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Bridging Control and Artificial Intelligence
Theories for Diagnosis: A survey

Louise Travé-Massuyès∗

Abstract

Diagnosis is the process of identifying or determining the nature
and root cause of a failure, problem, or disease from the symptoms
resulting from selected measurements, checks or tests. The differ-
ent facets of this problem and the wide spectrum of classes of systems
make it interesting to several communities and require bridging several
theories. Diagnosis is actually a functional fragment in fault manage-
ment architectures and it must smoothly interact with other functions.
This paper presents diagnosis as it is understood in the Control and
Artificial Intelligence fields, and exemplifies how different theories of
these fields can be synergistically integrated to provide better diagnos-
tic solutions and to achieve improved fault management in different
environments1.

Keywords— model based diagnosis, data based diagnosis, abstractions,
fault management architectures.

1 Introduction

The goal of diagnosis is to identify the possible causes explaining a set of
observed symptoms. A set of concomitant tasks contribute to this goal and
the following three tasks are commonly identified:
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• fault detection, which aims at discriminating normal system states from
abnormal ones, i.e. states which result from the presence of a fault,

• fault isolation, also called fault localization, whose goal is to point at
the faulty components of the system,

• fault identification, whose output is the type of fault and possibly the
model of the system impacted by this fault.

Faced with the diversity of systems and different views of the above
problems, several scientific communities have addressed these tasks and con-
tributed with a large spectrum of methods. The Signal Processing, Control
and Artificial Intelligence (AI) communities are leading actors in this field.

Diagnosis is carried out from the signals that permit efficient fault detec-
tion towards the upper levels of supervision that call for qualitative interpre-
tations. Proposing relevant abstractions to interpret the available signals is
hence a key issue.

Signal processing provides specific contributions in the form of statistic
algorithms for detecting changes in signals, hence detecting faults. This
remains out of the scope of this paper and has been surveyed in several
reference books and papers (Basseville, 1988; Basseville and Nikiforov, 1993;
Basseville et al., 2004; Fillatre and Nikiforov, 2007; Fouladirad et al., 2008).

Interfaces between continuous signals and their abstract interpretations,
in symbolic or event-based form, implement qualitative interpretations of
the signals that are required for supervision. To do that, discrete formalisms
borrowed from AI find a natural link with continuous models from the Control
community. These two communities have their own model-based diagnosis
track :

• the FDI (Fault Detection and Isolation) track, whose foundations are
based on engineering disciplines, such as control theory and statistical
decision making,

• the DX (Diagnosis) track, whose foundations are derived from the fields
of logic, combinatorial optimization, search and complexity analysis.

In the last decade, there has been a growing number of researchers in
both communities who have tried to understand and bridge FDI and DX
approaches to build better, more robust and effective diagnostic systems.

Data-based diagnosis approaches based on machine learning techniques,
such as pattern recognition (Fukunaga, 1990; Denoeux et al., 1997), are
present in both the Control and AI communities and complement model-
based approaches to provide solutions to a variety of diagnostic problems



where the difficulty arises from the scarce nature of the instrumentation or,
conversely, from the massive amounts of data to be interpreted to extract hid-
den knowledge. Interesting bridges also arise when we consider data-based
and model-based approaches.

Other bridges can be found when considering that diagnosis is not a goal
per se but a component in fault management architectures. It takes part
in the solutions produced for tasks such as failure-mode-and-effects analysis,
sensor placement, on-board recovery, condition monitoring, maintenance, re-
pair and therapy planning, and prognosis. The contribution of diagnosis in
such architectures requires close links with decision tasks such as control and
planning and calls for innovative integrations.

In this paper, different facets of diagnosis investigated in the Control or
the AI fields are discussed. While (Venkatasubramanian et al., 2003a,b,c)
provide three interesting surveys of the different approaches that exist in
these fields, this paper aims at reporting the works that integrate approaches
of both sides, hence creating ”bridges”. In particular, the concepts and re-
sults of the FDI and DX tracks are put in correspondence and the lessons
learned from this comparative analysis are pointed out. Causal model-based
diagnosis is presented as a typical example of integration of FDI and DX
theories, in which fault detection is implemented along an FDI approach and
fault isolation calls for the logical DX framework. Hybrid model-based diag-
nosis is then used to illustrate several interesting bridges, in particular, how
FDI estimation schemes can be combined with search algorithms rooted in
AI to achieve hybrid state tracking efficiently. Combining FDI estimation
filters with the logical DX theory is also illustrated. Finally, it is shown
that the hybrid model-based diagnosis problem can also find a solution by
combining the FDI approach with the so-called diagnoser approach of the
discrete event systems (DES) field. Subsequently, learning the models that
support diagnosis reasoning is shown to be a rich field for bridging theories.
It has been intensively investigated for continuous model identification for
which regression analysis is essential. Learning discrete event models calls
for other bridges, which are illustrated with chronicle learning. Finally, diag-
nosis is discussed in relation with theories that participate to provide global
solutions to fault management problems. On one hand, autononous archi-
tectures exemplify the integration of diagnosis, control and planning. On the
other hand, it is shown how diagnosis can enhance prognosis in condition
maintenance architectures.

The paper is organized as follows. After the introduction section, section
2 first presents a brief overview of the approaches proposed by the FDI and
DX model-based diagnosis communities. Although quite commonplace, this
overview is necessary because it provides the basic concepts and principles



that form the foundations of any diagnosis method. It is followed by the com-
parison of the concepts and techniques used by these communities and the
lessons learned from this comparative analysis. Section 3 is concerned with
the trends that integrate and take advantage of techniques from both sides,
in particular causal model based diagnosis in subsection 3.1 and diagnosis
of hybrid systems in subsection 3.2. Section 4 then raises the problem of
obtaining the models supporting diagnosis reasoning and discusses bridges
that can contribute to learning them in an automated manner. Section 5
widens the scope of diagnosis and is concerned with diagnosis as a com-
ponent of fault management architectures, discussing the several links with
control and planning. Finally, section 6 concludes the paper.

2 DX and FDI model-based diagnosis bridge

The FDI and DX streams both consider the diagnosis problem from a system
point of view, which results in significant overlaps. Even the name of the two
tracks are the same : Model-Based Diagnosis (MBD).

The diagnosis principles are the same, although each community has de-
veloped its own concepts and methods, guided by different modeling paradigms
and solvers. FDI relies on analytical models, linear algebra, and non-linear
system theory whereas DX takes its foundations in logic. In the 2000s, cat-
alyzed by the “Bridging AI and Control Engineering model-based diagnosis
approaches” group, known as the BRIDGE group (BRIDGE), within the Eu-
ropean Network of Excellence MONET II (MONET), and its French coun-
terpart, the “Intégration de Méthodes Alliant Automatique et IA” group,
known as the IMALAIA group, supported by GDR MACS (GDR MACS),
GDR I3 (GDR-I3), as well as AFIA (AFIA), there were more and more re-
searchers who tried to understand and synergistically integrate methods from
the two tracks to propose more efficient diagnostic solutions. This collabo-
ration launched several events :

• a BRIDGE Workshop in 2001 in the framework of DX’01, the 12th In-
ternational workshop on Principles of Diagnosis, Sansicario, Via Lat-
tea, Italy, 5-9 Mars 2001 (DX’01, 2001).

• the co-location, in Washington DC (USA), of the two main events of the
FDI and the DX communities, namely the IFAC International Sympo-
sium on Fault Detection, Supervision and Safety for Technical Processes
SAFEPROCESS’03 and the International Workshop on Principles of
Diagnosis DX’03, including a BRIDGE Workshop in the form of a join
day.



These events were followed by the publication of a special issue of the
IEEE SMC Transactions, Part B, on the topic “Diagnosis of Complex Sys-
tems: Bridging the methodologies of the FDI and DX Communities” in 2004
(Biswas et al., 2004). The BRIDGE track was launched and paved its way
until today. Other events followed like the two invited sessions “AI meth-
ods for Model-based Diagnosis” and “Bridge between Control Theory and AI
methods for Model-based Diagnosis”, recently organized in the framework
of the 7th IFAC International Symposium on Fault Detection, Supervision
and Safety of Technical Processes SAFAPROCESS’09, Barcelona, Spain, 30
July-3 August 2009.

The next subsections first summarize the foundations of the FDI and
DX approaches, then proceed with a comparative analysis that allows us to
draw some practical assessments in the form of lessons learned. The lessons
summarize the respective strengths and weaknesses of the two approaches and
provide the guidelines that drive the proposals combining the two approaches.

2.1 Brief overview of FDI approaches

The detection and diagnosis methods of the FDI community rely on behav-
ioral models that establish the constraints between system inputs u ∈ U and
outputs y ∈ Y , gathered in the set of measurable variables Z, and the system
internal states defining the set of unknown variables X. The variables z ∈ Z
and x ∈ X are functions of time. The typical model may be formulated in
the temporal domain, then known as a state-space model :

BM : dx/dt = f(x(t), u(t), θ)
OM : y(t) = g(x(t), u(t), θ).

(1)

where x(t) ∈ Rnx is the state vector, u(t) ∈ Rnu is the input vector and
y(t) ∈ Rnp is the output vector. θ ∈ Rnθ is a constant parameter vector.
The components of f and g are real functions over R. BM is the behav-
ioral model and OM is the observation model. The whole system model
is noted SM(z, x), like in (Krysander et al., 2008), and assumed noise-free.
The equations of SM(z, x) may be associated to components but this infor-
mation is not represented explicitly. The models can also be formulated in
the frequency domain, for instance in the form of transfer functions in the
linear case.

Models are used in three families of methods:

• the methods based on parameter estimation that focus on the value of
parameters as representing physical features of the system,



• the methods based on state estimation, like observers and filters, that
rely on the estimation of unknown variables,

• the methods based on the parity space that rely on the elimination of
unknown variables.

The books (Gertler, 1998), (Blanke et al., 2003), (Dubuisson, 2001), (Pat-
ton et al., 1989) provide excellent surveys, which cite the original papers that
the reader is encouraged to consult. The paper (Venkatasubramanian et al.,
2003c) also provides a quite comprehensive survey. The equivalence between
observers, parity space and paramater estimation has been proved in the
linear case (Patton and Chen, 1991).

The concept central to FDI methods is the concept of residual and one of
the main problems is to generate residuals. Let’s consider the model SM(z, x)
given by (1), then SM(z, x) is said to be consistent with an observed trajec-
tory z, or simply consistent with measurements z, if there exists a trajectory
of x such that the equations of SM(z, x) are satisfied.

Definition 1 (Residual generator for SM(z, x)) A system that takes as
input a sub-set of measured variables Z̃ ⊆ Z and generates as output a scalar
r, is a residual generator for the model SM(z, x) if for all z consistent with
SM(z, x), limt→∞ r(t) = 0.

When the system model is consistent with measurements, the residuals
tend to zero as t tends to infinity, otherwise some residuals may be different
from zero. In practice, the residuals never happen to be exactly zero because
the noise-free assumption adopted for (1) is never met. Evaluating the resid-
uals and assigning them a Boolean value – 0 or non 0 – requires statistical
tests that account for the statistical characteristics of noise (Basseville and
Nikiforov, 1993; Dubuisson, 2001). The residuals are often optimized to be
robust to disturbancies (Qiu and Gertler, 1993) and to take into account
uncertainties (Adrot et al., 1999).

The methods based on parameter estimation are used for linear as well
as non linear systems (Pouliezos et al., 1985). Fault detection is achieved
by comparing the estimated parameter values to the nominal values. With
these methods, fault detection, isolation, and identification are achieved at
once, provided that model parameters can be put in correspondence with
physical parameters. The results rely on the identifiability of the system as
explained in (Grewal and Glover, 1976) and (Jauberthie et al., 2011) in the
set-membership framework.

The methods based on state estimation take the form of observers or
optimized filters, such that the Kalman filter, and provide an estimation of



the state of the system. Specific filter architectures are often designed to
structure the residuals, i.e. to sensitize different residuals for different faults,
and isolate the faults (Frank, 1994). Numerous diagnosis solutions rely on
state estimation, particularly for hybrid systems. These works are surveyed
in section 3.2. In this case, the continuous state is augmented by a discrete
state that corresponds to the operation mode – normal or faulty – of the
system components.

The methods based on the parity space (Chow and Willsky, 1984) gener-
ate residuals from relations that are inferred from the system model. These
relations, called Analytical Redundancy Relations (ARR), are determined off-
line.

Definition 2 (ARR for SM(z, x)) A relation of the form r(z, ż, z̈, . . . ) =
0 is an ARR for the model SM(z, x) if for all z consistent with SM(z, x),
the relation is satisfied.

ARRs are constraints that only involve measured input and output vari-
ables and their derivatives. For linear systems, ARRs are obtained elimi-
nating unknown state variables by linear projection on a particular space,
called the parity pace (Chow and Willsky, 1984). An extension to non-linear
systems is proposed in (Staroswiecki and Comtet-Varga, 2001). On the other
hand, the structural approach (Staroswiecki and Declerck, 1989; Armengol
et al., 2009) is an interesting approach because it allows one to obtain, for
linear or non-linear systems, the just overdeterminated sets of equations from
which ARRs can be derived.

Every ARR can be put in the form r(t) = 0, where r(t) is the residual. If
the behavior of the system satisfies the model constraints, then the residuals
are zero because the ARRs are satisfied. Otherwise, some of them may be
different from zero when the corresponding ARRs are violated. Given a set
of n residuals, a theoretical fault signature FSj = [s1j, s2j, . . . , snj] given by
the Boolean evaluation of each residual is associated to each fault Fj. The
signature matrix is then defined as follows.

Definition 3 (Signature Matrix) Given a set of n ARRs, the signature
matrix FS associated to a set of nf faults F = [F1, F2, . . . , Fnf ] is the ma-
trix that crosses ARRs as rows and faults as columns, and whose columns are
given by the theoretical signatures of the faults, i.e. FS = [FS1, FS2, . . . , FSnf ].

Diagnosis is achieved by comparing the observed signature, i.e. the
Boolean residual values obtained from the actual measurements, and the
theoretical signatures of the nf faults.



2.2 Brief overview of the DX logical diagnosis theory

In the model-based logical diagnosis theory of DX as proposed by (Reiter,
1987; Kleer et al., 1992), the description of the system is driven by compo-
nents and relies, in its original version, on first order logic. A system is given
by a tuple (SD,COMPS,OBS) where:

• SD is the system description in the form of a set of first order logic
formulas with equality,

• COMPS represents the set of components of the system given by a
finite set of constants,

• OBS is a set of first order formulas, which represent the observations.

SD uses the specific predicate AB, meaning abnormal. Applied to a
component c of COMPS, ¬AB(c) means that c is normal and AB(c) that c
is faulty. For instance, the model of a two inputs adder would be given by :

¬AB(x) ∧ ADD(x)⇒ Output(x) := Input1(x) + Input2(x) (2)

Definition 4 (Diagnosis) A diagnosis for the system (SD,COMPS,OBS)
is a set ∆ ⊆ COMPS such that SD ∪OBS ∪ {AB(c) | c ∈ ∆} ∪ {¬AB(c) |
c ∈ COMPS −∆} is satisfiable.

The above definition means that the assumption stating that the com-
ponents of ∆ are faulty and all the others are normal is consistent with the
observations OBS and the system description SD. A diagnosis hence con-
sists in the assignment of a mode, normal or faulty 2, to each component of
the system, which is consistent with the model and the observations.

Definition 5 (Minimal diagnosis) A minimal diagnosis is a diagnosis ∆
such that ∀∆′ ⊂ ∆, ∆′ is not a diagnosis.

To obtain the set of diagnoses, it is usual to proceed in two steps, basing
the first step on the concept of conflict introduced in (Reiter, 1987) and
later extended in (Kleer et al., 1992). The original definition, that we call
R-conflict, i.e. conflict in the sense of Reiter, is the following :

Definition 6 (R-conflict and minimal R-conflict) An R-conflict is a set
C ⊆ COMPS such that the assumption that all the components of C are
normal is not consistent with SD and OBS. A minimal R-conflict is an
R-conflict that does not contain any other conflict.

2This framework has been extended to fault models in (Kleer et al., 1992).



The set of diagnoses can be generated from the set of conflicts. (Reiter,
1987) proved that minimal diagnoses are given by the hitting sets 3 of the
set of minimal R-conflicts. An algorithm based on the construction of a tree,
known as the HS-tree, was originally proposed by (Reiter, 1987).

The parsimony principle indicates that preference should be given to min-
imal diagnoses. Another reason why minimal diagnoses are important is be-
cause in many cases, they characterize the whole set of diagnoses. In other
words, all the supersets of minimal diagnoses are diagnoses. (Kleer et al.,
1992) provided the conditions for this to be true by extending the definition
of an R-conflict to a disjunction of AB-literals, AB(c) or ¬AB(c), containing
no complementary pair, entailed by SD∪OBS. Then, a positive conflict is a
conflict for which all of its literals are positive and one can identify a positive
conflict with an R-conflict (Reiter, 1987) as defined above.

Diagnoses are characterized by minimal diagnoses if and only if all mini-
mal conflicts are positive (Kleer et al., 1992). Unfortunately, only sufficient
conditions exist on the syntactic form of SD and OBS. One of those is that
the clause form of SD∪OBS only contains positive AB-literals. This is ver-
ified, for instance, if all sentences of SD are of the same form as (2), which
means that only necessary conditions of correct behavior are expressed.

2.3 Lessons learned from comparing the FDI and DX
approaches

This section summarizes the results of (Cordier et al., 2004) obtained from the
comparative analysis of the DX approach and the parity space FDI approach
presented in the two preceding sections. It presents the concept of ARR
support that is the articulation of the two approaches and gives rise to the
important properties of ARR–d–completeness and ARR–i–completeness. It
then discusses the lessons learned, outlining the different hypotheses adopted
by the two approaches and sheding light on their respective strengthes and
drawbacks.

Frst, it should be noticed that the modeling paradigm of FDI does not
make explicit use of the concept of component. The behavioral model (1)
describes the system as a whole. On the contrary, the DX approach models
every component independently, and specifies the structure of the system, i.e.
how the different components are connected. Another important difference
is that the assumption of correct behavior is represented explicitly in SD
thanks to the predicate AB. If F is a formula describing the normal behavior

3The hitting sets of a collection of sets are given by the sets that intersect every set of
the collection.



of a component, SM only contains F whereas SD contains the formula
¬AB(c)⇒ F .

The comparison of the two approaches is only possible if the models on
both sides represent the same system and the observations/measurements
capture the same reality. This is formalized by the System Representation
Equivalence (SRE) property introduced in (Cordier et al., 2004), which re-
quires that SM is obtained from SD by setting to false all the occurrences
of the predicate AB. It is also assumed that the same observation language
is used, i.e. OBS is a conjunction of equality relations, which assign a value
to every measured variable. In addition, the faults refer to the same entities
assumed to be components, without loss of generality.

The comparison is based on the concept of signature matrix FS, as de-
fined in definition 3. FS crosses ARRs in rows and faults/components in
columns (faults are univocally associated to components). The comparison
also relies on the concept of ARR Support.

Definition 7 (ARR Support) Consider ARRi to be an ARR for SM(z, x),
then the support of ARRi, noted supp(ARRi), is the set of components {cj}
(columns of the signature matrix FS) whose corresponding matrix cells FSij
are non zero on the ARRi line.

The support of an ARR of the form r(z, ż, z̈, . . . ) = 0 indicates the set of
components whose models, or submodels, are involved in the obtention of the
relation r(z, ż, z̈, . . . ) = 0. The equations of the model SM(z, x) can indeed
be partitioned in component models and every equation of SM(z, x) can be
labelled as being part of the model of some component. Let SM(c) denote
the subset of equations defining the model of a component c ∈ COMPS
and SM(C) =

⋃
c∈C SM(c) the subset of equations corresponding to C ⊆

COMPS.
Let us now introduce two completeness properties, which refer to “de-

tectability” indicated by a “d”, and to “isolability” indicated by an “i”.

Property 1 (ARR–d–completeness) A set E of ARRs is said to be d-
complete if:

• E is finite;

• ∀OBS, if SM ∪ OBS |=⊥, then ∃ARRi ∈ E such that {ARRi} ∪
OBS |=⊥.

Property 2 (ARR–i–completeness) A set E of ARRs is said to be i-
complete if:



• E is finite;

• ∀C, set of components such that C ⊆ COMPS, and ∀OBS, if SM(C)∪
OBS |=⊥, then ∃ARRi ∈ E such that supp(ARRi) is included in C
and {ARRi} ∪OBS |=⊥.

ARR–d–completeness and ARR–i–completeness express the theoretical
capability of a set of ARRs to be sensitive, hence to detect, any inconsis-
tency between the model SM and observations OBS.

Example – Consider the following signature matrix FSex assumed to refer
to a system with model SMex. It gathers the signatures of the faults, single
and multiple, that may affect four components c1, c2, c3, and c4. These are
composed by the Boolean values of three residuals arising from three ARRs
ARR1, ARR2, and ARR3 and are given by the columns of the fault matrix.
For example, the fault signature of fc1 is the Boolean vector (1, 0, 1)T . The
support of each ARR is given by the rows of the submatrix corresponding to
single faults. For example, supp(ARR1) = {c1, c2, c3}.

Let us consider the set of ARRs E1,2 = {ARR1, ARR2}, then it can
be noticed from FSex that it is d–complete. Indeed, in any of the faulty
situations implying a violation of SMex, there is one ARR in E1,2 that is 1,
i.e. meaning that it is violated by the corresponding observations. One can
also notice that E1,2 is not i–complete. The existence of ARR3 means that
we may have a situation in which the subset of components C = {c1, c2, c4} is
inconsistent, i.e. SMex(C)∪OBS |=⊥. Nevertheless, since supp(ARR1) 6⊆ C
and ARR2 6⊆ C, property 2 is not fulfilled. As a matter of fact, eventhough
ARR3 seems useless for isolating single faults, one can notice from FSex that,
without ARR3, no multiple fault of the last column can be discriminated from
fc3 .

fc1 fc2 fc3 fc4 fc1c2 all other multiple faults

ARR1 1 1 1 0 1 1
ARR2 0 0 1 1 0 1
ARR3 1 1 0 1 1 1

Table 1: Example of a fault signature matrix FSex

ARR–d–completeness and ARR–i–completeness are key to the compari-
son of the FDI and DX approaches. The main results can be summarized by
the following proposition.



Proposition 1 (Cordier et al., 2004) Assuming the SRE property and that
OBS is the set of observations for the system given by SM (or SD), then :

1. If ARRi is violated by OBS, then supp(ARRi) is an R-conflict;

2. If E is a d-complete set of ARRs, and if C is an R-conflict for (SD,COMPS,
OBS), then there exists ARRi ∈ E that is violated by OBS;

3. If E is an i-complete set of ARRs, then given an R-conflict C for
(SD,COMPS,OBS), there exists ARRi ∈ E that is violated by OBS
and supp(ARRi) is included in C.

The result 1 of proposition 1 is intuitive and can be explained by the fact
that the inconsistencies between the model and observations are captured
by R-conflicts in the DX approach and by ARRs violated by OBS in the
FDI approach. Consequently, the support of an ARR can be defined as a
potential R-conflict. This concept is also called possible conflict in (Pulido
and Gonzalez, 2004a).

The results 2 and 3 of proposition 1 refer to fault detectability and fault
isolability. The result 2 outlines the ARR–d–completeness property as the
condition for fault detectability. From the result 3, the ARR–i–completeness
property appears as the condition under which a formal equivalence between
R-conflicts and ARR supports holds, as stated by the following corollary.

Corollary 1 If both the SRE and the ARR–i–completeness properties hold,
the set of minimal R-conflicts for OBS and the set of minimal supports of
ARRs (taken in any i-complete set of ARRs) violated by OBS are identical.

The detailed proofs of proposition 1 and corollary 1 can be found in
(Cordier et al., 2004).

Let us now analyze the results from a more practical point of view, and
point at the differences of the two approaches and how their respective ad-
vantages can be put together.

2.3.1 Lesson one: redundant ARRs

An important result coming from ARR–i–completeness refers to redundant
ARRs. In FDI, it is generally accepted that if ARRj is obtained from a
linear combination of two other ARRs, ARRi1 and ARRi2 , then ARRj is
redundant (unless some considerations about noises and sensitivity to faults
come into play). Nevertheless the i-completeness property states that not
only the analytical expression of ARRj must be taken into account but also
its support to conclude about the fact that it is redundant. The formal
conditions are stated in the proposition below from (Cordier et al., 2004).



Proposition 2 A given ARRj is redundant with respect to a set of ARRis,
i ∈ I, j /∈ I, where I is a set of integer indexes such that card(I) ≥ 2, if and
only if ∃I ′ ⊆ I such that :

1) ∀OBS, if all ARRis, i ∈ I ′, are satisfied by OBS, then ARRj is sat-
isfied by OBS,

2) supp(ARRj) ⊇ supp(ARRi), ∀i ∈ I ′.

The above proposition can be explained by the fact that if supp(ARRj)
does not satisfy condition 2, then it captures an inconsistency that is not
captured by the initial ARRis, i ∈ I. It is hence apt, added to the initial
ARRis, to contribute to the achievement of ARR–i–completeness.

2.3.2 Lesson two: exoneration assumptions

The exoneration assumptions, ARR-exoneration and component-exoneration,
used by DX and FDI, respectively, are different.

Definition 8 (ARR-exoneration) Given OBS, any component in the sup-
port of an ARR satisfied by OBS is exonerated, i.e. considered as normal.

Definition 9 (Component-exoneration) Given OBS and c ∈ COMP ,
if SM(c)∪OBS is consistent, then c is exonerated, i.e. considered as normal.

The FDI approach generally uses the ARR-exoneration assumption with-
out formulating it explicitly. On the other hand, the DX approach generally
proceeds with no exoneration assumption at all. When this is not the case,
it uses the component-exoneration assumption and represents it explicitly. If
a component c is exonerated, its model is written as:

COMP (c) ∧ ¬AB(c)⇐⇒ SM(c)

where the simple logical implication, found in (2) for instance, is replaced by a
double implication. Explicit assumptions guarantee logical correctness of the
DX diagnoses obtained by the DX method. Interestingly, ARR-exoneration
cannot be expressed in the DX formalism and conversely, component-exoneration
cannot be expressed in the FDI formalism.

It has been shown that under the same assumptions, in particular in the
case of no exoneration, the diagnoses that are obtained by the DX and the
FDI approach are the same.

Theorem 1 (Cordier et al., 2004) Under the i-completeness and no exoner-
ation assumptions, the diagnoses obtained by the FDI approach are identical
to the (non empty) diagnoses obtained by the DX approach.



2.3.3 Lesson three: single and multiple faults

In the FDI approach, because the fault signatures are determined off-line
for every fault, the number of considered faults is generally limited. Most
of the time, only single faults are considered. On the contrary, the DX
approach naturally deals with multiple faults. A consequence is that the
number of diagnoses is exponential and this is why it is common to introduce
preference criteria, like fault probabilities, to order the diagnoses. Several
search methods have been proposed to find the preferred diagnoses or to
retrieve the diagnoses in preference order (see for instance (Williams and
Ragno, 2003; Sachenbacher and Williams, 2004)).

2.3.4 Lesson four: off-line versus on-line

In the FDI approach, ARRs are determined off-line and only a simple con-
sistency check is performed on-line. This may be quite relevant for real-time
applications with hard temporal constraints. Inversely, in the DX approach,
the whole diagnosis process is on-line, the advantage being that only the
models need to be updated in case of any evolution of the system. The two
approaches have been integrated to obtain the advantages of both: some DX
works have used the idea of the FDI community to construct ARRs off-line
(Katsillis and Chantler, 1997; Loiez and Taillibert, 1997; Washio et al., 1999;
Pulido and Gonzalez, 2004b) and some FDI works have proposed to base
the fault isolation phase on the conflicts derived from violated ARRs (Vento
et al., 2010).

3 Bridging the FDI and DX approaches

Building on lessons learned, several works have integrated FDI and DX meth-
ods for providing new diagnostic solutions. This section illustrates these in-
tegrations with two specific lines, which are the most representative of the
emerging synergies.

3.1 Causal model-based diagnosis

In the 90s, the synergies between the FDI and DX approaches found fulfill-
ment in a series of studies proposing causal models for diagnostic reasoning.
These are perfect examples of integration of the FDI and the DX approaches,
the FDI approach being used for fault detection and the DX approach for
fault isolation. At that time, causal models were intensively studied by the



Qualitative Reasoning community (Dague and Travé-Massuyès, 2004; Travé-
Massuyès and Dague, 2003; Weld and De Kleer, 1989). Whereas (Venkata-
subramanian et al., 2003a) overviews how causal models can be used to rep-
resent the qualitative behavior of a system and the various ways in which
qualitative models can support diagnosis reasoning, this section focuses on
another subset of works that enrich the causal structure with quantitative
models, hence providing a framework to integrate FDI and DX concepts.

Causal models are based on a graph structure expressing explicitly the
dependencies between variables by edges called influences. This structure
is called a Causal Graph from which explanations for the values – normal
or abnormal – of variables can be exhibited. Accounting for the dependen-
cies between variables is the basic principle of many diagnostic algorithms.
Whereas the standard diagnosis algorithms of DX, such as GDE (De Kleer
and Williams, 1987), use the technique known as ”dependency recording”
(implemented with an ATMS for example) that records dependencies during
the inferences, the dependencies used by causal models are exhibited from
the outset. These are obtained either directly from expert knowledge as in
(Leyval et al., 1994; Gentil et al., 2004), by techniques of causal ordering of
the QR community as in (Travé-Massuyès et al., 2001), or from bond-graph
models as in (Mosterman and Biswas, 1999; Feenstra et al., 2001).

Causal diagnosis uses the causal graph as an abstract parameterized rep-
resentation of the system in which every influence is associated with a phys-
ical component of COMP . Early work was limited to labeling causal influ-
ences by the signs giving the direction of change of the influenced variable
in relation to the cause variable, thus representing a Signed Oriented Graph
(Oyeleye and Kramer, 1988; Kramer and Palowitch, 1987). Subsequently,
the labeling of influences became more sophisticated and local quantitative
models as used in FDI were attached (Leyval et al., 1994; Gentil et al., 2004;
Travé-Massuyès et al., 2001). Then, FDI standard techniques for evaluating
the residuals could be used for fault detection in the form of a local procedure
attached to every measured variable of the causal graph. More precisely, fault
detection is implemented as an (online) procedure that determines, at each
time t and for each measured variable y, the consistency of the measured
value ȳt and the predicted value ŷt obtained with the – causal – behavioral
model of the system. Checking consistency comes back to evaluate the resid-
ual:

ryt = ȳt − ŷt
If ryt 6= 0, then y is concluded to be misbehaving, noted MISB(y), and

this triggers a diagnostic session.
Diagnostic reasoning is a global procedure underpinned by the causal



Figure 1: (left) Reservoir system (right) Causal graph with delay labels (from
(Travé-Massuyès and Calderon-Espinoza, 2007))

structure labelled by an abstraction of the local models, such as delay times
as in Mosterman and Biswas (1999); Travé-Massuyès and Calderon-Espinoza
(2007). The detection of a misbehaving variable is interpreted as the violation
of one of the influences involved in the prediction of the variable, i.e. of one of
the upstream influences in the causal graph. Each influence being associated
with a component, the set of upstream influences can be identified as an R-
conflict as defined in section 2.2 (or as the support of the ARR that could be
built from the local models by performing the variable eliminations indicated
by the causal chains). In (Travé-Massuyès and Calderon-Espinoza, 2007),
the influences have a delay attribute corresponding to the time required for
a disturbance acting on the source variable to propagate to the effect vari-
able. Figure 1, right side, provides the causal graph with delay labels for the
reservoir system, which involves eight components Ci, i = 1, . . . , 8, shown on
the left side. Influences are denoted I1 to I14. With this information, the
elements of the generated R-conflicts can be labeled by a temporal label indi-
cating the latest time at which a component can be considered faulty, i.e. Ciτ
indicates that the component Ci may be faulty from at least t−τ . Diagnoses
can be obtained from the R-conflicts by an incremental HS-tree algorithm
that generates the hitting sets, according to (Reiter, 1987), while managing
the temporal labels (Travé-Massuyès and Calderon-Espinoza, 2007). Figure
2 provides the HS-tree corresponding to the occurrence of two R-conflicts,
C (dy2) and C (dy1), indicated by MISB(dy2) at time t and MISB(dy1) at time
t+ δt, respectively :

C (dy2) = {C1τ1+1 , C21 , C41 , C5τ1+1 , C61 , C80}



C (dy1) = {C11 , C2τ2+1 , C31 , C51 , C6τ2+1 , C70}

The nodes of the HS-tree but leaves are labelled by a conflict set. For
each element s in the conflict label of node n, an edge labelled s joins n to a
successor node. H(n) is defined as the set of edge labels on the path from n
to the root node. The HS-tree is built by considering every conflict in chrono-
logical order. Every new conflict is compared to every leaf of the HS-tree,
and some new leaves are built if necessary. The resulting HS-tree is pruned
for redundant or subsumed leaves before the next conflict is considered. At
the end of the procedure, the minimal hitting sets, and hence the minimal
diagnoses that explain the detected misbehaving variables, are given by the
set of edge labels H(l) associated to the open leaves l of the HS-tree.

In our example, C (dy2) is first developed from the Root node at time t.
When the second conflict C (dy1) is detected, at time t + δt, the temporal
labels of the edge labels from the leaves to the Root are first updated by δt.
Then, C (dy1) is developed from nodes 3 and 6, given that for n ∈ {1, 2, 4, 5},
H(n) ∩ C (dy1) 6= ∅. The open leaves of the HS-tree determine the timed
diagnoses given in Table 2.

Figure 2: HS-tree with management of temporal labels (from (Travé-
Massuyès and Calderon-Espinoza, 2007))

3.2 Model-based diagnosis of hybrid systems

Hybrid systems (Zaytoon et al., 2001; McIlraith et al., 2000; Henzinger, 1996;
Lunze and , Eds.) address the need to capture phenomema at different time
scales in the same model. They are more particularly devoted to represent
systems that have double continuous and discrete dynamics. Forming a spe-
cific class of hybrid systems, switched systems undergo abrupt changes of



Table 2: Timed diagnoses updated in time (from (Travé-Massuyès and
Calderon-Espinoza, 2007))

Diagnoses at time t Diagnoses at time t+ δt
D1 = {C1τ1+1} D1 = {C1τ1+1+δt}
D2 = {C21} D2 = {C2τ2+1}
D3 = {C41} D3 = {C5τ1+1+δt}
D4 = {C5τ1+1} D4 = {C6τ2+1}
D5 = {C61} D5 = {C41+δt, C31}
D6 = {C80} D6 = {C41+δt, C70}

D7 = {C80+δt, C31}
D8 = {C80+δt, C70}

dynamics upon switches. They are particularly relevant to diagnosis because
switching dynamics is just representative of fault occurrence. Switched sys-
tems may be modeled by a state transition system whose states represent the
modes of operation – normal or faulty – for which the continuous dynamics
are specified. The modeling of such systems and the associated diagnostic
algorithms make use of continuous and discrete formalisms, defining an ideal
field for the integration of FDI and DX methods. In this case, the emphasis
is on coupling the search methods used by DX with FDI methods in the form
of state estimators, parameter estimators or sets of ARRs. Search methods
allow one to deal with the combinatorial explosion of the number of trajec-
tories to be tracked. FDI methods can also be coupled with discrete event
system methods that are investigated in both the FDI and DX communities.

In the DX community, researchers dealing with hybrid systems first tried
to abstract the continuous dynamics in qualitative terms. The Livingstone
diagnostic engine Pell et al. (1998); Williams and Nayak (1996), from NASA,
that flew on board the DS-1 probe, was among the first to be qualified as
hybrid. This engine was rooted in the DX approach, with a model written
in propositional logic, and behavioral equations reflecting the continuous dy-
namics in the form of logical relationships expressing qualitative constraints.
The qualitative abstraction required monitors between the sensors and the
model to interpret continuous signals in terms of discrete modalities. This ap-
proach suffered from two drawbacks : the thresholds were extremely difficult
to determine, and detection sensitivity was quite poor. Subsequent research
thus replaced the qualitative abstractions by classical differential equations,
resulting in real hybrid models interlinking continuous and discrete states.

Although the different classes of hybrid models show differences in their



formalization, a hybrid model may be exemplified by the following tuple,
which makes explicit continuous and discrete dynamics as well as their inter-
action (Bayoudh et al., 2008a):

S = (ζ,Q,Σ, T, C, (q0, ζ0)) (3)

where:

• ζ is the set of continuous variables including state variables, input/output
variables, and possibly noises, which are functions of time t. Some are
measured, others not.

• Q is the set of discrete system states. Each state qi ∈ Q represents a
mode of operation of the system.

• Σ = Σs∪Σc∪Σf is the set of events including spontaneous mode switch-
ing events, discrete control inputs, and fault occurrences. Events cor-
responding to spontaneous mode changes are issued upon guards that
depend on continuous variables, as defined below. Σ can be partitioned
as Σo ∪ Σuo where Σo represents the set of observable events and Σuo

represents the set of unobservable events. Σf ⊆ Σuo, Σc ⊆ Σo and Σs

may have elements in both sets.

• T ⊆ Q × Σ → Q is the partial transition function. A transition
t(qi, σij, qj) may be guarded by a condition given as a set of equations
G(t(qi, σij, qj)) = gij(x, θg) = 0, θg being a constant parameter vector.
Then σij results from the state x(t) hitting the guard gij at some time
instant t∗ and is not observable. A reset map Rij, possibly equal to
the identity, is specified.

• C =
⋃
iCi is the set of system constraints linking continuous variables.

Ci denotes the set of constraints associated to mode qi, which are given
in state-space form by the following continuous time state-evolution
and output equations:{

ẋ(t) = fi(x(t), u(t), ε(t))
y(t) = gi(x(t), u(t), ε(t))

(4)

where u ∈ Rnu , x ∈ Rnx , y ∈ Rny are the input, output, state vectors,
respectively, and ε ∈ Rnε denotes some noise vector. The variables
gathered in these vectors belong to ζ.

• (ζ0, q0) ∈ ζ ×Q is the initial condition of the hybrid system.



In the hybrid state (ζ,Q), only the discrete state Q is representative
of the operation mode of the system and estimating Q is hence the target
of diagnosis. Because the evolution of discrete states is closely tied to the
evolution of the continuous states, the diagnosis problem is often brought
back to the problem of estimating the full hybrid state.

In theory, hybrid estimation must consider all the possible mode se-
quences with the associated continuous evolutions, which is exponentially
complex. Consequently, many sub-optimal methods have been proposed, of
which we can distinguish the following three classes:

• methods known as multiple-model estimation, rather rooted in the FDI
field (Ackerson and Fu, 1970; Blom and Bar-Shalom, 1988; Li and Bar-
Shalom, 1996),

• particle filtering methods (de Freitas, 2002; Verma et al., 2004; Narasimhan
et al., 2004a), which are found both in FDI and DX,

• methods that address hybrid aspects in a dedicated manner (Hofbaur
and Williams, 2002b; Benazera et al., 2002; Narasimhan and Biswas,
2002; Benazera and Travé-Massuyès, 2009), taking advantage of FDI
and DX approaches.

3.2.1 Multiple-model estimation methods

Multiple-model estimation methods, inspired by the IMM algorithm of (Blom
and Bar-Shalom, 1988), are formulated in a probabilistic framework. IMM
considers the problem of estimating the state of a system with Markovian
switching parameters:{

x(t) = a(θt)x(t− 1) + b(θt)ε1(t)
y(t) = h(θt)x(t) + g(θt)ε2(t))

(5)

where θt is a finite state Markov chain taking a finite number of N values
according to a transition probability matrix, and ε1(t) and ε2(t) are mutually
independent white Gaussian processes.

IMM avoids the exponential growth of the number of Gaussian hypothe-
ses by merging the hypotheses. Continuous estimates arising from N Kalman
filters are merged according to a likelihood measure to provide a belief state
in the form of a probability distribution over states at the current time. The
likelihood measure is provided by every filter and expresses the degree of
consistency between an hypothesis and observations but it takes also into
account the information carried by the probabilities of transitions. The tim-
ing for merging is studied in (Blom and Bar-Shalom, 1988), which provides



an efficient procedure. In (Washington, 2000), which suggests combining a
process of continuous state estimation given by Kalman filters with an esti-
mation process of the discrete state based on a POMDP (Partially Observed
Markov Decision Process), the estimation method is successfully applied to
fault identification on rovers.

(Hofbaur and Williams, 2002b) also unifies continuous state estimators
with a belief calculated from Hidden Markov Models (HMM). The approach
is quite similar to the one of (Washington, 2000) in that it uses a set of
Kalman filters, but it adopts an aggressive strategy for adjusting the number
of tracked trajectories to the computing resources available. This strategy
uses an A∗ algorithm, which selects the most likely state trajectory branches
and takes into account unknown fault modes. It is implemented in the hME
engine by (Hofbaur and Williams, 2002a, 2004).

Interestingly, it was shown by (Benazera and Travé-Massuyès, 2009) that
considering bounded instead of probabilistic uncertainty for noises and pa-
rameters of the continuous processes allows one to merge the hypotheses
with the same discrete state estimate by computing the convex hull of con-
tinuous estimates. This kind of merging, only possible in a set-membership
framework (Milanese and Vicino, 1991; Kieffer and Walter, 2011) was im-
plemented by interval analysis methods in (Benazera and Travé-Massuyès,
2009) and later in (Ramdani and Nedialkov, 2011) and (Maiga et al., 2013).
It controls effectively the number of tracked hypotheses and may avoid trun-
cating/approximating the set of hypotheses.

3.2.2 Particle filtering methods

Particle filtering methods are based on simulation and a Bayesian update of
prior beliefs. They proceed by sampling the initial probability distribution.
The underlying principle is the approximation of the conditional state prob-
ability distribution p(x0:t | y0:t) by a swarm of points called particles. These
particles sample the state-space and carry a weight representing a discrete
probability masse. Particles are generated and recursively updated given a
nonlinear process model, which describes the evolution in time of the system
under analysis, and a measurement model:{

x(t) = ft(x(t− 1), w(t))
y(t) = ht(x(t), v(t))

(6)

where {w(t)}t≥0 and {v(t)}t≥0 are sequences of random variables, not neces-
sarily Gaussian, as well as a set of available measurements Y = {Yt, t ∈ N}
and an initial estimation for the state probability density function p(x(0)).



With enough samples, particle filtering approaches the optimal Bayesian
estimate while presenting the advantage to accept probability distributions of
any kind. We refer the reader to (Arulampalam et al., 2002) for a tutorial on
particle filtering methods. Despite their advantage, it should be noted that
they are difficult to apply to the diagnosis problem since the probabilities
of faults are generally very low compared to those of nominal states. The
number of particles needed to track the faulty states is hence very high.
Different strategies were tested to provide solutions to this problem (Verma
et al., 2003; Thrun et al., 2002). Among them, (Narasimhan et al., 2004b)
combines particle filtering and the DX based diagnosis approach Livingston
L3 Williams and Nayak (1996); Kurien and Nayak (2000). In this approach
Rao-Blackwellized Particle Filtering is used to track the nominal behavior, an
n-step prediction scheme is used for fault detection and L3 is used to generate
a set of candidates that are consistent with the discrepant observations. This
candidates are then tracked by the particle filtering scheme.

3.2.3 Hybrid system diagnosis dedicated methods

As we have seen before, the combinatorial explosion inherent to hybrid esti-
mation leads to solutions providing an approximated belief state. All previ-
ous methods suffer from the problem of hypothesis loss, which may be critical
for a diagnosis application. The set of modes estimated over time, i.e. the
diagnoses, takes the form of a set Γ of trajectories generated by a decision
process that abandons the trajectories whose belief is below a given thresh-
old. Unfortunately, Γ is reused in the calculation of future estimates and
it may happen that the actual trajectory of the system is no longer in Γ,
thus producing an erroneous diagnosis. Several studies have addressed this
problem.

(Nayak and Kurien, 2000) proposes a solution based on a a posteriori
progressive exploration of the space guided by fault ranks. However, this
requires considering a large time window backwards from the current time,
which may even include the initial time. In this case, the current state
must be re-predicted from the whole system’s history. The diagnostic engine
KOALA (Benazera and Travé-Massuyès, 2003) proposes a variant of the
previous algorithm with a revision procedure that produces diagnoses from
the current trajectory by performing minimal partial changes.

There have been other attempts to remedy the loss of solutions. In
(Lerner et al., 2000) (Lerner et al., 2002), the authors reduce the set of
tracked trajectories by aggregating those using similar assumptions. In addi-
tion, they develop a smoothing strategy that propagates the current beliefs
back in time to improve the prediction of system states.



Recently, an alternative approach to hybrid state estimation, called rME,
was proposed based on the hybrid model (3). rME focuses on mode estima-
tion, the actual diagnosis, and ignores continuous state estimation (Bayoudh
et al., 2008c). rME is based on the parity space approach as presented in
section 2.1 for processing continuous data. A set of ARRs is determined
for each mode of the hybrid system from the associated continuous model.
They are all put together in a vector. When evaluated with the measure-
ments in a given mode, this vector defines its mode signature. The mode
signature changes that result from transitioning from one mode to another
are abstracted as a set of events, called signature-events, by the abstraction
function fSig:

fSig : Q× T (Q,Σ) −→ ΣSig

(qi, qj) 7−→ δij
(7)

The event δij is observable and noted Roij if the mode signature of the
source mode qi is different from the mode signature of the destination mode
qj, i.e. Sig(qi) 6= Sig(qj). δij is unobservable and noted Ruoij otherwise 4.
Hence ΣSig is partitionned in a set of observable signature-events ΣSig

o and a
set of unobservable signature-events ΣSig

uo .
The set ΣSig = ΣSig

o ∪ ΣSig
uo is used to enrich the underlying DES M =

(Q,Σ, T, q0), producing an automaton that captures both the abstraction of
the continuous dynamics and the discrete dynamics. A classical DES di-
agnosis approach, like the diagnoser approach (Sampath et al., 1995), then
permits to track the current mode of the system based on the received ob-
servable events, i.e. to provide the diagnosis.

Lately, the mode estimation rME approach (Bayoudh et al., 2008c) was
combined with the state estimation approach hME (Hofbaur and Williams,
2004), resulting in mutual enrichment (Rienmuller et al., 2009; Rienmüller
et al., 2013). hME brings an estimate of the continuous state that is not
provided by rME. In addition, among all modes corresponding to the current
hypotheses of hME, rME can identify those that are consistent with obser-
vations, providing a reduced set of possible modes to hME and significantly
reducing the number of hypotheses to be tracked by the hybrid estimator.

4By construction, mode signatures cannot change while being in the same mode.



4 Bridges for learning diagnosis models : an

example with chronicle learning from time

series

The main weakness of MBD diagnosis approaches, either from FDI or from
DX, is to require well-formalized models that must be built from the avail-
able knowledge about the system. However, knowledge may be scarce. On
the other hand, nowadays systems generate big amounts of data that are
stored. Data-driven diagnosis approaches take advantage of these data and
use a whole spectrum of machine learning methods to directly assess the state
of a system and provide a diagnosis. An alternative way is to use machine
learning to generate models automatically, hence bridging with MBD diag-
nosis methods. Regression analysis is well-known for learning continuous
models from measured time series but learning diagnosis-oriented discrete
event models requires bridges with symbolic learning rooted in AI. This is a
promising research track that can produce methods benefiting from all the
available information in the form of data and knowledge.

To exemplify this track, let us consider the problem of generating discrete-
event models automatically from raw data in the form of time series. Some
works have built on classifiers to generate automata or Markov chain models,
in which states represent operation modes of the system (Kempowsky et al.,
2006a; Omlin et al., 1998; Kempowsky et al., 2006b). In this paper, we
illustrate the generation of chronicles as used in the AI community (Dousson
and Duong, 1999; Cram et al., 2011).

We are interested in learning high level temporal patterns that capture
the behavior of dynamic processes at an abstract level based on events. In
the diagnosis context, these patterns can be used as signatures of specific
situations and associated to decision rules specifying which actions must be
taken in different situations (Subias et al., 2010).

4.1 Event-based abstraction

The system is assumed to be described through a set of features whose values
change over time with the system’s evolution. The data samples are given in
terms of the set of features {χ1, . . . , χn}. Every χj takes its value in the set
U j, called the domain of χj. Therefore any sample can be represented by a
vector ~x = (x1, . . . , xn)T of U = U1 × · · · × Un, so that every component xj

corresponds to the feature value χj qualifying the object ~x. The subset of U
formed by these vectors is called the data base.

Samples are indexed by time, a sample taken at time ti is represented



by a vector ~xti = (x1ti , . . . , x
n
ti

)T . The value taken by the feature χj across

time can be considered as a random variable xjt , t ∈ Z. Then the time
series corresponding to the samples, taken from time ti to time tf , is noted
X ti−tf = {~xt, t = ti, . . . , tf} = 〈~xti , . . . , ~xtf 〉.

Events are a symbolic representation of time-stamped specific singulari-
ties of the signals represented by the time series. The concept of event type
expresses a change in the value of a given domain feature or set of features.
Let us define E as the set of all event types and define the concept of event.

Definition 10 (Event) An event is defined as a pair (ei, ti), where ei ∈ Σ
is an event type and ti is an integer called the event date.

Time representation relies on the time point algebra and time is consid-
ered as a linearly ordered discrete set of instants whose resolution is sufficient
to capture the system’s dynamics (Vilain and Kautz, 1986).

Definition 11 (Temporal sequence) A temporal sequence on Σ is an
ordered set of events denoted S = 〈(ei, ti)〉i∈Nl = {(ei, ti)}i∈Nl such that
ei ∈ Σ, i = 1, . . . , l and ti < ti+1, i = 1, . . . , l − 1, where l is the dimen-
sion of the temporal sequence S.

The time series X ti−tf for a set of features can be abstracted in terms
of a temporal sequence. This abstraction can be achieved as proposed in
(Aguilar-Castro et al., 2012) by applying clustering methods to the set of
samples in X ti−tf . The samples are thus clustered into a set of classes. The
conditions that underly the transitions between classes can then be used to
define event types and the transition dates provide the event dates.

Figure 3: Event-based abstraction with LAMDA



Figure 4: Generation of events

The event-based abstraction is illustrated by figure 3 in which the fuzzy
clustering method LAMDA (Aguilar-Martin and Lopez de Mantaras, 1999;
Kempowsky et al., 2003) has been used. Three time series corresponding to
the same dynamic situation have been concatenated and given to LAMDA,
hence the repetition of the same clustering pattern in three classes appearing
in the top of the figure. The bottom bar diagrams provide the so-called
profile of the three classes. Figure 4 illustrates that an event is generated
when there is a class transition.

4.2 Chronicle concept

Chronicles have been introduced in AI as a way to express temporal informa-
tion about a domain (Dousson et al., 1993). Chronicles are a rich formalism
allowing one to describe observable event patterns corresponding to the be-
haviors one wants to detect. Most importantly, chronicles come together with
powerful event recognition engines that are able to recognize them on the fly
given a temporal sequence as input (Artikis et al., 2010). With chronicles
one may want to represent dynamic situations like :

- an event type ei is immediately followed by event type ej,

- an event type ei is followed by event types ej and ek after less than 10
time units,

- an event type ei occurs after 8 occurrences of an event type ej.

To represent this type of domain evolutions, we consider that event dates
may be constrained. A time interval I is expressed as a pair I = [t−, t+]
corresponding to the lower and upper bound on the temporal distance be-
tween two time points ti and tj, i ≤ j. Given two event dates ti and tj,
we express temporal constraints of the form tj − ti ∈ [t−, t+]. Consider two
events (ei, tj) and (ej, tj), then if their dates ti and tj satisfy the temporal



constraint tj− ti ∈ [t−, t+], we write τij = ei[t
−, t+]ej and say that the events

are temporally constrained by τij.

Definition 12 (Chronicle) A chronicle is a pair C = (E , T ) such that E ⊆
Σ and T = {τij}16i<j<|E|. E is called the typology of the chronicle and T is
the set of temporal constraints of the chronicle.

A chronicle C represents an evolution pattern involving a subset of events
E and a set of temporal constraints T linking event dates. Chronicles are a
special type of temporal pattern, where the temporal order of events is quan-
tified with numerical bounds and reflects the represented piece of temporal
evolution. Figure 5 is an example of chronicle in which E = {e1, e2, e3} and
T = {τ13 = e1[3, 6]e3, τ23 = e2[3, 9]e3}.

Figure 5: Example of chronicle

The occurrences of a given chronicle C in a temporal sequence S are
denoted by subsequences called chronicle instances.

Definition 13 (Chronicle instance) An instance of C = (E , T ) in a tem-
poral sequence S is a subset of events E ′ of S such that E ′ is isomorphic to
E.

The above definition means that |E ′| = |E| and that the events of E ′
satisfy all temporal constraints T of the chronicle C.

4.3 Learning chronicles

Let us consider a temporal sequence S corresponding to a given dynamic
situation. The goal is to learn the chronicle(s) that best characterize this
situation from S. A commonly used approach to elaborate a solution for this
problem relies on the notion of frequency.

Definition 14 (Frequency of a chronicle in a temporal sequence) The
frequency of a chronicle C in a temporal sequence S, noted f(C|S), is the
number of instances of C in S.



It is understood that most frequent chronicles are those that supposedly
best represent the situation. On the other hand, given a set of event types
Σ, the space of possible chronicles can be structured by a generality relation.

Definition 15 (Generality relation among chronicles) A chronicle C =
(E , T ) is more general than a chronicle C ′ = (E ′, T ′), denoted C v C ′, if
E ⊆ E ′ or ∀τij ∈ T , τij ⊇ τ ′ij.

Having defined the above concepts, the problem can be formulated as:
given a temporal sequence S, find all less general chronicles C in S such
that f(C|S) ≥ fth, where fth is a minimum frequency threshold. Symbolic
learning methods like those proposed in (Cram et al., 2011) can be used to
solve this problem.

Chronicle mining is illustrated by figures 6 and 7. Figure 6 provides
an example of three event sequences obtained from three time series corre-
sponding to the same situation. Figure 7 gives the less general chronicle that
characterizes the three sequences.

Figure 6: Example of three event sequences obtained from time series of the
same situation

Figure 7: Chronicle characterizing the three sequences



5 Diagnosis in fault management architectures

In the last few years, accounting for fault analysis and diagnosis in the so-
lutions produced for autonomous architectures on one side, and for mainte-
nance architectures on the other side has been of concern. Diagnosis is thus
seen as a piece of the puzzle that constitutes the whole fault management ar-
chitecture. This section discusses the openings that exist and the challenges
for future research bridges in these areas.

5.1 Autonomous architectures

During many years, the focus of the work dealing with autonomy has been put
on planning and execution and a proper well-identified diagnosis module was
absent from the proposed architectures (Alami et al., 1998; Finzi et al., 2004).
However, it is now more and more recognized that control and planning must
cooperate with diagnosis so as to jointly solve the state tracking and decision
problems as illustrated in the full template architecture of figure 8. The
system is submitted to the controller actions, which are taken according to the
plan decided by the Mission Planner, the current diagnoses provided by the
Diagnoser and the plan elaborated by the Diagnosis Planner to disambiguate
the diagnoses, i.e. to achieve active diagnosis. Two knowledge bases support
the above mentioned tasks: the knowledge constituting the behavioral model
of the system and the knowledge about the system mission. Examples of
autonomous architectures that include a diagnoser can be found in (Williams
et al., 2003; Verfaillie and Charmeau, 2006). Although the presence of a
diagnosis planner is still uncommon, examples can be found in (Bayoudh
et al., 2009; Chanthery et al., 2010).

Figure 8: Autonomy template architecture

In this framework, the problem of fault tolerant control that refers to



the interactions between the Diagnoser and the low level control, has been
intensively studied by the Control community (Blanke et al., 2003). Tools
for deciding about system reconfigurability have been proposed as well as
solutions to reconfigure control laws on line in order to guarantee the stability
of the system and to keep the state of the system close to the desired state
even when a fault occurs.

Nowadays challenges involve bridging diagnosis with high level planning.
In the following, two types of interactions that involve the Diagnoser are
analysed, those for which diagnosis serves planning, known as plan diagnosis,
and those for which planning acts for improving diagnosis, known as active
diagnosis.

5.1.1 Diagnosis for planning : plan diagnosis

Planning generates a control program, also known as a plan, which describes
the sequence of actions necessary to achieve some pre-defined goals. Tradi-
tionally, the planning community works with the assumption of full observ-
ability (Ghallab et al., 2004). In practice, this assumption must be relaxed
to consider partial observability, a situation that is more likely to be encoun-
tered in reality and where having diagnosis capabilities becomes essential
(Benazera, 2009).

Diagnosis serves in determining which action(s) failed and what went
wrong in terms of the internal states of the system so that the system can
possibly recover from the fault(s). (De Jonge et al., 2006) introduced two gen-
eral types of plan diagnosis: primary plan diagnosis identifying the incorrect
or failed execution of actions, and secondary plan diagnosis that identifies
the underlying causes of the faulty actions. This two types were later ex-
tended with agent diagnosis by (Micalizio and Torasso, 2007) because the
problem of plan diagnosis is commonly formulated within a distributed per-
spective where each “agent” is responsible for a part of the total plan. In this
context, (Witteveen et al., 2005) showed how plan-diagnoses of the partial
plans are related to diagnoses of the total plan and how global diagnoses
can be obtained in a distributed way. Further work has considered challeng-
ing partial observability situations in which available information may not
be enough for univocally determining the outcome of the actions that are
executed (Micalizio and Torasso, 2009).

In the above works, actions are considered instantaneous. But real-world
systems and processes (e.g. motors, actuators) operate dynamically in con-
tinuous time, denoted t. To know what is happening on such systems, we
often need to make measurements using a sampling time, denoted tk, k ∈ N,
at a sampling interval Ts. When the behaviour of the system is abstracted for



reasoning, and particularly for planning, both continuous time and sampling
time considerations are not of immediate relevance. Rather, we are inter-
ested in what is happening at logical time (l), e.g. action execution cycle
points (lact) or observation time points (lobs). Time considerations and dif-
ferent time scales are hence essential if one wants to consider the continuous
dynamics effects. But considering nominal and fault models as continuous
models has major implications on how planning and diagnosis are handled.
Time must be introduced into the models of actions, i.e. actions must have a
duration, allowing the specification of continuous dynamics in operation for
the actions involved. On the other hand, the planning formalism must be
able to express and handle temporal constraints. Let us notice that (Mical-
izio et al., 2011) considers plans with durative actions, although time is not
continuous. The objective of this work is to prevent problems rather than
repair them : when a temporal behavioral pattern expresses a deviation with
respect to the nominal expected behavior, the modality of execution of the
current action may be changed. Requirements about time and the problem
of unifying diagnosis and planning models are still quite open and call upon
novel developments.

5.1.2 Planning for diagnosis : active diagnosis

Active diagnosis is another aspect of the picture in which diagnosis and
decision theories can cooperate. Active diagnosis relies on applying specific
inputs to the system so that additional symptoms that permit refining the
diagnosis are exhibited.

For DES, (Sampath et al., 1998) can be cited as the seminal work. A
DES is modeled by an automaton, and active diagnosis is formulated as a
supervisory control problem as defined in (Ramadge and Wonham, 1989).
The idea of this approach is to design the controller so that specific actions
that may drive the system into non diagnosable regions are forbidden. Diag-
nosability of the system at run time relies on the controller design performed
off-line. The system is hence maintained ”actively” diagnosable and its di-
agnoser produces non ambiguous outputs. In other words, active diagnosis
is achieved by preventing inappropriate control actions.

(Daigle et al., 2010) argues that active diagnosis requires both prevention
and execution of actions and combines the two above perspectives, building
on preliminary ideas presented in (Bayoudh et al., 2008b), and those of (Sam-
path et al., 1998). Active diagnosis is split into two parts, a diagnoser and
a controller that aims to compute an appropriate sequence of mode change
control actions to best satisfy the control and diagnosis objectives.

The so-called pervasive diagnosis paradigm proposed in (Kuhn et al.,



2008) is based on different ideas, while still coupling diagnosis and planning.
Because the planner is generally allowed to achieve mission goals in multiple
ways, (Kuhn et al., 2008) proposes a heuristic search for informative plans,
which are the plans that provide best diagnosability. Here, no specific active
diagnosis actions are synthesized. Finally, the safe diagnosability and active
safe diagnosis approach defined by (Paoli and Lafortune, 2005) for DES and
later extended by (Liu and Qiu, 2008) to stochastic DES aims to achieve
fault diagnosis prior to the execution of a given set of forbidden actions in
the failed mode of operation of the system, hence preventing faults from
developing into failures that could cause safety hazards.

Unlike these two latter works, the approach of (Bayoudh et al., 2009)
adopts the perspective that the operation of the system can be suspended,
and that it is up to a decision module to decide whether it is best to continue
operating the system or to run an active diagnosis session. The sequence of
actions to be executed for active diagnosis hence do not interlink with actions
dedicated to control. It is also different from (Sampath et al., 1998) in that
regions of poor diagnosability are accepted because these are common for
many systems in practice. When the system is in an ambiguous diagnosis
state, active diagnosis relies on executing actions to drive the system towards
more diagnosable regions. The method achieves the best possible diagnosis
refinement, although it may happen that diagnosability cannot be improved.

In the hybrid framework, both continuous and discrete control actions can
be used, in an interlinked way, to perform active diagnosis. These interlinked
actions ultimately act towards putting the system in a goal configuration,
i.e. a goal behavioral mode, by driving it through a selected sequence of
intermediary operation modes.

In (Bayoudh et al., 2009; Chanthery et al., 2010) active diagnosis is for-
mulated as a conditionnal planning problem. Starting with an ambiguous
diagnosis state, a sequence of control actions that sequencially reduce the
ambiguity of an initial diagnosis is delivered. To do so, given an initial un-
certain state qD1 , an active diagnoser 5 is interpreted as an AND-OR graph
rooted in qD1 . The states with multiple outgoing transitions initiating se-
quences of consecutive controllable events ci are interpreted as “OR” nodes
(squares in Figure 9), the states whose outgoing transitions are labelled with
induced events ici, i.e. induced by the continuous dynamics, are interpreted
as “AND” nodes (circles in Figure 9). Then, planning algorithms rooted
in the AI field can be applied to solve the conditional planning problem,

5The active diagnoser is obtained from the diagnoser (Sampath et al., 1995) by con-
straining the outgoing transitions of a state to those labelled by events (i.e. actions)
permitted in all the underlying original automaton states (Bayoudh et al., 2009)



for instance the classical MINIMAX algorithm (Russell et al., 1995) or an
AO*-type algorithm as proposed in (Chanthery et al., 2010).

Figure 9: Interpretation of the active diagnoser as an AND-OR graph

Optimal input design as known in the Control field can be seen as a
continuous control version of active diagnosis (Mehra, 1974; Jauberthie and
Chanthery, 2013).

5.2 Maintenance architectures

In maintenance programs, diagnosis appears as an ingredient for achieving
condition monitoring and allows one to make adjusted predictions about the
remaining useful life (RUL) of the system and its components. From this
information, maintenance actions can be scheduled at best.

Prognostic is often the result of some reliability statistics drawn for an
entire population of components of a given category from a set of scenarios
implementing different stress conditions (Vachtsevanos et al., 2006; Saxena
et al., 2010). The failure time of a system is represented by a random variable
X for which the probability density function (pdf) is obtained from statistical
prediction analyses. The probability for a system’s RUL to be lower than a
time tp is hence given by:

P (X ≤ tp) =

∫ tp

0

f(t)dt, (8)

where f(t) represents the failure time pdf. The failure rate of a system, noted
F (t), represents the probability for the system to fail in the time interval
]t, t+ dt] given that it was sane at time t :



F (t)dt = P (X ≤ t+ dt|X > t)

= P (t<X≤t+dt)
P (X>t)

.
(9)

For a specific component in operation, it is possible to assess its current
healh status, resulting from the specific stress it undergoes, and this is where
diagnosis comes into play. Diagnosis provides a regularly updated health
status of specific components that can be used to update the initial state
for predicting their RULs (Ribot et al., 2009, 2008; Mohanty et al., 2010;
L.Hedjazi et al., 2011). Health status updating prognosis differs from prog-
nosis performed from reliability analyses and it is sometimes called ”adaptive
prognosis”. In most model-based prognosis literature (Orchard and Vachtse-
vanos, 2009; Daigle and Goebel, 2013; Bregon et al., 2012), it is understood
that diagnosis is a necessary part of the architecture, so adaptive is generally
omitted.

Diagnosis determines the state of the system, and of each of its compo-
nents, as being consistent with the current observations, then prognosis can
determine the state that will be reached in the future and that is consistent
with the current diagnosis and with the ageing model of the system. The RUL
can then be evaluated for every component in adaptation with the health sta-
tus reported by diagnosis. Although diagnosis injects precision, the future
stress conditions are inherently uncertain, resulting in uncertain RUL estima-
tion. Scheduling maintenance actions from this information hence requires
sophisticated algorithms to which the AU community contributes (Pinedo,
2012). Other tools that are generally used in this area are statistics, machine
learning and estimation methods.

6 Conclusion

In this paper, different facets of diagnosis investigated in the Control or the
AI fields are discussed. Diagnosis benefits from a wide spectrum of methods
and each of them brings in different potentialities. Having the whole picture
helps understand the different variants of the diagnosis problem in relation
with the different application domains. This is also essential to propose
suitable and relevant solutions to real diagnosis problems.

This paper does not survey the different diagnosis approaches (see (Venkata-
subramanian et al., 2003c,a,b) for a survey of this kind) but it surveys the
“bridging” works that integrate approaches from the Control or the AI fields.

The model-based FDI and DX tracks are given special attention because
they can be put in correspondence when they seem to have nothing in com-



mon on the surface. Their comparative analysis is quite instructive and the
lessons learned from this exercise are pointed out. The different hypotheses
adopted by the two communities can be explained by their historical back-
ground. The Control community approaches the diagnosis problem from the
fault detection point of view, providing numerous efficient methods to cope
with stochastic or error bounded noisy and disturbed systems, whereas the
AI community is prone to use abstract symbolic models that can support
diagnosis reasoning, understood here as fault isolation. This is why hybrid
models, that combine continuous and discrete paradigms, open nice perspec-
tives for bridging diagnosis approaches from these two fields.

In section 4, learning the models that support diagnosis reasoning is
shown to be a rich field for bridging theories. The machine learning methods
that are the foundations of process history diagnosis-based methods can be
exploited to build sophisticated models that can then support more sophisti-
cated diagnosis reasoning. This is illustrated with the automatic generation
of chronicles in section 4.3. Classification methods are commonly applied to
historical data to provide a means to recognize on-line the operation mode
of a system. It is shown that it can be used to learn sequences of events
instead. Submitting these sequences to a second learning level allows one
to generate temporal patterns that characterize the dynamic behavior of the
system. Interestingly, these patterns capture the dynamics, which was not
the case when producing the diagnosis directly from the classification.

Finally, diagnosis is discussed in relation with theories that participate to
provide global solutions to fault management problems. The interactions of
diagnosis with other modules, such as planning in autonomous architectures
or prognosis in condition maintenance architectures, is key to the efficiency of
such architectures. It is indeed the role of diagnosis to estimate the updated
health status of the system and its components, henceforth allowing to make
relevant and timely decisions. There is still work to be done before achieving
perfectly unified frameworks in which diagnosis and the other tasks share the
same models or can rely on model transformation technologies to share the
same knowledge base. This is an active field of research.

To conclude, diagnosis is concerned with interpreting and explaining the
observations acquired on a given system. In AI, diagnosis is often qualified
as endowing a system with a “conscience”. Diagnosis is not only concerned
with faults and faulty situations, but with the state of the system and why
it is in that state. This paper points at several opportunities central to the
development of the diagnosis field, and that require integrative solutions.
These opportunities are numerous and will participate to the richness of the
field in the next few years.



References

Ackerson, G., Fu, K., 1970. On state estimation in switching environments.
IEEE Transactions on Automatic Control 15, 10–17.

Adrot, O., Maquin, D., Ragot, J., 1999. Fault detection with model pa-
rameter structured uncertainties, in: Proceedings of the European Control
Conference, ECC’99, Karlsruhe.

Aguilar-Castro, J., Subias, A., L.Travé-Massuyès, Zouaoui, K., 2012. A
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Bayoudh, M., Travé-Massuyes, L., Olive, X., 2008b. Towards active diagnosis
of hybrid systems, in: Proceedings of the 19th workshop on Principles of
Diagnosis (DX08), Blue Mountains, Australia, pp. 231–237.
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Dague, P., Travé-Massuyès, L., 2004. Raisonnement causal en physique qual-
itative. Intellectica (38) , 247–290.

Daigle, M., Koutsoukos, X., Biswas, G., 2010. Improving diagnosability
of hybrid systems through active diagnosis?, in: Proceedings of the 7th
IFAC Symposium on Fault Detection, Supervision and Safety of Technical
Processes, Barcelona, Spain.

Daigle, M.J., Goebel, K., 2013. Model-based prognostics with concurrent
damage progression processes. Systems, Man, and Cybernetics: Systems,
IEEE Transactions on 43, 535–546.

De Jonge, F., Roos, N., Witteveen, C., 2006. Diagnosis of multi-agent plan
execution, in: Multiagent System Technologies. Springer, pp. 86–97.

De Kleer, J., Williams, B., 1987. Diagnosing multiple faults. Artificial Intel-
ligence 32, 97–130.



Denoeux, T., Masson, M., Dubuisson, B., 1997. Advanced pattern recogni-
tion techniques for system monitoring and diagnosis: a survey. Journal
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Ribot, P., Pencolé, Y., Combacau, M., 2008. Prognostics for the maintenance
of distributed systems, in: Proceedings of the International Conference on
Prognostics and Health Management (PHM’08), Denver, USA, pp. 6–10.
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