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Abstract Rich Vehicle Routing Problems are Vehicle Routing Problems (VRPs) that
deal with additional constraints, which aim to better take into account the particular-
ities of real-world applications. They combine multiple attributes, which constitute
a complement to the traditional models. This work proposes an adaptive solution
method based on metaheuristics for solving a Rich VRP, referred to as Fixed Het-
erogeneous Fleet Vehicle Routing Problem with Time Windows. This software has
been embedded into the fleet management system of a company in the Canary Is-
lands. The attributes considered by the company are: a fixed heterogeneous fleet of
vehicles, soft and multiple time windows, customers priorities and vehicle-customer
constraints. Furthermore, the company requires the consideration of several objective
functions that include travelled distance and time/distance balance. Exact algorithms
are not applicable when solving real-life large VRP instances. This work presents a
General Variable Neighbourhood Search metaheuristic, which obtains high quality
solutions. The computational experiments of this work are presented in four sections,
which comprise the parameter setting, the analysis of the effect of the considered
attributes, the comparative with the literature for the standard VRP with Time Win-
dows, and the study of the solutions provided by the algorithm when compared with
the solutions implemented by the company. Finally, it is worth mentioning that the
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algorithm has been integrated into a fleet management system and several tests with
real companies have been conducted.

Keywords Rich VRPTW · Fixed Heterogeneous Fleet · General Variable Neigh-
bourhood Search ·Metaheuristics

1 Introduction

Many practical applications related to logistics in intelligent freight transportation
systems lead to vehicle routing problems with varying degrees of difficulty regarding
the problem constraints. The basic Vehicle Routing Problem (VRP) is composed of
a set of customers requiring a specified volume of goods to be delivered. A fleet of
homogeneous vehicles dispatched from a single depot is used to deliver the goods,
returning to the same depot once the routes have been completed. The constraints
associated to the problem are that vehicles can carry a maximum capacity and each
customer has to be visited once by a single vehicle. The VRP has been the subject
of intensive research since the 1960s. A wide range of exact methods, heuristics and
metaheuristics has been proposed in the specialized literature. We refer the interested
reader to the following surveys by Schmid et al. (2013); Vidal et al. (2013); Eksioglu
et al. (2009); Potvin (2009); Laporte (2009); Gendreau et al. (2008); Baldacci et al.
(2007), and books by Toth and Vigo (2002) and Golden et al. (2008).

The aim of this work is to solve a real-world VRP that has been posed to the
authors by a company in the Canary Islands, Spain. The resulting software has been
embedded into a fleet management system. The requirements provided by the com-
pany lead to the consideration of several constraints, which have to be integrated
into the standard VRP. In the literature, there is a tremendous number of research
papers related to VRP with additional constraints, which range from the need of
time windows to regulations related to long-distance transportation. With the pur-
pose of collecting all these possible constraints, Vidal et al. (2013) have given the
notion of attributes of VRPs. Attributes refer to additional constraints that aim to
better take into account the specificities of real-world applications. These attributes
complement the traditional VRP formulations and lead to a variety of Multi-Attribute
Vehicle Routing Problems (MAVRPs). These MAVRPs are supported by a well devel-
oped literature that includes a wide range of heuristics and metaheuristics (Glover,
1986). Their analysis is limited to single objective optimization problems. Further-
more, some MAVRPs combine multiple attributes together, obtaining the so-called
Rich VRPs (RVRP) (Schmid et al., 2013; Tarantilis et al., 2009). The problem tackled
in this work corresponds to this last class of RVRPs.

Vidal et al. (2013) distinguish three main classes of attributes that appear fre-
quently in the literature. These classes are the assignment of customers and routes to
resources, the sequence choices, and the evaluation of fixed sequences. We refer the
interested reader to that paper for more details about this classification. The attributes
that are taken into consideration in this work are summarized in the following items.

– Heterogeneous fleet. In the particular application of VRP tackled in this paper, it is
considered a heterogeneous fleet of vehicles. When the number of available vehi-
cles is not limited, the problem is usually referred to as Vehicle Fleet Mix Problem
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(VFMP). In the case in which the fleet of vehicles is limited, a different version
of the problem, called Heterogeneous Fleet VRP (HFVRP), is revealed. This last
problem corresponds to the real-world application solved in this work. Precisely,
it is available a fixed set of heterogeneous vehicles. Therefore, we refer to the so
obtained problem as Fixed HFVRP with Time Windows (FHFVRPTW). Exact
and heuristic methods have been proposed for solving HFVRPs (Baldacci et al.,
2008; Baldacci and Mingozzi, 2009; Taillard, 1999; Li et al., 2007; Paraskevopou-
los et al., 2008; Prins, 2009; Brandão, 2011; Penna et al., 2011; Subramanian
et al., 2012). Most literature papers assume an unlimited number of available ve-
hicles, so that the objective is generally to obtain a solution that either minimizes
the number of vehicles and/or total travel cost. However, the real-world prob-
lems arising in companies face several resource constraints such as a fixed fleet
of vehicles. Therefore, it might not be possible to obtain a feasible solution for a
certain instance. In this case, it is required to obtain a valid solution for the com-
pany by adding more vehicles, letting the drivers work after their working shift,
postponing customers and maximizing the number of customers served, etc.

– Time windows. Additional constraints arise if time windows are associated to the
depot and customers, obtaining the Vehicle Routing Problem with Time Windows
(VRPTW). VRPTW and a vast set of its variants have been widely studied in the
literature. For recent reviews, see Bräysy and Gendreau (2005) and Gendreau and
Tarantilis (2010). Furthermore, in the practical application reported in this paper,
working shifts of vehicles are considered as time windows associated with each
vehicle.

– Soft & Multiple time windows. In the implementation carried out in this paper,
additional time attributes, which are the existence of multiple time windows for
customers and multiple time intervals in the working shifts for vehicles, are taken
into consideration (Ibaraki et al., 2005, 2008). Note that time windows may differ
among customers, and working shifts may differ among vehicles. In any case, the
customers have to be visited at maximum once during the day. Moreover, soft
time windows and soft working shifts are considered, since some of them can be
violated, incurring in additional costs. Particularly, if working shifts of vehicles
can be extended, extra hours are allowed for the drivers. This leads to additional
salary costs, since the extra time is more expensive. A work related to VRP with
soft time windows is Taillard et al. (1997).

– Customer priority. In addition to the previous attributes, which are thoroughly
analyzed in the paper by Vidal et al. (2013), the company under consideration
in this work assigns priorities to some customers. Depending on these priorities,
some customers can be postponed until the next day and their service is not re-
quired during the current planning horizon. Together with extending the working
shifts of the vehicles, postponing customers allow the system to obtain valid so-
lutions for the company. Therefore, in the case in which the fixed fleet of vehicles
is not sufficient for serving all customers, allowing extra time and/or postponing
customers are possible alternatives if they are permitted by the company.

– Vehicle-Customer restrictions. There are also vehicle-customer limitations, which
indicate that some customers cannot be served by some vehicles. Therefore, there
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will be a set of vehicle-customer constraints that can be due to several reasons
such as road restrictions.

In addition to these attributes, several objective functions are required by the com-
pany to solve the problem at hand. Although the optimality criterion of minimizing
the total travelled distance is the most commonly used in the VRP literature, more
recent approaches recognize the vehicle routing problem as a multi-objective opti-
mization problem. Jozefowiez et al. (2008) provide an overview of the research into
routing problems with several objectives. Important objectives, besides the minimiza-
tion of the total travelled distance, are the minimization of the number of vehicles in
use, the minimization of the total required time, the maximization of the collected
profit and some other objectives related to reaching a balance between the routes. In
order to establish a balancing objective, the workload for a route has to be defined.
It can be expressed, for example, by the number of visited customers, the quantity of
delivered goods, the route length or the required time (Borgulya, 2008; Jozefowiez
et al., 2008). Among the researchers who have worked on vehicle routing problems
considering several objectives and time windows we can mention, for instance, Hong
and Park (1999), who consider the minimization of total vehicle travel time and the
minimization of total customer waiting time. Rahoual et al. Rahoual et al. (2001)
consider objectives related to the minimization of the number of used vehicles and
the minimization of the total covered distance. More recently, Calvete et al. Calvete
et al. (2007) minimize the total operational cost, the under-utilization of labour and
the vehicle capacity. Jozefowiez et al. Jozefowiez et al. (2007) discuss the motivations
for applying multi-objective optimization on vehicle routing problems and the poten-
tial benefits of doing it. Ghoseiri et al. Ghoseiri and Ghannadpour (2010) present a
model and a solution method based on genetic algorithms to solve the multi-objective
problem considering as objectives both the total required fleet size and total travelling
distance. Melián-Batista et al. Melin-Batista et al. (2014) consider for the first time
in the literature the objective of balancing routes regarding time in conjunction with
time windows in a multi-objective context.

In this work, given the fact that the fleet of vehicles is fixed, the company might
require either minimizing the total distance or balancing time or distance if the use of
all the available vehicles is mandatory. Therefore, the company has to indicate which
principal objective function will be required. If having idle available vehicles is not
allowed, then the time/distance balance objective function will be selected as princi-
pal one. Time balance is measured as the difference between the longest and shortest
routes regarding time. Distance balance is also measured as the difference between
the longest and shortest routes regarding distance. Otherwise, minimizing the total
distance will be the principal objective function. Furthermore, a set of other objective
functions are considered together with the principal one, as explained below; particu-
larly, minimizing the number of vehicles, extra hours, postponed customers and cost.
All these functions will be used following a different lexicographic ordering of them,
depending on the particular goal in each case.

Finally, infeasible solutions are taken into consideration. Particularly, infeasibili-
ties due to the use of more vehicles than available, the extension of the time windows
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of the customers and the working shifts of the vehicles, or the postponing of cus-
tomers are tackled.

Due to the difficulty for solving VRPs to optimality, heuristics and metaheuristics
constitute an increasingly active research area in the literature. In our work, a General
Variable Neighbourhood Search algorithm (VNS) (Hansen et al., 2010b) is proposed.
The main differences between the problem tackled in this paper and the ones pro-
posed in the literature are that we consider a fixed heterogeneous fleet of vehicles,
and several real constraints/attributes. Furthermore, as far as we know, this is the first
work in the literature that uses all the previously explained attributes together.

A tremendous amount of work in the field of vehicle routing problem using VNS
has been published. Bräysy (2003) gives the internal design of the Variable Neigh-
bourhood Descent (VND) and Reduced Variable Neighbourhood Search (RVNS) al-
gorithms in detail, analyzes the VRPTW problem, and indicates the VND algorithm
as one of the most effective ways to solve VRPTW problems. Polacek et al. (2004)
design a VNS to solve the multidepot vehicle routing problem with time windows
MDVRPTW. Kytöjoki et al. (2007) design a guided VNS algorithm to handle the
32 existing large-scale VRP problems and compare it with a tabu search algorithm
(TS). The results showed that the VNS algorithm was more efficient than the TS algo-
rithm in computational time. Goel and Gruhn (2008) introduce a RVNS to solve the
general VRP problem including time windows, vehicle constraints, path constraints,
travel departure time constraints, capacity constraints, order models compatibility
constraints, multisupplier point of the orders, and transport and service position con-
straints. Hemmelmayr et al. (2009) propose a VNS algorithm for periodical VRP
problem. Fleszar et al. (2008) adopt a VNS algorithm to solve the open-loop VRP
problem and test 16 benchmark problems. In summary, several literature papers have
proved the effectiveness of developing VNS algorithms to solve a wide variety of
VRPs.

It is worth mentioning that the solution method proposed in this work, imple-
mented as a metaheuristic, has already been integrated into the optimization tool of
the fleet management system used by some companies. The fleet of a company which
wants to use this optimization tool must have the necessary devices to communicate
with the management system, and then the system will be able to use the optimiza-
tion tool and provide an optimized route plan. The optimization tool has been im-
plemented using C# and the current solution method has been implemented using
C++. Therefore, in order to integrate the metaheuristic method in the optimization
tool, a DLL has been developed. The data-interchange format used to communicate
the optimization tool with the DLL has been JSON, that is a text-based open standard
designed for human-readable data interchange. Furthermore, it is worth noting that
through the system interface, the company can activate or deactivate the consideration
of the different attributes.

The main contributions of this paper relies upon the fact that the VRPTW in-
cluding several real-world constraints required by some companies has been tackled.
Particularly, a fixed heterogeneous fleet of vehicles is considered. Moreover, since the
fleet is fixed, there might be customers which cannot be served during the planning
horizon and the so obtained infeasibility has to be managed. Two alternative solu-
tions are given in this work; allowing the drivers work after their working shift or
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maximizing the number of customers served postponing the remainder. Furthermore,
multiple objective functions are taken into consideration. The problem combines con-
straints which have not been managed all together in the literature as far as we know.
A metaheuristic solution approach based on VNS is proposed. Moreover, this op-
timization tool has been inserted into the fleet management system used by some
the companies. Computational experiments on instances based on the real ones and
standard benchmark instances, have been carried out in this paper. Since the main
goal of our work has been to embed the developed software into a commercial fleet
management tool, it is desirable to develop an algorithm that not only performs well
over the standard VRPTW instances, but also over constrained real-world problems.
Therefore, this paper is not aimed at overcoming the best standard VRPTW results,
but rather at proposing an algorithm that works effectively when a fixed heteroge-
neous fleet is used to solve real-world instances. Finally, it is worth mentioning that
the experiments performed with the fleet management system are quite promising.

The rest of the paper is organized as follows. Section 2 is devoted to describe
the real-world Fixed Heterogeneous Fleet Vehicle Routing Problem with Time Win-
dows (FHFVRPTW) tackled in this work. Section 3 thoroughly describes the General
Variable Neighbourhood Search (GVNS) algorithm developed to solve the problem at
hand. Section 4 summarizes the computational results carried out over both instances
from the literature and real-world data. Finally, the conclusions and future work are
reported in Section 5.

2 Real-world Fixed Heterogeneous Fleet VRPTW

The real-world Fixed Heterogeneous Fleet VRPTW (FHFVRPTW) tackled in this
paper is defined by means of a network G = (V,A), where V is the set of nodes, and
A is the set of arcs. It contains the depot, D, and a set of n customer nodes, C, which
represent the requests characterized by their demand, location and time windows,
which might not be unique. Customer i can have several time windows during the
day, h ∈ Hi, although it is served at maximum once during the day. The depot has an
associated time window, that is unique, and a set of m heterogeneous vehicles with
different capacities Q = {q v1, .., q vm}. Moreover, associated with each vehicle,
k, there is a working shift composed of several time intervals, h′ ∈ Hk, during the
planning horizon that can be different from one vehicle to another. With the purpose
of formally describing the FHFVRPTW, the following mixed linear integer program
is presented.

Model Parameters

– C = {1, .., n}: set of n customers.
– V = {0, n+ 1} ∪ C; set of nodes, where 0 and n+ 1 are two copies of the depot.
– si: service time of customer i ∈ C.
– qi: demand of customer i ∈ C.
– tij : travelling time between customers i ∈ V and j ∈ V , with arc (i, j) ∈ A.
– dij : travelling distance between customers i ∈ V and j ∈ V .
– K = {1, ..,m}: set of m vehicles.
– Q = {q v1, .., q vm}: capacities of the vehicles.
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– [aih, bih], with h ∈ Hi = {1, .., ni}: multiple time windows of customer i ∈ C.
– [ad0, bd0] and [adn+1, bdn+1] represent the time window corresponding to the

depot.
– [akh′ , bkh′ ], with h′ ∈ Hk = {1, .., nk}: multiple time intervals for the working

shift of vehicle k.
– M: a large amount.

Decision Variables

– xijkh′ equal to 1 if and only if vehicle k traverses arc (i, j) ∈ A in its {h′}th
working shift.

– yikhh′ equal to 1, if and only if customer i is visited by vehicle k in the hth time
window of the customer and the {h′}th working shift of the vehicle.

– ui: extra time with respect to the start of service at customer i.
– vikh′ : extra time with respect to the start of service at depot (i ∈ {n + 1}) of

vehicle k in its working shift h′.
– eikh′ : time at which vehicle k starts the service at customer i at working shift h′.

Objective Function
If the total travelled distance is considered as principal objective, the objective

function (1) is established. ∑
i∈V

∑
j∈V

dij
∑
k∈K

∑
h′∈Hk

xijkh′+

+M
∑
i∈V

ui +M
∑
k∈K

∑
h′∈Hk

vn+1kh′+

+
∑
i∈C

M(1−
∑
k∈K

∑
h∈Hi

∑
h′∈Hk

yikhh′) (1)

Constraints
Constraints (2) guarantee that the capacity of the vehicles is not exceeded in each

of the time intervals of their working shifts. Note that the vehicles can perform several
routes starting from the depot in their working shifts; one in each time interval.∑

i∈V

∑
h∈Hi

qiyikhh′ ≤ q vk,∀k ∈ K, h′ ∈ Hk (2)

Constraints (3) and (4) ensure that every customer is visited once at maximum and
that the depot is used by every vehicle k in each of the time intervals of its working
shift. Note that customers can be postponed, which is penalized in the third term of
the objective function. ∑

k∈K

∑
h∈Hi

∑
h′∈Hk

yikhh′ ≤ 1,∀i ∈ C (3)

∑
k∈K

∑
h∈Hi

∑
h′∈Hk

yikhh′ ≤
∑
k∈K

nk,∀i ∈ {0, n+ 1} (4)
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Flow conservation is guaranteed by Constraints (5) and (6).∑
i∈V

xijkh′ =
∑
h∈Hj

yjkhh′ ,∀j ∈ V \ {0}, k ∈ K, h′ ∈ Hk (5)

∑
j∈V

xijkh′ =
∑
h∈Hi

yikhh′ ,∀i ∈ V \ {n+ 1}, k ∈ K, h′ ∈ Hk (6)

The set of constraints (7) ensures feasibility with respect to time.

eikh′ + si + tij ≤ ejkh′ +M(1− xijkh′),

∀i, j ∈ V, k ∈ K, h′ ∈ Hk (7)

Constraints (8), (9) and (10) enforce the time windows of customers and working
shifts of vehicles, whose violations are penalized in the objective function.∑

h∈Hi

∑
h′∈Hk

aihyikhh′ ≤
∑

h′∈Hk

eikh′ ≤

∑
h∈Hi

∑
h′∈Hk

bihyikhh′ + ui,∀i ∈ C, k ∈ K (8)

adi ≤ eikh′ ≤ bdi + ui,∀k ∈ K, h′ ∈ Hk, i ∈ {0, n+ 1} (9)

akh′

∑
h∈Hi

yikhh′ ≤ eikh′ ≤ bkh′

∑
h∈Hi

yikhh′ + vikh′ ,

∀k ∈ K, h′ ∈ Hk, i ∈ {0, n+ 1} (10)

Finally, the following constraints, labelled as (11) to (15), impose conditions on
the variables.

xijkh′ ∈ {0, 1},∀i, j ∈ V, k ∈ K, h′ ∈ Hk (11)

yikhh′ ∈ {0, 1},∀i ∈ V, k ∈ K, h ∈ Hi, h
′ ∈ Hk (12)

eikh′ ≥ 0,∀i ∈ V, k ∈ K, h′ ∈ Hk (13)

ui ≥ 0,∀i ∈ V (14)

vikh′ ≥ 0,∀i ∈ {0, n+ 1}, k ∈ K, h′ ∈ Hk (15)
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3 General Variable Neighborhood Search for the FHFVRPTW

Exact algorithmic methodologies are not applicable when solving real-life large ve-
hicle routing problem instances. Therefore, our interest is focused on metaheuristic
methodologies that are capable of producing applicable high quality solutions within
reasonable computing times. With the purpose of obtaining high quality solutions for
the real-world problem at hand, this work proposes an algorithm based on General
Variable Neighbourhood Search (GVNS) (Hansen et al., 2010b). Variable Neighbour-
hood Search (VNS) is a metaheuristic for solving combinatorial and global optimiza-
tion problems based on a simple principle; systematic changes of neighbourhoods
within the search. Many extensions have been made, mainly to be able to solve large
problem instances (Melian, 2006; Hoeller et al., 2008; Moreno-Vega and Melian,
2008; Hansen et al., 2008, 2010a).

LetNk (k = 1, . . . , kmax) be a finite set of neighbourhood structures, andNk(s)
the set of solutions in the kth neighbourhood of a solution s. Usually, a series of
nested neighbourhoods is obtained from a single neighbourhood by taking N1(s) =
N (s) and Nk+1(s) = N (Nk(s)), for every solution s. This means that a move to
the k-th neighbourhood is performed by repeating k times a move into the original
neighbourhood. A solution s′ ∈ S is a local minimum with respect to Nk if there
is no solution s ∈ Nk(s

′) ⊆ S better than s′ (i.e., such that f(s) < f(s′) where
f is the objective function of the problem). In the implementation performed in this
work, the neighbourhoods selected for the shaking process of the VNS are not nested,
and different kinds of movements are implemented following the ideas described
by Repoussis et al. (2006). The proposed sequence of movements (kmax = 6) is
defined as follows: GENI , Or − opt, CROSS, 2 − opt, relocate and swapInter.
This sequential selection is applied based on cardinality, which implies moving from
relatively poor to richer neighbourhood structures. The GENI operator (Gendreau
et al., 1992) chooses a customer from a route and inserts it into other route between
the two closest customers to the previous one. The Or − opt operator (Or, 1976)
relocates a chain of consecutive customers of a route. TheCROSS operator (Taillard
et al., 1997) selects a subsequence of customers from a route, other subsequence
of customers from other route, and interchanges both subsequences. The 2 − opt
operator (Croes, 1958) chooses two customers of a route and inverts the sequence of
customer visited between them. The relocate operator (Cassani and Righini, 2004)
deletes a customer from a route and inserts it into another route. The swapInter
operator selects a customer from a route, other customer from other route, and swaps
them.

Additionally, let Nl, (l = 1, . . . , lmax) be the finite set of neighbourhood struc-
tures that will be used in the local search conducted by a Variable Neighbourhood De-
scent (VND). The Variable Neighbourhood Descent (VND) method is obtained if the
change of neighbourhoods is performed in a deterministic way. Its steps are presented
in Algorithm 1. The sequence of movements considered in this work (lmax = 3) is
the following: relocate, swapIntra and swapInter.

In order to solve the FHFVRPTW, we propose the GVNS metaheuristic, whose
pseudocode is shown in Algorithm 2. Once defined the neighbourhood structuresNk

and Nl in line 1, the best solution is initialized at the empty set and the stopping



10

Algorithm 1: Variable Neighborhood Descent (VND)
// Function VND(s,lmax).

1 while (improvement is obtained) do
2 Set l← 1;
3 while (l <= lmax) do
4 s′ ← argminy∈Nl(s)

f(s);
5 NeighbourhoodChange(s,s′,l); //Change neighbourhood

condition is chosen in lines 2 and 3, respectively. Then, for each iteration, an initial
solution is generated in line 5. With this purpose, an ordering of the available vehicles
is obtained according to which the vehicles are selected to create the routes. This
ordering is given taking into account the capacity of each vehicle, in such a way that
vehicles with larger capacity are selected before. If there are multiple vehicles with
the same capacity, then they will be sorted according to the number of consecutive
hours that the vehicle is available, so that vehicles having larger working shifts are
selected before. Once having the order of selection of vehicles, the routes are created
one after the other. To create a route, a vehicle and a seed customer, which will be
selected among the two customers that are the farthest from the depot, have to be
chosen. Each customer is then attempted to be inserted, but if it is not compatible
with the vehicle due to restrictions, the next vehicle in the sorted list is chosen. After
inserting the seed customer, the proposed procedure follows the Solomon algorithm
(Solomon, 1987), establishing the route locations where to insert each unplanned
customer and selecting the best customer to be inserted. When no more customers
can be inserted into the current route, a new one is created.

The process of creating a new initial solution takes into account several aspects. In
the first place, it is worth mentioning the fact that some customers cannot be assigned
to certain vehicles due to restrictions. Moreover, if the implemented Solomon heuris-
tic requires more vehicles than available, fictitious vehicles are generated. These ve-
hicles are used to create the other necessary routes and their working shifts are set
at the least restrictive values of all initial vehicles. Fictitious vehicles are also in-
cluded when the working shifts of the remaining vehicles are too restrictive to serve
the customers or when the customers are not compatible with the remaining vehicles.
Before introducing fictitious vehicles in the case in which compatible vehicles are
still available, it is checked if it is allowed to expand their working shifts obtaining
extra working hours. If this is permitted, some customers can then be assigned to the
current expanded route.

Before continuing the explanation of the procedure proposed in this work, it is
worth mentioning that even though several objective functions are considered, the
company has to indicate which is the principal objective in each case. Therefore,
the total distance, time balance or distance balance can be considered as principal
objective. In the last two cases, if the solution obtained with the procedure in line 5
uses less vehicles than available, then an empty route for each unused vehicle will be
included in the solution. The rationale behind this is that the company does not want
to have any idle available vehicle.
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Algorithm 2: General Variable Neighborhood Search (GVNS)
// Initialization.

1 Select the set of structuresNk , for k = 1, . . . , kmax, that will be used in the shaking phase, and
the set of neighbourhood structuresNl for l = 1, . . . , lmax that will be used in the local search.

2 Initialize BestSol← ∅.
3 Choose a stopping condition.
4 while (the stopping condition is not met (N is not reached)) do
5 Generate an initial solution s.

// Iterations.
6 while (the stopping condition is not met (M is not reached)) do
7 (1) Set k ← 1;
8 (2) Repeat the following steps until k = kmax:
9 (a) Shaking. Generate a point s′ at random from the kth neighbourhood of s

(s′ ∈ Nk(s)).
10 (b)Local search by VND.
11 (b1) Set l← 1;
12 (b2) Repeat the following steps until l = lmax:
13 − Exploration of neighbourhood. Find the best neighbour s of s in Nl(s);
14 − Move or not. If f(s′′) < f(s′), set s′ ← s′′ and l← 1; otherwise, set

l← l + 1;
15 (c) Move or not. If this local optimum is better than the incumbent, move there

(s← s′′), and continue the search withN1 (k ← 1); otherwise, set k ← k + 1.
16 Update BestSol.

The best solution is initialized to the empty set in line 2. The stopping condition
in line 3 consists of a number of iterations that corresponds to a parameter N that is
set in the computational experience.

The loop corresponding to lines 6-15 is performed for a number of iterations,
M , set by the computational experience. As indicated above, the sequence of neigh-
bourhoods used to carry out the shaking process in GVNS is the following: GENI,
Or-Opt, Cross, 2-Opt, Relocate and swapInter. Therefore, line 7 indicates that the first
considered neighbourhood is GENI.

The particular implementation performed in this work of these neighbourhoods
is summarized in the following items:

– GENI
In order to make this movement, the next steps are repeated a certain number of
times. Firstly, a source route must be selected among the fictitious ones, but if
there is not any fictitious route, a non empty source route is randomly selected.
Then, a destination route must be selected among the empty ones, but if there is
not any empty route, the destination route is randomly selected among the three
ones which have the closest centroid to the source route. This destination route
cannot be fictitious and must have more than one customer. Then, a customer that
can be deleted from the source route is selected among the three customers closest
to the destination route (sum of distances from this customer to all destination
route customers), and the two customers from the destination route closest to the
previous one are chosen. If some of these customers cannot be found, the process
is tried again. Otherwise, the customer from the source route is inserted between
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the two customers in the destination route. If the resulting route is infeasible, the
movement is undone and the process is tried again. If not, we eliminate the source
route from the planning if it is left empty and the main objective in optimization
is to minimize the distance or the route is fictitious.

– Or-opt
First of all, in order to perform this movement, it is necessary to check if all
routes have only two customers. In this case, this movement cannot be carried
out. Otherwise, the next steps are repeated a certain number of times. Initially,
a route with more than two customers is randomly selected. Then, two different
customers are randomly chosen from this route and a position inside the route
is selected to move this sequence of customers. At this point, the movement is
done. If the resulting route is infeasible, the movement is undone and the process
is tried again.

– CROSS
In order to perform this movement, the next steps are repeated a certain number of
times. Firstly, a source route with more than one customer is randomly selected.
Secondly, a destination route with more than one customer is randomly selected
among the three ones which have the closest centroid to the source route. Then,
two customers from the source route and two customers from the destination
route are randomly selected and the interchange is done. If any of the routes is
not feasible, the movement is undone and the process is tried again.

– 2-opt
First of all, in order to perform this movement, it is necessary to check if all
routes have only one customer. In this case, this movement cannot be carried out.
Otherwise, the next steps are repeated a certain number of times. Initially, a route
with more than one customer is randomly selected. Then, two different customers
are randomly chosen from this route and the sequence is reversed. If the resulting
route is infeasible, the movement is undone and the process is tried again.

– Relocate
In order to perform this movement, the next steps are repeated a certain number
of times. Firstly, a source route must be selected among the fictitious ones, but if
there is not any fictitious route, a non-empty source route is randomly selected.
Then, a destination route must be selected among the empty ones, but if there is
not any empty route, the destination route is randomly selected among the three
ones which have the closest centroid to the source route. This destination route
cannot be fictitious. Later, a customer which can be deleted from the source route
is selected among the three customers closest to the destination route (sum of
distances from this customer to all destination route customers), and a customer
from the destination route after which the previous one can be feasibly introduced
is chosen. If some of these customers cannot be found, the process is tried again.
Otherwise, the relocation is done, and we eliminate the source route from the
planning if it is left empty and the main objective in optimization is to minimize
the distance or the route is fictitious.

– SwapInter
In order to perform this movement, the next steps are repeated a certain number
of times. Initially, a non-empty first route is selected. Then, a second route must
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be selected among the three ones that have the closest centroid to the first route.
This second route cannot be empty. Then, a customer that can be deleted from
the first route is selected among the three closest customers to the destination
route (sum of distances from this customer to all second route customers), and a
customer that can be deleted from the second route is selected among the three
closest customers to the first route (sum of distances from this customer to all
first route customers). If some of these customers cannot be found, the process is
tried again. Otherwise, the swap is done and its feasibility is checked. If any of
the routes is infeasible, the movement is undone and the process is tried again.

– SwapIntra
First of all, in order to perform this movement, it is necessary to check if all
routes have only one customer. In this case, this movement cannot be carried out.
Otherwise, the next steps are repeated a certain number of times. Initially, a route
with more than one customer is randomly selected. Then, two different customers
are randomly chosen from this route and the swap between both customers is
done. If the resulting route is infeasible, the movement is undone and the process
is tried again.

The processes of shaking, local search and move decision in lines 9, 10 and 15,
respectively, are iteratively performed until k = kmax. In the first place, the shaking
step in GVNS generates a solution s′ at random from the kth neighbourhood of s
(s′ ∈ Nk(s)). Then, a local search based on V ND is performed from s′ to obtain
a solution s′′. The VND procedure uses the Nl neighbourhoods, which in the im-
plementation proposed for solving the FHFVRPTW consists of the next sequence of
random movements: Relocate, swapIntra and swapInter.

As indicated above, the user of the system has to indicate which the principal ob-
jective function will be among minimizing the total distance, time balance or distance
balance. In the last two cases, it is considered the difference between the largest and
shortest time/distance made by the used vehicles. Additionally, the developed GVNS
takes into consideration additional objective functions that have to be minimized us-
ing a hierarchical approach. Hierarchic evaluation means that the objective functions
are considered in a certain lexicographic order, so that if two selected solutions have
equal objective function values for a function, then the next one in the order is con-
sidered to break ties. In the case in which the total distance is the principal objective,
the lexicographic order is the following.

– Number of fictitious routes.
– Total travelled distance.
– Total number of routes.
– Salary costs incurred for expanding the working shifts of the vehicles (extra hours

are more expensive).

The case in which the principal objective function is either time or distance bal-
ance, the objective functions order is the following.

– Number of fictitious routes.
– Time/Distance balance.
– Total travelled distance.
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– Salary costs incurred for expanding the working shifts of the vehicles (extra hours
are more expensive).

Note that in this case, the number of vehicles is fixed as indicated by the company.
Therefore, minimizing the number of routes is not an objective to be considered.

The rationale behind considering the number of fictitious routes as the first objec-
tive function to be minimized is the fact that they can lead to undesirable infeasible
solutions. If the customer services assigned to fictitious routes cannot be relocated in
other routes and the company does not allow postponing them to the next day, then
an infeasible solution is obtained. This result can also be valid for the company since,
in this case, it can rent additional vehicles for a single day. In any case, a feasible
solution is always preferred.

The lexicographic order is used to carry out the exploration of the neighbourhoods
in the local search (line 11). If there are ties between different solutions with respect
to an objective function value, then the next one in the order is used to break them.
This approach, considered within VNS, has been referred as Variable Formulation
Search in the paper by Pardo et al. (2013).

After one of the N iterations, a solution to the problem, either feasible or infea-
sible, is obtained. Since several iterations are carried out to finally select the best
alternative solution for the company, in line 16, the best solution is updated. Two
different goals that substitute the minimization of the number of fictitious routes are
taken into account. The obtained lexicographic order corresponding to the travelled
distance as principal objective is the following.

– Number of postponed services.
– Number of extra hours.
– Total travelled distance.
– Number of routes.
– Salary costs incurred for expanding the working shifts of the vehicles (extra hours

are more expensive).

The obtained lexicographic order corresponding to the time/distance balance as
principal objective is the following.

– Number of postponed services.
– Number of extra hours.
– Time/Distance balance.
– Total travelled distance.
– Salary costs incurred for expanding the working shifts of the vehicles (extra hours

are more expensive).

Therefore, in order to update the best solution in line 16, it is given higher priority
to those solutions that include all the services and adjust to the working shifts of the
drivers. These two aspects are not considered while running the GVNS, since the
extra hours remain unchanged, on one hand, and determining the services belonging
to fictitious routes that can be postponed requires high computational costs, on the
other hand.
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To summarize the description of the proposed algorithm, it is noteworthy that in
order to carry out the optimization process, the system requires that the user speci-
fies the desirable principal objective function, if extra hours are permitted and what
service priorities allow postponing services.

4 Computational Experiments

This section is devoted to thoroughly describe the computational experiments carried
out in this work to assess the quality of the solutions provided by the algorithm de-
veloped to solve the real-world FHFVRPTW. Our algorithm has been coded in C++
and runs on a machine with Intel(R) Core(TM) i5-2320 CPU, 3 GHz, 6 GB of RAM.
The platform used has been Ubuntu 12.04.

First of all, the parameters of the algorithm are adjusted. Secondly, five different
experiments are executed to analyze the effect of adding to the standard VRPTW, the
real-world constraints suggested by the company. Furthermore, a comparative anal-
ysis with the best results from the literature corresponding to the standard VRPTW
Solomon benchmark instances 1 is performed. Finally, results corresponding to real
instances are also analyzed.

4.1 Parameter setting

This section reports the experiments carried out to set the parameters that appear in
the GVNS implemented in this work. Table 1 summarizes the parameters involved
into the different phases of the GVNS that have been adjusted and the values that
have been tested.

As indicated in Section 3, the Solomon heuristic has been modified to take into
consideration the additional constraints required by the company. In the particular
implementation that is proposed in this work, Solomon heuristic provides a different
solution for each execution because we have used a parameter in order to select the
seed for each route. It allows selecting a seed among the α farthest remaining cus-
tomers from the depot. After doing the corresponding executions, this parameter has
been set to α = 2 at the view of the results and the statistical test.

The movement operators used by the GVNS algorithm also need some param-
eters, which have been set. These parameters are used by movement operators that
involve two routes. Regarding the first parameter, when it is necessary to select the
second route to make the movement, this is selected among the β = 3 closest routes
to the previous one. The second parameter is used to select a customer to be deleted
from a route. This customer is selected among the γ = 3 closest feasible ones to the
route where it will be inserted. The third parameter is used to select a customer from
a route after which a previous chosen one could be inserted. This customer is selected
among the λ = 3 closest feasible ones to the previous chosen customer.

Moreover, the number of iterations, M , that the shaking, local search and move
decision processes are carried out in each iteration of the GVNS has been fixed to

1 http : //web.cba.neu.edu/ msolomon/problems.htm
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M = 20. It means that, at least, 20 points are selected from each neighbourhood in
the shaking phase.

Finally, as mentioned above, the general algorithm consists of repeating the Solomon
and GVNS algorithms for N iterations. The number of repetitions has been fixed to
N = 10 due to the good relation between the solution quality and the computational
time necessary to obtain it.

The parameter setting for the algorithms has been done using the Friedman test
(Daniel, 1990), which provides the best configuration of parameters and detects dif-
ferences or equalities among configurations. The test instances used to do this param-
eter setting have been chosen among the Solomon instances with 100 customers. Two
instances of each category have been randomly selected: C105, C107, R104, R109,
RC102, RC106, C202, C203, R208, R210, RC203 and RC204. This nonparamet-
ric statistical test has also been useful to know the best combination of operators to
be use in the local search phase of the GVNS algorithm. Note that some parame-
ters combinations are not compatible because the time needed to obtain a solution is
too high for the company, whose main requirement is to obtain a solution as fast as
possible. For example, combination of M = 40 and N = 20.

Parameter Value
α ∈ {2, 3, 4, 5}
β ∈ {2, 3, 4, 5}
γ ∈ {2, 3, 4, 5}
λ ∈ {2, 3, 4, 5}
M ∈ {5, 10, 20, 30, 40}
N ∈ {1, 5, 10, 15, 20}

Table 1: Parameter values used in the GVNS algorithm

4.2 Constraints Effects

Since the problem tackled in this paper takes into account several constraints and the
instances in the literature are not prepared to consider all of them together, a set of
experiments has been carried out using four test problem instances based on the real
data provided by a company in the Canary Islands. These instances, which consist
of 100 customers, have been used to show the different behaviours obtained by the
algorithm depending on the constraints that are taken into consideration. They are
available in https://sites.google.com/site/gciports/vrptw/hfvrptw.

The first experiment reported in this section corresponds to the selection of the
principal objective function to be minimized: Total Distance, Time Balance or Dis-
tance Balance. On one hand, if the objective function Total Distance is chosen, the
total travelled distance will be optimized, but the balanced time obtained will be
worse than the one obtained using Time Balance as objective function, and the bal-
anced distance will be worse than the one obtained using Distance Balance as ob-
jective function. On the other hand, if either the objective function Time Balance or
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Distance Balance is chosen, all vehicles will be used, such as required by the com-
pany. In case of Time Balance, the balancing of time among vehicles will be opti-
mized, and in case of Distance Balance, the balancing of travelled distance will be
optimized. For the next experiments, the Total Distance objective function is used,
since it is usually the most common and demanded one. Table 2 summarizes the
results obtained from the analysis of the principal objective function. The first two
columns indicate the instance under consideration (N1 to N4), number of postponed
services, extra time required by the vehicles, time balance, distance balance, cost,
total distance and number of routes in the obtained solutions. Time is expressed in
seconds and distance in meters. Last three columns report the data obtained when
Total Distance, Time Balance and Distance Balance are considered as principal ob-
jective functions, respectively. As shown in Table 2, in general, when an objective
function is selected as principal one, the best value of this objective is achieved in
each case. Moreover, the best cost is always obtained using the Total Distance objec-
tive function, since the total time spent doing less routes is usually lower.

Total Distance Time Balance Distance Balance
Postponed services 0 0 0
Extra time 0 0 0

N1 Time balance 33602 6779 23485
Distance balance 231363 203177 1261
Cost 5834.08 7490.67 7407.17
Distance 1.0323e + 06 2.11398e + 06 2.16066e + 06
Routes 7 10 10
Postponed services 0 0 0
Extra time 0 0 0

N2 Time balance 17837 484 21989
Distance balance 223827 370569 7738
Cost 5054.83 6855.08 7231.36
Distance 862046 1.94522e + 06 2.17563e + 06
Routes 6 10 10
Postponed services 0 0 0
Extra time 0 0 0

N3 Time balance 17354 1256 49800
Distance balance 243031 256063 2331
Cost 5474.00 7406.53 7893.19
Distance 1.03364e + 06 1.69382e + 06 2.14595e + 06
Routes 6 10 10
Postponed services 0 0 0
Extra time 0 0 0

N4 Time balance 14887 377 26022
Distance balance 201456 223874 6770
Cost 5300.86 6679.25 7242.97
Distance 962762 1.98046e + 06 1.89009e + 06
Routes 7 10 10

Table 2: Effects of the principal objective function

The second experiment summarized in Table 3 corresponds to the use of a hetero-
geneous fleet regarding capacity. If we use vehicles with a high capacity (i.e. 500),
we will need a small number of vehicles, but when the capacity is lower (i.e. 200), we
will need more vehicles, and therefore, more routes to serve all customers. However,
when there is a mix of vehicles with different capacities (i.e. a half of 500 and a half
of 200, which corresponds to the case of Mixed Capacities 1 in the table), the result
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High Low Mixed Mixed
Capacity Capacity Capacities 1 Capacities 2

Postponed services 0 0 0 0
Extra time 0 0 0 0

N1 Time balance 16541 45605 38572 44478
Cost 6099.47 8383.39 6322.69 7694.36
Distance 989247 1.21453e + 06 1.0509e + 06 1.09895e + 06
Routes 7 11 7 10
Postponed services 0 0 0 0
Extra time 0 0 0 0

N2 Time balance 15062 23876 21769 30944
Cost 5044.47 7829.89 5333.61 5745.78
Distance 858015 1.34123e + 06 860895 934271
Routes 6 12 6 9
Postponed services 0 0 0 0
Extra time 0 0 0 0

N3 Time balance 37435 19955 21534 26135
Cost 6146.00 8202.14 5924.33 6824.64
Distance 867274 1.10491e + 06 879834 961474
Routes 6 11 7 9
Postponed services 0 0 0 0
Extra time 0 0 0 0

N4 Time balance 18032 20459 14304 21417
Cost 5320.81 8800.92 5668.25 6617.17
Distance 969013 1.34612e + 06 1.00986e + 06 1.06245e + 06
Routes 7 12 7 10

Table 3: Effects of using a heterogeneous fleet of vehicles with different capacities

will involve the vehicles with a higher capacity and there will be a smaller number
of routes. If the number of vehicles with high capacity is reduced, i.e. three vehicles
of 500 and the rest of vehicles of 200, which corresponds to the case of Mixed Ca-
pacities 2 in the table, the vehicles with higher capacity will be used first and then
the rest of vehicles, and the number of routes will be intermediate. In any case, using
vehicles with high capacity is associated with a shorter distance travelled.

The third experiment, which is reported in Table 4, corresponds to the use of a
heterogeneous fleet with regard to the working shifts. If the vehicles have restricted
working shifts (narrow and multiple time intervals within working shifts) and extra
hours are permitted, the results will contain extra hours and more routes than the nec-
essary in the case of homogeneous fleet. Nevertheless, if extra hours are not allowed,
but the priorities do allow postponing customers for the next day, the routes will
not include the postponed customers. In case of having vehicles with short working
shifts and vehicles with large working shifts, the routes will be done by the vehicles
with larger working shifts. This involves the lowest number of routes and distance. If
we compare the first two cases with restricted windows, we observe that postponing
customers when it is possible involves lower travelled distance and cost. However,
the number of postponed customers is very small in relation to the total number of
customers.

The fourth experiment reported in Table 5 corresponds to the use of narrow and
multiple time windows for most of the customers. In this case, if priorities allow post-
poning customers, the number of postponed services will increase, and additionally
the total travelled distance is higher.
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Restricted windows Restricted windows Mixed windows
Extra time permitted Postponing permitted

Postponed services 0 3 0
Extra time 2039 0 0

N1 Time balance 21172 14549 27252
Cost 6278.89 5907.03 5777.33
Distance 1.11156e + 06 1.02771e + 06 1.02485e + 06
Routes 10 8 7
Postponed services 0 2 0
Extra time 1222 0 0

N2 Time balance 21846 25974 21549
Cost 5837.17 5418.86 5382.89
Distance 1.45060e + 06 1.17176e + 06 856805
Routes 10 9 6
Postponed services 0 2 0
Extra time 2073 0 0

N3 Time balance 11917 26434 31533
Cost 5246.50 5099.69 6008.39
Distance 1.01146e + 06 969548 870132
Routes 8 8 7
Postponed services 0 1 0
Extra time 1038 0 0

N4 Time balance 21758 28301 15867
Cost 5998 5904.5 5263.69
Distance 1.29676e + 06 1.14511e + 06 963579
Routes 10 9 7

Table 4: Effects of using a heterogeneous fleet of vehicles with different working
shifts

Non-restricted Restricted
customer windows customer windows

Postponed services 0 5
Extra time 0 0

N1 Time balance 33602 33382
Cost 5834.08 9265.47
Distance 1.0323e + 06 1.66452e + 06
Routes 7 10
Postponed services 0 3
Extra time 0 0

N2 Time balance 17837 35661
Cost 5054.83 9829.08
Distance 862046 1.63362e + 06
Routes 6 10
Postponed services 0 5
Extra time 0 0

N3 Time balance 17354 26273
Cost 5474.00 10676.2
Distance 1.03364e + 06 1.54976e + 06
Routes 6 10
Postponed services 0 3
Extra time 0 0

N4 Time balance 14887 25024
Cost 5300.86 7086.28
Distance 962762 1.52592e + 06
Routes 7 10

Table 5: Effects of using customers with restricted time windows

4.3 Comparative with the literature

This section summarizes the comparison over the standard Solomon instances of 100
customers. Note that the algorithm proposed in this work is thought to solve the FH-
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FVRPTW with the inclusion of all the real-world constraints explained in previous
sections. Therefore, the method is not supposed to be the most competitive over these
instances, particularly due to the fact that real instances have different features. Ta-
ble 6 summarizes the comparative, in which average values of number of vehicles
(NV ) and traveled distance (TD) are reported. The first column shows the Solomon
instance category. Note that in the worst case, the deviation is equal to 7.5987%, and
the deviations average is 4.49%. Finally, Tables 7 and 8 show the results obtained by
the proposed GVNS for all the standard Solomon instances. The best literature results
are the ones reported at Solomon’s web page, derived from 23 different algorithms,
and these results have been updated with the best results extracted from Hong (2012)
and Gong et al. (2012). We compared these results with our best results obtained from
15 executions of each instance. Finally, notice that this paper is not aimed at overcom-
ing the best results for the standard Vehicle Routing Problem with Time Windows,
but rather at proposing an intelligent algorithm that works effectively when a fixed
heterogeneous fleet is used to solve a real-world problem. However, the GVNS algo-
rithm provides solutions for some instances that overcome the best known literature
results. These improvements are marked in bold in the TD column in Tables 7 and
8. The fifth column of these tables shows the time (in seconds) needed to obtain the
solutions using the GVNS algorithm. A total average of 12 minutes are needed to
obtain the result of a Solomon instance, with an average deviation of 3 minutes.

NV TD Best NV Best TD Dev.
C1 10.00 838.45 10.00 828.38 1.22
R1 14.08 1263.07 11.91 1203.16 4.98
RC1 13.62 1409.31 12.00 1345.56 4.74
C2 3.12 632.90 3.00 589.85 7.30
R2 5.00 1019.38 3.00 941.87 8.23
RC2 6.00 1151.08 3.62 1111.99 3.52
Avg. 5.00

Table 6: Computational results of the standard static Solomon instances

Although this has been the solution proposed to the real company, other ap-
proaches can be developed in order to improve the average deviation for the standard
instances which do not include all the real-world constraints. Until the moment, the
used VND process has made movements in or between routes choosing routes and
customers randomly. However, it is possible to explore the search space more deeply
in order to choose the movement of customers which involves the shortest distance.
This process would take much more time, and for this reason it would not be suitable
for the real company. Nevertheless, a combination of both processes can be carried
out trying to keep similar times. Furthermore, we can stop the search with the first
best solution found.

Taking into account all these aspects, three more approaches have been devel-
oped. Parameters M and N have been adjusted using Friedman test, among the ones
that keep similar times to the original process. For the first tested approach, the re-
location movement has been applied in its best first solution version, instead of the
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NV TD Dev Time Best NV Best TD
C101 10 828.94 0.00 882.99 10 828.94
C102 10 828.94 0.00 671.19 10 828.94
C103 10 841.87 1.64 495.17 10 828.06
C104 10 877.48 6.01 371.72 10 824.78
C105 10 828.94 0.00 576.09 10 828.94
C106 10 828.94 0.00 594.53 10 828.94
C107 10 828.94 0.00 587.57 10 828.94
C108 10 828.94 0.00 737.72 10 828.94
C109 10 853.10 0.00 443.94 10 828.94
average 10.00 838.45 1.16 595.66 10.00 828.38
R101 21 1714.83 1.16 825.56 18 1612.29
R102 19 1536.73 5.98 805.46 16 1473.41
R103 16 1351.30 4.12 480.30 12 1279.37
R104 12 1034.33 5.32 428.76 9 1007.24
R105 15 1446.98 2.62 543.20 14 1377.11
R106 14 1325.66 4.83 647.24 12 1251.98
R107 13 1173.22 5.56 551.50 10 1104.66
R108 10 1001.45 5.84 604.66 9 960.88
R109 14 1231.90 4.05 741.58 12 1179.73
R110 13 1171.45 4.23 814.31 11 1113.10
R111 12 1136.10 4.98 529.36 10 1096.72
R112 10 1032.96 3.47 679.97 10 981.46
average 14.08 1263.07 4.67 637.66 11.91 1203.16
RC101 17 1704.13 3.69 634.24 15 1641.20
RC102 14 1702.39 3.68 944.86 13 1447.14
RC103 13 1502.39 8.18 769.88 11 1261.67
RC104 11 1374.14 6.81 443.73 10 1135.48
RC105 17 1218.49 5.67 657.47 13 1502.48
RC106 14 1592.39 2.39 685.49 12 1406.25
RC107 12 1440.72 3.06 674.63 11 1230.48
RC108 11 1269.29 2.79 916.62 11 1139.82
average 13.62 1409.31 4.53 715.86 12.00 1345.57

Table 7: Computational results of the standard static Solomon instances

original VND. Parameters N and M have been set to 5 and 7, respectively. Results
are shown in Table 4.3. The average deviation decrease from 5.00 to 2.55 using this
approach, demonstrating that it is possible to improve the behaviour with the standard
instances in the literature which do not include all the real-world constraints.

The second tested approach applies the relocation movement in its greedy version
and the original VND half and half. Parameters N and M have been set to 2 and 9
respectively. This way, results in Table 9 are obtained, where the average deviation
is reduced to 1.49 for the standard instances. These results are better than the ones
obtained if the relocation movement, in its greedy version, is applied only at some
steps of the GVNS, for example, when k = 3 or k = 6 in the shaking process. In this
case, parameters N and M have been set to 3 and 9 respectively. Table 10 depicts
these results, where the average deviation is 3.55.

Therefore, the best approach to use with the standard instances in the literature is
the one that combines the original VND proposed in this paper and the greedy version
of the relocation movement, half and half.
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NV TD Dev Time Best NV Best TD
C201 3 591.56 0.00 1227.49 3 591.56
C202 3 593.00 0.24 1024.55 3 591.56
C203 4 645.11 8.36 429.08 3 591.17
C204 3 739.08 20.09 485.42 3 590.60
C205 3 609.76 3.42 1102.27 3 588.88
C206 3 627.08 6.15 1231.16 3 588.49
C207 3 621.04 5.27 1083.53 3 588.29
C208 3 636.59 7.58 1824.30 3 588.32
average 3.12 632.90 6.39 1050.97 3.00 589.86
R201 8 1273.71 1.68 1046.62 4 1252.37
R202 5 1104.19 -7.93 673.37 3 1191.70
R203 5 1024.89 8.33 662.63 3 939.54
R204 4 919.30 12.34 592.82 3 801.68
R205 5 1096.91 9.34 1359.37 3 994.42
R206 4 1033.68 12.34 672.00 3 906.14
R207 6 976.61 13.60 721.40 3 843.77
R208 4 836.33 13.10 678.42 2 726.75
R209 5 982.15 7.43 569.57 3 909.16
R210 5 1033.85 9.14 720.96 3 939.34
R211 4 931.62 8.14 827.22 3 855.76
average 5.00 1019.38 8.00 774.94 3.00 941.88
RC201 8 1359.16 -2.94 494.59 5 1399.16
RC202 7 1236.83 -10.53 756.81 3 1367.09
RC203 5 1059.39 0.92 653.92 3 1049.62
RC204 5 937.70 18.00 643.13 3 798.41
RC205 7 1232.68 -2.98 587.91 5 1269.38
RC206 6 1231.54 8.81 758.65 4 1122.99
RC207 6 1140.10 6.93 630.69 3 1061.14
RC208 4 975.22 15.08 1962.08 3 828.14
average 6.00 1151.08 4.16 810.97 3.62 1111.99

Table 8: Computational results of the standard static Solomon instances

NV TD Best NV Best TD Dev.
C1 10.00 837.28 10.00 828.38 1.07
R1 13.91 1233.55 11.91 1203.16 2.53
RC1 13.50 1395.71 12.00 1345.56 3.73
C2 3.25 619.32 3.00 589.85 5.00
R2 5.90 975.47 3.00 941.87 3.57
RC2 6.25 1105.87 3.62 111.99 -0.55
Avg. 2.55

Table 9: Computational results of the standard static Solomon instances applying first
best solution approach

Finally, it is important to note that the number of vehicles used is not important
for the real company referenced in this paper, since it has a fixed fleet of vehicles
with a fixed number of drivers. However, if the number of vehicles had to be reduced,
a number of routes reduction algorithm would have to be applied before the GVNS
algorithm. This process usually involves a high increase of computational time, and
for this reason it is not suitable for the real company, whose main requirement is
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NV TD Best NV Best TD Dev.
C1 10.00 833.62 10.00 828.38 0.63
R1 13.83 1230.08 11.91 1203.16 2.24
RC1 13.62 1395.82 12.00 1345.56 3.74
C2 3.12 611.32 3.00 589.85 3.64
R2 5.27 956.27 3.00 941.87 1.53
RC2 6.12 1080.76 3.62 111.99 -2.81
Avg. 1.49

Table 10: Computational results of the standard static Solomon instances applying
best solution and original VND half and half

NV TD Best NV Best TD Dev.
C1 10.00 849.92 10.00 828.38 2.60
R1 14.08 1236.74 11.91 1203.16 2.79
RC1 13.63 1404.58 12.00 1345.56 4.39
C2 3.13 629.78 3.00 589.85 6.77
R2 5.64 987.20 3.00 941.87 4.81
RC2 6.13 1111.60 3.62 1111.99 -0.04
Avg. 3.55

Table 11: Computational results of the standard static Solomon instances applying
best solution for k = 3 and k = 6

NV TD Best NV Best TD Dev.
C1 10.00 841.37 10.00 828.38 1.57
R1 13.08 1224.68 11.66 1204.93 1.64
RC1 12.87 1405.49 11.50 1368.29 2.72
C2 3.12 621.50 3.00 589.86 5.36
R2 3.36 1079.87 2.73 951.91 13.44
RC2 4.12 1245.58 3.25 1119.35 11.28
Avg. 6.00

Table 12: Computational results of the standard static Solomon instances applying
routes reduction algorithm

to obtain a fast solution with a high quality. Nevertheless, the reduction of routes
process proposed by Nagata and Bräysy (2009) has been implemented in order to
check this option. For this purpose, the parameter setting has been made taking into
account that both together, reduction of routes algorithm and the original algorithm
proposed in this paper, do not overpass the times of the original approach. Results for
the standard static Solomon instances are shown in Table 11. Distance deviations are
not good enough due to the short computational time which can be used. The time
needed for both the reduction of routes algorithm and the original GVNS algorithm
to obtain high quality solutions need to be increased, but, as said before, the real
company requires a quick algorithm and has a fixed fleet of vehicles. Therefore, this
reduction of routes has not been included in the final algorithm. Note that some best
known results are different in the last table. In the related literature there are results
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for the standard instances which involve less number of routes although the total
distances increase. These results have been used in this last table, because we are
applying a process of reduction of routes and it is more suitable.

4.4 Results for real instances

This section is devoted to show results corresponding to real data. In the first place,
the solutions provided by the proposed GVNS are compared with the solution imple-
mented by a company for a real instance, which consists of 109 customers. Table 12
summarizes the best solutions obtained by GVNS when considering the total distance
objective function, and the best solution implemented by the company. Moreover, the
time/distance balance associated to the solutions are also reported. The first row of the
table corresponds to the best solution obtained by GVNS if the total distance is con-
sidered as objective function. The second row shows the solution obtained by GVNS
consisting of 6 routes, which is the number of vehicles of the company solution. The
third row shows the company solution.

From these results, we may conclude that the solution implemented by the com-
pany is worst than the solutions obtained by GVNS if the total distance objective and
the number of routes are taken into consideration. Note that our second obtained so-
lution is better in total distance, time and distance balance than the one that had been
implemented by the company, and our first obtained solution provides the lowest total
distance although it presents the worst time balance.

Distance Time balance Distance balance Nr. routes
GV NS 852.7 37200 196.5 7
GV NS 858.9 12840 125.3 6
Real Sol 1247.3 14040 228.5 6

Table 13: Best solutions reached for the real instance using the total distance as prin-
cipal objective function

Finally, since the image corresponding to the solution N1 is confusing due to
the large number of routes, the solution to an instance based on N1 consisting of 50
customers is shown in Figure 2, in which its 5 routes are depicted over the map of the
island of Tenerife.

5 Conclusions

This work tackles a real-world rich vehicle routing problem proposed by a company
in Spain that combines multiple attributes together, which aim to better consider the
specificities of real applications. Particularly, it has been developed an efficient solu-
tion method to solve the Fixed Heterogeneous Fleet Vehicle Routing Problem with
Time Windows (FHFV RPTW ). The attributes considered by the company consist
of a fixed heterogeneous fleet of vehicles, soft and multiple time windows for cus-
tomers, soft and multiple time intervals in the working shifts for vehicles, customers
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priorities and vehicle-customer constraints, which to the best of our knowledge have
not been taken into account all together in the literature. Given the fact that the com-
pany might require to either consider or not all these attributes, the fleet management
system allows deactivating any of the mentioned attributes. Since exact algorithms
are not applicable when solving real-life large vehicle routing problem instances, the
focus of this work is put on the use of metaheuristic procedures. Particularly, this
paper proposes a General Variable Neighbourhood Search (GVNS) metaheuristic,
which is able to obtain high quality solutions that are valid for the company. The
computational experience carried out in this work, which includes the analysis of the
effect of the different attributes taken into consideration, the comparative with the
literature for the standard vehicle routing problem with time windows, and the study
of the solutions provided by the algorithm when compared with the solutions imple-
mented by the company, corroborate the effectiveness of the developed software. It
is worth to mention that the algorithm has been integrated into a fleet management
system and several tests with real companies have been conducted. Finally, the next
phase of this work is to dynamically route new customers which appear over the plan-
ning horizon. It means that, once the initial routes have been specified and vehicles
start to make their work, new customers can ask for service. At this point real time
communication between vehicles and the fleet management system is required.
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Gendreau, M., Potvin, J.-Y., Bräumlaysy, O., Hasle, G., and Løkketangen, A. (2008).
Metaheuristics for the vehicle routing problem and its extensions: A categorized
bibliography. Springer.

Gendreau, M. and Tarantilis, C. D. (2010). Solving large-scale vehicle routing prob-
lems with time windows: The state-of-the-art. CIRRELT.

Ghoseiri, K. and Ghannadpour, S. F. (2010). Multi-objective vehicle routing problem
with time windows using goal programming and genetic algorithm. Applied Soft
Computing, 10(4):1096–1107.

Glover, F. (1986). Future paths for integer programming and links to artificial intelli-
gence. Computers & Operations Research, 13(5):533–549.

Goel, A. and Gruhn, V. (2008). A general vehicle routing problem. European Journal
of Operational Research, 191(3):650–660.



27

Golden, B. L., Raghavan, S., and Wasil, E. A. (2008). The vehicle routing problem:
latest advances and new challenges, volume 43. Springer.

Gong, Y.-J., Zhang, J., Liu, O., Huang, R.-Z., Chung, H.-H., and Shi, Y. (2012). Op-
timizing the Vehicle Routing Problem With Time Windows: A Discrete Particle
Swarm Optimization Approach. Systems, Man, and Cybernetics, Part C: Applica-
tions and Reviews, IEEE Transactions on, 42(2):254–267.

Hansen, P., Mladenovic, N., Brimberg, J., and Moreno Pérez, J. (2010a). Handbook
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