
This is a pre-publication draft of the paper, which was accepted for publication

in Engineering Applications of Artificial Intelligence on 20/02/2012

An automated signalized junction controller that learns

strategies by temporal difference reinforcement learning

Simon Box and Ben Waterson

Transportation Research Group, Faculty of Engineering and the Environment, University of

Southampton, UK, SO17 1BJ.

Abstract

This paper shows how temporal difference learning can be used to build a sig-
nalized junction controller that will learn its own strategies though experience.
Simulation tests detailed here show that the learned strategies can have high
performance. This work builds upon previous work where a neural network
based junction controller that can learn strategies from a human expert was
developed (Box and Waterson, 2012). In the simulations presented, vehicles
are assumed to be broadcasting their position over WiFi giving the junction
controller rich information. The vehicle’s position data are pre-processed to
describe a simplified state. The state-space is classified into regions associated
with junction control decisions using a neural network. This classification is
the strategy and is parametrized by the weights of the neural network. The
weights can be learned either through supervised learning with a human trainer
or reinforcement learning by temporal difference (TD). Tests on a model of an
isolated T junction show an average delay of 14.12 s and 14.36 s respectively
for the human trained and TD trained networks. Tests on a model of a pair of
closely spaced junctions show 17.44 s and 20.82 s respectively. Both methods of
training produced strategies that were approximately equivalent in their equi-
table treatment of vehicles, defined here as the variance over the journey time
distributions.

Keywords: , Intelligent Transportation Systems, signal control, machine
learning, neural network, reinforcement learning, temporal difference, traffic,
control, junction

1. Introduction

1.1. Background

Urban signalized road junctions are usually controlled by active systems (e.g.
Vincent and Peirce (1988); Hunt et al. (1982)), which use sensors to measure
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the state on the road. The state is then used by the control algorithm to inform
decisions on which colour to set the traffic lights. Sensors such as inductive
loops (Sreedevi, 2005) and microwave emitter/detectors (Wood et al., 2006) are
commonplace and widely deployed in developed areas. New sensing technologies
such as vehicle to infrastructure WiFi communications have been extensively
investigated in recent years (Kompfner, 2008; COOPERS, 2010; SAFESPOT,
2010) leading to a Europe wide reservation of frequencies (IEEE 802.11p) for
this type of communication.

The profusion of sensing technology leads to rich data that can be used for
Urban Traffic Control (UTC). This enables the development of increasingly so-
phisticated control systems for signalized road junctions. In particular, data
hungry machine learning algorithms can be employed to develop junction con-
trol systems that can learn improved strategies through various forms of train-
ing.

Recent important work on the optimisation of traffic signals has investigated
a number of approaches including dynamic programming (Heydecker et al., 2007;
Heung et al., 2005), genetic algorithms (Mikami and Kakazu, 1993), fuzzy-neural
networks (Choy et al., 2003) and reinforcement learning (Chen and Heydecker,
2009). This work has shown how to use learning techniques to optimise param-
eters in signal control strategy or to select pre-defined strategies.

Here we are concerned with a pattern recognition approach where control
decisions are made purely based on a classification of state space. Earlier work
using this approach has shown how to use supervised learning to enable a junc-
tion controller to learn strategies from a human expert trainer (Box and Wa-
terson, 2012). In this paper the approach is extended by the application of re-
inforcement learning to enable a junction controller to learn strategies through
experience.

1.2. Context and motivation

Earlier work by the authors investigating the use of (vehicle transmitted)
GPS + WiFi data in signal control has employed simulation to develop and
evaluate control systems.

Under the auctioning agent control system (Waterson and Box, 2012) the
road network is discretized into regions and software agents monitoring each
region calculate a bid for priority. The bid is based on the positions and speeds
of vehicles as reported over WiFi. At the junction a junction agent assigns
the green light to those sections of road with the highest bid. Coordination
between junctions is achieved through a zone agent which can re-weight bids to
encourage coordination. In simulation tests the auctioning agent system using
WiFi data outperformed the MOVA control system (Vincent and Peirce, 1988),
which uses inductive loops.

The human trained neural network control system (Box and Waterson, 2012)
uses the same system of bids as the auctioning agent system. However instead
of using the bids as proxies for priority it uses the set of bids as an abstract
simplified state describing the situation at the junction. A neural network is
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used to classify the resulting state space into decisions, namely which stage of the
junction gets the green light. The training data for the network is provided by
a human expert when they control the simulated junction via a computer game
interface. Thus the human trained neural network is a machine learning junction
control system that learns strategies from a human expert. In simulation tests
the human trained neural network outperformed the auctioning agent control
system.

The above control systems were both developed and tested on a simulation
test-bed. This uses SIAS-Paramics micro-simulation software to simulate the
movement of vehicles through the network. SIAS-Paramics is connected with a
number of specially developed software modules to simulate sensor data, make
control decisions and implement the control (i.e. change the traffic light colour)
in the simulation. The same test-bed has been used in the research presented
in this paper. It is described in full in Box and Waterson (2010b,a, 2012).

There are two principal shortcomings to using human experts to train ma-
chine learning junction controllers. Firstly, to implement this in practice would
be costly because human time is relatively expensive. Secondly the best possi-
ble performance of the system is limited to being as good as the human trainer.
These shortcomings motivate the investigation into extending the supervised

learning approach of the human trained neural network to build a reinforce-

ment trained neural network.
As already described, junction control systems use measurements to deter-

mine the state on the road in order to make control decisions. However the state
on the road right now tells us something about the decisions that were made in
the past. In principal the controller can evaluate whether decisions made in the
past were good or bad and learn from these data just as it learns from the data
generated by the human trainer. This is the approach of temporal difference

learning.
Research in other applications of artificial intelligence has shown that prob-

lems that can be solved using a neural network trained by supervised learning
can also respond well to a neural network trained by temporal difference learn-
ing. A well known example of this is the work of Gerald Tesauro (Tesauro, 2002)
who developed the computer Backgammon program Neurogammon, which em-
ployed a neural network to learn strategies from human expert backgammon
players. He then went on to develop “TD-gammon”, a Backgammon program
that used a neural network trained by temporal difference (TD) learning in
simulations where the program competed against itself.

In this paper we present an adaptation to the neural network based junc-
tion control system described in Box and Waterson (2012). This adaptation
enables the controller to be trained under simulation by temporal difference
reinforcement learning. The principal contributions of the paper are as follows.

1. A new machine learning junction controller, which employs a two layer
neural network to learn strategies through temporal difference reinforce-
ment learning.

2. A comparison between the performance of the human trained junction
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controller and the TD trained junction controller in simulation tests.

3. Simulation tests of performance on both a simple isolated T-junction, and
a pair of closely spaced junctions, where coordination is necessary.

2. Machine learning junction control strategies

2.1. Overview

2.1.1. Bids

When simulating GPS + WiFi data from vehicles we can collect estimates
of the position and speed of every vehicle in the simulation. At any given
time these data describe the state of the network. To make the problem more
tractable and to speed up calculation time this raw description of the state is
simplified in a pre-processing operation that generates bids.

Figure 1: Schematic of the Simple-T model showing the bid zones and the junction staging

To affect this the road network around the junction is divided into regions.
Figure 1 shows a schematic of one of the junctions discussed in this paper
with the regions marked (a− d). Each region is monitored by an agent, which
calculates a bid based on the position and speed data of the vehicles within that
region. The bid is calculated using

B =
∑

c∈C

1− αVc − βXc (1)

Here C is the set of all vehicles monitored by the lane agent; Vc is vehicle speed
and Xc is the distance of the vehicle from the junction; α and β are coefficients
that can be tuned to adjust the relative influence that the number of vehicles,
the vehicle speed and the vehicle distance each have on the size of the bid. In
previous work (Box and Waterson, 2010b) it has been shown that (assuming
S.I. units are used) values of α = 0.01 sm−1 and β = 0.001m−1 provide a good
balance between influences. These values were adopted in this work.

4



The term “bid” is used because this method was first employed by the auc-
tioning agents signal control algorithm (Waterson and Box, 2012) where this
bid was designed to be indicative of the need for priority on a section of road.
For example more vehicles increases the bid, slower moving vehicles increases
the bid and vehicles closer to the end of the road section increases the bid (and
vice-versa). In the work presented here the set of bids from each of the regions
is simply a description of the state of the road network. Therefore it is unimpor-
tant that the bid is not a true representation of the need for priority. However if
it is at least reasonably representative it can make the classification task easier
(Box and Waterson, 2012). In the example shown in Figure 1 there are four
regions and thus the state is described by four bids.

2.1.2. Training and using the neural network

Figure 2 shows a process flowchart of the system described in this paper.
At each time step the simulator outputs raw measurements of the state on
the road. This is then processed to generate bids, these form the input units
to the neural network. The neural network then calculates which stage of the
simulated junction should have the green light and passes this information to the
simulator. The time step used in this paper is δt = 10 s. This time step is quite
course and could be reduced, however the results presented here and in earlier
work (Box and Waterson, 2012) demonstrate good comparative performance
using this time step.

Figure 2: Flowchart showing the process for controlling the simulation using a neural network
(solid arrows) and the processes for training network’s parameters (dashed arrows)

The decision of which stage to give the green light is governed by the values
of the weights in the neural network these weights can be trained either by
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human input or by TD learning.
Under human training a human controls the simulation through a computer

game interface, choosing which stage to give the green light every δt seconds.
Every time the human makes a decision this generates a pattern linking a set
of bids (state) to a stage decision. These patterns are then used to train the
network as described in Section 2.2.

Under TD learning information contained in the raw state measurement at
time step t is used to evaluate the decision made at time step t− 1. Feedback is
provided to the neural network to adjust the values of its weights accordingly.
This is described in detail in Section 2.3

2.2. Supervised learning with a human expert

For each pattern recorded there is a list of bids. A unit “offset” element is
appended to this list to create the J dimensional bid vector b (where J is the
number of bids plus one). For each pattern there is also a K dimensional target
vector t with elements tk ∈ {0, 1}, where

∑

k∈K tk = 1.

Layer 1. The first layer of the neural network forward propagation transforms
the bid vector b onto anH dimensional hidden units vector z using the following
transformation.

zh = tanh
(

a
(1)
h

)

(2)

a(1) = W(1)b (3)

where W(1) is a H × J matrix of weights (to be learned).
The length of vector z, called the number of hidden units, is a variable that

can be tuned to control the complexity of the transformation. A low number of
hidden units can limit the complexity of the transformation giving a poor fit to
the evidence data. A high number of hidden units allows more complexity in
the transformation but can lead to over fitting of the data.

Layer 2. The second layer of the neural network forward propagation substi-
tutes the transformed bid z into the softmax function (Bishop, 2006).

yk =
exp(a

(2)
k )

∑

p∈K

exp(a(2)p )
(4)

a(2) = W(2)z (5)

where W(2) is a K ×H matrix of weights to be learned.
The weights of the network are learned by attempting to minimizing the error

between the human generated training data and the network output yk. This is
done using back propagation and gradient descent. The method is detailed in
(Box and Waterson, 2012). In effect the neural network above parametrizes K
functions (yk) (recall K is the number of stages), each of these functions can be
described as something like: the probability that the human expert would pick
stage k given the current bids b.

6



2.3. Reinforcement learning by temporal difference

Reinforcement learning involves learning the combinations of states and de-
cisions that maximize some cumulative numerical reward. This approach dif-
fers from the supervised learning approach described above because there is
no “trainer” providing explicit examples of correct state-decision combinations,
rather learning happens on-line via an exploration of the state-decision space
and the receipt of feedback (Sutton and Barto, 1998). Therefore reinforcement
learning can be said to be learning through experience.

Temporal Difference (TD) is a method for reinforcement learning (Sutton
and Barto, 1998; Sutton, 1988). In large continuous state spaces this approach
employs a value function (discussed below) representing the nominal “value” of
decisions at points in state space. At each step in the learning process the value
of the previous state is adjusted according to both the feedback received and

the value of the current state. Thus adjustments to the value function are made
even if the receipt of feedback is delayed (bootstrapping).

The TD learning employed here uses the same two layer neural network
described in Section 2.2. Under TD learning the human is no longer involved so
we could describe the functions yk as simply the probability that k is the right
stage to pick given the current bids b. However, although the values of the K

functions will sum to unity across the bid space, we have no reason to believe
that the learning process is driving the functions towards valid probabilities so
it is usual in reinforcement learning literature to refer to the function yk as
the “value” of picking stage k for any given combination of bids b. Thus the
functions yk become the value functions for TD learning (discussed above) and
the neural network parametrizes these functions.

2.3.1. Q-learning

Under temporal difference learning the value of a stage decision at a particu-
lar state, yk(b) is adjusted upwards or downwards slightly according to feedback
received after that state-decision combination is encountered in training. The
algorithm used for doing this in this paper is the Q-learning algorithm (Watkins,
1989), shown below.

yk(bt)← yk(bt)(1− α) + α

(

Rt+1 + γmax
k

yk(bt+1)

)

(6)

where R is the feedback signal. Parameter α is the learning rate, which can be
tuned to determine how heavily the functions are adjusted after each decision.
Parameter γ is the discount factor, which adjusts how much relative weight is
given to the feedback from the last decision compared to the long term move-
ment of the function due to all the feedback received. According to (6) at each
step where a decision is made the value of the state-decision function from the
previous step yk(bt) is adjusted as a function of the feedback received since the
last decision and the maximum value of the current state-decision. We specify
here maxkyk(bt+1) because under reinforcement learning we do not automati-
cally select the stage with the highest value as we do with supervised learning.
This is discussed further in Section 2.3.3.
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2.3.2. Back-propagation

The Q-learning algorithm shown in (6) assumes that the values (yk(bt)) can
be adjusted directly, however this is not the case when using a neural network to
parametrize the functions. Here we must affect the change in value by adjusting
the weights (W(1) and W(2)) of the neural network. This is done through back-
propagation.

yc,t is defined as the element of yt which corresponds to the chosen stage
(k = c). The gradient of yc,t with respect to the two weights matrices is given
by

∇yc,t(W
(1)) = δ

(1)
t bT

t (7)

∇yc,t(W
(2)) = δ

(2)
t zTt (8)

where δ
(2)
t is given by

δ
(2)
t = (It −Yt) yc,t (9)

I is a K dimensional vector with elements Ik = 1 if k = c and Ik = 0 otherwise.
δ
(1)
t has H elements

δ
(1)
t,h =

(

W(2)
δ
(2)
t

)

h

(

1− z2t,h
)

(10)

To update the weights of the neural network the following algorithm is used.

W(1) ←W(1) +E(1)α(Rt+1 + γmax
k

yk,t+1 − yc,t) (11)

where E(1) is given by.

E(1) ← E(1)λγ +∇yc,t(W
(1)) (12)

The purpose of the first term in (12) is to convey reward back to previous
decisions, other than the immediately previous one, in amounts that decrease
as decisions stretch further back in time. The λ coefficient controls how quickly
the reward decays. In the limiting case when λ = 0 (12) becomes E(1) =
∇yc,t(W

(1)) and reward is assigned to the previous decision only. The purpose
of setting λ above zero is to recognize that multiple decisions leading up to the
receipt of reward may deserve “credit”. The same process in (11) and (12) is
performed to update W(2).

2.3.3. Stage selection strategy

The above back-propagation of feedback will adjust the value attached to
combinations of bids and stage decisions. In the supervised learning case, when
the network has been trained, then in operation the stage with the highest
probability (or value) is always selected. In reinforcement learning literature
this is called a “greedy” strategy. This is not so helpful when learning by
temporal difference as it can leave areas of bid-decision space unexplored. To
encourage the junction controller to try out new options while learning by TD
a strategy called ǫ− greedy is employed. Here the greedy strategy is employed
most of the time but occasionally (with some probability ǫ) the stage decision
is made at random.
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2.3.4. Feedback signal

In temporal difference learning the feedback signal (Rt+1 term in equation
(6)) is designed to give positive “reward” if the junction controller makes a good
decision and negative reward if a bad decision is made. The reward signal used
in this paper is calculated as a function of total vehicle lifetime L. A vehicle is
defined to be “born” when it enters a fixed region surrounding the junction (in
this paper this is simply the limits of the simulated area). The vehicle “dies”
when it crosses the junction stop line. Therefore the total lifetime at time t (Lt)
is the sum of the ages in seconds of all vehicles “alive” at time t.

The reward term Rt+1 is a measure of the change in lifetime between one
time-step and the next. It is calculated as

Rt+1 = 2−
2Lt+1

Lt

(13)

and is bounded using
−2 ≤ Rt+1 ≤ 2 (14)

Therefore events which lead to a reduction in lifetime such as the release of
a queue of vehicles at a junction will receive a positive feedback. Events that
lead to an increase in lifetime such as building up a queue will receive negative
feedback.

3. Simulation experiments

3.1. Junction models

Figure 3: Simulation screen shot of the simple T-Junction model

The simulation experiments presented in this paper used two junction mod-
els. The first (shown in Figure 3) is a simple t-junction (Simple-T). The second
(shown in Figure 4) is a model of the high road area in Southampton, UK, which
contains two signalised junctions a short distance apart (High-Rd).

Figures 1 and 5 show schematics of the Simple-T model and the High-Rd
model respectively. The schematics indicate the road regions that are covered
by the lane agents monitoring the junctions. They also indicate which lanes are
given the green light in each of the junction stages.
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Figure 4: Simulation screen shot of the High-Rd model

Figure 5: schematic of the High-Rd junction showing the bid zones and the junction staging
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3.1.1. Demand

The demand in the simulation is set as the number of vehicles per minute
that flow between origin and destination zones. There is one zone at the end of
each road in the model. At any time the demand between zone i and and zone
j is calculated as

Di,j = di,jdt (15)

where di,j is a base level of demand between zones i and j and dt is a de-
mand multiplier. This coefficient can vary over the course of a simulation. The
base level demand di,j between each of the origin and destination zones for the
Simple-T model and the High-Rd model are shown in Tables 1 and 2 respec-
tively. In the tables the zones are labelled using appropriate compass points.

W E S
W – 18.96 5.0
E 24.01 – 1.26
S 4.05 4.05 –

Table 1: Basic demand matrix (ve-
hicles per minute) for the Simple-T
model

W SE E N SW
W – 4.81 8.76 1.95 0.19
SE 1.95 – 3.89 1.95 0.049
E 8.76 6.89 – 0.97 0.097
N 2.92 0.97 2.92 – 0.097
SW 0.097 0.097 0.097 0.097 –

Table 2: Basic demand matrix (vehicles per minute)
for the High-Rd model

3.1.2. Neural network structure

Each of the modelled signalized junctions, one in the Simple-T model and
two in the High-Rd model are controlled by a neural network. The standard
structure is a two layer network with J input units H hidden units andK output
units. Recall from Section 2 that J is the number of bids that describe the state
of the network plus one and K is the number of signal stages. The number of
hidden units H is a variable that can be tuned to control the complexity of the
approximating function. The values of H employed in this paper are the same
as those used for neural networks designed for training by a human (Box and
Waterson, 2012).

In the Simple-T model’s network J = 5, K = 3 and H = 7. In the network
controlling the East junction in the High-Rd model J = 10, K = 3 and H = 11.
For the West junction J = 10, K = 4 and H = 11. Note that the networks
controlling the East and West Junctions in the High-Rd model take data from
all the lane agents in the model as inputs. This allows each junction to “know”
the state of the other and, although operating independently, coordination can
be an emergent property (Box and Waterson, 2012).

3.2. Training phase

The training phase for human training is described in detail in (Box and
Waterson, 2012) here we discuss only the training under TD learning as laid
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out in Section 2.3.
From Section 2.3 there are four parameters which must be set ahead of TD

training. These are the discount factor γ, the reward decay rate λ, the learning
rate α and the probability of random stage selection ǫ. Through a testing process
where these parameters were systematically varied individually values of γ = 1
and λ = 0.1 were selected on the basis of best performance. Parameters α and
ǫ were varied in the three stages of training described below.

The training phase was divided into three stages. To begin with, the weights
of the neural networks were initialized randomly. Training took place over
repeated simulations of fixed duration S with a constant level of demand defined
by the demand multiplier dt. Values of S and dt were varied during the training
stages as described below.

Training Stage 1. Values α = 0.1, ǫ = 0.1 and S = 15mins were used. The
demand multiplier was initially set to dt = 0.2 and was thereafter increased
evenly in increments of 0.2 up to dt = 1.0. The policy of repeatedly restarting
the simulation every 15 mins and gradually increasing the demand is useful in
the early stages of training because with very naive strategies queues in the
simulation can build up rapidly. Therefore a lot of time can be spent learning
how to discharge large queues before the it is possible to learn strategies under
more normal conditions.

Training Stage 2. Values α = 0.1, ǫ = 0.1 and S = 30mins were used. Now dt
was cycled more rapidly varying as before but incrementing at every simulation
restart.

Training Stage 3. Was as training stage 2 but with α = 0.01 and ǫ = 0.01. The
reduction in the learning rate and the probability of random stage selection is
designed to reduce the exploration of different strategies and encourage more
stable learning and improvement on the current strategy.

The duration of the three training stages was different for training on the
Simple-T model and the High-Rd model. Table 3 shows the durations used.

Time (simulated hrs)
Stage Simple-T High-Rd
Stage 1 90 580
Stage 2 75 360
Stage 3 85 560

Table 3: The times in simulated hours of the three stages of training used on each of the test
models.

3.3. Testing phase

Once the parameters of the neural networks had been trained they were
tested on the Simple-T and High-Rd models with the training mode disabled.
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Test runs were up to four hours in length and during the tests the demand
multiplier dt (Equation (15)) was varied according to the plot shown in Figure
6.
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Figure 6: Variation of the transient demand multiplier throughout four hour simulation period

During the simulations S-Paramics records detailed information about the
journeys of every simulated vehicle. In the analysis presented here the main
measurements used are journey time t and delay θ. For a given vehicle p the
time it takes to travel from its origin i to its destination j is its journey time tp.

The vehicle’s free flow travel time t
(ff)
p is the theoretical time that it would take

to travel between i and j if it were unimpeded by other vehicles or red signals.
The delay for vehicle p is the difference between these two times.

θp = tp − t(ff)
p (16)

4. Test results

There is no consensus in the literature for what constitutes optimal perfor-
mance for a signalized junction controller. A number of metrics can be used to
judge performance including vehicle flow rates, speeds, journey times or even
emission levels. In this paper we broadly assume optimal performance to mean
minimizing delay (θ) averaged across journeys and time periods and also mini-
mizing the variance of the distribution over journey times. The latter is impor-
tant because it is an indicator or equitability. A distribution with low variance
indicates that all vehicles are receiving reasonably equal treatment. A distribu-
tion with higher variance indicates that some vehicles are getting through the
junction more quickly than others.

4.1. Performance

After 260 simulated hours of training the neural network controlling the
Simple-T model was tested in a four hour test as described above. The mean
delay measured over all journeys in this test was 14.36 seconds. After 1500
simulated hours of training the neural network controlling the High-Rd model
was tested in the same way. The measured mean delay was 20.82 seconds.
Table 4 compares these values of mean delay with those measured in otherwise
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Delay (s)
Model Human trained TD trained
Simple-T 14.12 14.36
High-Rd 17.44 20.82

Table 4: Delay averaged over all journeys during 4-hour simulation tests on the two test
junctions, using various control strategies.

identical tests where the controlling neural networks were trained by a human
expert as described in Box and Waterson (2012). These data show that the
performance of the temporal difference trained neural network is very similar
on the Simple-T model, but the delay is 3 seconds higher on the High-Rd model.
The large amount of training and the lower performance of the High-Rd neural
network are indicative of the increased complexity of this model where two
junctions need to be coordinated.
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Figure 7: Variating in delay duting the test on the Simple-T model
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Figure 8: Variating in delay duting the test on the High-Rd model

Figures 7 and 8 show how the delay varied over the course of the tests for
the Simple-T and High-Rd models respectively. Here the values plotted at each
time are the measured delay over the previous 5 minutes. Figure 7 shows that
the performance of the human trained and temporal difference (TD) trained
networks are very close over the course of the test with the exception of the
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second peak in delay. Figure 8 shows a similar trend but with the human
trained network more consistently outperforming the TD trained network in
the middle 2 hours of the test.

0 50 100 150 200 250 300 350
0

500

1000

1500

2000

2500

3000

3500

Journey Times (s)

F
re

qu
en

cy

 

 

Human Trained
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Figure 9: Journey time histograms for the tests on the Simple-T junction model where the
neural network was trained by a human (left) and by temporal difference (right)
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Figure 10: Journey time histograms for the tests on the High Rd junction model where the
neural network was trained by a human (left) and by temporal difference (right)

While delay is a useful indicator of a junction controller’s performance it is
also important to consider equitability, indicated by the variance of the journey
time distributions. Figure 9 shows the journey time distributions for the tests
on the Simple-T model. This shows that while human training very slightly
outperformed TD training in terms of delay, TD training very slightly outper-
forms human training in terms of equitability with a variance of 0.15 vs 0.16 in
the journey time distributions. Figure 10 shows the journey time distributions
for the High-Rd model. Here the human training is very slightly more equitable
than the TD training but the difference is again marginal.

4.2. Analysis of training

To investigate how the performance of the TD trained neural network evolved
over the course of the training we can take samples of the (partially) trained
network weights that were recorded throughout training. These semi-trained
weights were tested on short (20 minute) tests using the demand profile in
Figure 6 between 165 and 185 minutes. Figure 11 shows the total mean delay
for 350 tests with weights sampled over the first 80 hours of training on the
Simple-T model. This shows that, as expected, performance is very bad for the
initial randomly initiated weights. Delay in the first test is ∼ 210 seconds. This
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Figure 11: The improvement in performance of the TD trained network over part of the
training period

very quickly improves with delay dropping down below 50 seconds in the first
hour. Thereafter performance is characterised by long periods of stagnation
punctuated by sudden “breakthroughs” such as the steps in delay reduction at
around 20 hours and 40 hours.

4.3. Journey time distribution shape
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Figure 12: Scatter points for tests on the High-Rd model using parameter weights from
different stages of the training process. The mean delay recorded in each test is plotted against
the R2 value of the fit of the journey time distribution to an ideal logmormal distribution.

Despite similarities in the approach between TD learning and Dynamic Pro-
gramming it is not possible (for the system presented here) to analytically prove
convergence on an optimal strategy (Sutton and Barto, 1998).

We can expect the optimal control strategy to produce a journey time distri-
bution with mean as close as possible to the free flow travel time, and variance
as low as possible. It follows that the journey time distribution under optimal
control will have a defined mean, variance and shape.
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Previous research has demonstrated that the journey time distribution for
vehicles on a link (that is a stretch of road between junctions) can be well ap-
proximated by the lognormal distribution (Montgomery and May, 1987; Rakha
et al., 2006) and this fact has been employed in many models of traffic flow
(Kaparias et al., 2008). The evidence for the journey time distribution across
junctions is less well established, however it is reasonable to assume that under
perfect control the journey times experienced by vehicles should differ by as
little as possible from the condition of free flow on a link.

In fact the evidence from the results in Section 4.1 shows that the journey
time distributions across the junctions are a good fit to the lognormal distri-
bution. The R2 value of the fit to an ideal lognormal distribution is shown on
each plot in Figures 9 and 10.

To examine whether there is a relationship between the performance of a
control strategy and its fit to the lognormal distribution we measured the R2

value of the journey time distributions for the same 20 minute tests described in
Section 4.2, but that were carried out on the High-Rd model. Figure 12 shows
the measured R2 value in these tests plotted against the performance in terms
of total mean delay. These data indicate a trend that the better performing
strategies are also a closer fit to the lognormal distribution.

5. Conclusions

The results presented in Section 4 show that temporal difference reinforce-
ment learning can be used to train a junction controller from a position of no
prior information, where it is changing the lights at random, to a position of
high performance.

On the Simple-T junction model the temporal difference trained neural net-
work matched the performance of the human trained neural network in terms
of both delay and equitability. In previous work (Box and Waterson, 2012) the
human trained neural network has been shown to significantly outperform the
auctioning agent junction controller (Waterson and Box, 2012) and the MOVA
junction controller (Vincent and Peirce, 1988).

On the more complex High-Rd model TD training matched human training
in terms of equitability and exhibited lower performance in terms of delay with
on average 3 seconds more delay per vehicle. The High-Rd model was also
subject to∼ 6 times more training in terms of simulated hours. This is indicative
of the increased complexity of the problem to be solved in the High Rd model
where two closely spaced junctions must be coordinated for best performance.

The performance improvement of the neural networks during TD training
was characterized by long periods of stagnation punctuated by “breakthroughs”
where performance suddenly increased (Figure 11). This makes it difficult to
know if the best possible performance under TD training has been reached and
performance may improve further with more training.

The motivations behind investigating TD learning (Section 1.2) were to find
an alternative to human training and to potentially outperform human training.
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While the former has been achieved the latter has not. Future investigations to
improve the performance of TD learning will include more training and use of
different feedback signals (Section 2.3.4). However it is of course possible that
the performance of the human trained network in this system is very close to
optimal.
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