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Abstract  

 
Motion estimation is one of the major problems in developing video coding applications. Among all motion estimation 

approaches, Block matching (BM) algorithms are the most popular methods due to their effectiveness and simplicity for 

both software and hardware implementations. A BM approach assumes that the movement of pixels within a defined 

region of the current frame (Macro-Block, MB) can be modeled as a translation of pixels contained in the previous frame. 

In this procedure, the motion vector is obtained by minimizing the sum of absolute differences (SAD) produced by the 

MB of the current frame over a determined search window from the previous frame. The SAD evaluation is 

computationally expensive and represents the most consuming operation in the BM process. The most straightforward BM 

method is the full search algorithm (FSA) which finds the most accurate motion vector, calculating exhaustively the SAD 

values for all elements of the search window. Over this decade, several fast BM algorithms have been proposed to reduce 

the number of SAD operations by calculating only a fixed subset of search locations at the price of a poor accuracy. In this 

paper, a new algorithm based on Differential Evolution (DE) is proposed to reduce the number of search locations in the 

BM process. In order to avoid computing several search locations, the algorithm estimates the SAD values (fitness) for 

some locations using the SAD values of previously calculated neighboring positions. Since the proposed algorithm does 

not consider any fixed search pattern or other different assumption, a high probability for finding the true minimum 

(accurate motion vector) is expected. In comparison to other fast BM algorithms, the proposed method deploys more 

accurate motion vectors yet delivering competitive time rates. 

 

 
Keywords: Block matching algorithms, motion estimation, differential evolution, fitness approximation. 

 

1. Introduction 
 

Virtually all applications of video and visual communication deal with an enormous amount of data. The 

limited storage capacity and transmission bandwidth available has made digital video coding an important 

technology. In video coding, the high correlation between successive frames can be exploited to improve 

coding efficiency, which is usually achieved by using motion estimation (ME). Many ME methods have been 

studied in an effort to reduce the complexity of video coding, such as block matching (BM) algorithms, 

parametric-based models [1], optical flow[2] and pel-recursive techniques [3].  Among these methods, BM 

seems to be the most popular method due to its effectiveness and simplicity for both software and hardware 

implementations. BM is also widely adopted by various video coding standards, such as MPEG-1 [4], MPEG-

2 [5], MPEG-4 [6], H.261 [7] and H.263 [8]. 
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In a BM algorithm, the current frame is divided into non-overlapping macro blocks of NxN pixel dimension. 

For each block, in the current frame, the best matched block within a search window of size (2W+1)x(2W+1) 

in the previous frame is determined, where W is the maximum allowed displacement. The position difference 

between a template block in the current frame and the best matched block in the previous frame is called the 

motion vector. A commonly used matching measure is the sum of absolute differences (SAD) which is 

computationally expensive and represents the most consuming operation in the BM process.  

 

The full search algorithm (FSA) [9] is the simplest block-matching algorithm that can deliver the optimal 

estimation solution regarding the minimal matching error as it checks all candidates one at a time. However, 

such exhaustive search and full-matching error calculation at each checking point yields an extremely 

computational expensive FSA method that seriously constraints real-time video applications.  

 

In order to decrease the computational complexity of the BM process, several BM algorithms have been 

proposed which are based on the following three techniques: (1) Using a fixed pattern, which means that the 

search operation is conducted on a fixed subset of the total search window. The Three Step Search (TSS) [10], 

the New Three Step Search (NTSS) [11], the Simple and Efficient TSS (SES) [12], the Four Step Search 

(4SS) [13] and the Diamond Search (DS) [14] are some famous examples. Such approaches have been 

algorithmically considered as the fastest. However, they are eventually not able to match the dynamic motion-

content delivering false motion vectors (image distortions). (2) Reducing the search points, this means that the 

algorithm chooses, as search points, only such locations which iteratively minimize the error-function (SAD 

values). In this category, it is included: the Adaptive Rood Pattern Search (ARPS) [15], the Fast Block 

Matching Using Prediction (FBMAUPR) [16], the Block-based Gradient Descent Search (BBGD) [17] and 

the Neighbourhood Elimination algorithm (NE) [18]. These approaches assume that the error-function 

behaves monotonically, which holds well for slow-moving sequences; however, such properties do not hold 

true for other kind of movements in video sequences [19], yielding that the algorithms may get trapped into 

local minima. (3) Decreasing the computational overhead for each search point, which means the matching 

cost (SAD operation) is replaced by a partial or a simplify version with less complexity. The New pixel-

decimation (ND) [20], the Efficient Block Matching Using Multilevel Intra and Inter-Sub-blocks [11] and the 

successive elimination algorithm [21]. These techniques are based on the assumption that all pixels within 

each block move by the same amount, while a good estimate of the motion could be obtained by using only a 

fraction of the pixels. However, since only a fraction of the pixels enters into the matching computation, the 

use of these regular sub-sampling techniques can seriously affect the accuracy of the detection of motion 

vectors due to the noise or illumination changes. 

 

Alternatively, evolutionary approaches such as genetic algorithms (GA) [22] and particle swarm optimization 

(PSO) [23] are well known for locating potential global optimum within an arbitrary search space. In spite of 

such fact, only few evolutionary approaches have specifically addressed the problem of BM, such as the light-

weight genetic block matching (LWG) [24], the genetic four-step search (GFSS) [25] and the PSO-BM [26]. 

Although these methods support an accurate identification of the motion vector, their spending times are very 

long in comparison to other BM techniques. 

 

Differential Evolution (DE), introduced by Storn and Price in 1995 [27], is a novel evolutionary algorithm 

which is used to optimize complex continuous nonlinear functions. As a population-based algorithm, DE uses 

simple mutation and crossover operators to generate new candidate solutions, and applies one-to-one 

competition scheme to greedily decide whether the new candidate or its parent will survive in the next 

generation. Due to its simplicity, ease of implementation, fast convergence, and robustness, the DE algorithm 

has gained much attention, reporting a wide range of successful applications in the literature [28-36]. 

 

For many real-world applications, the number of calls to the objective function needs to be limited, e.g. 

because an evaluation is very time consuming or expensive, or because the approach requires user interaction. 

DE does not seem to be suited to such problems, since it usually requires many evaluations before producing 

a satisfying result. 

 

The problem of excessively long fitness function calculations has already been faced in the field of 

evolutionary algorithms (EA), which is kwon as evolution control [37]. In an evolution control approach, the 
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idea is to replace the costly objective function evaluation for some individuals by fitness estimates, based on 

an approximate model of the fitness landscape. The individuals to be evaluated, and those to be estimate, are 

determined based on some fixed criteria which depend on the specific properties of the used approximate 

model [38]. The models, used in the estimation, can be built during the actual EA run, since EA repeatedly 

sample the search space at different points [39]. There are certainly many possible approximation models, and 

several have already been used in combination with EA (e.g. polynomials [40], the kriging model [41], the 

feedforward neural networks, including multi-layer perceptrons [42] and radial basis-function networks [43]). 

These models can be either global, which make use of all available data, or local, which make use of only a 

small set of data around the point where the function is to be approximated. Local models, however, have a 

number of advantages [39]: they are well-known and established techniques, relatively fast, and take into 

account the intuitively most important information, the closest neighbors. 

  

In this paper, a new algorithm based on Differential Evolution (DE) is proposed to reduce the number of 

search locations in the BM process. The algorithm uses a simple fitness calculation approach which is based 

on the Nearest Neighbor Interpolation (NNI) algorithm, in order to estimate the fitness value (SAD operation) 

for several candidate solutions (search locations). As a result, the approach can substantially reduce the 

number of function evaluations preserving the good search capabilities of DE. In comparison to other fast BM 

algorithms, the proposed method deploys more accurate motion vectors yet delivering competitive time rates. 

 

The overall paper is organized as follows: Section 2 holds a brief description about the differential evolution 

algorithm. In Section 3, the fitness calculation strategy for solving the expensive optimization problem is 

presented. Section 4 provides background about the BM motion estimation issue while Section 5 exposes the 

final BM algorithm as a combination of DE and the NNI estimator. Section 6 demonstrates the experimental 

results for the proposed approach over standard test sequences as some conclusions are discussed in Section 7. 

 

 

 

2. Differential evolution algorithm 

 

The DE algorithm is a simple and direct search algorithm which is based on population and aims for 

optimizing global multi-modal functions. DE employs the mutation operator as to provide the exchange of 

information among several solutions.  

 

There are various mutation base generators to define the algorithm type. The version of DE algorithm used in 

this work is known as DE/best/l/exp or ‘‘DE1” [27]. DE algorithms begin by initializing a population of 
p

N  

and D-dimensional vectors considering parameter values that are randomly distributed between the pre-

specified lower initial parameter bound 
,lowj

x and the upper initial parameter bound 
,highj

x as follows: 

 

, , ,low ,high ,low
rand(0,1) ( );

j i t j j j
x x x x= + ⋅ −  

1, 2, , ;    1, 2, , ;    0.
p

j D i N t= = =K K  
(1) 

 

The subscript t is the generation index, while j and i are the parameter and particle indexes respectively. 

Hence, 
, ,j i t

x  is the jth parameter of the ith particle in generation t. In order to generate a trial solution, DE 

algorithm first mutates the best solution vector 
,best t

x  from the current population by adding the scaled 

difference of two vectors from the current population. 

 

1 2, , , ,
( );

i t best t r t r t
F= + ⋅ −v x x x  

{ }1 2, 1,2, , pr r N∈ K  

(2) 
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with 
,i t

v  being the mutant vector. Indices 
1
r  and 

2
r  are randomly selected with the condition that they are 

different and have no relation to the particle index i whatsoever (i.e., 
1 2
r r i≠ ≠ ). The mutation scale factor F 

is a positive real number, typically less than one. Figure 1 illustrates the vector-generation process defined by 

Equation (2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Two-dimensional example of an objective function showing its contour lines 

and the process for generating v in scheme DE/best/l/exp from vectors of the current generation. 

 
In order to increase the diversity of the parameter vector, the crossover operation is applied between the 

mutant vector 
,i t

v  and the original individuals
,i t

x . The result is the trial vector 
,i t

u  which is computed by 

considering element to element as follows: 

 

, , rand

, ,

, ,

, if rand(0,1)  or ,

, otherwise.

j i t

j i t

j i t

v CR j j
u

x

≤ == 


 (3) 

with  { }rand 1,2, ,j D∈ K .  The crossover parameter (0.0 1.0)CR≤ ≤ controls the fraction of parameters that 

the mutant vector is contributing to the final trial vector. In addition, the trial vector always inherits the 

mutant vector parameter according to the randomly chosen index randj , assuring that the trial vector differs by 

at least one parameter from the vector to which it is compared (
,i t

x ). 

 
Finally, a greedy selection is used to find better solutions. Thus, if the computed cost function value of the 

trial vector 
,i t

u  is less or equal than the cost of the vector
,i t

x , then such trial vector replaces
,i t

x  in the next 

generation. Otherwise, 
,i t

x  remains in the population for at least one more generation: 

 

, , ,

, 1

,

, if ( ) ( ),

, otherwise.

i t i t i t

i t

i t

f f
+

≤
= 


u u x
x

x
 (4) 

 
Here, f() represents the cost function. These processes are repeated until a termination criterion is attained or a 

predetermined generation number is reached. 

 

3. Fitness approximation method 
 

Evolutionary algorithms based on fitness approximation aim to find the global minimum of a given function 

considering only a very few number of function evaluations. In order to apply such approach, it is necessary 

1,r t
x  

2,r t
x  

1, 2,r t r t
−x x  

,best t
x  

,i t
v  

1, 2,
( )

r t r t
F ⋅ −x x  

2x  

1x  
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that the objective function portrait the following conditions:  [44]: (1) it must be very costly to evaluate and 

(2) must have few dimensions (up to five). Recently, several fitness estimators have been reported in the 

literature [40-43], where the function evaluation number is considerably reduced (to hundreds, dozens, or 

even less). However, most of these methods produce complex algorithms whose performance is conditioned 

to the quality of the training phase and the learning algorithm in the construction of the approximation model. 

 

In this paper, we explore the use of a local approximation scheme, based on the nearest-neighbor-interpolation 

(NNI), in order to reduce the function evaluation number. The model estimates the fitness values based on 

previously evaluated neighboring individuals, stored during the evolution process. In each generation, some 

individuals of the population are evaluated with the accurate (real) objective function, while the remaining 

individuals’ fitnesses are estimated. The individuals to be evaluated accurately are determined based on their 

proximity to the best fitness value or uncertainty. 

 

3.1 Updating individual database 

 

In our fitness calculation approach, during de evolution process, every evaluation or estimation of an 

individual produces a data point (individual position and fitness value) that is potentially taken into account 

for building the approximation model. Therefore, we keep all seen so far evaluations in a history array T, and 

then just select the closest neighbor to estimate the fitness value of a new individual. Thus, all data are 

preserved and potentially available for use, while the construction of the model is still fast since only the most 

relevant data points are actually used to construct the model. 

 

3.2 Fitness calculation strategy  

 

In the proposed fitness calculation scheme, most of the fitness values are estimated to reduce the calculation 

time in each generation. In the model, it is evaluated (using the real fitness function) those individuals that are 

near the individual with the best fitness value contained in T (rule 1). Such individuals are important, since 

they will have a stronger influence on the evolution process than other individuals. Moreover, it is also 

evaluated those individuals in regions of the search space with few previous evaluations (rule 2). The fitness 

values of these individuals are uncertain; since there is no close reference (close points contained in T) in 

order to calculate their estimates.  

 

The rest of the individuals are estimated using NNI (rule 3). Thus, the fitness value of an individual is 

estimated assigning it the same fitness value that the nearest individual stored in T. 

 

Therefore, the estimation model follows 3 different rules in order to evaluate or estimate the fitness values: 

 

1. If the new individual (search position) P is located closer than a distance d with respect to the nearest 

individual location 
q

L  whose fitness value 
qL

F  corresponds to the best fitness value stored in T, then 

the fitness value of P is evaluated using the real fitness function. Figure 2a draws the rule procedure.  

 

2. If the new individual P is located longer than a distance d with respect to the nearest individual 

location 
q

L  whose fitness value 
qL

F  has been already stored in T, then its fitness value is evaluated 

using the real fitness function. Figure 2b outlines the rule procedure. 

 

3. If the new individual  P is located closer than a distance d with respect to the nearest individual 

location 
q

L  whose fitness value 
qL

F  has been already stored in T, then its fitness value is estimated 

(using the NNI approach) assigning it the same fitness that 
q

L (
qP LF F= ). Figure 2c sketches the 

rule procedure. 

 

The d value controls the trade off between the evaluation and estimation of search locations. Typical values of 

d range from 1 to 4; however, in this paper, the value of 2.5 has been selected. Thus, the proposed approach 

favors the exploitation and exploration in the search process. For the exploration, the estimator evaluates the 
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true fitness function of new search locations that have been located far from the positions already calculated. 

Meanwhile, it also estimates those that are closer. For the exploitation, the proposed method evaluates the 

effective fitness function of those new searching locations that are placed near to the position with the 

minimum fitness value seen so far, aiming to improve its minimum.  
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Fig. 2. The fitness calculation strategy. (a) According to the rule 1, the individual (search position) P is evaluated, since it 

is located closer than a distance d with respect to the nearest individual location 
3L  whose fitness value 

3L
F  corresponds 

to the best fitness value (minimum). (b) According to the rule 2, the search point P is evaluated, as there is no close 

reference in its neighborhood. (c) According to the rule 3, the fitness value of P is estimated by means of the NNI-

estimator, assigning 
2P LF F=  
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The three rules show that the fitness calculation strategy is simple and straightforward. Fig. 2 illustrates the 

procedure of fitness computation for a new solution (point P) considering the three different rules. In the 

problem the objective function f is minimized with respect to two parameters (
1 2
,x x ). In all figures (Figs. 

2(a), (b) and (c)) the individual database array T contains five different elements (
1 2 3 4 5
, , , ,L L L L L ) with their 

corresponding fitness values (
1 2 3 4 5
, , , ,L L L L LF F F F F ). Figures 2(a) and (b) show the fitness evaluation 

(
1 2( , )f x x ) of the new solution P following the rule 1 and 2 respectively, whereas Fig. 2(c) present the fitness 

estimation of P using the NNI approach considered by rule 3.  

 

3.3 Proposed optimization DE method 

 

In this section, it has been proposed a fitness calculation approach in order to accelerate the DE algorithm. 

Only the fitness calculation scheme shows difference between the conventional DE and the enhanced one. In 

the modified DE, only some individuals are actually evaluated (rules 1 and 2) in each generation. The fitness 

values of the rest are estimated using the NNI-approach (rule 3). The estimation is executed using the 

individual database (array T).  

 

Fig. 3 shows the difference between the conventional DE and the modified one. In the Figure, it is clear that 

two new blocks have been added, the fitness estimation and the updating individual database. Both elements, 

together with the actual evolution block, represent the fitness calculation strategy presented in this section. As 

a result, the DE approach can substantially reduce the number of function evaluations preserving the good 

search capabilities of DE. 
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Fig. 3. Differences between the conventional DE and the modified DE. (a) Conventional DE and (b) DE algorithm 

included the fitness calculation strategy 
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For motion estimation, in a BM algorithm, the current frame of an image sequence 
t
I  is divided into non-

overlapping blocks of NxN pixels. For each template block in the current frame, the best matched block 

within a search window of size (2W+1)x(2W+1) in the previous frame
1t

I −  is determined, where W is the 

maximum allowed displacement. The position difference between a template block in the current frame and 

the best matched block in the previous frame is called the Motion Vector (MV) (see Fig. 4). 

 

 

 

 

             
 

 

 

 
Fig. 4. Block Matching procedure. 

 

The most commonly used criterion for BM algorithms is the sum of absolute difference (SAD), which is 

defined in Eq.(5), between a template block at position (x, y) in the current frame and the candidate block at 

position ˆ ˆ( , )x u y v+ +  in the previous frame 
1t

I − . 

 
1 1

1

0 0

ˆ ˆ ˆ ˆSAD( , ) ( , ) ( , )

N N

t t

j i

u v g x i y j g x u i y v j

− −

−
= =

= + + − + + + +∑∑  
(5) 

 

where ( )
t

g ⋅ is the gray value of a pixel in the current frame 
t
I  and 

1
( )

t
g − ⋅  is the gray level of a pixel in the 

previous frame 
1t

I − . Therefore, the MV in ( , )u v is defined as follows: 

 

( , )
ˆ ˆ( , ) arg  min  SAD( , )

u v S
u v u v

∈
=  (6) 

 

where { ˆ ˆ ˆ ˆ( , )  ,S u v W u v W= − ≤ ≤ and ˆ ˆ( , )x u y v+ +  is a valid pixel position }1t
I − .  

 

The FSA is the most robust and accurate method to find the MV. It tests all possible candidate blocks from 

1t
I −  within the search area to find the block with minimum SAD. For the maximum displacement of W, the 

FSA requires 2(2 1)W +  search points. For instance, if the maximum displacement W is 7, the total search 

points are 225. Each SAD calculation requires 22N  additions as the total number of addition for the FSA to 

match a 16×16 block is 130560. The computational requirement makes difficult the application of FSA in real 

time applications. 

 

5. BM algorithm based on DE with the estimation strategy 

 

FSA finds the global minimum (the accurate MV), considering all locations within the search space S. 

Nevertheless, this approach has a high computational cost for practical use. To overcome such a problem, 

Block under search 
Search window 

Motion vector 

1t
I −  t

I  
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many fast algorithms have been developed despite their precision is poorer than the FSA. A better BM 

algorithm should spend less computation time on searching and obtaining accurate motion vectors (MVs). 

 

 

−5

0

5
−6−4−20246

0

0.2

0.4

0.6

0.8

1

Horizontal offset (pixels)
Vertical offset (pixels)

M
at

ch
in

g 
er

ro
r 

(S
A

D
)

 
 

Fig. 5. Common non-uni-modal error surface with multiple local minimum error points. 

 

The BM algorithm, proposed in this paper, has the velocity of the fastest algorithms and a precision similar to 

the FSA approach. Because most of the fast algorithms use a regular search pattern or assume a characteristic 

error function (uni-modal) for searching the motion vector, they may get trapped into local minima, 

considering that, for many cases (complex motion sequences), the uni-modal error assumption is not longer 

valid. Fig. 5 shows a typical error surface (SAD values) which has been computed around the search window 

considering a fast-moving sequence. On the other hand, the proposed BM algorithm uses a non-uniform 

search pattern for locating global minimum distortion. Under the effect of the DE operators, the search 

locations vary from generation to generation, avoiding to get trapped into a local minimum. Besides, since the 

proposed algorithm uses a fitness calculation strategy in order to reduce the evaluation of the SAD values, it 

uses few search positions.  

 

In the algorithm, the search space S consists of a set of 2-D motion vectors û and v̂  representing the x and y 

components of the motion vector, respectively. The particle is defined as: 

 

{ }ˆ ˆ, ,i i i i iP û v W û v W= − ≤ ≤  (7) 

 

where each particle i represents a possible motion vector. In this paper, the maximum offset is W=7 pixels. 

 

5.1 Initial population 

 

The first step in DE optimization is to generate an initial group of particles. The standard literature of 

evolutionary algorithms generally suggests the use of random solutions as the initial population, assuming the 

absence of knowledge about the problem [45]. On the other hand, Li [46] and Xiao [47] demonstrated that the 

use of solutions generated through some domain knowledge (i.e., non-random solutions) to set the initial 

population can significantly improve its performance. In order to obtain appropriate initial solutions (based on 

knowledge), an analysis over the motion vector distribution should be conducted. After considering several 

sequences (see Table 1 and Fig. 9), it can be seen that 98% of the MVs are found to lie at the origin of the 

search window for a slow-moving sequence such as the one at Container, whereas complex motion 

sequences, such as the Carphone and the Foreman examples, have only 53.5% and 46.7% of their MVs in the 

central search region. The Stefan sequence, showing the most complex motion content, has only 36.9%. 

Figure 6 shows the surface of the MV distribution for the Foreman and the Stefan. On the other hand, 

although it is less evident, the MV distribution of several sequences shows small peaks at some locations 

lying away from the center as they are contained inside a rectangle that is shown in Fig. 6(b) and 6(d) by a 

white overlay. Real-world moving sequences concentrate most of the MVs under a limit due to the motion 
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continuity principle [41]. Therefore, in this paper, initial solutions are selected from five fixed locations which 

represent locations showing the higher concentration in the MV distribution, just as it is shown by Figure 7. 
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Fig. 6. Motion vector distribution for Foreman and Stefan sequences. (a)-(b) MV distribution for the Foreman sequence. 

(c)-(d) MV distribution for the Stefan sequence. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
Fig. 7. Fixed pattern of five elements used as initial solutions. 

 

5.2 The DE-BM algorithm 

 

The goal of our BM-approach is to reduce the number of evaluations of the SAD values (real fitness function) 

without loosing performance on achieving an acceptable solution. The DE-BM method is presented below: 

 

 

Step 1: Set the DE parameters (F=0.25, CR=0.8, see Section 2). 

Step 2: Initialize the population of 5 individuals using the pattern shown in Fig. 7 and the 

individual database array T, without elements. 
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Step 3: Compute the fitness values of each individual using the fitness calculation strategy 

presented in Section 3. Since all individuals of the initial population fulfil the conditions 

of rule 2, they are evaluated with the real fitness function (calculating the real SAD 

values). 

Step 4: Update the new evaluations in the individual database array T.  

Step 5: Generate a new population of five individuals (trial population) considering the DE 

operators of mutation Eq. (2) and crossover Eq. (3). 

 

Step 6: Compute the fitness values of each individual using the fitness calculation strategy 

presented in Section 3. 

Step 7: Update the new evaluations (rule 1 and 2) or estimations (rule 3) in the individual 

database array T.  

Step 8: Select the fittest element between each individual and its corresponding trial counterpart 

according to Eq. (4) in order to obtain the final individual for the next generation. 

Step 9: If seven iterations have not been reached, then go back to Step 5; otherwise the best 

individual ( ˆ
best

u , ˆ
best
v ) of the final population is considered the MV. 

 

The proposed DE-BM algorithm uses 40 different individuals (search locations) during the complete 

optimization process. However, only from 7 to 18 search locations are evaluated using the real fitness 

function (SAD evaluation) while the remaining positions are just estimated. Figure 8 shows two search-

patterns examples that have been generated by the DE-BM approach. Such patterns exhibit the evaluated 

search-locations (rule 1 and 2) in white-cells whereas the minimum location is marked in black. The grey-

cells represent the cells that were estimated (rule 3) or not visited during the optimization process. 
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Fig. 8. Search-patterns generated by the DE-BM algorithm. (a) Pattern with solution 1ˆ 5
best

u =  and 1ˆ 4
best

v = .(b) Pattern 

with solution 2ˆ 5
best

u = −  and 2ˆ 0
best

v = . 

 

 

6. Experimental results 

 
This section presents the results of comparing the proposed DE-BM algorithm to other existing block 

matching algorithms. The simulations have been performed over the luminance component of popular video 

sequences that are listed in Table 1. Such sequences consist of different degrees and types of motion including 
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QCIF (176x144), CIF (352x288) and SIF (352x240) respectively. The first four sequences are Container, 

Carphone, Foreman and Akiyo in QCIF format. The next two sequences are Stefan in CIF format and Tennis 

in SIF format. Among these sequences, Container has gentle, smooth and low motion change and consists 

mainly of stationary and quasi-stationary blocks. Carphone, Foreman and Akiyo have moderately complex 

motion getting a ‘‘medium’’ category regarding its motion content. Rigorous motion which is based on 

camera panning with translation and complex motion content can be found in the sequences of Stefan and 

Tennis. Figure 9 shows a sample frame from each sequence.  

 

Each picture frame is partitioned into macro-blocks with the sizes of 16x16 (N=16) pixels for motion 

estimation where the maximum displacement within the search range is ±7 pixels in both the horizontal and 

the vertical directions.  

 

In order to compare the performance of the DE-BM approach, different search algorithms such as FSA, TSS 

[10], 4SS [13], NTSS [11], BBGD [17], DS [14], NE [18], ND [20], LWG [24], GFSS [25] and PSO-BM [26] 

have been all implemented in our simulations.  For comparison purposes, all six video sequences in Fig. 8 

have been used. All simulations are performed on a Pentium IV 3.2 GHz PC with 1GB of memory.  

 

In the comparison, three relevant performance indexes have been considered: the coding quality and the 

search efficiency. 

 

   
Container Carphone Foreman 

   
Akiyo Stefan Tennis 

 
Fig. 9.  Test video sequences. 

 

Table 1. Test sequences used in the comparison test. 

 

Sequence Format Total frames Motion type 

 

Container QCIF(176x144) 299 Low 

Carphone QCIF(176x144) 381 Medium 

Foreman QCIF(352x288) 398 Medium 

Akiyo QCIF(352x288) 211 Medium 

Stefan CIF(352x288) 89 High 

Tennis SIF(352x240) 150 High 
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6.1 Coding quality 

 

First, all algorithms are compared in terms of their coding quality. The coding quality is characterized by the 

Peak-Signal-to-Noise-Ratio (PSNR) value which indicates the reconstruction quality when the motion 

vectors, computed by a BM approach, are used. In PSNR, the signal is the original data frames whereas the 

noise is the error introduced by the calculated motion vectors. The PSNR is defined as 

 
2

10

255
PSNR 10 log

MSE

 
= ⋅  

 
 (8) 

 

where MSE is the mean square between the original frames and those compensated by the motion vectors. 

Additionally, as an alternative performance index, it is used in the comparison the PSNR degradation ratio 

(
PSNR

D ). This ratio expresses in percentage (%) the level of mismatch between the PSNR of a BM approach 

and the PSNR of the FSA which is considered as reference. 
PSNR

D  is defined as 

 

FSA BM

PSNR

FSA

PSNR PSNR
100%

PSNR
D

 −
= − ⋅ 

 
 (9) 

 
 

Table 2. PSNR values and 
PSNRD  comparison for all BM methods 

 
 

Algorithm 

 

 
Container 

 
Carphone 

 
Foreman 

 

 
Akiyo 

 
Stefan 

 
Tennis 

 PSNR 
PSNRD  PSNR 

PSNRD  PSNR 
PSNRD  PSNR 

PSNRD  PSNR 
PSNRD  PSNR 

PSNRD  

 
Total 

Average 

(
PSNRD ) 

FSA 

 

43.18 0 31.51 0 31.69 0 29.07 0 25.95 0 35.74 0 0 

TSS 43.10 -0.20 30.27 -3.92 29.37 -7.32 26.21 -9.84 21.14 -18.52 30.58 -14.42 -9.03 

4SS 43.12 -0.15 30.24 -4.01 29.34 -7.44 26.21 -9.84 21.41 -17.48 30.62 -14.32 -8.87 

NTSS 43.12 -0.15 30.35 -3.67 30.56 -3.57 27.12 -6.71 22.52 -13.20 31.21 -12.65 -6.65 

BBGD 43.14 -0.11 31.30 -0.67 31.00 -2.19 28.10 -3.33 25.17 -3.01 33.17 -7.17 -2.74 

DS 43.13 -0.13 31.26 -0.79 31.19 -1.59 28.00 -3.70 24.98 -3.73 33.98 -4.92 -2.47 

NE 43.15 -0.08 31.36 -0.47 31.23 -1.47 28.23 -2.89 25.22 -2.81 33.88 -5.19 -2.15 

ND 43.15 -0.08 31.35 -0.50 31.20 -1.54 28.21 -2.96 25.21 -2.86 33.79 -5.43 -2.22 

LWG 43.16 -0.06 31.40 -0.36 31.31 -1.21 28.55 -1.80 25.41 -2.09 33.97 -4.95 -1.74 

GFSS 43.15 -0.06 31.38 -0.40 31.29 -1.26 28.32 -2.58 25.34 -2.36 33.87 -5.23 -1.98 

PSO-BM 43.15 -0.07 31.39 -0.38 31.27 -1.34 28.33 2.55 25.39 -2.15 33.91 -5.11 -1.93 

DE-BM 43.17 -0.04 31.47 -0.13 31.51 -0.58 28.98 -1.00 25.85 -0.78 34.77 -4.27 -1.13 

 

Table 2 shows the comparison of the PSNR values and the PSNR degradation ratios (
PSNR

D ) among the 

different algorithms, considering the six image sequences presented in Fig. 8. As it can be seen in the case of 

the slow-moving sequence Container, the PSNR values (the 
PSNR

D  ratios) of all BM algorithms are similar. 

For the medium motion content sequences such as Carphone, Foreman and Akiyo, the approaches consistent 

of fixed patterns (TSS, 4SS and NTSS) exhibit the worst PSNR values (high 
PSNR

D ratios) except for the DS 
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algorithm. On the other hand, the BM methods that use evolutionary algorithms (LWG, GFSS, PSO-BM and 

DE-BM) present the lowest 
PSNR

D ratios, only one step under the FSA approach which is considered as 

reference. Finally, the approaches based on error-function minimization (BBGD and NE) and pixel-

decimation (ND) posses a medium performance. For the high motion sequences such as Stefan and Tennis, 

the same conclusions, as the medium motion content sequences, can be observed. Since the motion content of 

these sequences in complex (producing error surfaces with more than one minimum), the performance, in 

general, becomes worst for most of the algorithms. However, the PSNR values (or 
PSNR

D ratios) of the DS and 

the DE-BM approaches maintain a better performance. As a summary of the coding quality performance, the 

last column of Table 2 presents the average PSNR degradation ratio (
PSNR

D ) obtained over all sequences.  

According to these values, the proposed DE-BM method is superior to any other approach (due to the 

computation complexity, the FSA is considered just as a reference). 

 

Fig. 9(a)-(b) shows the comparison of the frame-wise coding performance for the Akiyo and Tennis 

sequences.  Since the algorithms FSA, DE-BM, LWG, BBGD, NE and DS obtained good PSNR values in the 

coding performance analysis, they are only considered in the comparison. According to these graphs, the 

coding quality of the DE-BM is better than the other algorithms (FSA, LWG, BBGD, NE and DS) whose 

PSNR values fluctuates heavily for some regions in the video sequences. The PSNR values of the DE-BM 

algorithm are only lightly under the FSA approach which is used as reference. For a high motion sequence 

such as Tennis, we present a comparative result for frame-wise PSNR in Fig. 9b. Results exhibit a similar 

pattern as the one discussed for the Akiyo sequence. 
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Fig. 9. Frame-wise performance comparison between different BMAs on sequence (a) Akiyo and  (b) Tennis, considering 

100 frames. 
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6.2 Search efficiency 

 

The search efficiency is used, in this paper, as a measurement of computational complexity. The search 

efficiency is calculated by counting the average number of search points (or the average number of SAD 

computations) for a MV estimation. In Table 3, the search efficiency is compared. Only a step above FSA, 

evolutionary algorithms LWG, GFSS and PSO-BM hold the highest number of search points per block. On 

the contrary, the proposed DE-BM algorithm maintains a similar performance to BBGDS and DS 

representing the fastest approaches. From the data shown in Table 3, the average number of search locations, 

corresponding to the DE-BM method, represents the number of SAD evaluations (the number of SAD 

estimations are not considered). Additionally in the last two columns of Table 3, it is presented the number of 

search locations averaged over the six considered sequences and the rank occupied for each approach. 

According to these values, the proposed DE-BM method is ranking in the second place, a step under BBGDS. 

The average number of search points checked by the DE-BM algorithm is only from 9.2 to 16.8, which are 

4% and 7.4% that of the FSA method. These results demonstrate that our approach can significantly reduce 

the number of search points. Hence, the DE-BM algorithm is at least equal to the other fast methods in terms 

of the reduction of the number of search points. 
 

Table 3. Average number of search points per block for all ten BM methods. 

 
Algorithm Container Carphone Foreman Akiyo Stefan Tennis Total 

Average 
Rank 

FSA 225 225 225 225 225 225 225 12 

TSS 25 25 25 25 25 25 25 7 

4SS 19 25.5 24.8 27.3 29.3 31.5 26.3 8 

NTSS 17.2 21.8 22.1 23.5 25.4 26.1 22.6 6 

BBGD 8.1 11.5 12.5 10.2 15.2 17.1 12.43 1 

DS 7.5 12.5 13.4 11.8 16.2 17.5 13.15 3 

NE 11.7 13.8 14.2 14.5 19.2 20.2 15.6 5 

ND 10.8 13.4 13.8 14.1 18.4 19.1 14.9 4 

LWG 75 75 75 75 75 75 75 11 

GFSS 60 60 60 60 60 60 60 10 

PSO-BM 32.5 48.5 48.1 48.5 52.2 52.2 47 9 

DE-BM 9.2 12.2 12.2 12.5 16.1 16.8 13.14 2 

 
 

 

7. Conclusions 

 

In this paper, a new algorithm based on Differential Evolution (DE) is proposed to reduce the number of 

search locations in the BM process. In order to save computational time, the approach combines the 

traditional DE with a fitness estimation strategy that decides which search locations (individuals) can be 

estimated or actually evaluated. As a result, the approach can substantially reduce the number of function 

evaluations, yet preserving the good search capabilities of DE.  

 
The used fitness calculation strategy estimates the SAD (fitness) value of search locations using previously 

evaluated neighboring locations which have been visited during the evolution process. In the strategy, those 

positions close to the location with the best fitness value (seen so-far), are evaluated by using the actual 

fitness function. Similarly, it is also evaluated those positions lying in regions of the search space with no 

previous evaluations. The remaining search positions are estimated assigning them the same fitness value that 

the nearest known location. By the use of such fitness estimation method, the SAD value of only very few 

search positions are actually evaluated whereas the rest is just estimated. 

 

Since the proposed algorithm does not consider any fixed search pattern or any other movement assumption, a 

high probability for finding the true minimum (accurate motion vector) is expected regardless of the 

movement complexity contained in the video sequence. Therefore, the chance of being trapped into a local 

minimum is reduced in comparison to other BM algorithms. 
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The performance of DE-BM has been compared to other existing BM algorithms (FSA, TSS [10], 4SS [13], 

NTSS [11], BBGD [17], DS [14], NE [18], ND [20], LWG [24], GFSS [25] and PSO-BM [26]) considering 

different sequences which present a great variety of formats and movement types. Experimental results 

demonstrate the high performance of the proposed method in terms of computational complexity and coding 

efficiency, reducing the number search points about 95% and preserving a negligible degradation ratio 

PSNR
D of -1.13, respectively. 
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