

Edinburgh Research Explorer

Secure information sharing in social agent interactions using
information flow analysis

Citation for published version:
Bijani, S, Robertson, D & Aspinall, D 2018, 'Secure information sharing in social agent interactions using
information flow analysis', Engineering Applications of Artificial Intelligence, vol. 70, pp. 52-66.
https://doi.org/10.1016/j.engappai.2018.01.002

Digital Object Identifier (DOI):
10.1016/j.engappai.2018.01.002

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Engineering Applications of Artificial Intelligence

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 19. Apr. 2024

https://doi.org/10.1016/j.engappai.2018.01.002
https://doi.org/10.1016/j.engappai.2018.01.002
https://www.research.ed.ac.uk/en/publications/2451500e-0031-4ef5-8ff1-e8a6e964fa57

Secure Information Sharing in Social Agent Interactions Using

Information Flow Analysis

Shahriar Bijani1, David Robertson2 and David Aspinall2

1 Computer Science Dept., Shahed University, Persian Gulf Highway, Tehran, Iran.
2 Informatics School, University of Edinburgh, 10 Crichton St. Edinburgh, UK.

bijani@shahed.ac.ir, dr@inf.ed.ac.uk, david.aspinall@ed.ac.uk

Abstract.
When we wish to coordinate complex, cooperative tasks in open multi-agent systems, where each
agent has autonomy and the agents have not been designed to work together, we need a way for
the agents themselves to determine the social norms that govern collective behaviour. An effective
way to define social norms for agent communication is through the use of interaction models such
as those expressed in the Lightweight Coordination Calculus (LCC), a compact executable
specification language based on logic programming and pi-calculus. Open multi-agent systems
have experienced growing popularity in the multi-agent community and gain importance as large
scale distributed systems become more widespread. A major practical limitation to such systems
is security, because the very openness of such systems opens the doors to adversaries to exploit
vulnerabilities introduced through acceptance of social norms.
This paper addresses a key vulnerability of security of open multi-agent systems governed by
formal models of social norms (as exemplified by LCC). A fundamental limitation of
conventional security mechanisms (e.g. access control and encryption) is the inability to prevent
information from being propagated. Focusing on information leakage in choreography systems
using LCC, we suggest a framework to detect insecure information flows. A novel security-typed
LCC language is proposed to prevent information leakage.
Both static (design-time) and dynamic (run-time) security type checking are employed to
guarantee no information leakage can occur in annotated agent interaction models. The proposed
security type system is discussed and then formally evaluated by proving its properties.
Two disadvantages of the pure dynamic analysis are its late detection and its inability to detect
implicit information flows. We overcome these issues by performing static analysis. The proposed
security type system supports non-interference, i.e. high-security input to the program never affect
low-security output. However, it disregards information leaks due to the termination of the
program.

Keywords: Multi-Agent Systems (MASs), Open Systems, Language-based Security, Information Leakage,

Information Flow Analysis, Lightweight Coordination Calculus (LCC).

1. Introduction

Security is a major practical limitation to the advancement of open systems and open multi-agent systems

(MASs) is no exception. Although openness in open MASs makes them attractive for different new applications,

new problems emerge, among which security is a key issue. Unfortunately, there remain many potential gaps in

the security of open MASs and little research has been done in this area.

A MAS could be defined as a subcategory of a software system, a high level application on top of the OSI1

networking model; therefore the security of MASs is not a completely different and new concept; it is a sub-

category of computing security. However, some traditional security mechanisms resist use in MAS directly,

because of the social nature of MASs and the consequent special security needs (Robles 2008). Open MASs are

1 Open Systems Interconnection

mailto:dr@inf.ed.ac.uk
mailto:david.aspinall@ed.ac.uk

particularly difficult to protect, because we can provide only minimum guarantees about the identity and

behaviour of agents.

Confidentiality is one of the main features of a secure system that is challenging to be assured in open

MAS. Open MASs are convenient platforms to share knowledge and information, however usually there exists

some sensitive information that we want to protect. The openness of these systems increases the potential for

unintentional leaking of sensitive information. Thus, it is crucial to have mechanisms that guarantee

confidentiality and to assure that the publicly accessible information during the interactions is what we

deliberately want to share.

Information leakage denotes disclosure of secret information to unauthorised parties via insecure

information flows. Information leaks in agent interactions occur when secret data are revealed through message

transfers, constraints or assigning roles to agents.

An electronic institution (Esteva, et al. 2001) or an interaction model is an organisation model for MASs

that provides a framework to describe, specify and deploy agent interaction environments (Joseph, et al. 2006).

It is a formalism which defines agents’ interaction rules and their permitted and prohibited actions. While

interaction models can be used to implement security requirements of a multi-agent system, they also can be

turned against agents to breach their security in a variety of ways, as we will show in this paper.

To employ a language-based approach to secure interaction models, we need to select an agent language.

We chose the Lightweight Coordination Calculus (LCC) as the agents’ communication language (see Section 2

for a summary of LCC).

Common security techniques such as conventional access control, encryption, digital signatures, virus

signature detection and information filtering are necessary but they do not address the fundamental problem of

tracking information flow in information systems, therefore, they cannot prevent all information leaks. Access

control mechanisms only prevent illegal access to information resources and cannot be a substitute for

information flow control (Sabelfeld and Myers 2003). Encryption-based techniques guarantee the origin and

integrity of information, but not its behaviour.

This paper is laid out as follows. First, different types of insecure information flows in open MAS governed

by interaction models are introduced. Second, a security type system is proposed by defining security types and

the type inference rules. Then, the security type system is evaluated by proving some of its properties. Next, the

dynamic and the static approaches in the interaction type checking are reviewed and non-interference and

declassification are discussed.

2. Lightweight Coordination Calculus (LCC)

In our security analysis Lightweight Coordination Calculus (LCC) is used to implement agents’ interaction

models and formulate attacks. LCC (Robertson 2005), is a declarative language used to specify and execute

social norms in a peer to peer style. LCC is a compact executable specification based on logic programming.

An interaction model in LCC is defined as a set of clauses, each of which specifies a role and its process of

execution and message passing. The LCC syntax is shown in Fig. 2-1.

Interaction Model := {Clause,...}

Clause := Role::Def

Role := a(Type, Id)

Def := Role | Message | Def then Def | Def or Def | null<- C | Role <- C

Message := M => Role | M => Role <- C | M <= Role | C <- M <= Role

C:= Constant | P(Term,...) | ¬ C | C  C | C  C

Type := Term

Id := Constant | Variable

M:= Term

Term:= Constant | Variable | P(Term,...)

Constant:= lower case character sequence or number

Variable := upper case character sequence or number

Fig. 2-1: LCC language syntax; principal operators are: messages (and), conditional (<-),

sequence (then) and committed choice (or)

Each role definition specifies all of the information needed to perform that role. The definition of a role

starts with: a(roleName,PeerID). The principal operators are outgoing message (=>), incoming message

(<=), conditional (<-), sequence (then) and committed choice (or). Constants start with lower case characters

and variables (which are local to a clause) start with upper case characters. LCC terms are similar to Prolog

terms, including support for list expressions. Matching of input/output messages is achieved by structure

matching, as in Prolog.

The right-hand side of a conditional statement is a constraint. Constraints provide the interface between the

interaction model and the internal state of the agent. These would typically be implemented as a Java component

which may be private to the peer, or a shared component registered with a discovery service.

Role definitions in LCC can be recursive and the language supports structured terms in addition to variables

and constants so that, although its syntax is simple, it can represent sophisticated interactions. Notice also that

role definitions are “stand alone” in the sense that each role definition specifies all the information needed to

complete that role. This means that definitions for roles can be distributed across a network of computers and

(assuming the LCC definition is well engineered) will synchronise through message passing while otherwise

operating independently.

Robertson (2005) defined the following clause expansion mechanism for agents to unpack any LCC

interaction model they receive and suggested applying rewrite rules to expand the interaction state:

𝐶𝑖
𝑀𝑖,𝑀𝑖+1,𝑃,𝑂𝑖
→ 𝐶𝑖+1𝑠, … , 𝐶𝑛−1

𝑀𝑛−1, 𝑀𝑛,𝑃,𝑂𝑛
→ 𝐶𝑛

where Cn is an expansion of the original LCC clause Ci in terms of the interaction model P and in response to

the set of received messages Mi, On is an output message set, Mn is a remaining unprocessed set of messages.

 The rewrite rules allow an agent to conform to the interaction model by unpacking clauses, finding the next

step and updating the interaction state. The rewrite rules are defined in the LCC interpreter, which should be

installed on each agent running LCC codes. For more information about the LCC expansion algorithm see

(Robertson 2005) and (Robertson, Barker, et al. 2009).

3. Related Work

Security of MAS has been explored extensively in the literature but only a few studies have focused on

open MAS social interactions and most research has dealt with the security of mobile agent environments, so

most of the security solutions address threats from agents to hosts or from hosts to agents. A review of attacks

and countermeasures for open MASs is presented by (Bijani and Robertson, A Review of Attacks and Security

Approaches in Open Multi-agent Systems 2014). Trust measures have also important role in implementing

security strategies in open MAS. E.g. The trust service of the MAS is responsible for preventing the fake

identity attacks. This issue has been considered in several recent works e.g. (Rosaci 2012) and (Buccafurri, et al.

2016).

There have been many attempts to protect mobile agents from the host platform in the literature (Jansen and

Karygiannis 2000), (Oey, Warnier and Brazier 2010) and (Ngereki 2015); some are based on cryptography

while others are not; e.g. code obfuscation (Majumdar and Thomborson 2005), function encryption (Lee, Alves-

Foss and Harrison 2004) and (Zhu and Xiang 2011), environmental key generation (Riordan and Schneier

1998), execution tracing (Tan and Moreau 2002), and agent monitoring (Page, Zaslavsky and Indrawan 2005).

Another important security issue in mobile agent systems is protecting the agent platform from mobile agents.

Some example techniques are: Proof Carrying Code (Necula and Lee 1998), sandboxing (Wahbe, Lucco and

Anderson 1993) and code signing (Jansen and Karygiannis 2000). However, the importance of these security

issues originating from the mobility of agents should not diminish the importance of many other security threats

in open MASs and a subset of these will be our concern henceforth in this paper.

Security approaches in the multi-agent security domain can be divided into two parts; the first approach is

prevention, in which usually encryption-based techniques and authentication methods (e.g.: certificates and

PKI2) are used. Most research on secure MASs follows this approach. (Wong and Sycara 1999), (Idrissi, Souidi

and Revel 2015) and (Ohno, et al. 2016) are some examples of using encryption to prevent MASs from

malicious attacks. For instance, (Poslad and Calisti 2000), (Wang, Varadharajan and Zhang 1999) and (Odubiyi

and Choudhary 2007) suggest security architectures for the IEEE FIPA agent standard by means of

authentication, PKI and VPN3. (Sarhan and Alnaser 2014) propose a public-key based solution for multi-agent

virtual learning environment. Other prevention methods for secure MASs are: policy driven and secure

development methodologies such as (Mouratidis, Giorgini and Weiss 2003) and (Hedina and Moradian 2015)

that guarantee security requirements and design are integrated with system functionalities. Policy driven

methodologies are based on applying security policies, which may be used for access control, e.g. (Quillinan, et

al. 2008), definition of acceptable behaviour, e.g. (Vazquez-Salceda, et al. 2003) or policy randomisation to

prevent adversaries guess the next agent action, e.g. (Tan, Poslad and Xi 2004).

2 Public Key Infrastructure

3 Virtual Private Network

The second approach is detection, which tries to detect attacks on MASs and then respond to them. Little

research has been done in this area and the focus of the work has been on attacks and countermeasures in mobile

agents, e.g., (Jansen and Karygiannis 2000), (Endsuleit and Wagner 2004), and (Ogunnusi and Ogunlola 2015).

The main problems in mobile agent systems, which are not in the scope of our review, are threats from agents to

hosts and vice versa.

We employed a language-based information flow analysis approach in the context of open MASs. In static

information flow analysis, agent interaction models are validated before being run. Static analysis of

programmes using security type systems conservatively detects implicit and explicit information flows and

provides stronger security assurance (Sabelfeld and Myers 2003). Dynamic security checks may be

accomplished via two similar approaches: monitors (Russo and Sabelfeld 2010) or dynamic security typing

(Hennigan, et al. 2011).

4. Insecure Information Flows

The first step in language-based information flow analysis for agent interaction models is defining security

levels for terms and components in the code. A set of security levels is a finite lattice i.e. a partially ordered set

with a top element H and a bottom element L, ordered by ≤. Lower in the lattice denotes “less secure” and

higher in the lattice indicates “more secure”. Without loss of generality, a two-element security lattice is

assumed with levels l, for low security (public information), and h, for high security (secret information).

The following definition characterises the concept of security levels in this paper.

Definition 4-1 (Security Levels):

We consider a simple lattice L with two security levels, low l and high h, security level l ∈ (L, ≤), where l ≤ h

and ≤ is a partial order relation.

We need to ensure that information flows only upwards in the lattice (D. E. Denning 1976) e.g. when l ≤ h,

permissible information flows are from l to l, from l to h and from h to h, but flow from h to l is not allowed.

A MAS keeps secrets confidential during agents’ interaction if it only allows secure information flow. There are

two types of information flows: explicit flow and implicit flow. Distinctions between explicit and implicit flows

in LCC interaction models are shown with the following examples. It is assumed that all the LCC terms in the

given examples are public information (which have security level l), except for the following secret variables

(which have security level h):

SecretMessage, SecretID, S, PrivateAgent, secretAgent.

In the following examples SecretMessage is a secret message, are sec is for the following secret variables

(which have security level h):

4.1 Explicit flows

Insecure explicit information flow denotes direct sending or assigning of secrets. Explicit flows in LCC

interaction models may occur in three situations: (a) message passing, (b) invoking a constraint and (c)

assigning a role to an agent. In explicit information flows, the operations are performed independently of the

value of their terms (Denning and Denning 1977), e.g. the content of an LCC message does not affect the

sending operation. Insecure explicit flow may cause secret information to be leaked to a publicly observable

term. Consider the following LCC codes as examples of explicit information flows:

a) Message passing

The following explicit flow, in which the instance of a variable SecretMessage is sent to a low level

agent P with the risk of secret information leakage:

SecretMessage => a(publicAgent, P)

The secret message can also be received by another agent:

SecretMessage <= a(publicAgent, P)

This breach of security can occur in an LCC clause, when a public agent P sends the SecretMessage

to any (public or secret) receiver agent R:

a(publicAgent, P)::

...

SecretMessage => a(receiver, R)

...

On the other hand, a message passing pattern can occur without a security breach. The following

explicit flows that sends (receives) a PublicMessage variable to (from) a secretAgent S is

permissible.

PublicMessage => a(secretAgent, S)

and

PublicMessage <= a(secretAgent, S)

b) Invoking a constraint

An example of an explicit flow that discloses the value of a secret variable to a publicly observed

variable is assigning SecretID to a PublicVariable in an LCC constraint:

null <- assign(PublicVariable, SecretID)

Any constraint that updates the value of a public term using a secret term causes an unacceptable

information flow. The constraints in LCC play an important role, although the implementation details

of constraint solvers are invisible to LCC clauses and the constraint solver might even be a remote web

service. However, it is the responsibility of the LCC programmer to prevent any illegal information

flow caused by invoking a constraint.

c) Assigning a role to an agent

When a role is assigned to an agent in the definition of an LCC clause, the security level of the role and

the agent identifier need to be compatible. The following role definition is not a permissible flow,

because it assigns a secret role secretAgent to a low security agent PublicAgent.

a(secretAgent, PublicAgent)::

 ...

On the other hand, a publicAgent role (or a secretAgent role) can be assigned to a

PrivateAgent:

a(publicAgent, Private Agent):: ...

4.2 Implicit Flows

Insecure implicit flows disclose some information through the program control flow. In other words, based on a

definition from Denning and Denning (1977), we can define an implicit information flow from term T1 to term

T2, when a performed operation causes a flow from some arbitrary T3 to T2, based on the value of T1. Thus,

conditional LCC expressions are the sources of insecure flows.

The following example is a conditional statement, in which a public message is sent to a public agent P, if

the constraint is satisfied (SecretID ≤ 10). The explicit flow in sending the message is permitted, but the

implicit flow from the constraint to the public agent P that leaks information about the range of SecretID

variable is illegal. If a public message is sent to agent P, it reveals that the SecretID is less than or equal to 10

and if it is not sent, the SecretID is greater than 10.

PublicMessage => a(publicAgent,P) <- lessOrEqual(SecretID, 10)

In another example below, the public agent P can guess the range of SecretID, by receiving a public

message containing a public variable X, although the message passing part does not explicitly disclose any

information. Either the public agent receives publicMsg(X) or publicMsg(1), knowing the value of X, some

information about SecretID is leaked.

publicMsg(X) => a(publicAgent,P) <- lessOrEqual(SecretID,X)

or

publicMsg(1) => a(publicAgent,P)

The above example might leak information about SecretID, but not the exact value of it. The following

example discloses the value of SecretID; assuming SecretID is not negative, the initial value of X is set to 0

and the constraint increase(X1,X,1) means X1=X+1. In the recursive clause below, if SecretID is not

equal to 0, the value of X1 is X+1 and the clause is called again with the updated X1; i.e. a(myAgent(X1),Q).

Finally, when X equals to SecretID+1, publicMsg(X) reveals the value of SecretID to the public agent P.

a(myAgent1(X), Q):: ...

(

 a(myAgent1(X1), Q) <- lessOrEqual(SecretID,X) ∧ increase(X1,X,1)

 or

 publicMsg(X)=>a(publicAgent,P) % when X equals SecretID +1

)

In a similar example, the following LCC clause binds R to the precise value of SecretID if the role

completes successfully. So, it discloses the value of SecretID to the public agent P by sending publicMsg(R)

message. In this example, even if R is not sent as a message parameter (i.e. publicMsg instead of

publicMsg(R)), the public agent P can discover the value of SecretID by counting the number of received

messages.

a(myAgent2(X,R), Q)::

 ...

 (

 publicMsg(R)=>a(publicAgent,P) <- lessOrEqual(SecretID,X) ∧ increase(X1,X,1)

 then a(myAgent2(X1,R), Q)

) or

 a(myAgent2(X,X), Q) <- equals(SecretID,X)

Information may leak because of the termination behaviour of the interaction model4. Recursion is the key

to this type of leaks. In the following sample LCC clause, the adversary learns that the value of the SecretID is

0 if the interaction model terminates.

a(myAgent3, Q)::

 a(myAgent3, Q) <- ¬equals(SecretID,0)

Adversaries can exploit explicit or implicit information flows to perform attacks. We need to prevent both

explicit and implicit insecure information flows in order to ensure no information leaks to unauthorised parties.

4.3 Countermeasures

Two approaches to address information flow problems in MASs governed by interaction models are conceptual

modelling by analysing the abstract models of the code and language-based information flow analysis. In the

first approach, an LCC interaction model is translated into an abstract model, in which information leakage is

investigated using an existing reasoning tool (Bijani, Robertson and Aspinall 2011). In language-based analysis

of the agents’ code, we employ security types for the LCC terms and enforce a security policy by type checking.

4 This is also called information leaks via the termination channel.

5. Information Flow Analysis in LCC

We propose a language-based information flow analysis technique for the LCC language to prevent information

leaks problem by introducing a novel security type system. The proposed framework is inspired by the security

type system of Volpano and Smith (1997).

A security type system is defined by a set of type definitions and typing rules to determine if an interaction

model is well-typed.

5.1 Security Types

The type rules are judgments of the form:  ⊢ T : where  is a type environment that maps term T to type .

Here are some definitions:

Definition 5-1 (Security Type Environment):

A security type environment (context)  is a finite map from LCC terms to security types and is defined by

 ::= empty | , T: , (5-1)

in which  is empty (with no binding) or an updated environment that contains a mapping of the term T to the

type . If there exists a  that  ⊢ T : , then T is called a well-typed LCC expression under the security context

of .

Definition 5-2 (Security Types):

The security types of our system are defined as following:

= | uTrm | agent | con | op     (5-2)

where  ranges over elements of security levels, agent identifiers have only type “uTrm ”, agents have only

type “agent ”, constraint expressions have only type “con ”, operational commands5 have only type “op ” and

messages, Constraint arguments have type “uTrm ” or . Role names and other terms (variables, constants and

structures) have only type .

To have a better understanding of the meanings of the security types, the following description explains the

intuition behind them:

a. ⊢ X: uTrm means that an updated agent identifier in a role assignment or message passing

operation or an updated argument in a constraint has a security level higher than or equal to in

context .

b. ⊢ T : means that an identifier, a role name, or a message T (with every identifier inside it) has a

security level lower than or equal to in context .

5 Operational commands are the Def keyword in the LCC syntax: Def := Role | Message | Def then Def | Def or Def | null<-

C | Role <- C

c. ⊢ a(Role,Id): agent means in the agent definition, agent identifier Id, to which a role is

assigned has a security level or higher in context .

d. ⊢ C : con means that the constraint name and every argument within C has a security level or

lower in context .

e. ⊢D: op means that every receiver of a message or any updated identifier in an operational

command (i.e. Def) has a security level τ or higher in context .

 (T) denotes the security level of the term Te.g. if we have t1 : h and f1 : con l, then  (t1) = h and 

(f1) = l.

Security levels are directly assigned to LCC terms by annotations of the LCC code n

label(Term, Level).

in which label is a keyword, Term is any LCC term and Level is the security levels high (h) or low (l). The

security types are then assigned based on the term definitions. All security types can be inferred from the term

structure automatically, except constraints’ arguments, which need to be defined explicitly (by the user). By

default, a constraint’s arguments are assumed to be non-updatable and to have a security type, τ, assigned to

them.

5.2 Type Inference for LCC

The proposed security type system for LCC programs is described by two sets of typing rules (Fig. 5-1) and

subtyping rules (Fig. 5-2). Each rule is read from bottom left and is applied recursively, e.g. rule Agnt states that

in order to assign a role to an agent in form of a(R, ID) that has security type of agent τ, we must first check

whether the security type of the role R is τ and then whether the security type of the agent identifier is uTrm τ. It

guarantees that a high level role will not be assigned to a low agent. The environment Γ is a confidentiality

policy, which is an input of our secure interpreter (Fig. 7-1-a). Security labels are assigned to LCC terms as

annotation of LCC interaction models (Fig. 5-3).

The security typing rules Id and uId explain if an LCC identifier (a constant or a variable) is defined in the

environment Γ, security types τ or uTrm τ may be assigned to it. Selection of τ or uTrm τ is based on the

structure of the LCC expression. The security label of the current clause (this) is important while message

passing and calling a constraint. This is created and added to the security environment Γ by the Init rule.

 𝑇: 𝜏 𝜖 𝛤

𝛤 ⊢ 𝑇: 𝜏
𝐼𝑑

 𝑇: 𝜏 𝜖 𝛤

𝛤 ⊢ 𝑇: 𝑢𝑇𝑟𝑚 𝜏
𝑢𝐼𝑑

𝛤 ⊢ 𝑛𝑢𝑙𝑙: 𝑜𝑝 ℎ
𝑁𝑢𝑙𝑙

𝛤 ⊢ 𝑓𝑎𝑙𝑠𝑒: 𝑜𝑝 ℎ
𝐹𝑎𝑙𝑠𝑒

 𝛤 ⊢ 𝑇: 𝜑

𝛤 ⊢ 𝑐(𝑇): 𝜑
𝐶𝑙𝑜𝑠𝑒

𝛤 ⊢ 𝑅: 𝜏, 𝛤 ⊢ 𝐼𝐷: 𝑢𝑇𝑟𝑚 𝜏

𝛤 ⊢ 𝑎(𝑅, 𝐼𝐷): 𝑎𝑔𝑒𝑛𝑡 𝜏
𝐴𝑔𝑛𝑡

𝛤 ⊢ 𝑎(𝑅, 𝐼𝐷): 𝑎𝑔𝑒𝑛𝑡 𝜏

𝛤, 𝑡ℎ𝑖𝑠: 𝑎𝑔𝑒𝑛𝑡 𝜏 ⊢ 𝑎(𝑅, 𝐼𝐷) ∷ 𝑎𝑔𝑒𝑛𝑡 𝜏
𝐼𝑛𝑖𝑡∗

𝛤 ⊢ 𝑡ℎ𝑖𝑠: 𝑎𝑔𝑒𝑛𝑡 𝜏, 𝛤 ⊢ 𝑀: 𝜏, 𝛤 ⊢ 𝐴 ∶ 𝑎𝑔𝑒𝑛𝑡 𝜏

𝛤 ⊢ 𝑀 ⇒ 𝐴 ∶ 𝑜𝑝 𝜏
𝑆𝑛𝑑

𝛤 ⊢ 𝑡ℎ𝑖𝑠: 𝑎𝑔𝑒𝑛𝑡 𝜏, 𝛤 ⊢ 𝑀: 𝜏, 𝛤 ⊢ 𝐴 ∶ 𝑎𝑔𝑒𝑛𝑡 𝜏

𝛤 ⊢ 𝑀 ⇐ 𝐴: 𝑜𝑝 𝜏
𝑅𝑠𝑣

𝛤 ⊢ 𝑡ℎ𝑖𝑠: 𝑎𝑔𝑒𝑛𝑡 𝜏, 𝛤 ⊢ 𝑓: 𝜏, 𝛤 ⊢ 𝑇𝑖: 𝜌

𝛤 ⊢ 𝑓(𝑇𝑖): 𝑐𝑜𝑛 𝜏
𝐶𝑎𝑙𝑙 𝜌 = 𝜏| 𝑢𝑇𝑟𝑚 𝜏, 𝑖 = 1,… , 𝑛

𝛤 ⊢ 𝑓: 𝜏, 𝛤 ⊢ 𝑇𝑖 : 𝜏

𝛤 ⊢ 𝑓(𝑇𝑖): 𝜏
𝑆𝑡𝑟𝑢𝑐𝑡 𝑖 = 1, … , 𝑛

𝛤 ⊢ 𝐶: 𝑐𝑜𝑛 𝜏

 𝛤¬𝐶: 𝑐𝑜𝑛 𝜏
𝑁𝑜𝑡

𝛤 ⊢ 𝐶1: 𝑐𝑜𝑛 𝜏, 𝛤 ⊢ 𝐶2: 𝑐𝑜𝑛 𝜏

𝛤 ⊢ 𝐶1 ∧ 𝐶2 : 𝑐𝑜𝑛 𝜏
𝐴𝑛𝑑

𝛤 ⊢ 𝐶1: 𝑐𝑜𝑛 𝜏, 𝛤 ⊢ 𝐶2: 𝑐𝑜𝑛 𝜏

𝛤 ⊢ 𝐶1 ∨ 𝐶2 : 𝑐𝑜𝑛 𝜏
𝑂𝑟

𝛤 ⊢ 𝐶: 𝑐𝑜𝑛 𝜏, 𝛤 ⊢ 𝑀 ⇒ 𝐴: 𝑜𝑝 𝜏

𝛤 ⊢ 𝑀 ⇒ 𝐴 ← 𝐶: 𝑜𝑝 𝜏
𝐼𝑓1

𝛤 ⊢ 𝐶: 𝑐𝑜𝑛 𝜏, 𝛤 ⊢ 𝑀 ⇐ 𝐴: 𝑜𝑝 𝜏

𝛤 ⊢ 𝐶 ← 𝑀 ⇐ 𝐴: 𝑜𝑝 𝜏
𝐼𝑓2

𝛤 ⊢ 𝑛𝑢𝑙𝑙: 𝑜𝑝 𝜏 , 𝛤 ⊢ 𝐶: 𝑜𝑝 𝜏

𝛤 ⊢ 𝑛𝑢𝑙𝑙 ← 𝐶: 𝑜𝑝 𝜏
𝐼𝑓3

𝛤 ⊢ 𝑎(𝑅, 𝐼): 𝑎𝑔𝑒𝑛𝑡 𝜏 , 𝛤 ⊢ 𝐶: 𝑐𝑜𝑛 𝜏

𝛤 ⊢ 𝑎(𝑅, 𝐼) ← 𝐶: 𝑜𝑝 𝜏
𝐼𝑓4

𝛤 ⊢ 𝐴1: 𝑜𝑝 𝜏 , 𝛤 ⊢ 𝐴2: 𝑜𝑝 𝜏

𝛤 ⊢ 𝐴1 𝑡ℎ𝑒𝑛 𝐴2: 𝑜𝑝 𝜏
𝑆𝑒𝑞

𝛤 ⊢ 𝐴1: 𝑜𝑝 𝜏 , 𝛤 ⊢ 𝐴2: 𝑜𝑝 𝜏

𝛤 ⊢ 𝐴1 𝑝𝑎𝑟 𝐴2: 𝑜𝑝 𝜏
𝑃𝑎𝑟

𝛤 ⊢ 𝐴1: 𝑜𝑝 𝜏 , 𝛤, 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡[𝐴1] ⊢ 𝐴2: 𝑜𝑝 𝜏

𝛤 ⊢ 𝐴1 𝑜𝑟 𝐴2: 𝑜𝑝 𝜏
𝐶ℎ𝑜𝑖𝑐𝑒

𝛤 ⊢ 𝑎(𝑅, 𝐼𝐷): 𝑎𝑔𝑒𝑛𝑡 𝜏, 𝛤 ⊢ 𝐷𝑒𝑓 𝑜𝑝 𝜏

𝛤, ⊢ 𝑎(𝑅, 𝐼𝐷) ∷ 𝐷𝑒𝑓: 𝑜𝑝 𝜏
𝑅𝑜𝑙𝑒

Fig. 5-1: The security typing rules for LCC

𝜑 ≤ 𝜑 𝑅𝑒𝑓𝑙𝑒𝑥
 Γ ⊢ 𝑇: 𝜑, 𝜑 ≤ 𝜑′

Γ ⊢ 𝑇: 𝜑′
𝑆𝑢𝑏

 𝜑1 ≤ 𝜑2 , 𝜑2 ≤ 𝜑3
 𝜑1 ≤ 𝜑3

 𝑇𝑟𝑎𝑛𝑠

 𝜏′ ≤ 𝜏

 𝑎𝑔𝑒𝑛𝑡 𝜏 ≤ 𝑎𝑔𝑒𝑛𝑡 𝜏′
 𝐴𝑔𝑒𝑛𝑡𝑅𝑢𝑙𝑒

 𝜏 ≤ 𝜏′

 𝑐𝑜𝑛 𝜏 ≤ 𝑐𝑜𝑛 𝜏′
 𝐶𝑜𝑛𝑅𝑢𝑙𝑒

 𝜏′ ≤ 𝜏

 𝑢𝑇𝑟𝑚 𝜏 ≤ 𝑢𝑇𝑟𝑚 𝜏′
 𝑢𝑇𝑟𝑚𝑅𝑢𝑙𝑒

 𝜏′ ≤ 𝜏

 𝑜𝑝 𝜏 ≤ 𝑜𝑝 𝜏′
 𝑂𝑝𝑅𝑢𝑙𝑒

Fig. 5-2: Subtyping rules

The rule Snd expresses that if the sender (this), the receiver A and the message M have security level τ, then

the sending operation (M  A) can have the security type op τ. The rule Rsv is the same as Snd. We need to

assure that no high security message is accessed and sent by a low security agent; checking the security level of

the sender along with the security level of the massage in Snd and Rsv rules guarantees this. Sending and

receiving operations in LCC are dual, so if there exists a leakage in message sending in one clause, the same

leakage will be detected in receiving the message in the counterpart clause. The rules Agnt, Snd and Rsv in

conjunction with subtyping rules prevent explicit flows; they imply that assigning or sending public information

to secret agents is possible, but not vice versa. This is similar to the concepts of “write up is possible” and “write

down is forbidden” in the security type system for imperative programming languages, e.g. (Volpano and Smith

1997).

The Call rule states that when we call a constraint, the security level of its functor6, the security level of the

current clause (this) and the security level of either read-only arguments (Ti: τ) or write-only arguments (Ti:

uTrm τ) have to be the same. This ensures us that a public agent can not access secret constraints and a public

constraint may not reveal secret information to a public agent. The Struct rule denotes that in structured non-

updatable terms (such as messages, role names and read-only arguments) the security types and levels of the

functor f and the arguments Ti must be the same. The rules And, Or and Not regulate the composition of

constraints in LCC. The rule If1 states that the security type of constraint C and the message sending operation

(M  A) needs to be matched so that the conditional expression is allowed. Security typing of other conditional

expressions (If2 to If4) is performed in a similar way to If1.

The rule Seq say that if two LCC expressions have the same security level, their composition has also that

security level. The Choice rule functions in the same way, only it also considers the security level of the

constraint of the first part A1 to prevent implicit information flow from the constraint in A2. The rule Role

checks whether the role definition a(R,ID) agrees with the body of the LCC clause. The remaining rules of the

security type system are subtyping rules in Fig. 5-2. The subtyping rules AgentRule, uTrmRule and opRule are

contravariant7 and the conRule is covariant8.

5.3 Implementation

The security type system and a prototype of dynamic security checking application have been implemented to

demonstrate that the proposed framework is feasible and can be automated. The original version of LCC which

is implemented in Prolog has been extended to support security type checking. The security type system is

implemented in SICStus Prolog and a user interface for security analysis of LCC codes is designed in Visual

C#.NET. This tool is designed for annotation of LCC interaction models with security labels and performing the

security type checking.

6 Non-numeric constant
7 Contravariant denotes the possibility of converting from a narrower type to a wider type, e.g. from h to l.
8 Covariant means the possibility of converting from a wider type to a narrower type, e.g. from l to h.

An example annotation of an LCC interaction model that assigns security levels to LCC terms is shown in

Fig. 5-3.

 a(buyer, B) ::

ask(X) => a(Seller, S) then price(X,P)  a(Seller, S) then

buy(X,P) => a(Seller, S) <- afford(X, P) then

sold(X, P) <= a(Seller, S)

 a(Seller, S) ::

ask(X) <= a(buyer, B) then price(X,P)=>a(buyer, B)<-in_stock(X,P) then

buy(X,P) <= a(buyer, B) then sold(X, P) => a(buyer, B)

label(buyer, l). label(B, l). label(ask, l). label(X, l).

label(Seller, h). label(S, h). label(price, l). label(P, l).

label(buy, l). label(afford, l). label(sold, l). label(P, l).

Fig. 5-3: Annotation of an LCC interaction model

6. Key Properties of the Type System

Having defined a type system for a class of security properties, our purpose in this section is to prove key

security properties of the system. Other work (S. Bijani 2013) gives empirical examples of the consequences of

these properties in specific interactions but, to save space, we focus here on generic properties across all

appropriate LCC interactions.

Type soundness (or type safety) is the most basic feature of a type system (Pierce 2002). Two properties that

show the type soundness in a type system are progress and preservation. In our security type system,

preservation means that expansion of a well-typed term by the LCC rewrite rules is a well-typed term (clause

expansion preserves well-typedness). Progress guarantees that a well-typed LCC expression does not get stuck

in the execution of LCC clauses, assuming that agents can evaluate (satisfy/dissatisfy) the constraints and the

necessary input/output messages are generated.

Definition 6-1 (Final Step): An LCC expression is in its final step when either it can be marked as a closed

expression by an LCC rewrite rule or it is a constraint that is evaluated by a satisfy or satisfied rule.

Definition 6-2 (Transition L ⇝L’): transition of L⇝L’ means L’ is an expansion of LCC expression L,

either as a result of an LCC rewrite rule 𝐿
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,𝑂
→ 𝐿′ or as a structural expansion of a compound

constraint.

This is an example of a compound constraint expansion: assume L is null ←C and the compound

constraint C is C1 ∧ C2 , when C is unfolded into C1 ∧ C2 then L’ is null ← C1 ∧ C2 and we can write L ⇝L’.

Theorem 6-1 (Progress):

If  ⊢ L : , i.e. L is a well-typed LCC expression, then either L is a final step or else there exists some L’

that L⇝L’.

By induction on the structure of  ⊢ L :  and proceed by case analysis (Appendix) □

Theorem 6-2 (Preservation):

If  ⊢ L: , i.e. L is a well-typed LCC expression and L⇝L’, then  ⊢ L’ : ’.

By induction on the structure of  ⊢ L :  and proceed by case analysis (Appendix) □

Two important properties of a security type system are ‘No Read Up’ and ‘No Write Down’ or ‘simple

security’ and ‘confinement’ as referred to by (Smith and Volpano 1998). No Read Up means that identifiers

within a message or a constraint can not have security level higher than the massage level or the constraint level.

In other words, when a message (or a constraint) has a security level τ, it assures us that it will not reveal any

information with security level more than τ.

‘No Write Down’ means having an operational command with the security level of op τ (any operational

command), any updatable identifier within it has a security level higher than or equal to τ. By updatable

identifier, we mean an agent when a role is assigned to it or a message is sent to it. We also mean an argument

in a constraint whose value is updated. E.g. this denotes that it is not possible to assign (send) a higher role

(higher message) to a lower agent.

Proposition 6-3 (No Read Up):

If T is a well-typed LCC constraint, message or identifier with security type τ; i.e.  ⊢T: τ or  ⊢T: con

τ, then T contains only identifiers with security level not higher than τ.

This can be proved by induction on derivation of  ⊢ T : τ and  ⊢ T : con τ; i.e. induction on the

smaller derivations that are used to derive  ⊢ T : τ and  ⊢ T : con τ, then proceeding by case

analysis on the typing rule that was applied last in the proof of  ⊢ T.

Proposition 6-4 (Confinement):

If T is a well-typed agent definition or LCC operation; i.e.  ⊢T: agent τ or  ⊢T: op τ, then any agent

identifier in the agent definition, any receiver of a message, or any updated term in an operation, has a

security level equal or higher than τ.

This can be proved by case analysis on the rule that was applied last in the proof of  ⊢ T :  and by

induction on the type rules that are used to derive  ⊢ T : .

In the next section, we show how the security type system can be used in the agent interaction to verify

whether an interaction model is secure.

7. Discussion

7.1 Dynamic Information Analysis

We used both dynamic and static security typing approaches to implement our type system for agent

interactions. Dynamic (run-time) information flow analysis such as (Santos, et al. 2015) can appropriately be

added to the LCC language interpreter because of the dynamic nature of LCC language.

Based on the reaction policy, type checking could result in termination of the execution or breach detection

and continuation of the clause expansion ((a) (b)

Fig. 7-1).

(a) (b)

Fig. 7-1: Upgrading the agent code interpreter (a) The interpreter executes codes (b) The

improved interpreter performs the security type checking and executes the annotated agent

codes

LCC clauses are well-typed by ensuring that every expansion of them is performed according the

corresponding security typing rule. Security type checking is performed using the proposed formal type system

which ensures that the security types of LCC terms are used consistently.

Interpreter

Agent

Code

Execution

Interpreter +
Security Type Checker

Agent

Code

Successful

execution

(guarantees

secrecy)

Annotations
(confidentiality

policy )

Execution

failure
(information

leakage)

 Reaction

policy (Π)

In order to integrate dynamic information flow analysis into the LCC interpreter and to detect or prevent

information leakage, the LCC clause expansion mechanism (Robertson 2005) (explained in section 2) has been

upgraded by amending the LCC rewrite rules.

The extended LCC rewrite rules augmented with dynamic type checking are shown in Fig. 7-2. The updated

rewrite rules in Fig. 7-2 are of the form 𝑋
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,𝑂
→ ∆ 𝑌, where Y is the expansion of X performing role Ri, Mi

is the initial set of messages, O is the output message set, and Mo is the subset of Mi which is not yet processed

and P is the interaction model.  is the current security environment. Δ=(, K, Π, L, Σ), where  is the

mapping between LCC terms and secrecy labels (the confidentiality policy), K is the agents’ current state of

knowledge, Π is the reaction policy defining the desired behaviour when an unacceptable information flow is

found and L is the set of possible information leakages found. Σ is an optional part of Δ that keeps a record of

provenance information about the agent’s counterparts, who have interacted with the current agent. Elements of

Δ could be denoted as Δ(member); e.g. Δ() is  or Δ(Π) is Π. Consequently, the LCC expansion of the

initial clause Ci to the final clause Cn under the security environment  is as follows.

𝐶𝑖
𝑀𝑖, 𝑀𝑖+1,𝑃,𝑂𝑖
→ ∆ 𝐶𝑖+1, … , 𝐶𝑛−1

𝑀𝑛−1, 𝑀𝑛,𝑃,𝑂𝑛
→ ∆ 𝐶𝑛

typeChk(X,Δ) is in charge of checking the possibility of information leakage from LCC expression X using

the security type system introduced in section 5.2. Type checking is performed when the other conditions for

rewriting an expression are met. E.g. only if (𝑀 ⇐ 𝐴) ∈ 𝑀𝑖 in (8) or satisfied(C) in (9) return true, then

typeChk(X,Δ) is called.

As a result of rewrite rules in Fig. 7-2, the clause of the interaction model appropriate to the given role is

expanded. The first rule starts unpacking a clause by expanding its body (B) and the rules (2) to (12) expand

different parts of the clause body. The closed rules in (13) to (18), determine whether an interaction rule has

been completed through earlier interpretation (in which case we say that it is closed).

The interpreter tries to find a matching rewrite rule for each LCC expression, if no match is found, it means

that there is a syntax error in the LCC code. If a match is found but the conditions of the rewrite rule are not

fulfilled, it returns false and continues to search for another rewrite rule that matches the expression.

𝑎(𝑅, 𝐼) ∷ 𝐵
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,𝑂
→ ∆ 𝑎(𝑅, 𝐼) ∷ 𝐸 𝑖𝑓 𝐵

𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,𝑂
→ ∆ 𝐸 ∧ 𝑡𝑦𝑝𝑒𝐶ℎ𝑘(𝑎(𝑅, 𝐼) ∷ 𝐸, ∆) (1)

𝐴1 𝑜𝑟 𝐴2
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,𝑂
→ ∆ 𝐸 𝑖𝑓 ¬𝑐𝑙𝑜𝑠𝑒𝑑(𝐴2) ∧ 𝐴1

𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,𝑂
→ ∆ 𝐸 (2)

𝐴1 𝑜𝑟 𝐴2
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,𝑂
→ ∆ 𝐸 𝑖𝑓 ¬𝑐𝑙𝑜𝑠𝑒𝑑(𝐴1) ∧ 𝐴2

𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,𝑂
→ ∆ 𝐸 (3)

𝐴1 𝑡ℎ𝑒𝑛 𝐴2
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,𝑂
→ 𝐸 𝑡ℎ𝑒𝑛 𝐴2 𝑖𝑓 𝐴1

𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,𝑂

→ ∆ 𝐸 (4)

𝐴1 𝑡ℎ𝑒𝑛 𝐴2
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,𝑂
→ ∆ 𝐴1 𝑡ℎ𝑒𝑛 𝐸 𝑖𝑓 𝑐𝑙𝑜𝑠𝑒𝑑(𝐴1) ∧ 𝐴2

𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,𝑂

→ ∆ 𝐸 ∧ 𝑡𝑦𝑝𝑒𝐶ℎ𝑘(𝐴1 𝑡ℎ𝑒𝑛 𝐸, ∆) (5)

𝐴1 𝑝𝑎𝑟 𝐴2
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,𝑂1∪𝑂2
→ ∆ 𝐸1 𝑝𝑎𝑟 𝐸2

 𝑖𝑓 𝐴1
𝑅𝑖,𝑀𝑖, 𝑀𝑛,𝑃,𝑂1
→ ∆ 𝐸1 ∧ 𝐴2

𝑅𝑖,𝑀𝑛, 𝑀𝑜,𝑃,𝑂2
→ ∆ 𝐸2 ∧ 𝑡𝑦𝑝𝑒𝐶ℎ𝑘(𝐸1 𝑝𝑎𝑟 𝐸2, ∆) (6)

𝐶 ← 𝑀 ⇐ 𝐴
𝑅𝑖,𝑀𝑖, 𝑀𝑖−{𝑀⇐𝐴},𝑃,∅
→ ∆ 𝑐(𝐶 ← 𝑀 ⇐ 𝐴, ∆(𝐿))

𝑖𝑓 (𝑀 ⇐ 𝐴) ∈ 𝑀𝑖 ∧ 𝑡𝑦𝑝𝑒𝐶ℎ𝑘(𝐶 ← 𝑀 ⇐ 𝐴, ∆) ∧ 𝑠𝑎𝑡𝑖𝑠𝑓𝑦(𝐶) (7)

𝑀 ⇐ 𝐴
𝑅𝑖,𝑀𝑖, 𝑀𝑖−{𝑀⇐𝐴},𝑃,∅
→ ∆ 𝑐(𝑀 ⇐ 𝐴,∆(𝐿)) 𝑖𝑓 (𝑀 ⇐ 𝐴) ∈ 𝑀𝑖 ∧ 𝑡𝑦𝑝𝑒𝐶ℎ𝑘(𝑀 ⇐ 𝐴, ∆) (8)

𝑀 ⇒ 𝐴 ← 𝐶
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,{𝑀⇒𝐴}
→ ∆ 𝑐(𝑀 ⇒ 𝐴 ← 𝐶, ∆(𝐿)) 𝑖𝑓 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑(𝐶) ∧ 𝑡𝑦𝑝𝑒𝐶ℎ𝑘(𝑀 ⇒ 𝐴 ← 𝐶, ∆) (9)

𝑀 ⇒ 𝐴
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,{𝑀⇒𝐴}
→ ∆ 𝑐(𝑀 ⇒ 𝐴, ∆(𝐿)) 𝑖𝑓 𝑡𝑦𝑝𝑒𝐶ℎ𝑘(𝑀 ⇒ 𝐴, ∆) (10)

𝑛𝑢𝑙𝑙 ← 𝐶
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,∅,
→ ∆ 𝑐(𝑛𝑢𝑙𝑙 ← 𝐶, ∆(𝐿)) 𝑖𝑓 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑(𝐶) ∧ 𝑡𝑦𝑝𝑒𝐶ℎ𝑘(𝑛𝑢𝑙𝑙 ← 𝐶, ∆) (11)

𝑎(𝑅, 𝐼) ← 𝐶
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,∅
→ ∆ 𝑎(𝑅, 𝐼) ∷ 𝐵

 𝑖𝑓 𝑐𝑙𝑎𝑢𝑠𝑒(𝑃, 𝑎(𝑅, 𝐼) ∷ 𝐵) ∧ 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑(𝐶) ∧ 𝑡𝑦𝑝𝑒𝐶ℎ𝑘(𝑎(𝑅, 𝐼) ← 𝐶, ∆) (12)

𝑎(𝑅, 𝐼)
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,∅
→ ∆ 𝑎(𝑅, 𝐼) ∷ 𝐵 𝑖𝑓 𝑐𝑙𝑎𝑢𝑠𝑒(𝑃, 𝑎(𝑅, 𝐼) ∷ 𝐵) (13)

𝑐𝑙𝑜𝑠𝑒𝑑(𝑐(𝑋, 𝐿)) (14)

𝑐𝑙𝑜𝑠𝑒𝑑(𝐴 𝑜𝑟 𝐵) ← 𝑐𝑙𝑜𝑠𝑒𝑑(𝐴) ∨ 𝑐𝑙𝑜𝑠𝑒𝑑(𝐵) (15)

𝑐𝑙𝑜𝑠𝑒𝑑(𝐴 𝑝𝑎𝑟 𝐵) ← 𝑐𝑙𝑜𝑠𝑒𝑑(𝐴) ∧ 𝑐𝑙𝑜𝑠𝑒𝑑(𝐵) (16)

𝑐𝑙𝑜𝑠𝑒𝑑(𝐴 𝑡ℎ𝑒𝑛 𝐵) ← 𝑐𝑙𝑜𝑠𝑒𝑑(𝐴) ∧ 𝑐𝑙𝑜𝑠𝑒𝑑(𝐵) (17)

𝑐𝑙𝑜𝑠𝑒𝑑(𝑋 ∷ 𝐵) ← 𝑐𝑙𝑜𝑠𝑒𝑑(𝐵) (18)

Fig. 7-2: The amended LCC rewrite rules, which include security type checking, for

expansion of one clause in an interaction model in the LCC interpreter.

It is the agents’ responsibility to satisfy the constraints in the clause and it is assumed that agents have a

mechanism to fulfil the constraints. satisfied(C) is true if C can be satisfied from the current knowledge state K

of the agent and satisfy(C) is true when K can be made to fulfil the constraint C. clause (P, X) is true if clause X

exists in the interaction model P.

The algorithm for simple type checking (typeChk) is defined in Fig. 7-3. In Fig. 7-4, an updated typeChk

algorithm is defined, in which based on the result of the type checking and the reaction policy Π, true or false is

returned.

In this version of LCC clause expansion, three secrecy policies affect the behaviour of the LCC interpreter:

prevention, detection and no-detection. The default policy is prevention (prevMode) that averts expansion of the

current expression when a leakage is found. If the detection policy (detectMode) is selected in Π, the interpreter

only keeps a record of the confidentiality breaches and continues to expand the expression X. Selection of the

no-detection policy (noChkMode) bypass the information flow analysis and the LCC interpreter do not perform

the type checking procedure. The false result from typeChk(X,Δ) shows that a breach is found and the true result

means either the type checking option is off, no leakage is found, or a leakage is found but the detection mode is

on.

Table 7-1: Different reaction policy modes in security type checking: prevention, detection

and no-detection modes.

Reaction Policy

modes

Priority (Pre, Det, NoCk) Type checking typeChk result

when a leakage is found

prevMode 1 1 0 0 Yes False

detectMode 2 0 1 0 Yes True

noChkMode 3 0 0 1 No True

typeChk(X, Δ) {

TR = findTypeRule(X); // find a security typing rule that matches X

Br = checkBreach(X, TR, Δ); // type check to find a breach

if (Br  null) { // if a leakage is found

Update (Δ(L), Δ(Σ), Br, X); // save the new leakage info in L and Σ

Continue = FALSE; // prevent the clause expansion

} else Continue = TRUE; // no information leaks

return Continue;

}

Fig. 7-3: A basic security type checking algorithm of typeCkh(X,Δ)

typeChk(X, Δ) {

 if(¬noChkMode(Δ)){ // perform the information flow analysis

TR = findTypeRule(X); // find a security typing rule that matches X

Br = checkBreach(X, TR, Δ); // type check to find a breach

if (Br  null) { // if a leakage is found

Update (Δ(L), Δ(Σ), Br, X); // save the new breach in L and Σ

if (prevMode(Δ))

 Continue = FALSE; // prevent the clause expansion

else // detectMode(Δ)

 Continue = TRUE; // detect and continue

}

} else Continue = TRUE; // no information leaks

} else Continue = TRUE; // no information flow analysis

return Continue;

}

Fig. 7-4: The updated security type checking algorithm of typeCkh(X,Δ)

When a leakage is found, there might be cases in which the clause expansion failure itself leaks some

information to the adversary and informs them that some high level information is blocked from them.

To minimise this kind of information leakage and to have more flexible secrecy policies, new options

forming the type checking strategy can be defined in Π. In Table 7-1, the following three reaction policy modes

and their priorities are shown: prevention (prevMode), detection (detectMode) and no-detection (noChkMode).

The new secrecy policy is defined as the following: Π = (Pre, Det, NoCk),

in which users can choose a policy by selecting one of the Boolean values Pre, Det and NoCk (Table 7-1).

Only one policy may be activated at a time; which means if more than one option is chosen, based on the

defined priorities they may be overridden. E.g. both Π=(1,0,1) and (1,0,0) have the same effect, as Pre overrides

Det and NoChk values and results in prevention mode.

7.2 Drawbacks of Dynamic Type Checking

The main disadvantage of purely run-time information flow analysis similar to the one discussed above, is that

they can produce false negative results as they cannot detect implicit information flows. This is because in

dynamic security analysis of LCC, not all execution paths of the program are checked. The following simple

example show when the dynamic analysis can go wrong. All terms are low security and the only terms with high

security levels are Secret and this (i.e. the current clause environment).

(publicMessage1 => a(publicAgent, P) <- check(Secret))

or

 publicMessage2 => a(publicAgent, P)

The following rewrite rule handles the first part of the code:

𝑀 ⇒ 𝐴 ← 𝐶
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,{𝑀⇒𝐴}
→ ∆ 𝑐(𝑀 ⇒ 𝐴 ← 𝐶, ∆(𝐿)) 𝑖𝑓 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑(𝐶) ∧ 𝑡𝑦𝑝𝑒𝐶ℎ𝑘(𝑀 ⇒ 𝐴 ← 𝐶, ∆)

Let us assume the constraint does not hold; i.e. satisfied (check(Secret)) return false, so the first

part of the conditional statement fails and the second part is processed by this rewrite rule:

𝑀 ⇒ 𝐴
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,{𝑀⇒𝐴}
→ ∆ 𝑐(𝑀 ⇒ 𝐴, ∆(𝐿)) 𝑖𝑓 𝑡𝑦𝑝𝑒𝐶ℎ𝑘(𝑀 ⇒ 𝐴, ∆),

then the type checking is as below:

𝑡ℎ𝑖𝑠:𝑎𝑔𝑒𝑛𝑡 ℎ 𝜖 𝛤
𝛤⊢𝑃𝐼𝐷2:𝑢𝑇𝑟𝑚 ℎ

𝐼𝑑,𝑎𝑔𝑒𝑛𝑡 ℎ≤𝑎𝑔𝑒𝑛𝑡 𝑙

𝛤⊢𝑡ℎ𝑖𝑠:𝑎𝑔𝑒𝑛𝑡 𝑙 𝑗
𝑆𝑢𝑏,

𝑝𝑢𝑏𝑙𝑖𝑐𝑀𝑒𝑠𝑠𝑎𝑔𝑒2∶𝑙 𝜖 𝛤

𝛤⊢𝑝𝑢𝑏𝑙𝑖𝑐𝑀𝑒𝑠𝑠𝑎𝑔𝑒2∶𝑙
𝐼𝑑,

𝑝𝑢𝑏𝑙𝑖𝑐𝐴𝑔𝑒𝑛𝑡:𝑙 𝜖 𝛤
𝛤⊢𝑝𝑢𝑏𝑙𝑖𝑐𝐴𝑔𝑒𝑛𝑡:𝑙 𝑗

𝐼𝑑,
𝑃:𝑙 𝜖 𝛤

𝛤⊢𝑃:𝑢𝑇𝑟𝑚 𝑙
𝐼𝑑

𝛤⊢𝑎(𝑝𝑢𝑏𝑙𝑖𝑐𝐴𝑔𝑒𝑛𝑡,𝑃): 𝑎𝑔𝑒𝑛𝑡 𝑙
𝐴𝑔𝑛𝑡

𝛤⊢𝑝𝑢𝑏𝑙𝑖𝑐𝑀𝑒𝑠𝑠𝑎𝑔𝑒2 => 𝑎(𝑝𝑢𝑏𝑙𝑖𝑐𝐴𝑔𝑒𝑛𝑡,𝑃):𝑜𝑝 𝑙
𝑆𝑛𝑑

This is detected as a well-typed LCC command, which is wrong! This is because of a high security

constraint as described in the Appendix.

Another possible problem is late detection of the insecure flow in run-time security checking of LCC

interaction models. This may result in the rewriting of some illegal LCC expressions, thus changing the state of

the agent before finding the breach - for example,detection of the breach after a high security message is sent to

a low security agent is too late.

Generally, dynamic checking (in the best case), may assure that the current execution of an interaction

model does not leak information, but does not tell us that the code is safe and will never reveal any confidential

information in future, because it does not check all possible execution paths of the LCC program. In other

words, if no breach occurs in dynamic checking, it means that there exists a secure execution path in the LCC

interaction model. This is a Liveness property, which specifies that eventually "good things" do happen versus a

Safety property, which states that no "bad things" occur during program execution (Halpern and Schneider

1987).

7.3 Static Information Flow Analysis

We can perform static analysis to overcome the drawbacks of dynamic methods.

The static checking explores all execution paths in LCC interaction models, hence it guarantees that

detection of any insecure flow based on the defined type system. To perform a static type check, we can modify

the LCC rewrite rules for the static type check, in a way that the whole expansion tree of an LCC clause is

explored. In recursions, the clause is expanded if it has not already been expanded (Fig. 7-5).

𝑎(𝑅, 𝐼) ∷ 𝐵
 𝑅𝑖,𝑃,∆
→ ∆ 𝑎(𝑅, 𝐼) ∷ 𝐸 𝑖𝑓 𝐵

 𝑅𝑖,𝑃,∆
→ ∆ 𝐸 ∧ 𝑡𝑦𝑝𝑒𝐶ℎ𝑘(𝑎(𝑅, 𝐼): : 𝐸, ∆) (19)

𝐴1 𝑜𝑟 𝐴2
 𝑅𝑖,𝑃,∆
→ ∆ 𝐸 𝑖𝑓 𝐴1

 𝑅𝑖,𝑃,∆
→ ∆ 𝐸 (20)

𝐴1 𝑜𝑟 𝐴2
 𝑅𝑖,𝑃,∆
→ ∆ 𝐸 𝑖𝑓 𝑐𝑙𝑜𝑠𝑒𝑑(𝐴1) ∧ 𝐴2

 𝑅𝑖,𝑃,∆
→ ∆ 𝐸 ∧ 𝑡𝑦𝑝𝑒𝐶ℎ𝑘(𝐴1 𝑜𝑟 𝐸, ∆) (21)

𝐴1 𝑡ℎ𝑒𝑛 𝐴2
 𝑅𝑖,𝑃,∆
→ ∆ 𝐸 𝑡ℎ𝑒𝑛 𝐴2 𝑖𝑓 𝐴1

 𝑅𝑖,𝑃,∆
→ ∆ 𝐸 (22)

𝐴1 𝑡ℎ𝑒𝑛 𝐴2
 𝑅𝑖,𝑃,∆
→ ∆ 𝐴1 𝑡ℎ𝑒𝑛 𝐸 𝑖𝑓 𝑐𝑙𝑜𝑠𝑒𝑑(𝐴1) ∧ 𝐴2

 𝑅𝑖,𝑃,∆
→ ∆ 𝐸 ∧ 𝑡𝑦𝑝𝑒𝐶ℎ𝑘(𝐴1 𝑡ℎ𝑒𝑛 𝐸, ∆) (23)

𝐴1 𝑝𝑎𝑟 𝐴2
 𝑅𝑖,𝑃,∆
→ ∆ 𝐸1 𝑝𝑎𝑟 𝐸2 𝑖𝑓 𝐴1

 𝑅𝑖,𝑃,∆
→ ∆ 𝐸1 ∧ 𝐴2

 𝑅𝑖,𝑃,∆
→ ∆ 𝐸2 ∧ 𝑡𝑦𝑝𝑒𝐶ℎ𝑘(𝐸1 𝑝𝑎𝑟 𝐸2, ∆) (24)

𝐶 ← 𝑀 ⇐ 𝐴
 𝑅𝑖,𝑃,∆
→ ∆ 𝑐(𝐶 ← 𝑀 ⇐ 𝐴, ∆(𝐿)) 𝑖𝑓 𝑡𝑦𝑝𝑒𝐶ℎ𝑘(𝐶 ← 𝑀 ⇐ 𝐴, ∆) (25)

𝑀 ⇐ 𝐴
 𝑅𝑖,𝑃,∆
→ ∆ 𝑐(𝑀 ⇐ 𝐴, ∆(𝐿)) 𝑖𝑓 𝑡𝑦𝑝𝑒𝐶ℎ𝑘(𝑀 ⇐ 𝐴, ∆) (26)

𝑀 ⇒ 𝐴 ← 𝐶
 𝑅𝑖,𝑃,∆
→ ∆ 𝑐(𝑀 ⇒ 𝐴 ← 𝐶, ∆(𝐿)) 𝑖𝑓 𝑡𝑦𝑝𝑒𝐶ℎ𝑘(𝑀 ⇒ 𝐴 ← 𝐶, ∆) (27)

𝑀 ⇒ 𝐴
 𝑅𝑖,𝑃,∆
→ ∆ 𝑐(𝑀 ⇒ 𝐴, ∆(𝐿)) 𝑖𝑓 𝑡𝑦𝑝𝑒𝐶ℎ𝑘(𝑀 ⇒ 𝐴, ∆) (28)

𝑛𝑢𝑙𝑙 ← 𝐶
 𝑅𝑖,𝑃,∆
→ ∆ 𝑐(𝑛𝑢𝑙𝑙 ← 𝐶, ∆(𝐿)) 𝑖𝑓 𝑡𝑦𝑝𝑒𝐶ℎ𝑘(𝑛𝑢𝑙𝑙 ← 𝐶, ∆) (29)

𝑎(𝑅, 𝐼) ← 𝐶
 𝑅𝑖,𝑃,∆
→ ∆ 𝑎(𝑅, 𝐼) ∷ 𝐵 𝑖𝑓 𝑛𝑒𝑤𝐶𝑙𝑎𝑢𝑠𝑒(𝑃, 𝑎(𝑅, 𝐼) ∷ 𝐵) ∧ 𝑡𝑦𝑝𝑒𝐶ℎ𝑘(𝑎(𝑅, 𝐼) ← 𝐶, ∆) (30)

𝑎(𝑅, 𝐼)
 𝑅𝑖,𝑃,∆
→ ∆ 𝑎(𝑅, 𝐼) ∷ 𝐵 𝑖𝑓 𝑛𝑒𝑤𝐶𝑙𝑎𝑢𝑠𝑒(𝑃, 𝑎(𝑅, 𝐼) ∷ 𝐵) ∧ 𝑡𝑦𝑝𝑒𝐶ℎ𝑘(𝑎(𝑅, 𝐼) ← 𝐶, ∆) (31)

𝑐𝑙𝑜𝑠𝑒𝑑(𝑐(𝑋, 𝐿)) (32)

𝑐𝑙𝑜𝑠𝑒𝑑(𝐴 𝑜𝑟 𝐵) ← 𝑐𝑙𝑜𝑠𝑒𝑑(𝐴) ∧ 𝑐𝑙𝑜𝑠𝑒𝑑(𝐵) (33)
𝑐𝑙𝑜𝑠𝑒𝑑(𝐴 𝑝𝑎𝑟 𝐵) ← 𝑐𝑙𝑜𝑠𝑒𝑑(𝐴) ∧ 𝑐𝑙𝑜𝑠𝑒𝑑(𝐵) (34)
𝑐𝑙𝑜𝑠𝑒𝑑(𝐴 𝑡ℎ𝑒𝑛 𝐵) ← 𝑐𝑙𝑜𝑠𝑒𝑑(𝐴) ∧ 𝑐𝑙𝑜𝑠𝑒𝑑(𝐵) (35)
𝑐𝑙𝑜𝑠𝑒𝑑(𝑋 ∷ 𝐵) ← 𝑐𝑙𝑜𝑠𝑒𝑑(𝐵) (36)

Fig. 7-5: Static analysis of an LCC clause by expansion of an LCC clause.

7.4 Drawbacks of Static Type Checking

Static type checking to prevent insecure information flows conservatively detects implicit and explicit

information flows, provides stronger security assurance and proves program correctness with reasonable

computation cost (Sabelfeld and Myers 2003) and (Huang, et al. 2004), but it has some drawbacks. The main

disadvantages of static type checking are:

1) False positive results: non-permissiveness of some secure information flows; static type checks suffer

from over-approximation and may prevent genuinely useful interaction models.

2) Lack of information in static checking; we may not know the security level of all peers and components

of the program, especially in an open MAS we may not know who will join the system during the

interactions. In practice, security policies cannot be determined at the time of program analysis and

may vary dynamically.

3) The proposed type system which is based on Denning's work ignores leaks via the termination

behaviour of programs. Therefore they satisfy only termination-insensitive non-interference (Sabelfeld

and Russo 2010), which is defined in the next section.

4) Exhaustive checking of every possible path in the execution tree of the LCC code is time-consuming,

while dynamic checking is faster, because it concerns only one execution path of the program.

Some role names, constraints, variables and the security level of the terms may not be available to our static

analysis. The LCC programmer or the expert who annotates the code by security levels may not know about the

behaviour of some constraints and other variables, which will be available at run-time. E.g. in the cloud

configuration case study, some general patterns are used and some constraints and roles’ arguments are defined

at execution time by the counterpart agent.

The following codes presents some examples that the static type checking rejects, although they do not

cause any information leakage:

SecretMessage => a(publicAgent, P)<- smallerThan(PublicVar, PublicVar)

in which the constraint is never satisfied (because the public variable PublicVar cannot be smaller than

itself), so under no circumstances will the secret message be sent to the public agent P. In a similar example

bellow, the constraint is always satisfied, therefore the second part of the conditional statement, in which a

secret message leaks, never runs and no message is sent.

(null <- equals(PublicVar, PublicVar)

 or

 SecretMessage => a(publicAgent, P))

In general, any LCC code containing a low security expression within a high security constraint, which does

not hold at run-time is rejected by static type checking, even though it is permissible. This is due to the fact that

the security checker is not guaranteed to know whether or not a constraint holds at the time the interaction

model is checked, so it conservatively rejects the interaction model.

As mentioned before, information might also leak via termination behaviour of the program, e.g. in the

following code:

a(secretAgent, S)::

null <- notEqual(SecretID, 0) then

a(secretAgent, S)

The adversary learns that SecretID was 0, by observing the termination of the clause.

7.5 Non-interference

Non-interference is a popular information flow property that guarantees secrecy of information flow and tells us

whether there is any information leakage in the information system. Non-interference was introduced by

Goguen and Meseguer (1982), but its concept goes back to the notion of strong dependency introduced by

Cohen (1977).

The intuition behind the non-interference property is that high-security input to the program must never

affect low-security output. In other words, public outputs are not dependent on secret inputs. In the following

secrecy analysis of the agents’ interaction models, we consider received messages, role arguments, and

sometimes constraint arguments as input and the sent messages as output. There are formulations of non-

interference. In this section, we define the notion of non-interference for the LCC interaction models inspired by

the definitions of Hedin and Sabelfeld (2011) and Becker (2010).

Before defining non-interference, we need to define visibility, alikeness, and observational equivalence as

prerequisites:

Definition 7-1 (Visibility): The set visiblei () denotes the LCC terms in the context  that can be observed

by other agents (or adversaries) with the security level l or higher:

visiblel () = { T   |  (T) l }

Definition 7-2 (Alikeness9)

 l : Two security contexts 1 and 2 are alike up to the level l iff: visiblel () = visiblel ().

For example, if we have the following two contexts: = { m1: l, m2: l, m3: h } and = { m1: l, m2: l, m3:

h , m4: h }, then: visiblel ()={m1, m2} and visiblel ()={m1, m2}, which means other agents with security

level of at least l can see these information. We also have  l 

9 Alikeness up to level l is known as low equivalence in the literature.

Recall the LCC clause expansion mechanism of an original LCC clause Ci into Cn in terms of the

interaction model P:

𝐶𝑖
𝑀𝑖, 𝑀𝑖+1,𝑃,𝑂𝑖
→ ∆ 𝐶𝑖+1, … , 𝐶𝑛−1

𝑀𝑛−1, 𝑀𝑛,𝑃,𝑂𝑛
→ ∆ 𝐶𝑛

where security environment Δ=(, K, Π, L, Σ) and On is an output message set that can expresse the

observable behaviour of an agent by its counterpart agents. We now define the Observational Equivalence

relation on behaviour as follows.

Definition 7-3 (Observational Equivalence10)

On1lOn2: The observable behaviours of two clause expansions in terms of the interaction model P are

observationally equivalent up to level l, if an adversary of level l cannot distinguish between On1 and On2.

Observational equivalence of On1 and On2 can (imprecisely) be understood as two runs of an interaction

model that are the same from the adversary’s point of view. Alikeness and observational equivalence are then

used to define the notion of non-interference for the LCC interaction models. In the following, for the sake of

clarity, the notion of the security context  is used instead of the security environment . This is safe to do,

because in our investigation,  only changes within .

Definition 7-4 (Non-interference)

 1, 2. (1l 2) ∧ 𝐶𝑖
𝑀𝑖, 𝑀𝑛1,𝑃,𝑶𝒏𝟏
→ 𝟏 𝐶𝑛1 ∧ 𝐶𝑖

𝑀𝑖, 𝑀𝑛2,𝑃,𝑶𝒏𝟐
→ 𝟐 𝐶𝑛2  (On1l On2)

This states that for any two contexts 1 and 2 which are alike up to level of l, a successful expansion of

the LCC clause Ci in one of the contexts with behaviour On1 and a successful expansion in the other context with

behaviour On1 guarantee that the behaviours are observationally equivalent.

Informally, if two clauses look the same to an adversary, they also behave the same. In other words, low

output (the sent messages to an adversary) depends on low inputs (the immutable visible parts of the contexts).

The proposed security type system supports non-interference; Suppose Ci is a message sending operation

𝑀 ⇒ 𝐴. If the type of the agent A is agent h, the typing rule Snd allows sending a message (with any security

level) to the high security agent A, in either case, an adversary of level l cannot observe any output message. If

the type of A is agent l , then the type system requires that M : l , then any the observable output of the LCC

rewrite rule for an adversary of level l will be message M. The other cases of Ci that can have an observable

behaviour are similar.

This definition of non-interference is termination-insensitive, by which we mean that it disregards

information leaks due to the termination of the program (e.g. the last example in section 4.2). Thus, our type

system cannot detect this type of insecure flow.

10 Observational Equivalence is also called indistinguishability.

Although the notion of non-interference is a popular and natural way of describing confidentiality and

integrity, it may be too restrictive for many applications (Hedin and Sabelfeld 2011). The next section addresses

this issue.

7.6 Declassification

Declassification is intentional release of secret information by lowering security levels of information

(Zdancewic and Myers 2001). Sometimes, we need a way of information declassification in our security system.

A typical example is any system that asks the user credentials for authentication. Consider the access

request to a patient record by a specialist. Rejection of an incorrect password violates non-interference, because

of the dependency between high input (i.e. password) and low output (i.e. rejection message). That implies the

system leaks partial information about the password (i.e. incorrectness of the password) to a potential attacker.

However, this leakage is unlikely, in this case, to give valuable information to the attacker.

To support declassification in our security type system, we can deliberately downgrade the security

classification of information by adding the following rule:

declassify(h) = l

 This violates non-interference, but it may be necessary for some applications. We should carefully

declassify information. In (Sabelfeld and Sands 2005) the principles and dimensions of declassification are

described by identifying what can be declassified, who controls the declassification, where the declassification

happens and when the declassification can occur relative to other events in the program.

8. Conclusions and Future Work

In this paper, we have addressed information leakage problems in open MAS governed by interaction models

and, consequently, developed secrecy analysis frameworks for an agent language called LCC. Explicit and

implicit insecure information flows have been explained using a number of LCC examples.

We have proposed and implemented a language-based information flow framework to analyse information leaks

in LCC interaction models. The security-typed LCC has been introduced by inventing a security type system,

which formally defines security levels, security types and the type inference rules. Next, the proposed type

system has been evaluated and proven to hold basic, important properties: type soundness, simple security and

confinement.

We have discussed two approaches for applying the security type system on the agent interaction models;

dynamic (run-time) and static type checking. Two disadvantages of dynamic information flow analysis are its

inability to detect implicit information flows and late detection of insecure flow. All execution paths of the

program are not checked in dynamic analysis and some paths are disregarded, which could lead to implicit

information flows. To overcome this problem, we provide the following options:

a) Extending the dynamic approach with the control flow stack mechanism described in (S. Bijani 2013,

103)

b) Using the static approach instead of dynamic analysis:

The static approach is a promising method that prevents insecure implicit and explicit flows, but it

suffers mainly from non-permissiveness, so it may also reject genuine flows. Another drawback of the

static analysis problem is that due to the dynamic behaviour of open MAS, there is a lack of

information about the security classification of agents, constraints, etc. before run-time.

c) The combined approach: using both static and dynamic methods

In this approach, static analysis is performed on an interaction model and if it is rejected, the system

informs the user. The user then can decide to continue with the interaction model and perform dynamic

checking at run-time. There is also a hybrid approach (Russo and Sabelfeld 2010), in which static and

dynamic analysis are merged to take the best of both worlds. This is especially useful in flow sensitive

analysis. In flow sensitivity, variables may store values of different sensitivity (low and high) over the

course of the interaction. We leave flow-sensitivity analysis in LCC interaction models as a topic for

future research.

To address the false alarm of static approach, static analysis is performed on an interaction model and if it is

rejected, the system informs the user. The user then can decide to continue with the interaction model and

perform dynamic checking at run-time. The proposed security type system supports non-interference. The

intuition behind the non-interference property is that high-security input to the program must never affect low-

security output. This definition of non-interference is termination-insensitive, by which we mean that it

disregards information leaks due to the termination of the program. As non-interference may be too restrictive

for many applications, the proposed framework supports declassification.

Adaptation of the proposed security type system for similar first-class agent protocol languages such as

MAP11 and RASA is straightforward. Similar idea can be applied on other agent languages with further edition.

We have focused on one aspect of security, i.e. confidentiality. The other important aspect of security is

integrity. We would suggest defining other security properties for security typing that guarantee integrity

through analysis of agents’ interactions in this regard. We also leave automatic security annotation of agent

interaction models (with secrecy labels) as another topic for future research.

Bibliography

Becker, Moritz Y. 2010. “Information Flow in Credential Systems.” Computer Security Foundations
Symposium, IEEE (IEEE Computer Society) 0: 171-185.

Bierman, Elmarie, and Elsabe Cloete. 2002. “Classification of Malicious Host Threats in Mobile Agent
Computing.” SAICSIT '02: Proceedings of the 2002 annual research conference of the South
African institute of computer scientists and information technologists on Enablement
through technology. South Africa: South African Institute for Computer Scientists and
Information Technologists. 141-148.

Bijani, S., D. Robertson, and D. Aspinall. 2011. “Probing Attacks on Multi-agent Systems using
Electronic Institutions.” Declarative Agent Languages and Technologies Workshop (DALT),
AAMAS 2011.

11 MAP: Multi-Agent Protocol language

Bijani, Shahriar. 2013. Securing Open Multi-agent Systems Governed by Electronic Institutions, PhD
Thesis. Edinburgh University.

Bijani, Shahriar, and David Robertson. 2014. “A Review of Attacks and Security Approaches in Open
Multi-agent Systems.” Artificial Intelligence Review (Springer) 42: 607-636.

Buccafurri, F, A. Comi, G Lax, and D Rosaci. 2016. “Experimenting with Certified Reputation in a
Competitive Multi-Agent Scenario.” IEEE Intelligent Systems (IEEE) 31 (1): 48-55.

Cohen, Ellis. 1977. “Information Transmission in Computational Systems.” ACM SIGOPS Operating
Systems Review 11 (5): 133-139.

Denning, D. E. 1976. “A Lattice Model of Secure Information Flow.” Communications of the ACM 19
(5): 236-243.

Denning, Dorothy E., and Peter J. Denning. 1977. “Certification of Programs for Secure Information
Flow.” Communications of the ACM 20 (7): 504-513.

Endsuleit, Regine, and Arno Wagner. 2004. “Possible Attacks on and Countermeasures for Secure
Multi-Agent Computation.” Proceedings of the International Conference on Security and
Management, SAM '04,. Las Vegas,Nevada, USA. 221-227.

Esteva, Marc, Juan-Antonio Rodriguez-Aguilar, Carles Sierra, Pere Garcia, and Josep L Arcos. 2001.
“On the Formal Specification of Electronic Institutions.” In Agent Mediated Electronic
Commerce, 126-147.

Goguen, Joseph A, and Jose Meseguer. 1982. “Security Policies and Security Models.” IEEE
Symposium on Security and Privacy.

Halpern, Bowen, and Fred B Schneider. 1987. “Recognizing Safety and Liveness.” Distributed
Computing 2 (3): 117-126.

Hedin, Daniel, and Andrei Sabelfeld. 2011. A Perspective on Information-flow Control. Proc. of the
2011 Marktoberdorf Summer School. IOS Press.

Hedina, Yaqin, and Esmiralda Moradian. 2015. “Security in Multi-Agent Systems.” Procedia Computer
Science, Knowledge-Based and Intelligent Information & Engineering Systems 19th Annual
Conference, KES-2015. 1604-1615.

Hennigan, E, C Kerschbaumer, S Brunthaler, and M Franz. 2011. Implementation Details of Dynamic
Information Flow Security Type Systems. Technical Report 11-03, Dept of Information and
Computer Science, University of California, Irvine.

Huang, Yao-Wen, Fang Yu, Christian Hang, Chung-Hung Tsai, Der-Tsai Lee, and Sy-Yen Kuo. 2004.
“Securing Web Application Code by Static Analysis and Runtime Protection.” the 13th
international conference on World Wide Web. ACM. 40-52.

Idrissi, Hind, El Mamoun Souidi, and Arnaud Revel. 2015. “Security of Mobile Agent Platforms Using
Access Control and Cryptography.” Agent and Multi-Agent Systems: Technologies and
Applications (Springer) 27-39.

Jansen, Wayne, and Tom Karygiannis. 2000. “Mobile Agent Security.” National Institute of Standards
and Technology (NIST) Special Publication 800-19.

Joseph, Sindhu, Adrian P. Perreau de Pinninck, David Robertson, Carles Sierra, and Chris Walton.
2006. “OpenKnowledge Deliverable 1.1: Interaction Model Language Definition.”
http://groups.inf.ed.ac.uk/OK/Deliverables/D1.1.pdf.

Lee, Hyungjick, Jim Alves-Foss, and Scott Harrison. 2004. “The Use of Encrypted Functions for Mobile
Agent Security.” the 37th Annual Hawaii International Conference on System Sciences
(HICSS'04). IEEE Computer Society. 10.

Majumdar, Anirban, and Clark Thomborson. 2005. “On the Use of Opaque Predicates in Mobile
Agent Code Obfuscation.” In Intelligence and Security Informatics, 255-236. Springer Berlin /
Heidelberg.

Mouratidis, Haralambos, Paolo Giorgini, and Michael Weiss. 2003. “Integrating Patterns and Agent-
Oriented Methodologies to Provide Better Solutions for the Development of Secure Agent
Systems.” Workshop on Expressiveness of Pattern Languages 2003, at ChiliPLoP (2003).

Necula, George, and Peter Lee. 1998. “Safe, Untrusted Agents Using Proof-Carrying Code.” In Mobile
Agents and Security, by Giovanni Vigna, 61-91. Springer Berlin / Heidelberg.

Ngereki, Anthony M. 2015. Protecting mobile agents from malicious hosts in a distributed network.
University of Nairobi.

Odubiyi, J B, and Abdur R Choudhary. 2007. “Building security into an IEEE FIPA compliant multiagent
system.” Proceedings of the 2007 IEEE Workshop on Information Assurance, IAW. West
Point, NY, United states: IEEE Computer Society. 49-55.

Oey, M. A. , M. Warnier, and F. M. T. Brazier. 2010. “Security in Large-Scale Open Distributed Multi-
Agent Systems.” In Autonomous Agents, by Vedran Kordic, 107-130. IN-TECH.

Ogunnusi, Olumide Simeon, and Olasunkanmi Okunola Ogunlola. 2015. “Solutions to Mobile Agent
Security Issues in Open-Multi-agent Systems.” International Research Journal of Engineering
and Technology 601-609.

Ohno, Ken, Takahiro Uchiya, Ichi Takumi, and Tetsuo Kinoshita. 2016. “Security mechanism for DASH
agent framework.” Consumer Electronics, 2016 IEEE 5th Global Conference on. IEEE. 1-2.

Page, John P, Arkady B Zaslavsky, and Maria T Indrawan. 2005. “Extending the buddy model to
secure variable sized multi agent communities.” Proceedings of the Second International
Workshop on Safety and Security in Multiagent Systems. Utrecht, Netherlands. 59-75.

Pierce, B. 2002. Types and Programming Languages. The MIT Press.

Poslad, S, and M Calisti. 2000. “Towards improved trust and security in FIPA agent platforms.”
Workshop on Deception, Fraud and Trust in Agent Societies. Spain.

Poslad, Stefan, Patricia Charlton, and Monique Calisti. 2002. “Specifying Standard Security
Mechanisms in Multi-agent Systems.” Trust, Reputation, and Security: Theories and Practice,
AAMAS 2002 International Workshop. Bologna, Italy: Springer Berlin - Heidelberg. 122--127.

Quillinan, Thomas B, Martijn Warnier, Michel A Oey, Reinier J Timmer, and Frances M Brazier. 2008.
“Enforcing Security in the AgentScape Middleware.” Proceedings of the 1st International
Workshop on Middleware Security (MidSec). ACM.

Riordan, James, and Bruce Schneier. 1998. “Environmental Key Generation Towards Clueless
Agents.” Mobile Agents and Security. Springer-Verlag. 15-24.

Robertson, David. 2005. A Lightweight Coordination Calculus for Agent Systems. Vol. 3476/2005, in
Declarative Agent Languages and Technologies II, 183--197. Springer Berlin / Heidelberg.

Robertson, David, Adam Barker, Paolo Besana, Alan Bundy, Yun Heh Chen-Burger, David Dupplaw,
Fausto Giunchiglia, et al. 2009. “Models of Interaction as a Grounding for Peer to Peer
Knowledge Sharing.” Advances in Web Semantics I (Springer-Verlag) 4891: 81--129.

Robles, Sergi. 2008. Trust and Security. Vol. Chapter 4, in Issues in Multi-Agent Systems: the
AgentCities.ES Experience, by A. Moreno and Juan Pavn, 87- 115. BirkhÃ¤user Basel.

Rosaci, D. 2012. “Trust Measures for Competitive Agents.” Knowledge-based Systems (KBS) (Elsevier)
28 (46): 38-46.

Russo, A., and A. Sabelfeld. 2010. “Dynamic vs. Static Flow-sensitive Security Analysis.” Computer
Security Foundations Symposium (CSF), 2010 23rd IEEE. IEEE. 186-199.

Sabelfeld, A., and A. C. Myers. 2003. “Language-based Information-flow Security.” IEEE Journal on
Selected Areas in Communications 21 (1): 5-19.

Sabelfeld, Andrei, and Alejandro Russo. 2010. “From Dynamic to Static and Back: Riding the Roller
Coaster of Information-Flow Control Research.” In Perspectives of Systems Informatics, 352-
365. Springer Berlin Heidelberg.

Sabelfeld, Andrei, and David Sands. 2005. “Dimensions and Principles of Declassification.” 18th IEEE
Workshop Computer Security Foundations. CSFW-18. 255-269.

Santos, J. F., T. Jensen, T. Rezk, and A. Schmitt. 2015. “Hybrid Typing of Secure Information Flow in a
JavaScript-Like Language.” International Symposium on Trustworthy Global Computing.
Springer . 63-78.

Sarhan, Zahi A M Abu, and As'ad Mahmoud As'ad. Alnaser. 2014. “Information Security Approach in
Open Distributed Multi-Agent Virtual Learning Environment.” International Journal of
Computer Science & Information Technology 6 (1): 15-28.

Smith, Geoffrey, and Dennis Volpano. 1998. “Secure Information Flow in a Multi-threaded
Imperative Language .” 25th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages. ACM. 355-364.

Tan, H.K., and L. Moreau. 2002. “Extending Execution Tracing for Mobile Code Security.” Second
International Workshop on Security of Mobile MultiAgent Systems (SEMAS 2002). Bologna,
Italy. 51–59.

Tan, Juan J, Stefan Poslad, and Yanmin Xi. 2004. “Policy Driven Systems for Dynamic Security
Reconfiguration.” Proceedings of the Third International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS). IEEE Computer Society. 1274--1275.

Vazquez-Salceda, J, J A Padget, U Cortes, A Lopez-Navidad, and F Caballero. 2003. “Formalizing an
electronic institution for the distribution of human tissues.” Artificial Intelligence in Medicine
27: 233-258.

Volpano, Dennis M., and Geoffrey Smith. 1997. “A Type-Based Approach to Program Security.” 7th
International Joint Conference CAAP/FASE on Theory and Practice of Software Development.
Springer-Verlag. 607-621.

Wahbe, R., S. Lucco, and T. Anderson. 1993. “Efficient Software-Based Fault Isolation.” the
Fourteenth ACM Symposium on Operating Systems Principles 203-216.

Wang, Hongzue, Vijay Varadharajan, and Yan Zhang. 1999. “A Secure Communication Scheme for
Multiagent Systems.” PRIMA '98: Selected papers from the First Pacific Rim International
Workshop on Multi-Agents, Multiagent Platforms. London, UK: Springer-Verlag. 174--185.

Wong, Hao C, and Katia Sycara. 1999. “Adding Security and Trust to Multi-Agent Systems.”
Proceedings of Autonomous Agents '99 Workshop on Deception, Fraud, and Trust in Agent
Societies. 149 - 161.

Zdancewic, Steve, and Andrew C Myers. 2001. “Robust Declassification.” IEEE Computer Security
Foundations Workshop. 15-23.

Zhu, Ping, and Guangli Xiang. 2011. “The Protection Methods for Mobile Code Based on
Homomorphic Encryption and Data Confusion.” Management of e-Commerce and e-
Government (ICMeCG), 2011 Fifth International Conference on.
doi:10.1109/ICMeCG.2011.48.

Appendix A

Table 0-1 to Table 0-3 summarise the acceptable and unacceptable explicit and implicit information flows in

message passing, role assignment and conditional statements in LCC codes. It is assumed that a secret LCC term

and a public LCC term are shown by H and L, respectively.

In Table 0-1, permissible and impermissible information flows in sending a message, based on the security

levels of the sender, the receiver and the message are shown. The three undesirable flows are: 1) sending a high

security message by a low security sender to a low security receiver, 2) sending a high security message by a

low security sender to a high security receiver and 3) sending a high security message by a high security sender

to a low security receiver.

Table 0-1. Permissible and impermissible information flows in sending a message based on

the security levels of the sender, the receiver and the message

Sender Receiver Message Permissible Flow

L L L Yes
L L H No

L H L Yes
L H H No

H L L Yes

H L H No
H H L Yes

H H H Yes

Table 0-2 shows different combinations of role allocation (without arguments) to

agent identifiers, in which the only illegal flow is from a high security role to a low security agent.

 Table 0-2. Permissible information flows in the LCC role definition regarding the security

levels of the role and the agent identifier

Agent Identifier Role Permissible Flow

L L Yes

L H No

H L Yes

H H Yes

The sources of implicit information flows are conditional operations. Table 0-3 summarises secure and

insecure information flows in LCC via conditional expressions in the form of (Operation1 <-

Constraint) or Operation2. There is one generic insecure flow from constraints to operations, when the

operation is public but the constraint is secret. In Table 0-3, Max_Operation is the maximum security level of

Operation1 and Operation2.

Table 0-3. Permissible and impermissible information flows in LCC conditional expressions

regarding the security levels of the operations and the constraint. Max_Operation = max

(Operation1 level, Operation2 level).

Constraint Max_Operation Permissible Flow

L L Yes

L H Yes
H L No

H H Yes

Appendix B

Proof of Theorem 6.1 (Progress):

 By induction on the structure of  ⊢ L :  ; we apply the induction on the smaller derivations of typing

rules assuming this property holds for all of these sub-derivations (above the line in typing rules) and

proceed by case analysis.

Case Seq: 𝐿 = 𝐴1 𝑡ℎ𝑒𝑛 𝐴2 and 𝐿: 𝑜𝑝 𝜏, so 𝐴1: 𝑜𝑝 𝜏, 𝐴2: 𝑜𝑝 𝜏

By the induction hypothesis either A1 is a final step or else some A1’ exists that A1⇝ A1’. Similarly,
either A2 is a final step or else some A2’ exists that A2⇝A2’. If both A1 and A2 are final steps (closed),

based on the following LCC rewriting rule in Fig 7-2:

𝑐𝑙𝑜𝑠𝑒𝑑(𝐴 𝑡ℎ𝑒𝑛 𝐵) ← 𝑐𝑙𝑜𝑠𝑒𝑑(𝐴) ∧ 𝑐𝑙𝑜𝑠𝑒𝑑(𝐵)

A1 then A2 is a final step. If A1 is a final step and A2⇝A2’, according to the following rewrite rule:

𝐴1 𝑡ℎ𝑒𝑛 𝐴2
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,𝑂
→ 𝐴1 𝑡ℎ𝑒𝑛 𝐸 𝑖𝑓 𝑐𝑙𝑜𝑠𝑒𝑑(𝐴1) ∧ 𝐴2

𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,𝑂
→ 𝐸

 A1 then A2 ⇝ A2’. If both A1 and A2 are not final steps, which means A1⇝A1’ and A2⇝A2’, based on

the following LCC rewriting rule:

𝐴1 𝑡ℎ𝑒𝑛 𝐴2
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,𝑂
→ 𝐸 𝑡ℎ𝑒𝑛 𝐴2 𝑖𝑓 𝐴1

𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,𝑂
→ 𝐸

A1 then A2 ⇝ A1’. If A1⇝A1’ and A2 is a final step, it is not an acceptable state in LCC, so the result

is false: A1 then A2 ⇝false.

Case If1: 𝐿 = 𝑀 ⇒ 𝐴 ← 𝐶 and 𝐿: 𝑜𝑝 𝜏, so 𝑀 ⇒ 𝐴: 𝑜𝑝 𝜏 and 𝐶: 𝑐𝑜𝑛 𝜏,

By the induction hypothesis either C is a final step or else some C’ exists that C⇝C’. If C is a final

step, in the following LCC rewriting rule in Fig 7-2:

𝑀 ⇒ 𝐴 ← 𝐶
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,{𝑀⇒𝐴}
→ 𝑐(𝑀 ⇒ 𝐴 ← 𝐶) 𝑖𝑓 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑(𝐶),

either the evaluation of satisfied(C) is true, so 𝑀 ⇒ 𝐴 ← 𝐶
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,{𝑀⇒𝐴}
→ 𝑐(𝑀 ⇒ 𝐴 ← 𝐶) or else it

returns false, which indicates 𝑀 ⇒ 𝐴 ← 𝐶
𝑅𝑖,𝑀𝑖, 𝑀𝑖,𝑃,∅
→ 𝑓𝑎𝑙𝑠𝑒. In either case, L ends up in a closed state

which means a final step.

If C⇝C’, it means that C is a compound constraint C’‘ that is equal to C1, C1 ∧ C2 or C1 ∨ C2, so

based on one of the following rewrite rules in Fig 7-2:

𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑(𝐶1) ← 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑(𝐶1),

𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑(𝐶1 ∨ 𝐶2) ← 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑(𝐶1) ∨ 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑(𝐶2) ,

𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑(𝐶1 ∧ 𝐶2) ← 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑(𝐶1) ∧ 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑(𝐶2) ,

then we have 𝐿⇝ 𝑀 ⇒ 𝐴 ← 𝐶′.

We showed only a subset of the cases; other cases are similar. □

Proof of Theorem 6.2:

 By induction on the structure of  ⊢ L :  and proceed by case analysis (similar to the proof of Theorem

6-1).

Case Seq: 𝐿 = 𝐴1 𝑡ℎ𝑒𝑛 𝐴2 and 𝐿: 𝑜𝑝 𝜏

We know that L is well-typed, so we have 𝐴1: 𝑜𝑝 τ 𝑎𝑛𝑑 𝐴2: 𝑜𝑝 τ. According to the following rewrite

rules:

𝐴1 𝑡ℎ𝑒𝑛 𝐴2
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,𝑂
→ 𝐸 𝑡ℎ𝑒𝑛 𝐴2 𝑖𝑓 𝐴1

𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,𝑂
→ 𝐸)

𝐴1 𝑡ℎ𝑒𝑛 𝐴2
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,𝑂
→ 𝐴1 𝑡ℎ𝑒𝑛 𝐸 𝑖𝑓 𝑐𝑙𝑜𝑠𝑒𝑑(𝐴1) ∧ 𝐴2

𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,𝑂
→ 𝐸

the transition L⇝L’ happens either by 𝐴1
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,𝑂
→ 𝐸 or when A1 is a final step (closed(A1)), by 𝐴2

𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,𝑂
→ 𝐸.

If closed(A1), the 𝐴1
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,𝑂
→ 𝐸 can be derived by any of the clause expansion rewrite rules, some

of the cases are shown; others are similar:

1) Subcase 𝐴1 = 𝑎(𝑅, 𝐼) ← 𝐶

By the induction hypothesis, we have 𝑎(𝑅, 𝐼) ← 𝐶: 𝑜𝑝 𝜏, A1⇝A1’ and 𝐴1′: 𝑜𝑝 𝜏. The following rewrite

rule, which deals with recursion in LCC, is the only rule that expands A1:

 𝑎(𝑅, 𝐼) ← 𝐶
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,∅
→ 𝑎(𝑅, 𝐼) ∷ 𝐵 𝑖𝑓 𝑐𝑙𝑎𝑢𝑠𝑒(𝑃, 𝑎(𝑅, 𝐼) ∷ 𝐵) ∧ 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑(𝐶).

So we have 𝐴1
′ = 𝑎(𝑅, 𝐼) ∷ B. Consequently, 𝐴1 𝑡ℎ𝑒𝑛 𝐴2⇝ 𝑎(𝑅, 𝐼) ∷ B 𝑡ℎ𝑒𝑛 𝐴2 and 𝐴1 𝑡ℎ𝑒𝑛 𝐴2:

op τ.

2) Subcase 𝐴1 = 𝑀 ⇒ 𝐴

By the induction hypothesis, we have 𝑀 ⇒ 𝐴: 𝑜𝑝 𝜏, A1⇝A1’ and 𝐴1′: 𝑜𝑝 𝜏. The rewrite rule that

handles A1 is only 𝑀 ⇒ 𝐴
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,{𝑀⇒𝐴}
→ 𝑐(𝑀 ⇒ 𝐴). So we have 𝐴1

′ = 𝑐(𝑀 ⇒ 𝐴). Consequently,

𝐴1 𝑡ℎ𝑒𝑛 𝐴2⇝ 𝑀 ⇒ 𝐴 𝑡ℎ𝑒𝑛 𝐴2 and 𝐴1 𝑡ℎ𝑒𝑛 𝐴2: op τ.

Other subcases are similar.

Case If1:

We know that 𝐿 ≡ 𝑀 ⇒ 𝐴 ← 𝐶 is well-typed; 𝐿: 𝑜𝑝 𝜏, so 𝑀 ⇒ 𝐴: 𝑜𝑝 𝜏 and 𝐶: 𝑐𝑜𝑛 𝜏, we also have

L⇝L’.

Based on the LCC rewriting rule (9) in Fig 7-2 and the definition of transition ⇝, the possible

expansions of L to L’ are:

1) If C⇝C’, it means that C is equal to a compound constraint C’‘ that might be C1, C1 ∧ C2 or C1
∨ C2 . Then we have 𝐿′ ≡ 𝑀 ⇒ 𝐴 ← 𝐶′. By the induction hypothesis, 𝐶′: 𝑐𝑜𝑛 𝜏, hence, based on

the type rule If1, 𝑀 ⇒ 𝐴 ← 𝐶′: 𝑜𝑝 𝜏.

2) If satisfied (C) returns true, then it is a final step: 𝑀 ⇒ 𝐴 ← 𝐶
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,{𝑀⇒𝐴}
→ 𝑐(𝑀 ⇒ 𝐴 ← 𝐶)

and based on the type rule Close, the typing of the LCC expression will not be changed:

 𝛤 ⊢ 𝑀 ⇒ 𝐴 ← 𝐶: 𝑜𝑝 𝜏

𝛤 ⊢ 𝑐(𝑀 ⇒ 𝐴 ← 𝐶): 𝑜𝑝 𝜏
𝐶𝑙𝑜𝑠𝑒

3) If satisfied (C) returns false which means: 𝑀 ⇒ 𝐴 ← 𝐶
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,,∅
→ 𝑓𝑎𝑙𝑠𝑒 , then based on the type

rule False we have: false: op h, i.e. L’: op h

We showed only a subset of the cases; other cases are similar. □

