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When developing a new hypersonic vehicle, thousands of wind tunnel tests to study its aerodynamic
performance are needed. Due to limitations of experimental facilities and/or cost budget, only a part of
flight parameters could be replicated. The point to predict might locate outside the convex hull of sample
points. This makes it necessary but difficult to predict its aerodynamic coefficients under flight condi-
tions so as to make the vehicle under control and be optimized. Approximation based methods including
regression, nonlinear fit, artificial neural network, and support vector machine could predict well within
the convex hull (interpolation). But the prediction performance will degenerate very fast as the new
point gets away from the convex hull (extrapolation). In this paper, we suggest regarding the prediction
not just a mathematical extrapolation, but a mathematics-assisted physical problem, and propose a
supervised self-learning scheme, adaptive space transformation (AST), for the prediction. AST tries to
automatically detect an underlying invariant relation with the known data under the supervision of
physicists. Once the invariant is detected, it will be used for prediction. The result should be valid pro-
vided that the physical condition has not essentially changed. The study indicates that AST can predict
the aerodynamic coefficient reliably, and is also a promising method for other extrapolation related
predictions.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The prediction of aerodynamic coefficients is very important
for designing a new hypersonic vehicle. Usually, thousands of
wind tunnel tests are carried out to predict its aerodynamic force
coefficients before it can really fly in the sky. A number of para-
meters including free-stream Mach number, total flow enthalpy,
free-stream velocity, pressure altitude, free-stream Reynolds
number, density ratio across shocks, test gas, and wall-to-total
temperature ratio could affect the aerodynamic coefficients
(Anderson (2006)). Due to the limitations of laboratory equip-
ments and/or cost budget, it is very difficult, if not impossible, to
duplicate all these flight conditions. In many wind tunnel experi-
ments, only a part of them such as Mach number M1 and/or
Reynolds number Re1 could be mimicked, where Mach number is
the ratio of flow velocity and the local speed of sound, and
rant of Chinese Academy of
ation of China (Grant nos.

@imech.ac.cn (Z. Hu),
ech.ac.cn (Z. Jiang).
Reynolds number reflects the ratio of inertia and viscous forces.
Meanwhile, even for the mimicked parameters, the flight range
could not be covered by wind tunnels. These make it very difficult
to predict the flight behavior with ground test data. The prediction
process is usually referred as ground to flight data correlation, also
shorten as ground/flight correlation. During the design of a new
hypersonic vehicle, it is an indispensable step.

A number of approximation based methods have been pre-
sented for the aerodynamic-coefficient prediction including least
squares regression (Morelli and DeLoach, 2003), artificial neural
network (Norgaard et al., 1997; Rajkumar and Bardina, 2002) and
maximum likelihood method (Lee et al., 2009), and extrapolation
(Peterson et al., 1980; Nicolì et al., 2006). We have also suggested
an adaptive surrogate model (Luo et al., 2011) to improve the
accuracy of approximation. In general, the prediction results of
these methods are reliable within the convex hull of known data
(interpolation). However, in many cases, the flight parameters
could not be covered by wind tunnels. So the prediction needs to
be done outside the convex hull (extrapolation). However, the
above mentioned methods have poor performance on extrapola-
tion, and their prediction results are not reliable.

Scaling parameter is an entirely different way of data correlation. A
scaling parameter is a function of several aerodynamic parameters so
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that it can consider the total effect of these parameters. Several such
scaling parameters (Macrossan, 2006), including Knudsen number
(suggested by T. von Kármán), Tsien's parameter (Tsien, 1946), Cheng's
rarefaction parameter (Cheng, 1961), and Bird's breakdown parameter
(Bird, 1970) have already been proposed. However, these parameters
are valid only for high-speed rarefied flow, and should not be used for
data correlation in other cases. For example, to study the aerodynamic
performance of near-space hypersonic vehicles, these parameters are
no longer applicable because the flow around them is not a rarefied.
Meanwhile, there is no such alternative scaling parameter available to
describe the hypersonic near-space flight flow, and even worse, it is
very difficult to get any of such scaling parameter. Usually, it requires
strong expertise and experience to get a new scaling parameter.

In this work, we found the above mentioned scaling para-
meters share the common ideas, and they could be unified in the
sense of space transformations. Based on this discovery, a new
method, referred to as adaptive space transformation (AST), is
proposed. The AST provides a self-learning scheme that can
automatically generate new scaling parameters. It aims at
Fig. 1. Correlated results with existing scaling parameters and an ideal one. (a) (Macross
M1=Re1 . (b) (Macrossan, 2006, Fig. 3) Correlated data with Tsien's parameter: M1=

ffi
R

p

MnM2
1=Re1 . (d) Correlated curve (the red smooth curve) with an ideal scaling parame

caption, the reader is referred to the web version of this paper.)
detecting an invariant relation by analyzing all of the test data
available under the supervision of physicists. Once the invariant
relation is detected, it will be used for prediction. The prediction
result should be reliable provided that its underlying physical
nature remains unchanged (thus the invariant relation still holds).
Comparisons and applications are also carried out to confirm the
prediction capability of AST.
2. Observation and discussion of existing scaling parameters

2.1. Observation

As above mentioned, various scaling parameters, including Knud-
sen number Kn, Tsien's parameter (Tsien, 1946), Cheng's rarefaction
parameter (Cheng, 1961), and Bird's breakdown parameter (Bird, 1970)
have been proposed to study the high-speed rarefied flow. Macrossan
(2006) has analyzed their relationships and evaluated their perfor-
mance on correlating drag on bodies in rarefied high-speed flow with
an, 2006, Fig. 1) Correlated data with Knudsen number: Kn, which is proportional toffiffiffiffiffiffiffiffi
e1 . (c) (Macrossan, 2006, Fig. 6) Correlated data with inverse Cheng's parameter:
ter sn ¼ f nðM1 ;Re1;…Þ. (For interpretation of the references to color in this figure
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three data-sets. He has found out that these scaling parameters are
proportional to M1=Re1;M1=

ffiffiffiffiffiffiffiffiffi
Re1

p
;M2

1=Re1, and CnM2
1=Re1,

respectively. Macrossan also concluded that Tsien's parameter is better
than the Knudsen number Kn for the drag prediction, and Cheng's
rarefaction parameter performs the best (see Fig. 1) on the prediction.

In fact, all of these scaling parameters transform the original 3-
dimensional dataset ðM1;Re1; JÞ �R3 of different Mach numbers
into a 2-dimensional dataset ðs; JÞ �R2, where the scaling para-
meter s is a function of Mach number and Reynolds number,
s¼ f ðM1;Re1Þ (see Fig. 1). The correlation performance is closely
related to the data distribution of the transformed dataset ðs; JÞ.
Fig. 1 shows that the data distribution in Fig. 1(a) is more scattered
than that in Fig. 1(b), and the data distribution in Fig. 1(c) is the
most centralized among the three. Comparing these facts to the
aforementioned conclusions of Macrossan, we get a scaling para-
meter that will have a better performance if the transformed data
has a more centralized distribution. If, ideally, there exists an
optimal correlation formula sn ¼ f nðM1;Re1Þ such that all trans-
formed data tend to fit a smooth curve (shown in Fig. 1(d)), it will
be a perfect scaling parameter.

2.2. Discussion

Famous physicists such as von Kármán and Tsien prefer scaling
parameters, rather than approximation based methods, why?
What is the potential idea behind scaling parameters? Is it possible
to get a better scaling parameter for the study of high-speed
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Fig. 2. Detection of an invariant relation with respect to M1 by space transformations. (
scaling parameter. (c) Transformed data with a better scaling parameter. (d) Transforme
rarefied flow? Are these scaling parameters still valid for the study
of near-space hypersonic vehicles, in which the free stream is no
longer a rarefied flow? If not, how to get a suitable new one? These
questions motivate us to develop a new correlation method. The
answers are as follows.

(a) For the approximation based methods, the result is hard to
interpret and the extrapolation capability is weak. It seems
more natural to predict the aerodynamic coefficient J (such
as lift coefficient CL, drag coefficient CD, lift-to-drag ratio
CL=CD, pitch-moment coefficient Cmz, etc.) by constructing
an approximate model like J ¼ FðM1;Re1;…Þ, where the
approximate model could be created by interpolation,
regression, nonlinear fit, artificial neural network, or sup-
port vector machine, with test data of wind tunnels. This
does work in many applications. However, the result is still
hard to interpret because there are several predictor vari-
ables involved such as Mach number M1, Reynolds number
Re1, etc., and some of them might interfere each other. As a
result, the landscape of the response could be a multi-
modal surface, and it is not easy to tell how these para-
meters affect the aerodynamic coefficient, even in 3-D
space (illustrated in Fig. 2(a)). Scaling parameter can
reduce a multi-parameter problem into a simpler one,
and the result could be visualized in 2-D space (illustrated
in Fig. 2(d)). This makes it easier to interpret and more
convenient to use. Another fact about approximation based
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methods is that it is very risky to extrapolate directly with
the approximate model. It is helpful to construct a response
surface with test data to visually show the overall influence
of these parameters on aerodynamic coefficients. But keep
in mind that the response surface holds only within the
range of test data (interpolation), and it could be very
dangerous to use it for prediction outside of test range
(extrapolation) for decision makers. Prediction by extra-
polation is not reliable and might lead to damaging out-
comes. This will be demonstrated in Section 4.1. For these
reasons, many famous physicists including von Kármán and
Tsien prefer using scaling parameter, rather than approx-
imation based methods for the correlation of aerodynamic
coefficient.

(b) The idea behind scaling parameters is to detect an invariant
relation. After the analysis of the above mentioned scaling
parameters, we find that they share the common idea,
invariant detection, which will be described in detail in
Section 3, and thus they could be unified in the sense of
space transformations.

(c) Existing scaling parameters could be improved. As mentioned
above, there are already several scaling parameters available,
which could be formulated as M1=Re1;M1=

ffiffiffiffiffiffiffiffiffi
Re1

p
;CnM2

1=Re1,
etc., to correlate test data of high speed rarefied flow, and M.N.
Macrossan has shown that Cheng's rarefaction parameter
ðCnM2

1=Re1Þ performs the best among them. Note that these
parameters were proposed before 1970s, and the formulas are
obtained manually. At that time, optimization methods in func-
tion space such as genetic programming (Koza, 1992), gramma-
tical evolution (O'Neill and Ryan, 2001), and parse-matrix evolu-
tion (Luo and Zhang, 2012) have not yet been proposed. Nowa-
days, the genetic programming and its variants are ready to use.
This makes it possible to get a new better scaling parameter.

(d) Existing scaling parameters is no longer valid for the
aerodynamic-coefficient prediction of near-space hyperso-
nic vehicles. In fact, the flow around the near-space
hypersonic vehicles is a continuous flow, not a rarefied
flow. Therefore, existing scaling parameters is no longer
valid for the aerodynamic-coefficient prediction, and some
new scaling parameters need to be derived. However, it is
not easy to get any of such scaling parameter. Usually, it
requires strong expertise and experience, as well as com-
plicated theoretical analysis, sufficient experimental and
computational data verification. This motivates us to
design an automatic discovery method to search for opti-
mal scaling parameters in function space. So that it can
help the expert derive new scaling parameters more easily.
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Fig. 3. Variations and invariant of the ellipse. (a) Detection of an invariant
3. Adaptive space transformation (AST)

3.1. Idea behind parameter correlation

It is a remarkable fact that the abscissa in Fig. 1 is neither the
Mach number M1, nor the Reynolds number Re1, but a function of
them (referred to as scaling parameter in the literature):
s¼M1=Re1; s¼M1=

ffiffiffiffiffiffiffiffiffi
Re1

p
, or s¼ CnM2

1=Re1, etc. In other words,
Tsien et al. prefer considering the total effect of the involved para-
meters, M1 and Re1. With the scaling parameter, the original 3-D
data ðM1;Re1; JÞ are transformed into a 2-D space ðs; JÞ (where
s¼ f ðM1;Re1Þ, J ¼ CD=CDf

). If the scaling parameter works well, the
transformed data will tend to fit a smooth curve. Note that although
these data are measured at different Mach numbers, range from 2.95
to 27, their transformed curves could almost overlap with each other.
This means the proposed scaling parameter revealed an invariant
relation among Mach number M1, Reynolds number Re1, and the
drag coefficient J under these conditions.

Here, the invariant does not imply not varying, but the variations
share the same path, just like the curves’ overlap with each other.
Invariant relation, if exists, is the most important feature of a system.
In fact, invariant detection has been widely accepted in our daily
cognition. For example, there might be many ways to describe an
ellipse. But only if an invariant relation such as “The sum of the dis-
tances from any point Pi on a given ellipse to its two foci is a constant
(see Fig. 3(a))” is detected, its essential property is grasped.

The invariant relation has a great recovery capability. For example,
once the above invariant relation is detected, it can help recover the
entire ellipse from a small part of the ellipse. That is, although only a
part of an ellipse (e.g., the lower-left 1/4 part) is known, we can
predict (recover) the rest of it (see Fig. 3(b)). The recover process is
similar to data correlation, in which the objective is also to predict the
unknown part by using the information of the known part.

Note that the kernel of the transformation (also known as
scaling parameter) f must be determined carefully so that the
transformed data ðs; JÞ tend to fit a smooth curve. Unfortunately, it
is not easy to get such a suitable scaling parameter in general
cases. A trivial transformation, including the projection transform,
does not work. For example, Fig. 2(b) shows the projection of a set
of 3-D data with different Mach numbers into the 2-D space ðs; JÞ.
The projected data are four separate curves, and still confusing. So
better transformation kernels (i.e., scaling parameters) are needed.
A better kernel fb could bring these curves closer (Fig. 2(c)).
Hopefully, there might be a best scaling parameter fn in the
function space, which could bring the curves together (Fig. 2(d)).

The four curves of different Mach numbers can overlap with
each other. This means the scaling parameter s¼ f nðM1;Re1Þ
F1 F2
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relation. (b) Recovery of the unknown part by the invariant relation.
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revealed an invariant relation about Mach number, repre-
sented by the overlapped curve. The variation of J is not
explicitly related to M1. So we can expect that for the data
measured at a new Mach number Mnew, its transformed curve
J ¼ JðsÞ (where s¼ f nðMnew;Re1Þ) could also overlap with the
previous curves J ¼ Jðf nðMi;Re1ÞÞ; i¼ 1;2;3;4. Thus, the scaling
parameter s¼ f nðM1;Re1Þ can be used as a correlation para-
meter for prediction.

In summary, the potential idea behind the existing scaling
parameters is that they use space transformations to find an
invariant to describe the relation between the aerodynamic coef-
ficient and flow parameters. In this sense, all the existing scaling
parameters could be unified.

3.2. AST method

As discussed in the above sections, regarding the prediction as
a merely mathematical extrapolation might get unreliable result.
Scaling parameter makes prediction in a distinct way. It is essen-
tially a physical based method, which uses the invariant of a sys-
tem for prediction. However, all the existing scaling parameters
are obtained manually, and it requires strong expertise and
experience to get a working scaling parameter. Perhaps only
experienced physicians are qualified for this mission. This limits
the application scope of scaling parameters. A new method that
can automatically detect the invariant of a system is desired.

With the development of computational intelligence, especially
in genetic programming (GP), optimization in function space
becomes feasible. This makes it possible to detect the kernel of
space transformation (scaling parameter) automatically. Of course,
keeping in mind that the optimization should be supervised by
physicists. The physicists interact with GP only before and after the
evolution process. For example, the parameter selection, non-
dimensionalization, and the interval choice should be considered
aforehand, and the optimized result should also be chosen care-
fully. An unsupervised optimization is likely failed to detect an
invariant. For example, the flight in Mach 3–7 could be considered
as a system, but as the Mach number increases, new physical
phenomena such as dissociation and ionization might arise and
become non-ignorable gradually. In this case, pure mathematical
optimization might result in misleading result.

Therefore, we suggest regarding the prediction as a
mathematics-assisted physical problem, and propose an adaptive
space transformation (AST) method for the prediction. AST is a
supervised self-learning scheme. It tries to automatically detect an
s=fk(M∞
, Re

∞
)

J=
J(

s)

J =φ4(s)

J =φ1(s)

J =φ2(s)

J =φ3(s)

Fig. 4. Initial and final state of AST. (a) Characteristic curves of a trivial
underlying invariant of a system and give a new/better scaling
parameter with the known data under the supervision of physi-
cists. Once the invariant is detected, it will be used for prediction.

The optimization of scaling parameter (i.e., kernel of space
transformation) in the function space could be driven by any
genetic programming (GP) algorithm including the conventional
genetic programming (Koza, 1992), grammatical evolution (O'Neill
and Ryan, 2001), parse-matrix evolution (Luo and Zhang, 2012),
etc. In this work, we use a special version of genetic programming,
parse matrix evolution (PME; Luo and Zhang, 2012), since we
know every detail of it, which can help ensure its global con-
vergence. In PME, a chromosome is a parse-matrix with integer
entries, and the mapping process from the chromosome to its
analytical function is based on a mapping table containing term-
inals and operators. The evolutionary operators are adapted from
traditional crossover and mutation. The crossover might be one-
point, two-point, or cut-and-splice in row, and the mutation is a
kind of random mutation. The height of the parse-matrix can
upper-bound the subtree-level of evolved expression so as to
control the complexity of the resulted function.

Of course, the reader could choose any other GPs for the opti-
mization process. Therefore, more detailed implementation and
performance of GP itself is beyond the discussion scope of this
paper, and we assume that the chosen GP is capable of getting a
global optimal function in probability.

To describe a general AST method is difficult. As an illustrative
example, suppose we need to detect the invariant about Mach
number, an optimal scaling parameter fn could be determined in
the following steps.

(1) Divide the original data into different groups according to the
Mach number: fðMi;Rei;j; Ji;jÞj i¼ 1;2;…;N; j¼ 1;2;…;Mig.

(2) Construct characteristic curves in 2-D space (see Fig. 4(a)):
J ¼ϕiðsÞ, where s¼ f kðMi;Rei;jÞ; i¼ 1;2;…;N; j¼ 1;2;…;Mi.

(3) Optimize and update the transformation kernel fk by genetic
programming such that the characteristic curves tend to
overlap with each other (see Fig. 4(b)).

(4) Repeat steps (2) and (3) until some stopping criteria are
satisfied, and output the best transformation kernel fn (as the
optimal scaling parameter) and its corresponding character-
istic curves.

In Step 2, a trivial kernel (e.g., the projection transform
f ðMi;Rei;jÞ ¼Mi) could be used for the initialization of
s=f*(M
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, Re
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scaling parameter. (b) Transformed curves with an optimal kernel.



C. Luo et al. / Engineering Applications of Artificial Intelligence 46 (2015) 93–10398
characteristic curves. That is, f0 could be a random kernel if the
user has little knowledge about it. However, a preset f0 is preferred
for an experienced user since a good start might lead to a faster
convergence.

The flowchart of AST could be briefly described in Fig. 5.
Fig. 5. Flowchart of AST.
3.3. Optimization models of AST method

The most important step in adaptive space transformation
(AST) is the optimization of the kernel function fk in Step (3), in
which the objective is to drive the characteristic curves to overlap
with each other. To this end, an optimization model that can
measure the degree of overlapping is needed, and then the genetic
programming could be applied to find an optimal scaling para-
meter fn from the space of continuous functions CðΩÞ, whereΩ is a
compact set in Rm.

Suppose only one parameter x needs to correlate, a typical
optimization model can be formulated as follows:

min
f ACðΩÞ

Gðf Þ ¼
XN
i ¼ 2

Xi�1

j ¼ 1

Z b

a
Jϕi f ðxi; yÞ

� ��ϕj f ðxj; yÞ
� �

Jds=Sconvhull ð1Þ

where the function z¼ϕiðsÞ describes a characteristic curve in R2,
and the function s¼ f ðx; yÞ is the transformation kernel to be
optimized. The symbol Sconvhull denotes the area of the convex hull
of all transformed data fðf ðxi; yi;jÞ; zi;jÞj j¼ 1;2;…;mig. It is used only
for nondimensionalization. The value of the objective function Gðf Þ
shows how close the characteristic curves are. Each characteristic
curve is determined by a subgroup of the test data with xi fixed:
fðxi; yi;j; zi;jÞj j¼ 1;2;…;mig. The characteristic curve can be con-
structed by any of a robust approximation method such as fitting
or regression.

When more parameters, i.e., x1; x2;…; xm, need to correlate, a
similar optimization model can be formulated in high dimensional
space as follows.

Let the vector X ¼ ðx1; x2;…; xmÞ;Y ¼ ðy1; y2;…; ynÞ, and
S¼ ðs1; s2;…; spÞ, then

min
f ACðΩÞ

Gðf Þ ¼
XN
i ¼ 2

Xi�1

j ¼ 1

Z
S � Rp

Jϕi f ðXi;YÞ
� ��ϕj ðXj;YÞ

� �
JdS=VS ð2Þ

where the function z¼ϕiðSÞ describes the characteristic hyper-
surface in Rpþ1 with fixed Xi such that it fits its subgroup data
fðXi;Yi;j; zi;jÞj j¼ 1;2;…;mig, and the function S¼ f ðX;YÞðf :
Rmþn↦RpÞ is the transformation kernel to be optimized. The
symbol VS denotes the volume of the convex hull of all
transformed data. The value of the objective function Gðf Þ shows
how close the characteristic hyper-surfaces are. Here the char-
acteristic hyper-surfaces could also be constructed by any of a
robust approximation method such as fitting or regression.

3.4. Properties of kernel function

It is noteworthy that the optimal scaling parameter might be
not unique. In addition, we have the following conclusion.

Proposition 3.1. Let the transformation kernel s¼ f nðx; yÞ be an
optimal scaling parameter. Then its nontrivial function Fðf nðx; yÞÞ is
still an optimal one.

A typical example is as follows. If the scaling parameter fn is
perfect, i.e., Gðf nÞ ¼ 0, which means the characteristic curves is
already overlapped as a single smooth curve (e.g., Fig. 6(b)).
Therefore, under the nontrivial map of the composite function
FðsÞ ¼ Fðf ðx; yÞÞ, the transformed curve of the smooth curve should
still be a smooth curve (see Fig. 6(c) and (d)).

Although the optimal scaling parameter is not unique, its
capability of prediction is not affected. In fact, any one of the
optimal scaling parameter can be used as the correlation para-
meter for prediction.

This is similar to the ellipse case mentioned above, where the
invariant is also not unique. As an example, another invariant can
be described as “the eccentricity of a given ellipse e is a constant”.
This invariant could also be used to predict the unknown part of
the ellipse with a piece of it.

3.5. Practical tricks and discussion

Note that there might be an offset between curves after the
transformation, as can be seen from Figs. 2 and 6. In practical
implementations, the offset must be restrained. The penalty
function method (Mezura-Montes and Coello, 2011) has been used
to suppress it in this work.

Another issue about AST method is that the complexity of the
scaling parameter must be controlled. Otherwise, its performance
will degenerate into that of nonlinear fit or regression. In this
paper, the complexity is used as the second objective function, and
the trade-off between the overlap degree of transformed curve
and the complexity of kernel function is analyzed by multi-
objective optimization method. Only the knee of Pareto front
(Bechikh et al., 2011) is selected as the best scaling parameter.

For a given system, the invariant does not always exist. The
proposed method is more suitable for those problems with
invariant. However, in case the desired invariant does not exist,
AST can help to get a best scaling parameter, which, in the worst
case, is a fitting function.
4. Prediction results

Prediction capability, especially when the point to predict lies
outside of the known range (extrapolation), is the most important
feature of an correlation method. In this section, the prediction
capability of adaptive space transformation (AST) is tested by
comparing with two state-of-the-art approximate based methods,
support vector machine (SVM) and artificial neural network
(ANN), since both of the methods have been used for predicting
the aerodynamic coefficients (Ravikiran and Ubaidulla, 2004;
Norgaard et al., 1997; Rajkumar and Bardina, 2002). The proposed
AST method is then applied to two real world problems. One is to
improve the existing scaling parameters Kn, and the other is to
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detect a new scaling parameter for the drag prediction of a sharp
cone at hypersonic speeds.

4.1. Test of prediction capability

The toy problem, z¼ x2þy2, is used to compare the prediction
capability of AST with SVM and ANN. For all of the three methods,
the learning set consists of 121 sample points, which are uniformly
distributed in ½�3;3� � ½�3;3�, while the set to predict is spread
across the region ½�6;6� � ½�6;6�. In this case, most of the points
to predict (about 75%) lies out side of the known range. The pre-
dicted surfaces are shown in Fig. 7(a), (c) and (e). To show the
performance of these methods more clearly, a test set of 625
points uniformly distributed in ½�6;6� � ½�6;6� is taken to show
the prediction deviation of each method (see Fig. 7(b), (d) and (f).

In this work, the genetic programming method used in AST is
parse matrix evolution (PME), and the characteristic curves are
constructed with an improved version of Kriging regression
method, DACE (Lophaven et al., 2002). The SVM used in this work
is a specialized version for regression, referred to as ϵ�SVR in
Chang and Lin (2011), with the kernel type of radial basis function
(RBF). Another variant of SVM, ν�SVR, is also tested on this pro-
blem. The parameters of SVR are set to their suggested default
values. The ANN used in this work is a specialized version of the
feed forward network for fitting an input–output relationship (de
Jesús and Hagan, 2007; Horn et al., 2009). The hidden layer size is
set to 10. The sample data are divided into three parts for training,
validation, and testing. The percentages are 70%, 15% and 15%,
respectively.

Fig. 7 shows that all these methods work well to predict the
value at the new point within the range the sampled region, but
difficult to predict outside of the known range. The predicted value
of ϵ�SVR is far from its actual one outside the convex-hull (see
Fig. 7(b)). The rescaled mean squared error 1�R2 is 0.079 for the
test data within the convex-hull of samples (red in figure), and
2.061 for all the test data. ν�SVR has a similar performance. The
1�R2 is 0.0866 within the convex-hull, and 2.054 for all. ANN
performs much better (see Fig. 7(d)). The 1�R2 is 5:34� 10�8

within the convex-hull, and 0.0912 for all. However, if only an
invariant is the detected, the proposed AST method works great on
all valid regions (see Fig. 7(f)). The 1�R2 is 1:49� 10�8 within the
convex-hull, and 2:56� 10�8 for all.

4.2. Practical applications

Affected by random factors and measurement/computation
errors, real-world data are much more complex than the above toy
problem. This makes it more difficult to get a working scaling
parameter. To test the capability of AST method, two real-world
problems are considered. In problem one, the data are read from



-10
-5

0
5

10

-6-4-20246
0

2

4

6

8

10

12

14

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

z

z pr
ed

ic
t

-6
-4

-2
0

2
4

6

-10
-5

0
5

10
0

10

20

30

40

50

60

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

z

z pr
ed

ic
t

-10

-5

0

5

10

-10
-5

0
5

10
0

20

40

60

80

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

z

z pr
ed

ic
t

Fig. 7. Comparison of extrapolation capability of SVR, ANN, and AST. (a) Predicted surface by ϵ�SVR. (b) Prediction deviation of ϵ�SVR. (c) Predicted surface by ANN.
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Fig. 1 in Macrossan (2006). Since there is already an existing
scaling parameter, the Knudsen number Kn, the objective in this
work is to find a better scaling parameter that could bring the
transformed curves (of different Mach numbers, see Fig. 8) closer.
From Fig. 8(b)–(d), we can see that the scaling parameter could be
improved better and better by AST.
Although f3 is the best so far scaling parameter we could find,
the transformed curves could not overlap each other. This means
that the scaling parameter f3 is not a perfect one, and the combi-
nation of (Kn, M) is not suitable for constructing an scaling para-
meter. However, a better scaling parameter could be expected if
more information of the data, e.g., Reynolds number, is available.
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The second problem is to find a scaling parameter for drag
prediction of a sharp cone with 10° half-angle. The full length of
the cone is 1.5 m. The scale of models ranges from 0.1° to 1.0°. The
learning and test data are all obtained by computational fluid
dynamics (CFD) simulation. For the test data, the Mach number of
free stream ranges from 4 to 9, temperature from 50 K to 250 K,
pressure from 560 Pa to 12 560 Pa, angle of attack (AoA) from 0° to
15°. However, the learning data has a much smaller range. All
parameters are shrunk to their lower half part except the AoA. To
get a reasonable result, 1024 cases are simulated, and 24 of outliers
are removed. A part of them with smaller parameters are assigned
to the learning set, and the others are used for testing the pre-
diction capability of AST. All the data are aligned to 8 degree of
AoA (this process is beyond the scope of this paper) for the
invariant detection. Only non-dimensional parameters, Mach
number and Reynolds number are considered to be correlated.
Based on previous studies, the Reynolds number is transformed
with a logarithmic function Log 10ð�Þ, and each component of the
data is then linearly mapped to the interval [1, 2]. Or, more spe-
cifically, the minimum xmin and maximum values xmax of each
parameter is normalized to [ymin, ymax] by the formula y¼
(ymax�ymin)n(x�xmin)/(xmax�xmin) þ ymin, where ymin¼1,
and ymax¼2. For example, the normalized Mach number
M¼ ð2�1ÞnðM1�4Þ=ð9�4Þþ1¼ ðM1�4Þ=5þ1. Under the above
conditions, Reynolds number Re1A ½1:47E6;3:69E9�. So we get
Log 10ðRe1ÞA ½6:17;9:57�, and the normalized Reynolds number
Re¼ ðLog 10ðRe1Þ�6:17Þ=3:4þ1.

Using the information from the 200 learning cases of smaller
parameters, a new scaling parameter s¼ Re � ð1�MÞ is obtained by
AST. It can transform the learning data into a smooth curve
approximatively (see Fig. 9(a)). With this scaling parameter, the
other 800 cases, most of them lies outside of the convex hull of the
learning data, are predicted. The prediction results are compared
with that of their corresponding CFD cases, the deviations are
shown in Fig. 9(b). It shows that the prediction results agree well
with CFD, no matter whether the case is inside (interpolation) the
range of learning set or not (extrapolation). The rescaled mean
squared error 1�R2 inside and outside of the convex-hull are
0.0018, and 0.0021, respectively.

Although AST works great on these problem, the extrapolation
capability of AST should not be exaggerated. Keeping in mind that
the extrapolated result is reliable only if the system has not
essentially changed (so that the invariant still holds). For example,
with the increase of flight speed, say M1415, the real gas effect
will become more and more important, and its influence on the
coefficient of aerodynamic forces might be non-ignorable. In this
case, the above scaling parameter might be inapplicable and
should be improved. Here, whether the system has essentially
changed or not should be decided by practical physicists. The
decision process is beyond the scope of this paper.
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As a comparison, ANN and ϵ�SVR are also applied to predict the
drag coefficient CA of the sharp cone (see Fig. 10). The study shows that
both of the algorithms predict well inside the convex-hull of samples
(red in figure). The rescaled mean squared error 1�R2 is 0.0075 and
0.0071, respectively. But the prediction performance degenerates
greatly outside the convex-hull. The rescaled mean squared error
1�R2 is 0.1032 and 0.1457, respectively.
5. Conclusion

We found that the existing scaling parameters are essentially
space transformations to detect invariant of the high-speed rar-
efied flow. Based on this discovery, a new method, referred to as
adaptive space transformation (AST), is proposed for the predic-
tion of aerodynamic coefficients. AST tries to detect an invariant
relation of the system by analyzing the known data with genetic
programming. Once the invariant relation is detected, it will be
used for prediction. The prediction result should be reliable pro-
vided that the flow around the hypersonic vehicles has not
essentially changed, i.e., no new physical phenomenon, such as
dissociation or ionization, turns up and becomes non-ignorable.
Under this assumption, the underlying physical nature will remain
unchanged, and the invariant relation still holds. That is why the
extrapolation results of AST are more reliable than that of
approximation based methods. Practical results have confirmed its
prediction capability.

The complexity of the transformation kernel (scaling para-
meter) is well controlled in AST. So the resulted formula is usually
quite concise (e.g., the above result s¼ Re � ð1�MÞ). In addition, the
transformed data could be visualized in a 2-D plane. So the result
is easy to interpret and easy to use.

AST method can help improve existing scaling parameters, as
well as derive a new one for new cases automatically. In this sense,
existing scaling parameters could be regarded as typical solutions
of AST method in the special case (for high-speed rarefied flow).
AST provides a reliable method for predicting the aerodynamic
coefficient of hypersonic vehicles.

Although AST is proposed under the background of predicting
aerodynamic coefficients of hypersonic vehicles, it can be used for
other data correlation problems, provided that the underlying
invariant of the concerned system exists.
Acknowledgment

The authors would like to thank the anonymous reviewers for
their constructive comments related to earlier manuscript versions
of this work.



C. Luo et al. / Engineering Applications of Artificial Intelligence 46 (2015) 93–103 103
References

Anderson Jr., J., 2006. Hypersonic and High-Temperature Gas Dynamics, 2nd ed.,
American Institute of Aeronautics and Astronautics, Inc., Reston, Virginia.

Bechikh, S., Ben Said, L., Ghédira, K., 2011. Searching for knee regions of the pareto
front using mobile reference points. Soft Comput. 15 (9), 1807–1823.

Bird, G.A., 1970. Breakdown of translational and rotational equilibrium in gaseous
expansions. AIAA J. 8 (11), 1998–2003.

Chang, C.-C., Lin, C.-J., 2011. LIBSVM: a library for support vector machines. ACM
Trans. Intell. Syst. Technol. 2 (3) 27:1–27.

Cheng, H.K., 1961. Hypersonic shock-layer theory of the stagnation region at low
Reynolds number. In: Proceedings of the 1961 Heat Transfer and Fluid
Mechanics Institute, pp. 161–175.

de Jesús, O., Hagan, M.T., 2007. Back propagation algorithms for a broad class of
dynamic networks. IEEE Trans. Neural Netw. 18 (1), 14–27.

Horn, J.M., de Jesús, O., Hagan, M.T., 2009. Spurious valleys in the error surface of
recurrent networks—analysis and avoidance. IEEE Trans. Neural Netw. 20 (4),
686–700.

Koza, J.R., 1992. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, MA.

Lee, J.-H., Kim, E.T., Chang, B.-H., Hwang, I.-H., Lee, D.-S., 2009. The accuracy of the
flight derivative estimates derived from flight data. World Acad. Sci. Eng.
Technol. 58, 843–849.

Luo, C., Zhang, S.-L., 2012. Parse-matrix evolution for symbolic regression. Eng.
Appl. Artif. Intell. 25, 1182–1193.

Luo, C., Zhang, S.-L., Jiang, Z., 2011. A new evolutionary algorithm for ground to
flight data correlation. In: Abstracts of the 7th East Asia SIAM Conference &
RIMS Workshop on Methods in Industrial and Applied Mathematics. Kita-
kyushu, Japan, pp. 52–53.
Lophaven, Søren N., Nielsen, Hans Bruun, Søndergaard, Jacob, 2002. DACE—A
Matlab Kriging Toolbox. Technical Report IMM-REP-2002-12. Technical Uni-
versity of Denmark, pp. 1–26.

Macrossan, M.N., 2006. Scaling parameters for hypersonic flow: correlation of
sphere drag data. In: Proceedings of the 25th International Symposium on
Rarefied Gas Dynamics, pp. 759–764.

Mezura-Montes, E., Coello, Carlos A.C., 2011. Constraint-handling in nature-inspired
numerical optimization: past, present and future. Swarm Evol. Comput. 1(4),
173–194.

Morelli, E.A., DeLoach, R., 2003. Wind Tunnel Database Development Using Modern
Experiment Design and Multivariate Orthogonal Functions. AIAA Paper 2003-
0653.

Nicolì, A., Imperatore, B., Marini, M., Catalano, P., Pizzicaroli, A., Perigo, D., 2006.
Ground-to-Flight Extrapolation of the Aerodynamic Coefficients of the VEGA
Launcher. AIAA Paper 2006-3829.

Norgaard, M., Jorgensen, C., Ross, J., 1997. Neural Network Prediction of New Aircraft
Design Coefficients. NASA Technical Memorandum 112197.

O'Neill, M., Ryan, C., 2001. Grammatical evolution. IEEE Trans. Evol. Comput. 5,
349–358.

Peterson, Jr., J.B., Mann, M.J., Sorrells III, R.B., Sawyer, W.C., Fuller, D.E., 1980.
Extrapolation of Wind-Tunnel Data to Full-Scale Conditions. NASA TP 1515.

Rajkumar, T., Bardina, Jorge, 2002. Prediction of aerodynamic coefficients using
neural networks for sparse data. In: Proceedings of the 15th International
Florida Artificial Intelligence Research Society Conference, pp. 242–246.

Ravikiran, N., Ubaidulla, P., 2004. Support vector machine approach to drag coef-
ficient estimation. In: Proceedings of the 7th International Conference on Signal
Processing, vol. 2, pp. 1435–1438.

Tsien, H.S., 1946. Superaerodynamics, mechanics of rarefied gases. J. Aerosp. Sci. 13
(2), 653–664.

http://refhub.elsevier.com/S0952-1976(15)00201-8/sbref2
http://refhub.elsevier.com/S0952-1976(15)00201-8/sbref2
http://refhub.elsevier.com/S0952-1976(15)00201-8/sbref2
http://refhub.elsevier.com/S0952-1976(15)00201-8/sbref3
http://refhub.elsevier.com/S0952-1976(15)00201-8/sbref3
http://refhub.elsevier.com/S0952-1976(15)00201-8/sbref3
http://refhub.elsevier.com/S0952-1976(15)00201-8/sbref4
http://refhub.elsevier.com/S0952-1976(15)00201-8/sbref4
http://refhub.elsevier.com/S0952-1976(15)00201-8/sbref6
http://refhub.elsevier.com/S0952-1976(15)00201-8/sbref6
http://refhub.elsevier.com/S0952-1976(15)00201-8/sbref6
http://refhub.elsevier.com/S0952-1976(15)00201-8/sbref7
http://refhub.elsevier.com/S0952-1976(15)00201-8/sbref7
http://refhub.elsevier.com/S0952-1976(15)00201-8/sbref7
http://refhub.elsevier.com/S0952-1976(15)00201-8/sbref7
http://refhub.elsevier.com/S0952-1976(15)00201-8/sbref9
http://refhub.elsevier.com/S0952-1976(15)00201-8/sbref9
http://refhub.elsevier.com/S0952-1976(15)00201-8/sbref9
http://refhub.elsevier.com/S0952-1976(15)00201-8/sbref9
http://refhub.elsevier.com/S0952-1976(15)00201-8/sbref10
http://refhub.elsevier.com/S0952-1976(15)00201-8/sbref10
http://refhub.elsevier.com/S0952-1976(15)00201-8/sbref10
http://refhub.elsevier.com/S0952-1976(15)00201-8/sbref18
http://refhub.elsevier.com/S0952-1976(15)00201-8/sbref18
http://refhub.elsevier.com/S0952-1976(15)00201-8/sbref18
http://refhub.elsevier.com/S0952-1976(15)00201-8/sbref22
http://refhub.elsevier.com/S0952-1976(15)00201-8/sbref22
http://refhub.elsevier.com/S0952-1976(15)00201-8/sbref22

	Adaptive space transformation: An invariant based method for predicting aerodynamic coefficients of hypersonic vehicles
	Introduction
	Observation and discussion of existing scaling parameters
	Observation
	Discussion

	Adaptive space transformation (AST)
	Idea behind parameter correlation
	AST method
	Optimization models of AST method
	Properties of kernel function
	Practical tricks and discussion

	Prediction results
	Test of prediction capability
	Practical applications

	Conclusion
	Acknowledgment
	References




