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Abstract 
 

The conventional bee colony optimization (BCO) algorithm, one of the recent swarm 

intelligence (SI) methods, is good at exploration whilst being weak at exploitation. In order to 

improve the exploitation power of BCO, in this paper we introduce a novel algorithm, dubbed 

as  weighted BCO (wBCO), that allows the bees to search in the solution space deliberately 

while considering policies to share the attained information about the food sources heuristically. 

For this purpose, wBCO considers global and local weights for each food source, where the 

former is the rate of popularity of a given food source in the swarm and the latter is the relevancy 

of a food source to a category label. To preserve diversity in the population, we embedded new 

policies in the recruiter selection stage to ensure that uncommitted bees follow the most similar 

committed ones. Thus, the local food source weighting and recruiter selection strategies make 

the algorithm suitable for discrete optimization problems. To demonstrate the utility of wBCO, 

the feature selection (FS) problem is modeled as a discrete optimization task, and has been 

tackled by the proposed algorithm. The performance of wBCO and its effectiveness in dealing 

with feature selection problem are empirically evaluated on several standard benchmark 

optimization functions and datasets and compared to the state-of-the-art methods, exhibiting the 

superiority of wBCO over the competitor approaches. 
 

Keywords: Bee Colony Optimization; Categorical Optimization; Classification; Feature Selection; Weighted Bee 

Colony Optimization. 

 

1. Introduction 

 

Swarm intelligence (SI) is one of the well-known classes of optimization and refers to 

algorithms relying on the intelligence of a swarm to locate the best parts of the solution space. 

Particle swarm optimization (PSO) [1], ant colony optimization (ACO) [2] and BCO [3] [4], are 

examples of SI algorithms. Many problems such as text clustering [5], feature selection [6] [7] 

[8], etc., can be modeled as discrete optimization problems and solutions obtained through SI 

algorithms. 
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BCO is one of the most recent developments of swarm intelligence proposed by Teodorovic 

and colleagues [4], which has been successfully applied to many fields of science including 

image analysis [9], bioinformatics [10], etc. The algorithm simulates the natural behavior of the 

bees in locating food resources. In summary, the BCO algorithm has five main stages: 1) 

initialization, 2) solution creation, 3) fitness assessment, 4) loyalty measurement, and 5) 

recruiters selection. 

In the first step, the algorithm parameters are initialized (initialization). Then in the second 

step the solutions are created, partially in the sense that the whole solution will not be created at 

once while during several forward and backward steps a complete solution will be created 

(solution creation). In BCO a forward step occurs once the bees leave their hive to create 

solutions and explore the solution space, while the backward stage occurs once the bees return to 

their hive to measure the goodness of the produced solutions, share the attained information and 

finally select the follower and recruiters.  

During the solution creation steps, after each forward movement, the bees return to their hive 

to assess the solutions (fitness assessment). The fitness assessment occurs in the backward step, 

where each bee also measures how loyal it is to the created partial solution (loyalty 

measurement). Finally, before performing the next forward movement, the bees must be divided 

into two sets of committed (recruiter) and uncommitted (followers) bees to decide which bees 

will follow the other bees (recruiter selection). Within a generation the algorithm iterates 

between the second and the fifth stages until all the bees create their full solutions. For further 

details about BCO interested readers may refer to the work of Forsati and colleagues [11]. 

The advantage of BCO is its ability in tuning the search direction in the early stages of 

exploration, while other SI algorithms such as ACO require full traversals by all ants to adjust 

pheromone weights accurately and finally identifying the worthwhile exploration paths. Once the 

bees perform the backward movement they in fact try to distinguish worthwhile and non-

worthwhile solution paths. This action allows the search direction to be tuned toward the most 

optimal parts of the solution space found so far. Similarly, PSO has the same characteristic, in 

which the flock of birds flies toward the global and/or local best solutions while exploring the 

solution space. 

Mainly swarm intelligence algorithms (including BCO) rely on randomness to search the 

solution space. This might give absolute freedom to the swarm to search the solution space, but 

randomness might degrade the exploitation ability of BCO, in the sense that the worthwhile parts 

of the space remain undiscovered or unintentionally ignored. In other words, the bee colony has 

weak exploitation ability while having a good level of exploration [12]. Therefore to increase the 

exploitation ability of BCO, we introduce a new variation called weighted bee colony 

optimization (wBCO) which considers new policies in measuring the loyalty degrees of the bees 

and also recruiter selection. The formulation of recruiter selection will make the algorithm 

applicable for classification and regression problems. 

 

As explained, each backward step has three stages: fitness assessment, loyalty 

assessment, and recruiter selection. In the backward step for wBCO, where the bees measure 

how loyal they are to their created (partial) solutions, the algorithm considers two weights for 

each food source. One is a global weight, which measures how popular a given food source is in 

the swarm and the other is a local weight, which indicates the extent to which a selected food 

source can contribute to the category label of the classification problem. In the recruiter selection 



step, in order to preserve diversity the followers select their recruiters in a filtering stepwise 

process. We apply two filtering stages; one is based on similarity, and the other based on fitness 

values. In similarity filtering, for a given follower a set of recruiters is selected based on the 

traversal similarity and then the follower selects a recruiter bee which has the closest fitness 

value. This recruiter selection strategy is only applicable if the variables of a classification 

problem only accept discrete values (e.g., integers, binary, letters).  

 

To investigate the effectiveness of the proposed algorithm in application, we further 

applied the proposed wBCO to feature selection (FS) and modeled the curse of dimensionality as 

a discrete optimization task to investigate if wBCO can have applicability in classification tasks. 

Also, other applications such as text classification can be modeled using wBCO, but as a result of 

wide applications of FS including bioinformatics [13], systems monitoring [14], text mining 

[15], image processing [16], etc., we decided to model FS as a discrete optimization task with 

wBCO. The new feature selection algorithm is called FS-wBCO and successful implementation 

of FS-wBCO will indicate that the proposed wBCO is also applicable in the fields relying on FS. 

The contributions of this paper are summarized as follows. 

 

· Modifying the loyalty assessment of the original BCO with the aim of using heuristics to 

weight the worth of each selected food source and consequently improving the 

exploitation power of BCO. For this purpose we use the global and local weight of a 

selected food source. 

· In the introduced weighting scheme, each selected food source has two weights: local and 

global. In the former the algorithm measures how popular the food source is in the 

swarm, while in the latter the algorithm determines the extent to which the selected food 

source is relevant to a category label. 

· In line with exploitation improvements, we modify the recruiter selection of the original 

BCO with the aim of using heuristics to preserve diversity in the bees’ population by 
assigning each uncommitted bee to the most similar committed one. 

· To investigate the utility of wBCO, feature selection is modeled as a discrete optimization 

problem resulting in another algorithm known as FS-wBCO. Experiments are carried out 

to investigate the efficacy of both wBCO and FS-wBCO. 

 

The rest of the paper is organized as follows: Section 2 briefly reviews some of the recent 

literature in the area of bee colony improvements. In Section 3, the new bee colony optimization 

algorithm, wBCO, is proposed. In Section 4, the application of wBCO for feature selection is 

introduced. Section 5 provides some experimentation to show the effectiveness of wBCO and the 

feature selection algorithm (FS-wBCO) and finally Section 6 concludes the paper and lists future 

work. 

 

  



2. Literature review 

 

As we are introducing a new BCO algorithm, the focus of this section is on some of the 

recent developments of bee colony-based algorithms. Regarding feature selection algorithms, 

interested readers can refer to [17]. In the literature, two approaches to bee colony-based 

algorithms are proposed. One is the artificial bee colony (ABC) algorithm proposed by Karaboga 

and colleagues [18] [19] and the other is BCO proposed by Teodorovic and colleagues [4]. As 

both of the algorithms rely on the natural behavior of the bees, we also consider the ABC 

algorithm in this paper. 

As shown in Table 1, bee colony improvements mainly aim at improving either the 

exploration or the exploitation of the algorithm. Hence in this review, we divide the bee colony 

improvements into these two categories. A third category is related to algorithms targeting 

improvements in both exploration and exploitation powers of BCO. 

Table 1 – An overview of the reviewed articles 

Articles Exploration Exploitation 

Integrated 

(exploration and 

exploitation) 

Kumar and colleagues [20] √   

Lu and colleagues [21]   √ 

Huang and Lin [22] √   

Kumar [23]   √ 

Forsati and colleagues [11]   √ 

Alzaqebah and Abdullah [24]  √  

Karaboga and Akay [25]   √ 

Gao and Liu [26] √   

Li and colleagues [27]  √  

Akbari and colleagues [28]   √ 

Imanian and colleagues [29]  √  

Alatas [30]  √  

Kashan and colleagues [31]   √ 

wBCO  √  
 

There are some BCO algorithms focusing on improvements of exploration power. Gao and 

Liu [26] proposed IABC that uses differential evolution, which is suitable for global 

optimization. The paper proposes two different variations namely ABC/rand/1 and ABC/best/1.In 

order to benefit from the advantages of both variations and to reduce the shortcomings, the 

authors propose a selective probability p to obtain a new search mechanism. In addition, to 

enhance the global convergence speed, when producing the initial population, both the chaotic 

systems and the opposition-based learning method are used. 

 

Open shop scheduling (OSSP) is one of the most time-consuming tasks in scheduling 

problems which can also benefit from BCO algorithms. The range of the solution space is 

technically downsized by many artificial intelligence algorithms but in most scheduling 

algorithms every partial solution still needs to be completely solved before this solution can be 

evaluated. In order to tackle this, Huang and Lin [22] propose a new bee colony optimization 

algorithm, with an idle-time-based filtering scheme, according to the inference of “the smaller 
the idle-time, the smaller the partial solution”, and “the smaller the make span will be”. It can 
automatically stop searching for a partial solution with insufficient profitability while the 



scheduler is creating a new scheduling solution, and consequently save time–cost for the 

remaining partial solution. 

 

Forsati and colleagues [11] introduce a new bee colony algorithm called improved BCO 

(IBCO) and applied it to text clustering problem. The algorithm uses two concepts of cloning and 

fairness to improve exploration and exploitation power of the bees. Through cloning the 

algorithm uses the information of previous traversals when it is creating a new solution. Fairness 

gives every bee the chance to be followed. However the algorithm still suffers from entrapment 

in local optima. To overcome this problem IBCO was integrated with k-means, and four different 

variation introduced. 

 

Also there are other type of algorithms focusing on exploitation improvements. Alzaqebah 

and Abdullah [24] proposed a new BCO based variation and utilize it to solve the examination 

scheduling problem. The authors think that selection of a recruiter that searches for a food source 

or a follower based on a roulette wheel is a drawback. Hence they introduce three selection 

strategies of tournament, rank, and disruptive selection (DBCO) to overcome this defect and 

preserve diversity in the population.  

 

Li and colleagues [27] proposed another algorithm called improved ABC (I-ABC). The 

algorithm uses the best-so-far solution, inertia weight, and acceleration coefficients to modify the 

search process. The purpose of the introduction of the inertia weight and acceleration coefficients 

is to use them as fitness functions. I-ABC is good in finding the global optimum and 

convergence speed. In order to have a successful application to optimization problems, a 

population-based optimization algorithm that realizes rapid convergence and high diversity is 

needed. At the same time, a good population-based optimization algorithm should have a stable 

performance regardless of initial population selection. In order to achieve these goals and 

combine the advantages of I-ABC, ABC and the best-so-far solution, the authors introduced a 

compounding high-efficiency ABC algorithm with the abilities of prediction and selection (PS-

ABC). 

 

Imanian and colleagues [29] proposed a new velocity based ABC algorithm (VABC), to 

overcome the weakness of ABC in exploitation, through applying a new search equation in the 

onlooker phase. The modified strategies are introduced to focus the new candidate solution 

towards the global best solution. The work is inspired by the search mechanism of PSO, in which 

a new neighborhood search strategy is proposed for onlookers. The aim of the approach of 

Imanian and colleagues is to combine the exploration process of ABC and the exploitation 

strategy of PSO to improve the optimization process. Hence, the authors consider three main 

steps in their algorithm. In the first step, the employed bees go on to their food sources and 

evaluate their nectar amounts and then share the nectar information of the sources with 

onlookers. In the second step, the best solutions explored in the history are used to direct the 

movement of the population. To this end, the explored solutions will be chosen depending on the 

probability values associated with the solutions based on their corresponding fitness values. 

Finally, in the third step, when the food source positions are not replaced continuously over the 

predefined number of trials limit, employed bees will abandon the food source positions and 

become scout bees. Another example of chaotic based improvements can be found in the work 

presented by Alatas [30] in which the author proposed seven new chaotic based bee colony 

algorithms. 

 

 



There are some algorithms focusing on improvements of BCO exploration and exploitation 

powers of bee colony. Even though improvements of either exploration or exploitation power 

seems helpful, but expecting not be as effective as enhancing both exploitation and exploration 

powers. Therefore to provide further improvements of BCO some researchers aim at improving 

both of these powers. 

 

Kumar and colleagues [20] proposed a multi-objective directed bee colony optimization 

algorithm (MODBC). The authors claim that the early and classical optimization techniques such 

as direct search and gradient methods are not able to provide global optimization solutions. 

Hence MODBC is an integration of deterministic search, a multi-agent system (MAS) 

environment, and a bee decision-making process. One of the objectives of this hybridization is to 

obtain a unique and fast solution and hence generate a better Pareto front for multi-objective 

problems. MODBC is further applied for solving a multi-objective problem of optimizing the 

conflicting economic dispatch and emission cost with both equality and inequality constraints. 

 

Another area that BCO can be applied to is dynamic economic dispatch (DED). Lu and 

colleagues [21] propose a chaotic differential bee colony optimization algorithm (CDBCO) and 

utilize it to address the DED problem considering valve-point effects. In CDBCO, chaotic 

sequences is used in order to generate candidate solutions and a new searching mechanism based 

on DE/best/1 strategy and finally increasing the exploration ability of BCO. Also, a chaotic local 

search (CLS) method is used to help BCO overcome the drawback of premature convergence 

and increase the local exploitation capability. 

 

Kumar [23] presents a new BCO algorithm based on the Nelder-Mead method. This method 

relies on four geometric operations of reflection, expansion, contraction, and shrinking. The 

author considers two different approaches to finally select the best bee of the population. One is 

consensus and the other is quorum. In the former, inspired by PSO, the global best is selected 

while in the latter the number of bees selecting a solution higher than a given threshold is used as 

the representative solution. 

 

Karaboga and Akay [25] proposed another variation suitable for constraint-based 

optimization and for constraint handling. The proposed algorithm has three main modifications. 

In the unconstrained optimization algorithms of ABC, only one randomly chosen parameter is 

changed and the other parameters are copied from the previous solutions. Previously, a random 

number for each parameter is generated and if it is lower than the modification rate the parameter 

is changed. Also, the algorithm uses Deb’s rule, which has three simple heuristic rules along with 

a probabilistic selection scheme for feasible solutions based on their fitness values and infeasible 

solutions based on their violation values. The third modification is the consideration of different 

probabilities for infeasible and feasible solutions. Then using a roulette wheel selection 

mechanism, the onlookers and employed are assigned to each other. 

 

Akbari and colleagues [28] proposed another ABC algorithm called multi-objective artificial 

bee colony (MOABC). The algorithm uses a grid-based approach to assess the Pareto front 

maintained in an external archive. The employed bees adjust their flight paths according to the 

non-dominated solutions preserved in the archive. Also, the onlooker bees select the food 

sources advertised by the employed bees to update their positions. The MOABC uses the ε 

dominance method for updating. In the ε-dominance method, a space with dimensions equal to 

the number of the problem’s objectives will be assumed. Each dimension will get sliced in an ε 
by ε size. This will break the space to boxes like squares, cubes, or hyper-cubes for two, three, 



and more than three objectives, respectively. Pareto dominance is used to assess the qualities of 

the selected food sources. The scout bees are used by the algorithm to eliminate food sources 

with poor quality. 

 

Kashan and colleagues [31] proposed a new bee colony based algorithm for binary 

optimization. DisABC uses a new differential expression, which employs a measure of 

dissimilarity between binary vectors instead of the vector subtraction operator typically used in 

the original ABC algorithm. Such an expression helps to maintain the major characteristics of the 

original and is respondent to the structure of binary optimization problems too. Similar to the 

original ABC algorithm, the differential expression of DisABC works in a continuous space 

while its consequence is used in a two-phase heuristic to construct a complete solution in a 

binary space. The effectiveness of the proposed approach was tested on benchmark test problem 

instances of the incapacitated facility location problem (UFLP), and compared with two binary 

optimization algorithms, binDE and PSO, where the results demonstrate that their approach is 

competitive. 

3. wBCO: Weighted Bee Colony Optimization 
 

In this section, wBCO is proposed as an improvement over the conventional BCO algorithm 

[4]. BCO is good at exploration, while weak at exploitation [12]. One of the facts that might limit 

the exploitation power is the reliance on random decision making. Typically, each algorithm 

only reaches better solutions than other algorithms for some particular problems. Figure 1, 

provides an overview of the proposed algorithm. 
 

 

  Loyalty assessment 

Global 

Weight 

Local 

Weight 

Recruiter selection 

Stepwise 

filtering 

assignme

nt 

Figure 1 - A block diagram of wBCO 



In BCO, the loyalty assessment of the bees is dependent only on the fitness values. This kind 

of assessment provides superficial knowledge about the paths and solutions that the swarm has 

already created. We believe that through mining the paths traversed by the swarm along with a 

consideration of fitness values, the loyalty degree of the bees will be judged better. Furthermore, 

in the conventional BCO, a roulette wheel process will assign the uncommitted bees to the 

committed ones. This sort of assignment would degrade the performance as some committed 

solutions might be ignored unintentionally. This case is discussed in more detail later in this 

section. To tackle these issues, as shown in Figure 1, wBCO reduces the reliance of BCO on 

randomness in the exploitation step and introduces some heuristics for BCO execution to 

improve the exploitation power. wBCO measures the loyalty degree of the bees through 

weighting procedures (i.e. local and global weighting procedures) and then uses stepwise 

assignment to identify the recruiters of uncommitted bees. 

3.1. Initialization 
 

In this stage the algorithm parameters are initialized, such as the number of bees (B), 

iterations (G), and the size of constructive steps (NC). The initialization of these parameters can 

be either random or user-specified. In the wBCO algorithm, the number of bees, iterations, and 

constructive steps are user-specified. 

Randomization will cause different initialization scenarios in the sense that different values 

are generated randomly for different variables. This will prolong the experimentation, since it is 

required to increase the number of experiments to cover all the possible scenarios. User-specified 

initialization requires fine-tuning of the variables before running the main algorithm and then 

executing the algorithm with the most appropriate values. 

3.2. Creating partial solutions 
 

As the bees leave their hive, each will take NC random steps to create a partial solution. 

Therefore, the initial partial solution has size NC, and grows iteratively in the next forward steps 

with the maximum size of NC. The execution of this stage is similar to the original BCO 

algorithm and each bee decides randomly to explore the solution space. The pseudo code of the 

partial solution creation process is shown in Algorithm 1. 

As outlined in Algorithm 1, each bee creates its partial solution with the size NC as shown in 

Lines 1 to 5. The condition of selection of a food source as shown in Line 4 is to check the 

previously traversed food sources to make sure that the current food source has not been 

considered in the previous traversals of the same bee. If not, then the bee would consider it as the 

next possible selection. Once the next food source is selected by all the bees then the length of 

the solution will increase. This stage terminates once all the bees have created their partial 

solutions, with the size of NC or lower. 

 

  



 
Algorithm 1: Partial solution creation 

Input: 

          An initialized population 

          NC: the size of constructive step 

Output: 

          A partial solution 

Algorithm: 

 

   1. Len = 0  

   2. while Len <NC  //(i.e. partial solutions with the size NC is not created) 

   3.      foreach bee b 

   4.           Randomly select a food source which has not been selected before by the same bee b. 

   5. end foreach 

 

   6.     Len = Len +1;   //(i.e. increasing the length of currently created solutions by one) 

   7. end while 

3.3. Loyalty assessment 
 

Loyalty assessment measures the degree of certainty of a bee to reach optimal parts of the 

solution space. In wBCO this certainty level relies on the fitness value of a bee and the overall 

weights that a bee gives to the selected food sources. The algorithm weights the worth of a food 

source from two different perspectives, global and local, as outlined in Equation (1): 

                                                                             (1) 

where Bji is the overall weight of the ith food source of the jth solution (or of the jth bee), 

localj(i) identifies the local weight of the ith food source in the solution of the jth bee and 

global(i) is the global acceptance of the ith food source in the swarm. global(i) is measured 

according to Equation (2): 

               (2) 

where Seli and Unseli are the number of bees that have selected and unselected the ith food 

source, respectively.  is the summation of the fitness value of the bees that have 

selected the ith food source,  is the total number of bees that have ignored the ith 

food source,  is the summation of the fitness value of the bees that have 

unselected the ith food source, and finally  is the total number of bees that have 

selected the ith food source. 

Algorithm 2 shows the global weight evaluation. In Line 3 if the global weight of a food 

source has not been computed before by another bee, then it will be evaluated through Lines 4 to 

9. This process iterates for all the food sources (Lines 2 to 10) and for all the bees (Lines 1 to 

11). In cases where a food source has been selected by all the members of the swarm, Unseli is 

zero, and the global weight of a food source which has not been selected by any of the swarm 

members is equal to zero. 

 



Algorithm 2: Global weight assessment 

Input: 

          A set of solutions 

Output: 

          The global weight of each selected food source 

Algorithm: 

 

1.         foreach solution Sj 

2.           foreach selected food source fi in solution Sj 

3.                 if the global weight of food source fi has not been measured before 

4.                       Count the number of bees  that have food source fi 

5.                       Count the number of bees  that ignored food source fi 

6.                       Sum the fitness of the bees that have food source fi 

7.                       Sum the fitness of the bees that ignored food source fi 

8.                       Measure the global weight of fi in Sj according to Equation (2); 

9.                 end if 

10.         end foreach 

11.       end foreach 

 

Merely considering the fitness value of the bees that have selected/ignored a food source 

(Equation (3)) cannot help to decide whether a food source is worthwhile or not. In this regard, 

consider the following two scenarios: 

· Scenario 1: a bee population of size B in which Seli and Unseli number of bees have 

selected and ignored the ith food source respectively where Unseli<Seli and 

. 

· Scenario 2: a bee population of size B in which a given food source is selected and 

ignored by Seli and Unseli number of bees where Unseli>Seli and .  

                                  (3) 

One food source might be selected frequently by the bees having low rates of fitness 

(scenario 1). On the other hand, a given food source might be ignored by many of the bees in the 

population while fewer bees with high rates of fitness have selected the same food source 

(scenario 2). Based on these two scenarios and Equation (3), it will not only be required to 

consider the fitness value for the global food source weighting but also the frequency of 

selection/ignorance of that food source should be taken into account. 

If the number of bees that have ignored a worthwhile food source is overlooked, then it is 

likely that the cumulative summation of the fitness of such bees exceed the fitness value of the 

bees that have selected the same food source. Then in this circumstance, the bees’ flying 

direction will not be changed toward the selection of the most significant food sources, and 

finally the ignorance of the most significant food sources will lead to a reduced possibility of 

selection of worthwhile food sources.  

In simpler terms, a high frequency of selection of a less significant food source causes the 

bees to fly toward poor regions of the solution space, which is not desirable. In this paper, this 

problem is termed “misleading frequency”. Hence, according to Equation (4), normalization is 

required, and is achieved through dividing the cumulative summation of the fitness of the bees 

that have selected/ignored a given food source by the number of bees that have selected/ignored 

the same food source. Equation (4) is written in simpler form as Equation (2), where Unseli and 

Seli are not zero. 



                                       (4) 

Hence true measurement of the global weight of a given food source depends on having 

the number of bees that have selected/ignored the food source and also the fitness value of the 

bees which have selected/ignored the same food source. The proposed algorithm is suitable for 

classification and regression problems as a result of the local weighting policy presented in 

Equation (5). The local weight identifies the weight of a food source in the jth created partial 

solution through measuring the degree of correlation between a specific food source and a 

category label. The local weighting is defined as follows: 

                                                             (5) 

Here,  is the fitness of the jth bee, is the correlation (or 

dependency) between the ith traversed food source of the jth bee, , and the xth predicted 

category label, and  is the summation of the correlations (or dependencies) 

of the traversed food sources to the predicted category label, Cp. For an unselected food source 

the local weight is zero; x is the total number of predicted category labels. Depending on the 

problem being formulated through wBCO, the number of predicted category labels can vary from 

one to the total number of possible category labels. Algorithm 3 clarifies the local weighting 

scheme. 

Algorithm 3: Local weight assessment 

Input: 

                 A set of solutions 

Output: 

                 The local weight of each food source in each solution 

Algorithm: 

 

1.  foreach solution sol 

2.     foreach predicted category label  

3.         foreach selected food source  in sol 

4.                Sum the correlations between selected food source  and the predicted category label ; 

5.     end foreach 

6.         foreach selected food source  

7.               Calculate the local weight of selected food source  according to Equation (5); 

8.  end foreach 

 

For each bee (Lines 1 to 8) we measure how dependent the predicted category labels are 

to the selected food sources (Lines 2 to 5). Then for each food source in a given solution, the 

algorithms computed the summation of dependency between all the selected food sources in a 

solution to a predicted category label (Lines 3 and 4). Finally using Equation (5), the algorithm 

measures the local weight of each selected food source (Lines 6 and 7). 

We believe that if the contribution or relevancy of a traversed food source toward a 

category label is high, then the selected food sources would be salient. In simpler terms, if the 

traversal of a food source leads a bee towards classifying data more accurately, then the selection 

of that food source is worthwhile. However, a subset of tightly-correlated food sources to a 

category label does not necessarily mean assignment of high local weight to the solution.  



Assume a set of food sources has led to a poor quality solution while every pair of food 

source and category label has a high correlation degree. Therefore the local weighting scheme 

will assign high weights to the solution. This problem is known as “misleading correlation” and 
is alleviated by considering the fitness value of the solution assessed by the bee. If the fitness 

value and the average of the local weights in a solution is high, then the local weight in the 

procedure will consider the solution with high quality, unless otherwise. Therefor it is essential 

to consider the fitness value to appropriately adjust the local weight of a traversed food source. 

The final loyalty assessment can be written as Equation (6). 

                         (6) 

Once the loyalty degrees are computed, different strategies for distinguishing loyal 

(committed) and non-loyal (uncommitted) bees can be considered. The bees can be ranked in 

descending order based on their loyalty degrees and the first half is considered as committed 

while the rest is uncommitted. The other strategy is to calculate the average of the loyalty 

degrees, then bees with loyalty degrees higher than the average are considered as loyal and the 

rest as non-loyal. Since the algorithm utilizes two weights for each food source to finally 

measure the loyalty degree of a bee this new variation of BCO is called weighted bee colony 

optimization (wBCO). 

3.4. Fitness and performance evaluation 

 

One of the important components of optimization algorithms is to measure the optimality 

degree of generated solutions. This can be measured through the fitness function. The fitness 

function of wBCO, as a discrete optimization algorithm, depends on the problem being solved by 

the algorithm. For instance, in feature selection algorithms [6] the fitness function would 

typically be classification accuracy or statistical measures. Similarly in text mining algorithms 

[5] the F-measure, purity, and entropy can measure the degree of optimality of the generated 

solutions. 

3.5. Stepwise filtering recruiter selection  
 

After dividing the bees into two groups, committed (recruiter) and uncommitted (follower), 

then for each follower, one and only one recruiter should be identified. In the first variation of 

BCO [4], the bees are assigned based on a roulette wheel approach. In this case, an assignment of 

the bees would result in two different scenarios: 

 

· All or most of the uncommitted bees may follow a small number of committed ones, 

while a large number of committed bees remain without any followers, or  

· It is likely that each committed bee will be followed by at least one uncommitted one. 

 

In the first scenario, as shown in Figure 2 in the grey box, the population is less diverse in the 

sense that most of the bees have similar solutions which may lead to premature convergence. 

This type of assignment will also reduce the exploitation power of the bees. In order to alleviate 

this effect, we propose a stepwise filtering assignment that makes the algorithm suitable for 

discrete optimization problems. Firstly, an uncommitted bee is more likely to follow a committed 

one, if both have selected similar food sources during their forward movements. Equation (7) 

represents a mathematical model of this idea. 

 



                  (7) 

 

where  is the probability that a committed bee cb is to be followed by 

the uncommitted bee ub and  is the number of commonly-selected food sources by both 

the uncommitted and committed bees.  is the total number of food sources in the 

solution space. However, it is likely that one uncommitted bee has the same following 

probability rate as more than one committed bee. Hence, consideration of the fitness function 

will enforce the uncommitted bee to select one and only one recruiter, according to Equation (8): 

 

           (8) 

 

where is the fitness value of the cbth similar committed bee and  is the fitness value 

of the uncommitted bee. Therefore, the lower the differences between fitness values 

the higher the value of  which increases the probability of 

following. In problems where the fitness function does not satisfy the conditions | |<1 and 

| |<1, the fitness values should be normalized within the range [-1, 1]. Also in Equation 

(8),  is always true since if  then both of the bees are either 

committed or uncommitted.  

 

Figure 2 shows the difference between random and stepwise filtering assignments of the 

bees. In Figures 2 and 3 each row corresponds to a bee. The first column is the bee identifier, the 

second through the sixth columns each corresponds to a food source, where values of 1 and 0 

refer to the selection of a food source or otherwise. Binary digits are shown as a symbol of 

discrete optimization, but letters or integer numbers can also be used. The seventh column 

indicates if the bee is committed (C) or uncommitted (U), and finally the last column is the 

fitness value of the bee.  

 

The first advantage of this type of assignment is to help the algorithm to improve the 

exploitation power through following the most similar bee which also preserves diversity in the 

population as shown in the white box of Figure 2. In Figure 3, the stepwise filtering assignment 

is shown. In the first step, committed bees are filtered based on their similarities to the 

uncommitted ones, and in the second step, similar bees are filtered according to their fitness 

values. 
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Figure 2 – Stepwise filtering assignment in binary solution space 
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Figure 3 – Graphical illustration of stepwise filtering 

4. Modeling feature selection with wBCO 

 

Here the task of feature selection is modeled as a discrete (or categorical) optimization 

problem and the proposed wBCO algorithm applied, resulting in a new algorithm: FS-wBCO. In 

order to model FS as a discrete optimization task, the solutions are represented in a binary format 

where 1 and 0 indicate that the corresponding feature is selected or ignored, respectively. The 

length of the solution corresponds to the number of features of the dataset. For example a 

solution can be in the form of 1100010110 where the first, second, sixth, eighth and ninth 

features are selected only. 

After initializing FS-wBCO, each bee takes an independent forward movement with the 

size of NC. In simpler terms, each bee decides about the selection or ignorance of the first NC 

features. As shown in Algorithm 4, at the beginning the number of remaining features (r) is equal 

to the total number of features, F, and the starting position of all the bees is set to the first feature 

(Lines 1 and 2). Then for NC number of constructive steps (the inner while loop, Lines 4 to 13) 

the bees create their partial solutions (inner for loop, Lines 5 to 10). 

While creating the partial solutions (Lines 5 to 9), each bee takes NC number of 

constructive steps, and through taking each constructive step a bee decides whether to select a 

feature or not (Lines 7 to 9). NC is reduced by one (Line 11), as all the bees have taken their first 

constructive steps. After taking NC number of steps, the number of remaining features is reduced 

by NC (Line 14). In some cases it is likely that the number of remaining features to be less than 

the pre-specified NC (the outermost if-statement in shown in Lines 15 and 16). Hence in this 

case the bees will take only r number of steps as their NC. In fact NC is set to the number of 

remaining features r (Line 16). 
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Algorithm 4: Solution creation 

Input: 

               Number of constructive steps NC. 

               Number of bees B. 

               Number of features F. 

Output: 

               Created solutions. 

Algorithm: 

 

1.    Set the number of remaining features, r, to the total number of features F; 

2.    Set the starting position of all the bees to the first feature; 

3.    while the number of remaining features r is not zero 

4.       while the constructive steps NC are not finished 

5.           foreach bee in the population 

6.                Generate a random number rand; 

7.                if rand> 0.5 

8.                    Select the i-th feature; 

                   else 

9.                    Ignore the i-th feature; 

10.         end foreach 

11.         NC = NC – 1; 

12.         Go to the next feature; 

13.     end while 

14.           r = r – NC;   

15.           if r<NC 

16.               r = NC; 

17.  end while 

 

As the partial solutions are created, the bees return to their hive (the backward step) to 

perform three tasks. First they measure the quality of their solutions. Then bees assess the degree 

to which they are loyal to their partial solutions. The purpose of loyalty assessment is to divide 

the population into two disjoint groups of committed and uncommitted bees. Based on the 

wBCO algorithm, we use local and global weighting procedures, in which each food source is 

replaced with a feature in measuring the global weight of a selected feature. Finally in the third 

stage, each uncommitted bee will follow a committed one, according to the stepwise filtering 

approach. 

The class labels of each sample in a dataset are considered as category labels in Equation 

(5). The correlation between a selected feature and the predicted class label is measured through 

the concept of mutual information, as in Equation (9): 

 

                 (9) 

 

where fi is the ith value of a feature and  is the xth predicted class label.  calculates 

the probability of co-occurrence of fi and . The mutuality degree between the predicted class 

label and the selected subset of features normalized by the summation of the mutuality degrees is 

the local weight of a feature. In Algorithms 5 and 6 the global and local weighting procedures of 

a given feature are explained. The global weight is viewed more as a ratio of the global 

acceptance of the feature to the total number of selected features in the population, while the 

local viewpoint evaluates the degree of dependency of each selected feature to the predicted class 

label. 

In fact for each feature we preserve two sorts of information. One is global and all the 

bees use it in the loyalty assessment and the other is local which is a personalized weight and 

differs from solution to solution. Interaction of these two sorts of information in Equation (6) 

will identify the loyalty degree of a bee. The last step before the bees leave their hive for the next 



forward movement is distinguishing follower and recruiter bees, as explained in Section 3.3. 

Once the recruiter bees are identified, followers will follow one and only one recruiter according 

to Equations (7) and (8), where all the food sources are replaced with features. Table 2 defines 

the parameters of the wBCO and FS-wBCO algorithm. 

 
Algorithm 5: Global weight assessment in feature selection 

Input: 

               A set of solutions 

Output: 

               Global weight of the selected features fi 

Algorithm: 

 

1.   foreach partial solution in the population 

2.      foreach selected feature i of the current partial solution 

3.          if the global weight for the ith feature is calculated before 

4.              Go to the next selected feature; 

             else 

5.              Count the number of bees that have selected the ith feature, fi.; 

6.              Sum fitness values of all the bees which have selected feature fi.; 

7.              Sum fitness value of all the bees which have ignored feature fi.; 

8.              Measure the global weight of the ith feature fi according to Equation (2); 

9.          end if 

10.    end foreach 

11. end foreach 

 

Algorithm 6: Local weight assessment 

Input: 

                 A set of solutions 

Output: 

                 The local weight of each selected feature in each solution 

Algorithm: 

 

 1. foreach solution sol 

 2.    foreach predicted class label  

 3.        foreach selected food source  in sol 

 4.               Sum the correlations between selected feature  and the predicted class label ; 

 5.    end foreach 

 6.        foreach selected feature  

 7.              Calculate the local weight of selected feature  according to Equation (5); 

 8. end foreach 

 
Table 2 – Definition of wBCO and FS-wBCO parameters 

Variable Symbol Initial value 

Number of bees B User-specified 

Number of generations G User-specified 

Number of constructive steps NC User-specified 

Number of bees selecting a food source Sel Problem-dependent 

Number of bees ignoring a food source Unsel Problem-dependent 

Fitness of a bee selected the ith food source  Problem-dependent 

Fitness of a bee ignored the ith food source  Problem-dependent 

The xth predicted class label  Problem-dependent 

jth food source of the ith bee  Problem-dependent 

Number of in-common food sources  Problem-dependent 

Fitness of the cbth committed bee  Problem-dependent 

Fitness of an uncommitted bee  Problem-dependent 

ith value of   Problem-dependent 

Number of remaining features r Problem-dependent 



5. Experimental results 
 

In this section we empirically investigate the effectiveness of wBCO and FS-wBCO. Initially 

we describe the datasets and functions used in these experiments. Then some numerical 

experiments will be carried out to investigate the efficacy of the proposed algorithms. The 

parameter setting of the proposed algorithms and the competitors are also explained in a separate 

section. As we primarily claim proposing improvements over BCO, we conduct convergence 

behavior experiments of wBCO and compare the results against conventional BCO. The 

Wilcoxon statistical test is used to investigate statistically the performance of the proposed 

variations. In summary this section aims at finding the answers to the following questions: 

 

1) Are the proposed modifications good enough to enhance the convergence behavior of 

conventional BCO? 

2) Does the number of bees have any effect on the loyalty assessment and stepwise filtering 

assignment stages of wBCO? 

3) wBCO targets the exploitation power of BCO, but under what circumstances is it good 

enough to compete with other BCO variations that enhance both exploration and 

exploitation powers? 

4) What is the main influential factor which can affect the performance of wBCO in feature 

selection? 

5) How does FS-wBCO compare to other swarm and evolutionary FS algorithms? Can the 

algorithm outperform all competitors for all datasets? 

5.1. Datasets and benchmark functions 

In this section we introduce the benchmark datasets and functions used for the experiments of 

wBCO and FS-wBCO. For wBCO, the performance is tested using the standard benchmark 

functions as shown in Table 3. These functions are accessible from different resources including 

Simon Fraser University benchmark function repository 1 , and also the work of Kang and 

colleagues [12]. In the experiments of wBCO, since the proposed algorithms are applicable only 

for discrete optimization problems, the functions’ inputs are in integer format.  
 

 

  

                                                           
1 http://www.sfu.ca/~ssurjano/optimization.html  



Table 3 – The benchmark functions 

Function Name Equations Intervals N 
Global 

minimal 
Class 

 Levy (N.13)  -10 10 
 

2 
F(x*) 0 

S
m

all 

 
Bohachevsky 

1 
 -10≤ x1,x2≤10 

 

2 
F(x*) 0 

 

 

Booth’s 

 

 -10≤ x, y ≤ 10 2 F(x*)=0 

 Hartman 3   0  3 
F(x*)

-3.862782 

 

 

Matyas 

 

 -10≤x,y≤10 2 F(x*) 0 

 Scaffer’s F6  -5≤x,y≤5 2 F(x*) 0 

 
Schwefel’s 

1.2 
 -10 ≤xi≤ 10 10 F(x*) = 0 

M
ed

iu
m

 

 Michalewicz  -5  10 
F(x*)

-9.66015 

 Trid  -15 ≤xi≤ 15 15 
F(x*) = -

200 

 
Schwefel’s 

2.22 
 -10  20 F(x*)=0 

 
Bohachevsky 

2 
 -5  20 F(x*)=0 

 
Expansion 

F10 

 
 

 

-100  25 F(x*)=0 

 Styblinski  -5  30 

F(x*)= 

-

39.16599N 

L
arg

e 

 Penalized 1 

 

 

 

 

 

-5  30 F(x*)=0 

 Weierstrass  -10  35 F(x*)=0 

 Step  -100  40 F(x*)=0 

 
Rotated 

Rastrigin 
 -20 0 45 F(x*)=0 

 Penalized 2 

 

-5  45 F(x*)=0 

 

 



In the experiments of FS-wBCO, we used several standard benchmark datasets as shown in 

Table 4. The datasets are from the UCI machine learning repository2. The preferred approach is 

to train the model with a set of samples and then test the trained model using samples which have 

never been used in training procedure. Therefore hold-out evaluation procedure is used for 

experiments, in which the dataset is divided into three subcategories of training, testing, and 

validation. We divided a given dataset into 70 percent training, 20 percent validation data, and 10 

percent testing data. 
Table 4 - Dataset details 

Datasets (Training /Test/Validation) # Features # Classes NC 

Breast Cancer (BC) (490/42/167) 9 2 3 

Glass (GL) (150/13/61) 10 7 2 

Sonar (SO) (146/12/50) 60 2 12 

Horse (HR) (195/17/67) 27 2 9 

Wisconsin Breast Cancer (WDBC) (398/34/137) 30 2 10 

Vehicle (VC) (592/52/202) 18 4 6 

MUSK 1(MUS 1) (272/60/144) 168 2 35 

Arrhythmia (ARR) (316/27/109) 279 16 50 

5.2. Parameter setting 
 

In comparisons of wBCO some algorithms are implemented, including BCO [4] and other 

bee colony-based variations such as DisrBCO [24], chaotic differential BCO (CDBCO) [21], and 

DBCO [23]. The parameters of the proposed and competitor algorithms are set either based on 

the reference papers or empirical studies. Table 5 outlines the parameter settings of wBCO and 

its competitors. For the algorithms CDBCO, DisrBCO, and DBCO, the parameter setting is done 

according to the reference papers, while in BCO and wBCO parameters are fine-tuned to their 

most optimal values. In order to make justifiable comparisons, the number of iterations and the 

population sizes are identical for all the algorithms. NC in wBCO experiments is set empirically 

to D/4, 2D/4, and 3D/4 for small, medium, and large functions, respectively and in FS-wBCO 

experiments it is set to different values for different datasets as shown in Table 4. Also in order 

to investigate the effect of population size on the performance of wBCO (the second 

experimental question) the swarm size of the bees is set to three different values of 50, 500, and 

5000.  

 
Table 5 – Parameter setting for numerical experiments 

Algorithm Parameters 

wBCO 
N= variable; NC= variable; NI= 100. 

BCO 

DisrBCO N= variable; NC= variable; NI= 100; committed bees = 0.9N; Uncommitted bees = 0.1N. 

CDBCO N= variable; NI = ; ; ; C = 0.3; F = 0.3. 

DBCO N= variable; NI= 100; ; ; ; . 

 

In the experiments involving FS-wBCO, we implemented the competitor algorithms and 

their settings are determined based on the reference paper as shown in Table 6. Here, we are 

comparing against different algorithms including BCOFS [7], DisABC [31], BPSO [8] and the 

evolutionary algorithms RHS [32] and HGAFS [33]. DisABC was originally proposed as an 

                                                           

2
 Datasets can be downloaded from: 

https://drive.google.com/folderview?id=0B5R8ibfLZ7zmS3Q1bTFHb3NZdWM&usp=sharing  



optimization algorithm for binary functions. In this paper we implemented it as a feature selector 

algorithm. We use SVM for classification, and for this purpose the implementation of Mathew 

Johnson3 version 1.6.3 is used. This implementation is publically available in C# and we set the 

dynamic parameters according to the implementation. 

 

In BCO and FS-wBCO algorithms, the number of constructive steps (NC) is set to values 

which ensure reaching optimal solutions and adjusted empirically for each dataset according to 

Table 6. In BPSO, k is the desired subset size. In the setting of k, for datasets that are in common 

with our work, we used the same values as reported in the reference paper, while for the other 

datasets the desired subset size is set to the same subset size gained by FS-wBCO. 

 
Table 6 - Parameter setting of the implemented FS algorithms 

Category Algorithm Parameter settings 

Proposed FS-wBCO 
B = 5000, NC = depends on the dataset size. 

Swarm based 

BCOFS 

BPSO 
 

. 

DisABC 
 

 

Evolutionary based 
RHS HMS = 5000, HMCR = 0.65, PARMin = 0.5, PARMax = 0.9. 

HGAFS Pool_size = 5000, mutation_rate = 0.02, crossover_rate = 0.6. 

 

The algorithms (i.e. wBCO and FS-wBCO) are executed for several iterations. The 

executions lower than 30 showed significant changes to the results of algorithms while in 

executions with 30 or higher slight changes were seen in the final results. Therefore we set the 

number of independent executions to 30. In each execution we set the number of iterations to 

100 as in iterations higher than 100 only slight changes were seen in the final results. 

5.3. Convergence behavior studies 
 

In this section, we investigate the convergence behavior of BCO and wBCO, to address the 

first question. The convergence behavior experiments in this section will show how many bees 

are required at least for an algorithm to reach its near optimal solution. We refer to near optimal 

solutions as according to [29] there is no specific algorithm to regularly achieve the best solution 

for all optimization problems. In population-based algorithms such as wBCO and BCO where 

there is no connection between each pair of consecutive iterations, the number of bees will have 

an impact on the convergence rather than number of iterations. Hence increasing or decreasing 

the population size according to the solution space size will show how effective wBCO and BCO 

are in reaching near optimal solutions. 

 

In Figure 4, the Matyas function is selected as an example of a small size function. This 

function is used as the experiments indicated that it is very sensitive to even small changes of the 

algorithms’ setting. Therefore it can better reflect the convergence speed of the algorithms. 

wBCO converges when the number of bees is 300 or higher, while BCO requires more bees to 

obtain convergence. More bees will impose a higher execution time. Hence, wBCO can gain an 

optimal result quicker compared to BCO. In Figures 5 and 6, when increasing the size of the 

                                                           
3http://www.matthewajohnson.org/software/svm.html  



solution space, the number of bees needed for exploration increases. In Michalewicz and 

Penalized 1 as examples of medium and large functions, respectively, the same scenario as in 

small functions occurs, in the sense that wBCO has better convergence in comparison to BCO, 

thanks to the applied modifications. 

 

When increasing the size of the solution space and correspondingly the number of bees, 

wBCO shows less chaotic behavior. In Figure 4, wBCO is quite variable before convergence, 

while in Figures 6 and 7 this behavior reduces quickly before convergence occurs. This fact 

indicates that in wBCO the larger the number of bees, the more information is collected 

regarding the food sources in the surrounding area of the hive. Hence, the algorithm can move 

the bees around the near optimal parts from the early stages of algorithm execution to finally 

enhance the convergence behaviour of conventional BCO. 

 

 

Figure 4 - Convergence behavior studies on Matyas as a sample of small functions in population-based scenario 

 

Figure 5 - Convergence behavior studies on Michalewicz as a sample of medium functions in population-based scenario 
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Figure 6 - Convergence behavior studies on Penalized 1 as a sample of large functions in population-based scenario 

5.4. Performances and comparisons 
 

In this section, the performance of FS-wBCO and wBCO are measured. In the experiments of 

wBCO we are using 18 minimization functions as shown in Table 3 and relevant comparisons 

are made with other bee colony-based approaches. As explained before, ABC and BCO are two 

different algorithms. But as ABC relies on the natural behavior of the bees in locating food 

sources we consider ABC as another relevant work for comparison. One may ask: once the bees’ 
loyalty degrees are assessed, how will they be divided into two disjoint groups of committed and 

uncommitted bees? The bees can be divided based on different division strategies. In this paper, 

and according to our experimentation, we divide the bees based on the average values of their 

loyalty degrees, where bees having loyalty degrees higher than the average are considered to be 

loyal.  
 

It is important to note that the proposed algorithms are suitable only for discrete 

optimization; continuous optimization algorithms are not relevant here and cannot be compared. 

This restricts the algorithms to choose only integer values. Hence, the competitors are 

implemented and tested in our setting and experimental conditions. 

 

Table 7 shows the experiments of wBCO and its competitors with three different values for 

population size. The results indicate that the performance of wBCO is sensitive to the solution 

space size and the number of bees. The higher the number of bees, the better wBCO performs. 

This is as a result of more information which is available in order to measure the loyalty degrees 

and assess the stepwise filtering assignment. 

 

When the solution space is small (i.e. in functions F1 to F6), setting B = 50 produces a 

performance that is better than the competitors. By increasing the size of the solution space this 

superiority declines. Once the size of the solution space gets larger more possible solutions will 

be available and consequently more bees will be required to explore the solution space 

adequately. The convergence behavior experiments also demonstrate this fact. Hence by 

increasing the population size, wBCO performs better as it will be able to measure the loyalty 

degrees in a more effective way, thanks to the availability of more information. This information 

will also help the bees to choose better followers in the stepwise filtering assignment step. 

Therefore the answer to the second experimental question is positive. 
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The wBCO algorithm targets the enhancement of the exploration power of BCO, and it is 

expected to be not as effective as algorithms that enhance both the exploration and exploitation 

of BCO, such as DBCO and CDBCO. The experiments in Table 7 indicate that through 

increasing the number of bees, the amount of available information can be handled efficiently by 

loyalty assessment operations and stepwise filtering assignment, to outperform CDBCO and 

DBCO. However in larger populations there is still some inferiority in the performance of 

wBCO. The proposed algorithm is inferior to DBCO and CDBCO for the two functions F9 and 

F5.  

 

As an answer to the third question, through increasing the population size in wBCO it is 

likely that the algorithms that enhance both the exploration and exploitation power of BCO will 

be outperformed. DisrBCO, similar to wBCO, tries to enhance the exploitation power of BCO, 

but this algorithm is more effective than wBCO only for the F12 function. 

 

  



Table 7 – Evaluations using minimization functions with different population sizes 
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Another set of experiments that reveal the inferiorities and superiorities of FS-wBCO 

have been conducted and the results are shown in Table 8. The population size is set to 5000 as 

wBCO showed the best performance in this setting. For each iteration, the best value is selected, 

and for each execution the 100 best values are averaged, and finally the results are averaged over 

30 executions. In this table two well-known measures, classification accuracy (CA) and kappa 

statistic (KS), are used to evaluate the performance of FS-wBCO. CA is given in Equation (10), 

where #TS and #TC are the total number of samples and correctly classified samples, 

respectively. 

                                                                                                                               (10) 

The other measure is the kappa statistic [34], which is a prevalent statistical measure that 

allows for input sampling bias. This measure has been used in many algorithms [35] [36] [37] [6] 

and is calculated via Equations (11) to (13). The aim of using this measure is to assess the level 

of agreement between the classifier’s output and the actual classes of the dataset. The kappa 
statistic is calculated as follows: 

 

                                                                                                                       (11) 

 

                                                                                                           (12) 

 

                                                                                                                      (13) 

 

where c is the category/class label, N is the total number of samples and Ni is the number of 

samples in a dataset which are correctly classified by the classifier. In Equation (12) Ni* is the 

number of instances recognized as class i by the classifier and N*i is the number of instances that 

belong to class i in the dataset. The purpose is to maximize this measure. Finally, kappa (or in 

short KS) is measured in Equation (13) in which , where kappa = 0 and kappa = 

1 means there is no agreement between the classifier and the actual classes, and perfect 

agreement on every example, respectively. 

 

In Table 8, FS-wBCO is compared against other evolutionary and swarm-based feature 

selection algorithms to investigate its performance. The experiments are divided into two parts of 

testing and training. The purpose of comparisons and experiments with the training data is to 

investigate how effective the algorithms are in model creation. Once the model is constructed, 

the testing data is used to evaluate the effectiveness of the proposed algorithm. In the training 

experiments, we execute the algorithms with training and validation sets and then preserve the 

best solutions for each iteration. In the testing experiments, we retrieve the preserved solutions 

and apply them to the testing set of each dataset. The results are averaged over all iterations. KS 

values of training results are shown in the form of x(y), in which x and y are the average values 

of kappa and the best subsets, respectively. 

 

In the experiments, FS-wBCO is compared with swarm-based algorithms including BCOFS 

[7], DisABC [31], and BPSO [8]. As the results for the training data indicate, in comparing 



BCOFS and FS-wBCO, the proposed algorithm performs better than BCOFS in most of the 

datasets. The other set of comparisons is made with the evolutionary algorithms RHS [32] and 

HGAFS [33]. Also in the training results, for the CA measure, the improvement in performance 

of FS-wBCO is less significant compared to RHS [32]. Additionally, FS-wBCO performs better 

than or similar to HGAFS. For the KS measure, FS-wBCO is inferior to RHS and mostly better 

than HGAFS. The inferiorities could be as a result of the hold-out strategy as different types of 

division might lead to slightly different results. Even though this will address the fourth question, 

however, the preferred approach is to test the algorithm with samples that have never been used 

in model creation, as used in other feature selection works [8] [33]. 

 

To address the fifth question, in the testing dataset comparisons, wBCO is superior to 

conventional BCO in general. Gaining this superiority is the primary purpose of wBCO, thanks 

to a reliance on stepwise assignment filtering and loyalty measurement policies. In comparisons 

with other swarm-based algorithms, FS-wBCO mainly has similar performance compared to 

BPSO, with superiorities in a few datasets. This could be as a result of the nature of the 

algorithms in the sense that one is PSO and the other is BCO-based. In comparisons to DisABC 

and evolutionary-based variations with FS-wBCO, the proposed algorithm could outperform 

competitors. 

 

 

 

  



Table 8 – KS and CA results for training and testing data using the SVM classifier [values in the range 0-1] 
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5.5. Wilcoxon statistical test 
 

In order to show that both wBCO and FS-wBCO are comparable to the state-of-the-art 

algorithms for the unseen data, we measure their performance statistically using the Wilcoxon 

signed-ranks test. According to [38] this measure is more sensible than the t-test as it assumes 

commensurability of differences, but only qualitatively. In other words, greater differences still 

count more, which is probably desired, but the absolute magnitudes are not considered. The test 

is safer since it does not assume normal distributions, and outliers have less effect. The Wilcoxon 

signed-ranks test [39] is a non-parametric statistical measure which ranks the differences in 

performances of two algorithms on each data set. The test is calculated using Equation (14): 

                                                                                                          (14) 

where values of  and are measured using Equations (15) and (16), repectively. 

                                                                    (15) 

                                                                    (16) 

Here, is the difference between the performance scores of two algorithms on ith out of D 

datasets. Ranks of di = 0 are split equally among the sums, if there is an odd number of di = 0 

then one is ignored. Then, using the critical values and the values gained for Wilcoxon test (V) it 

can be inferred if the null hypothesis is rejected or not. 

According to Table 9 and the table of exact critical values, it can be inferred if the null 

hypothesis is rejected or not. Once a null hypothesis is rejected, it means that the difference 

between two conditions is unlikely to have occurred by chance. In the experiments of wBCO, 18 

functions are used (i.e. N =18) and we are considering the results of wBCO with B = 5000, as it 

showed the best performance. 

For a confidence level of , V values less than 40 can reject the null hypothesis. 

Therefore wBCO has already rejected the null hypothesis in relation to its competitors. Similarly 

in other confidence levels of , where the null hypothesis can be rejected 

for different values of 33 and 40, respective, the null hypothesis is rejected. 

Table 9 – Wilcoxon test of wBCO and the competitors 

 
Second Algorithm 

wBCO BCO DisrBCO CDBCO DBCO 

F
ir

st
 

A
lg

o
ri

th
m

 wBCO  0.5 1 6 0 

BCO 0.5  19 34 38 

DisrBCO 1 19  52 19 

CDBCO 6 34 52  48 

DBCO 0 38 19 48  

 



Table 10 shows the results of Wilcoxon values ( ) of FS-wBCO. In these experiments we 

are using eight datasets (i.e. N = 8). Once the confidence level is 0.01, the null hypothesis could 

not be rejected, unless in relation to RHS algorithm. In other confidence levels of  and 

 the null hypothesis is rejected for BCO, HGAFS and RHS algorithms.  
 

Table 10 - Wilcoxon test of FS-wBCO and the competitors 

 
Second Algorithm 

FS-wBCO BCO FS-DisABC BPSO RHS HGAFS 

F
ir

st
 A

lg
o

ri
th

m
 FS-wBCO  1 5 4.5 0 2 

BCO 1  3.5 4 10 17 

FS-DisABC 5 3.5  8.5 5.5 8 

BPSO 4.5 4 8.5  5.5 6 

RHS 0 10 5.5 5.5  7.5 

HGAFS 2 17 8 6 7.5  

6. Conclusion and future work 
 

BCO is a swarm-based optimization algorithm that is good at exploration but somewhat 

weak concerning exploitation. In order to improve the exploitation power of BCO, we proposed 

a novel algorithm called wBCO which considers the weights of traversed food sources. For each 

food source, two weights are considered: one is global that identifies the overall popularity of a 

food source in the swarm and the other is local which indicates the extent to which the selected 

food source is correlated to the category labels.  

 

In line with the improvements of exploitation power, we adopted a new recruiter selection 

procedure which assigns an uncommitted bee to the most similar committed ones. In order to 

investigate the utility of wBCO we applied it to the FS area and introduce FS-wBCO. The 

efficiency of wBCO was measured through some of the well-known benchmark functions and 

relevant comparisons were made with other bee colony-based algorithms.  

 

The results show that wBCO is sensitive to the solution space size; by growing the size of 

the solution space, the number of bees required to explore the solution space accurately should 

be increased to ensure satisfactory performance. This results from the modifications made in the 

loyalty assessment and stepwise filtering assignment steps. Once the number of bees is 

sufficient, then a sufficient amount of information will be available to measure the loyalty 

degree. Once the truly loyal bees are identified, this will affect the recruiter selection step 

positively, in the sense that the uncommitted bees can better select their recruiters, and 

consequently lead the algorithm to the preservation of more accurate solutions. 

 

Similarly, the modifications made to the conventional BCO were shown to be effective in 

application. FS-wBCO experiments were carried out using the SVM classifier and benchmark 

datasets obtained from the UCI machine learning repository. FS-wBCO could improve 

conventional BCO-based feature selection, and gain superiorities over BCOFS. It also showed 

superiorities over other swarm and evolutionary-based algorithms, but had some inferiorities to 



its competitors (also demonstrated in the Wilcoxon signed-ranks tests). This could result from 

dataset division as a hold-out strategy was used. FS-wBCO and BPSO were mainly similar with 

superiorities of FS-wBCO shown in a few datasets. 

 

As part of our future work, we plan to further investigate the proposed algorithms with 

more functions. The FS-wBCO algorithm will be executed with other classifiers such as decision 

trees, ANNs, k-nearest neighbors, etc. and experiments will be conducted using alternative 

methodologies such as leave one out cross validation or n-fold cross validation procedures. Also, 

wBCO will be applied to regression problems, and will be improved to be applicable for 

continuous problems. The local weighting procedure will be modified to measure the correlation 

between the features and the dependent variables. 
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