all operations and δ1 the transi-
tion function of Q1 × B1 in Q1.

For an initial state Q1.0, describing the physical state of a
product just inserted in the factory process, and an objective
(demand) Ob1 defined by one (or more) specification on the
physical state of the product, the first step is to find an optimal
path in D1 from the initial state q1,0 ∈ Q1 to a target state q1 ∈

Q1 such as Ob1 is satisfied (see Fig. 4).
To only build the useful part of the states space limited to

product processing and to reduce the time process required
to generate this space, the reachable states from the initial
state Q1.0 for a given objective Ob1 are only considered. D1
is defined by a quintuple D1 = (QA1, B1, δ1, q1,0,Ob1) with
QA1 ⊆ Q1 the restricted set of reachable states from Q1.0 for
the objective Ob1.

4.1.2. Building of states space
To build the only reachable states space from an initial state

Q1.0, the proposed algorithm uses a greedy procedure (La-
comme et al., 2003) which generates new states to visit.

So, two sets of states are updated:

• the set of states to visit, noted Qv,

• the set of processed states, noted QA1.

The principle of the algorithm is then as follows:

• Determining all processing behaviors from a state of the
set of states to be visited. This state is then removed from
this set of states and next added to the set of processed
states;

• Calculate the status achieved through the application of
each such behavior;

• If the reached state is a new state, it is added to the set of
states to be visited.

Function ReachableStates(q1,0) : System state transitions
Qv = {q1,0}

QA1 = {∅}

δ(q1, b1) est vide
While (Qv , {∅}) do

Bprocessing = B1(q1) tel q1 ∈ Qv

Qv = Qv \ {q1}

QA1 = QA1 ∪ {q1}

While (B1(q1) , {∅}) do
q”1 = δ(q1, b1) tel que b1 ∈ B1(q1)
Bprocessing = Bprocessing \ {b1}

If (q”1 < QA1 et q”1 < Qv) then
Qv = Qv ∪ {q”1}

end If
done

done
return D1 = (QA1, B1, δ1, q1,0);

End

Algorithm 1: Algorithm to build the states space reachable
by transforming the product from an initial state Q1.0 ∈ Q1.

7

B1,1 B1,2

q1,0 q1,1 q1,2

q2,v q2,w

B1,1 B1,2

q2,yq2,0 q2,x q2,z

Ch : sequence of1

processing operations

Ch : sequence of12

processing and
move operations

controlled-system
without product

controlled-system
without product

evolutions of the product position
needed to the arrival of the product

and to satisfy the condition
and the pre-constraint of B1,1

evolutions of the product position
needed to satisfy the condition
and the pre-constraint of B1,2

evolutions of the product position
needed to the evacuation

of the product

Figure 6: Principle of step 2.

The algorithm ends when the set of states to be visited,
Qv, is empty. The set of reachable states is then given by
the processed states. As a result, the state transition system
D1 = (QA1, B1, δ1, q1,0) is built (see Fig. 5).

From the initial, the optimal path to reach the objective is
look for in the reachable state space.

4.1.3. Optimal Path
Considering a criterion, the search process to find an optimal

path to reach a goal state from an initial state is a classical graph
theory problem (Lacomme et al., 2003). Among the many ex-
isting solutions and considering that the weight of arcs are pos-
itive or equal to zero, the use of Dijkstra’s algorithm (Dijkstra,
1959) is submitted. It is applied to the system state transitions
D1 as a graph g1. The vertices correspond to states of the sys-
tem transitions and arcs to transitions between states. The ini-
tial state Q1.0 becomes the top s1.0 vertices and objectives S 1,Ob

correspond to objective states Q1,Ob. Weighted arcs are defined
from the characteristic of the operations (i.e. duration, see § 2)
required to evaluate the optimization criterion.

The optimal path of processing product, noted Ch1 is ob-
tained by associating the vertices g1 and the states transition
system D1.

At the end of this first step, only sequenced operations able
to transform the physical states (form, color, ...) of the prod-
uct according to the demand are submitted. Thus, the second
step, presented in the next section, aims to act on the product
location, to drive it from a processing operation to another one.

4.2. Step 2: Move the product

Consideration of changes in the position of the product aims
firstly to satisfy the scheduling level request taking arrival and
departure of the product in the manufacturing system, and sec-
ondly to meet conditions and constraints on the intermediates
product’s location with the path constructed above, Ch1 into
account.

Because of the significant similarities with step 1 proposed
previously, the presentation of step 2 is voluntary reduced.

In the first step, only one single sequence is proposed, from
the initial physical state of the product to the final one. In the
Step 2, we have to build as many sequences as arcs between
two vertices (processing operation) of Ch1 (see Fig. 6).

The integration of these sequences to Ch1 results in the gen-
eration of a new path denoted CH12.

The constructive principle of such sequences shows a funda-
mental difference in the definition of the initial state Q1.0 and
objectives Ob1 directly issued from the scheduling level de-
mand. Here these two states noted Q2,i,0 and ob2,i are directly
derived from the application with the reachable states space
noted D2,i (see Fig. 6).

Beyond this particular knowledge on the initial state and ob-
jectives, finding a path only representing changes of the loca-
tion of the product, denoted CH2,i differs from the above algo-
rithm on the following four points:

• Here, only move operations are considered,

• Only the location of the product evolves. Thus, a state q2
of a path CH2,i belongs to the set defined by Q2, where
Q2 =

∏
x∈VE1∪VE2

Vx with Vx corresponding to all the val-
ues of the variable state x. A state q2 ∈ Q2 is defined by
Q2 =

∏
x∈VE1∪VE2

Vx , where c ∈ Vx,

• The path of processing and move operations, CH12 is built
gradually with each new resulting sequences (CH2,i),

• The complexity of the reachable states space in which are
searched after the product’s location is limited by restric-
tive conditions different from those used in step 1.

4.3. Step 3: Preparation of functional chains

The meaning of this step is to build sequences, noted CH3,i,
representing functional chains that do not affect the product.
The integration of these sequences in the path CH12 will be
called CH123.

The corresponding algorithm for generating the path CH123
is quite similar to the one used to generate CH12 ; so it is not
detailed here. This algorithm uses a function OptimalPath that
built a specific path, denoted CH3,i, limited to the changes of
the functional-chain state. This path differs slightly from the
sequence CH2,i looking for the evolution of the position of the
product:

• Only operations affecting the state of the functional chains
are considered. Then, a state q3 of the path CH3,i belongs
to the set Q3 =

∏
x∈VE1∪VE2∪VE3

Vx with Vx the set of values

8

Ch : path123

without parallelism

qk-2

Bk-2

qk-1

Bk-1

qk

Bk

qk+1

// yes// no

qk-3

Bk-3

// yes

// forward= {B , B }k-1 k-2Div = {B }k

Ch : pathOp

with parallelism

Bk-3

Bk-2 Bk-1

Bk

Bk+1
Oi

Oj Om

On

Op

Precedence graph with behaviours Precedence graph with operations

Figure 7: CH123 optimization

of the state variable x. A state q3 ∈ Q3 is defined by q3 =

{(x = c)|x ∈ VE1 ∪ VE2 ∪ VE2}, where c ∈ Vx;

• Restrictive conditions specific to this third step limit the
complexity of the reachable states space.

The search for the shortest path is performed in the same way
as in steps 1 and 2. Obviously, the states space in which the path
is searched is different.

4.4. Step 4: Optimization

The found path CH123 is not always optimal. Indeed, the
cycle time of the control law corresponding to the sequence of
operations specified by this path can be reduced by introducing
parallelism between operations.

Let us consider a full path CH123 composed of N transi-
tions which are each labeled with the following behaviors (Bk,
k ∈ [1,N]). These behaviors transform the product, alter its
position, or prepare functional chains.

Adding to the path CH123 information on parallel implemen-
tation leads to a path, called optimal control law, from a cycle
time point of view. It is denoted CHOp.

Both lists (// forward and div) of a Bk behavior is completed
as follows:

list // forward. If the behaviors Bk and Bk−1 can be executed
in parallel, then the behavior Bk−1 is added to the list of
parallels authorized before Bk. We proceed in a same way
for Bk and Bk−i (with i ≥ 2), until to find a behavior of an
operation whose parallel execution is prohibited with Bk.
In this case, Bk is then added to the list denoted div.

list div. For example, in Fig. 7 let us suppose that the behav-
iors Bk and Bk−3 cannot be executed in parallel. Bk is then
added to the list to be executed after Bk−3.

A full path CH123 has been designed for a product, then it is
not possible to reverse the order of two operations whose effects
would be different from the specified one by the full path CH123.

5. Case study

The presentation of the case study is based on the principle
of the control law design presented in Figure 4.1.1. After the
description of the controlled system used for the case study, this
section presents the model of the controlled system, the initial
state and the objective. The control law provided by the design
algorithm is then given.

5.1. Controlled system description
The controlled system used for the case study is based on

the loading system (see Fig. 8) of an automated system. This
system is dedicated to the assembly of camshafts, denoted prod-
ucts. A rotating storage with four places is used to receive up to
six different kinds of products. The products are identified by
a weight identification system. Once a product has been iden-
tified, a central conveyor drives it to a sorting device. A robot
takes the different products to assemble them. A worker is in
charge of filling the rotating storage and emptying the assem-
bly station. The points A, B, C and D are fixed. So, if there is a
product in A and if the rotating storage begins to turn clockwise,
the product will be between A and B, then in B, then between
B and C, and so on.

The next section presents the model of the loading system.

5.2. Controlled system model
The loading system model is made up of ten operations:

• Extend Cylinder 1 from its retracted position (EC1) (see
fig. 9),

• Retract Cylinder 1 from its extended position (RC1),

• Extend Cylinder 2 from its retracted position (EC2),

• Retract Cylinder 2 from its extended position (RC2),

• Rotate the rotating Storage Clockwise from an indexed
position to the next (RSC),

• Rotate the rotating Storage CounterClockwise from an in-
dexed position to the next (RSCC),

9

q1,0

q1,4

QA1

QV

q1,2

q1,1

q1,3

q1,5

q1,6

q1,0

q1,4

QA1

QV

q1,7

b1,1 b1,2

b1,3

q1,2

q1,1

q1,3

q1,5

q1,6

B (q)={b ,b ,b }1 1,4 1,1 1,2 1,3

q1,2
b1,1q1,4

q =q1,4 1,7q”b1,3q1,4

b1,2q1,4 q1,5

Figure 5: Design of the reachable states by processing the product from an
initial state q1.0 ∈ Q1.

• Identify the Product on the weight identification system
(IP),

• Detect the presence of a Product in A (DPA),

• Drop a Product in C by the operator (DPC),

• Evacuate a Product from F by conveyor (EPF) (see fig.10).

The EC1 operation (extend cylinder 1 from its retracted
position) includes a basic sub-behavior and two extra sub-
behaviors. The basic sub-behavior describes on the one hand
the evolution of the resource (actuator 1) on which the opera-
tion is based and on the other hand constraints to be satisfied
to ensure the integrity of the system. If the condition on the
cylinder 1 is not satisfied, the operation cannot be executed. If
the constraints are not satisfied, the operation execution is pos-
sible but the loading system or the products risk to be damaged.
The constraints guarantee to avoid collisions between cylinder
1 and other elements (cylinder 2 or products). When the cylin-
der 1 is extended, the two extra sub-behaviors describe the pos-
sible effects on products according to the product state before
the operation execution. The difference between condition and
constraint is the same as in the basic sub-behavior.

Central conveyor
four place
rotating
storage

A weight
identification

system

W

Cylinder 1

Cylinder 2

F G

B

D

C

Figure 8: Loading system of automated system.

N

Extend Cylinder 1 from its retracted position (EC1)
Resource: C1Duration: 3s

Condition on the resource

Effect on the resource

Associated constraints

C2 retracted position v
No P bet. A & B v No P bet. A & D

C1 retracted position

C1 extended position

C1 intermediate position
B

as
ic

su
b-

B
eh

av
io

ur
C2 retracted position v

No P bet. A & B v No P bet. A & D

Condition on the product

Effect on the product

Associated constraints

RS indexed position v RS null speed
v No P bet. A & W v No P in W

P in A

P in W

P bet. A & W

st 1
 E

xt
ra

su
b-

B
eh

av
io

ur

RS indexed position v RS null speed
v No P in W

Condition on the product

Effect on the product

Associated constraints

P bet. A & W

P in W

P bet. A & W

nd 2
 E

xt
ra

su
b-

B
eh

av
io

ur RS indexed position v RS null speed
v No P in W

RS indexed position v RS null speed
v No P in W

Figure 9: ”Extend Cylinder 1 from its retracted position” operation.

For the other operations, there are between zero and four ex-
tra sub-behaviors. For instance, the cylinder 1 retraction cannot
have any effect on a product and therefore the operation RC1
has no extra sub-behavior. In contrast, the rotating storage holds
up to four products and may have an effect simultaneously on
these four products. Thus, the RSC and RSCC operations have
four sub-behaviors each.

The DPC and EPF operations have no basic sub-behavior.
For the DPC operation, the operator drops the product in C on
the rotating storage when he wants. The operator can drop or
remove the products in C. He does not inform the control sys-
tem about his actions. And the product presence (or absence) in
the rotating storage is known only when the product arrives in
A. So in C, the presence of a product is uncertain. The operator
is outside of the controlled system, the control system cannot
run the DPC operation. In addition, the state of the operator is
not necessary to write constraints or conditions for other oper-
ations, it is unnecessary to model the state and its evolution in

10

Evacuate a Product from F (EPF)
end event: E(EPF)Duration: 3s

Condition on the resource

Effect on the resource

Associated constraints

B
as

ic
su

b-
B

eh
av

io
ur

Condition on the product

Effect on the product

Associated constraints
cylender 2 retractedP in F

P in G

P bet. F & Gst 1
 E

xt
ra

su
b-

B
eh

av
io

ur

cylender 2 retracted

Figure 10: ”Evacuate a product from F” operation.

the basic sub-behavior. For this operation performed by a re-
source outside of the controlled system, only information on its
occurrence and its effect on the product is modeled in the extra
sub-behavior.

Similarly for the EPF operation, the conveyor that acts on the
product is outside of the controlled system. The state of the con-
veyor is not needed for writing requirements and constraints for
other operations, the operation EPF has no basic-sub-behavior,
see fig. 10.

With this controlled system model, the controlled system
state space is not explicitly represented. The problem of the
state space explosion is avoided. In addition to the controlled
system model, the design algorithm also needs to know the ini-
tial state of the controlled system and the objective that are de-
tailed in the next section.

5.3. Initial State and Objectives

The values of all variables of the controlled system are de-
fined in the initial state. SVP∈S variables define the entry state
of products into the loading system. For this system, the en-
try state is characterized by the single variable ”Type”. All
the values of the variable ”Type” are: unknown, 1-type to 6-
type. For SVP∈S variables, the initial state is characterized by
Type=unknown. For SVP<S variables, the values are: no prod-
uct in the controlled system. For SVR variables, the values are:
C1 and C2 in the retracted position, the rotating storage in the
indexed position with a null speed.

For the objective, the value of all variables is not necessarily
defined. For the proposed example, the objective is to reach a
state without product through a state with a product identified in
F. This objective is defined only by the values of some variables.
The optimized criterion is the cycle time.

The results of the algorithm that uses operations to design a
control law according to the initial state and the objective are
presented later in the next section.

5.4. Design algorithm

This section presents the main results of the four steps of the
algorithm described in section 4.1.1.

1-DPC

5-RSCC
2-RSC

6-DPC

12-DPC

18-DPC

25-DPC

21-DPC

15-DPC

9-DPC

31-DPC

34-DPC

40-DPC

46-DPC

49-DPC

43-DPC

37-DPC

4-RSC

10-RSC

16-RSC

23-RSC

19-RSC

13-RSC

7-RSC

29-RSC

32-RSC

38-RSC

44-RSC

50-RSC

47-RSC

41-RSC

35-RSC

11-RSCC

17-RSCC

24-RSCC3-RSCC

20-RSCC

14-RSCC

8-RSCC

33-RSCC

39-RSCC

45-RSCC

51-RSCC

48-RSCC

42-RSCC

36-RSCC

30-RSCC

26-DPA

28-EC1

22-EC1

16

27-DNPA

Figure 12: Reachable states space from initial state to the state allowing the
processing operation.

5.4.1. Step 1: sequence with processing operations
The only processing operation provided by the loading sys-

tem is the product identification (IP). Indeed, for the control
system, this operation changes the features of the product. The
features are known according to the value of variable Type. In
the initial state, the features of the product are unknown. After
the product identification, product features have changed state
for the control system because they are known.

The Step 1 result is a sequence with a single operation whose
execution modifies the values of SVP∈S variables in the initial
state to the values defined by the objective. This sequence is
very simple, the first step is no more detailed before presenting
the second step.

5.4.2. Step 2: adding moving operations
Step 2 adds moving operations to the sequence generated in

step 1 in order to satisfy the conditions and constraints on the
product position of the processing operations. For the load-
ing system, this step generates two sequences of moving opera-
tions. To allow the execution of the processing IP operation, the
first sequence is designed to put a product on the weight identi-
fication system. After the IP operation, the second sequence is
designed to put the controlled system in its initial state without
product to generate a cyclic control law.

To design the first sequence, the problem is characterized
by the initial state defined in paragraph 5.3 but limited to all
the variables SVP. The objective of the first sequence is to sat-

11

Step 3 (Ch): path with all 123

operations without parallelism
q2 q3 q4 q5 q6 q7 q8 q9 q10 q11

DPC

q1 q12

RCS RCS RCS RCS DPA EC1 IP RC1 EC2 RC2

q13

EPF

Step 2 (Ch): sequence of12

processing and move operations
q2 q3 q4 q5 q6 q7 q8 q9 q10 q11

DPC

q1 q12

RCS RCS RCS RCS DPA EC1 IP EC2

Satisfaction of constraints
on resources

q13

EPF

non-satisfaction of the constraints
on state resources to run the operation

EC2 from the state q9
insertion of a
preparation operation

Figure 11: Preparation operations added to the sequence of move and processing operations.

isfy the conditions and constraints of IP operation on variables
SVP<S (one product on the identification system). As indicated
in the presentation of the algorithm in section 4, the reachable
state space is generated with the loading system model from the
initial state before looking for the shortest path between the ini-
tial state and a state satisfying the objective. The shortest path
is represented by a bold line in Figure 12 whose state 1 is the
initial state.

To limit the size of the reachable state space, the number of
products in the system is limited to one for this step 2. For the
loading system, the number of products increases with the DPE
operation when the operator drops a product in C. Apart from
the states that respect the objective, this limitation is character-
ized by states reached with the DPE operation from which there
is no transition for leave(see figure 12).

Of course, there is a risk of combinatorial explosion. For
instance, the number of states and transitions with one product
in the system is lower than 100 and and for three products the
number of states exceed 3000 and the number of transition is
closed to 8000.

From the graph, a sequence of moving operations is obtained
with the operations belonging to the shortest path in figure 12.
This sequence is added before the processing IP operation de-
termined in step 1. The same principle is applied to design a
sequence of moving operations added after the IP operation.
After the assembly of these sequences, the result of Step 2 is a
sequence of processing and moving operations shown in Fig. 11
in which preparation operations are added in step 3.

5.4.3. Step 3: adding preparation operations
The objective is to satisfy the conditions and constraints on

resources for processing and moving operations. The princi-
ple of Step 3 is to add preparation operations in the sequence
generated in step 2. For the loading system, the constraint on
the state of the actuator 1 which must be returned to run the
EC2 operation (Extend Cylinder 2) is not satisfied after the IP
operation. To satisfy this constraint, a sequence of preparation
operations is designed with the same principle as in steps 1 and
2. The preparation RC1 operation (retract cylinder 1) is added
from the state q9 after IP operation (see fig. 11).

Finally, step 3 leads to add the RC1 operation and the RC2
operation (Retract Cylinder 2). The sequence designed after the
step 3 can reach the objective but it is not optimal in terms of

cycle time. Operations that can be performed simultaneously
have to be identified.

5.4.4. Step 4: parallelism
The Step 4 of the algorithm aims at finding authorized par-

allelism between operations in the sequence generated in step
3. From the principle of step 4 shown in Figure 7, the RC1 op-
eration can be performed simultaneously with the IP operation.
However the RC1 and EC1 operations cannot be performed si-
multaneously because they require the same resource, the cylin-
der 1. The parallelism between RC1 and IP corresponds first to
perform the RC1 and IP operations after the EC1 operation and
second to perform RC2 only after the end of the IP and RC1
operations. This information of AND divergence after EC1 op-
eration and of AND convergence before EC2 operation is con-
tained in both lists // forward and div which will translate the
control law into a Petri Net or a language for PLC as SFC lan-
guage.

Unlike these languages, the translation into a precedence
graph of Figure 13 does not allow execution of the control law
by a digital system (PLC, industrial computer) but it only al-
lows to illustrate simply the result of Step 4. The precedence
graph formalism is poorer in information than the state model
with lists // forward and div. Indeed, the precedence graph does
not contain information on the state of the controlled system
after the execution of each operation. But, this information is
required by the subsequent steps of the algorithm in the case of
a multi-product problem. This problem is reflected by the pres-
ence at a time t of several products. The algorithm for solving
this problem that contains additional steps is not presented in
this article.

To complete the presentation of case studies, the result of the
translation into a Petri net of the design control law is proposed
in the case of multi-product problem.

5.4.5. Logic control law
From the viewpoint of the control system, the loading sys-

tem is a system in which several products can be present si-
multaneously and for which there is one different objective for
two product families. Indeed, after the rotation of the rotating
storage, the DPC operation (Drop a product in C by the op-
erator) is always executed for the design algorithm by lack of

12

Step 3 ():path
with parallelism

ChOp q2 q3 q4 q5 q6 q7 q8 q9 q10 q11

DPC

q1 q12

RCS RCS RCS RCS DPA EC1 IP RC1 EC2 RC2

Div = {DPC}Div = {RV1} // forward= {IP}

q13

EPF

EC1

IP

RC1

EC2 RC2 EPFDPARCSRCSRCSRCSDPC
Precedence graph

Figure 13: Result of parallelism search and translation into a precedence graph.

information provided by the operator. The presence of a prod-
uct dropped in C is therefore uncertain. The real presence of a
product is detected in A with the detection operation. Because
of this uncertainty about the presence of products on the rota-
tion storage, the loading system is characterized by the treat-
ment of two product families: the present products and lacking
products. In addition, the system can act on several products
simultaneously which may include on the rotating storage in A,
B, C and D. Although the steps of the design algorithm are not
presented in this article, the figure 14 shows the result of the
design algorithm for these two additional problems and trans-
lation of the result into a Petri net. A software environment to
design control laws has been developed in Java under Eclipse.

5.4.6. Result with automated planning approach
With a classic automated planning approach (Valente &

E.Carpanzano, 2011), a single kind of operation is defined in
contrast to the proposed approach, which defines three kinds.
With no difference between pre-conditions and pre-constraints
in automated planning, coupling between functional-chain and
product evolutions is lacking or permanent. The sequence of
operations obtained with an automated planning approach is
limited to non-optimal sequence of processing operations or a
sequence of moving operations in case of lacking of process
operation. For the proposed system, the controlled system will
be able to go through step 21 in Figure 12 before to achieve the
state goal 19. Finally, the result does not contain all the oper-
ations, the sequence of operations does not minimize the cycle
time and parallelism do not exist between the operations. Fi-
nally, the system would treat the products one by one while it is
possible to have more than six products simultaneously in the
manufacturing cell.

6. Conclusion

In this paper, a methodology to help automation engineers
to design off line a logic control law from the controlled sys-
tem abilities is proposed. The modeling concept is based on the
extension of the one proposed in Automatic Planning field of
research: operation model. There are double interests of this

controlled system modeling. First, there is no problem of com-
binatory explosion which is generally the limit of automaton
representation usually used at this level. Next, the model struc-
turing and the required information (effects of a service, con-
ditions, constraints) facilitate the modeling task. Such a mod-
eling approach presents also the advantage to capitalize a tech-
nical knowledge of the controlled system abilities resolving in
part the departure of automation engineers from the company.
Moreover, considering separately each of the operation of the
controlled systems allows to simply update the model in case
of changes due to physical reconfigurations or loss of controlled
system capacities in failures context.

Based on the proposed decomposition, the resulting logic
control law is not optimal. In return, the proposed algorithm
is based on a compromise between the complexity of the
build states space and the solution’s performance. Finally, it
is important to notice that the resulting solution support on a
formalism of representation favorable with its translation into
languages of standard IEC 61131-3, thus opening interesting
application for PLC programming.

Future works will focus first on the way to develop a graph-
ical interface to help designer to capitalize the required knowl-
edge using a functional chain point of view. Secondly, the prob-
lem with several different types of products will be studied. The
principle would be very similar to the steps defined to face par-
allelism for several identical products. By the end, this logic
control law design approach will be extended to an uncertain
execution context characterized by resource failures in order to
provide some reactivity abilities to the manufacturing system.
In this context, an automatic update process of the model of
the controlled system must be studied. Indeed a failure has two
consequences, first the evolution of the AMS can be in an un-
expected state and second, a possible modification to the AMS
capabilities. Then before to try to design a new adequate con-
trol law, the model must take these modifications into account.

References

Aylett, R. S. (2001). Planning plant operating procedures for chemical plant.
Engineering Applications of Artificial Intelligence, 14, 341–356.

13

DPC

RCS

DPA

No product in Aproduct in A

EC1

IP RC1

EC2

RC2

DPC

Figure 14: Petri net translation of designed control law for multiple products.

Castillo, L., Fdez-Oliveras, J., & Gonzales, A. (2000). Intelligent planning of
grafcet charts. Robotics and Computer Integrated Manufacturing, 16, 225–
239.

Charbonnier, F., Alla, H., & david, R. (1999). The supervised control of discret-
event dynamic systems. IEEE Transactions on Control Systems Technology,
7, 175–187.

Chretienne, P., Coffman, E. G., Lensta, J. K., & Liu, Z. (1997). Scheduling
theory and its applications. Chichester: John Wiley and Soons.

CIM (1989). A reference model for computer integrated manufacturing from
the viewpoint of industrial automation. International Journal of Computer
Integrated Manufacturing, 2, 114–127.

Combacau, M., Berruet, P., Zamai, E., Charbonnaud, P., & Khatab, A. (2000).
Supervision and monitoring of production systems. In IFAC 2nd Confer-
ence on Management and Control of Production and Logistics (MCPL’00).
Grenoble, France.

Davenport, A. J., & Beck, J. C. (2000). A survey of techniques for scheduling
with uncertainty.

Dijkstra, E. W. (1959). A note in two problems in connexion with graphs.
Numerisches Mathematik, (pp. 269–271).

E.W. Endsley, E. A., & Tilbury, D. (2006). Modular finite state machines: De-
velopment and application to reconfigurable manufacturing cell controller
generation. Control Engineering Practice, 14, 11271142.

Ghallab, M., Nau, D., & Traverso, P. (2004). Automated Planning, Theory and
Practice. Elsevier.

Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science
of Computer Programming, 8, 231–274.

Herroelen, W., & Leus, R. (2002). Project scheduling under uncertainty: Survey
and research potentials. European Journal of Operational Research, .

Holloway, L. E., Guan, X., Sundaravadivelu, R., & Jr., J. A. (2000). Auto-
mated synthesis and composition of taskblocks for control of manufacturing
systems. IEEE Trans. On Systems, Man and Cybernetics, Part. B, 30.

IEC-61131-3 (1993). Programming Languages - Providing the Basis. Swiss.
ISA-S95 (2000). Entreprise Control System Integration.
Klein, I. (1999). Efficient planning for a miniature assembly line. Artificial

Intelligence in Engineering, 13, 69–81.
Lacomme, P., Prins, C., & Sevaux, M. (2003). Algorithmes de Graphes. Ey-

rolles.
Lee, G. B., Zandong, H., & Lee, J. S. (2004). Automatic generation of ladder

diagram with control petri net. Journal of Intelligent Manufacturing, 15,
245–252.

Lee, J. K., & Lee, T. E. (2002). Automata-based supervisory control logic
design for a multi-robot assembly cell. International Journal of Computer
Integrated Manufacturing, 15, 319–334.

Li, J., Dai, X., Meng, Z., Dou, J., & Guan, X. (2009). Rapid design and recon-
figuration of petri net models for reconfigurable manufacturing cells with
improved net rewriting systems and activity diagrams. Computers and In-
dustrial Engineering, 57, 1431–1451.

Linz, P. (2000). An introduction to formal languages and automata. Sudbury,
MA: Jones and Bartlett Publishers.

Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceed-
ings of the IEEE, 77, 541580.

Qiu, R., Wysk, R., & Xu, Q. (2003). Extend structured adaptative supervisory
control model of shop floor controls for an e-manufacturing system. Inter-
national Journal of Production Research, 41, 1605–1620.

Ramadge, P. J., & Wonham, W. M. (1987). Supervisory control of a class of
discret event processes. Journal of Control and Optimization, 25.

Sandewall, E., & Ronnquist, R. (1986). A representation of action structures.
In National Conference on Artificial Intelligence (AAAI’86) (pp. 89–97).

Trentesaux, D. (2009). Distributed control of production systems. Engineering
Applications of Artificial Intelligence, 22, 971–978.

Valente, A., & E.Carpanzano (2011). Development of multi-level adaptive con-
trol and scheduling solutions for shop-floor automation in reconfigurable
manufacturing systems. CIRP Annals-ManufacturingTechnology, in press.

Zaytoon, J. (2002). On the recent advances in grafcet. Production Planning
and Control, 13, 86–100.

14

