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Abstract

A large amount of data, provided in the form of video data, is acquired during
manned inspections flights of electric power lines. This data is analyzed by ex-
pert human inspectors to detect faults in the power lines infrastructure and prepare
the inspection reports. This process is extremely time consuming, very expensive
and prone to human error. In this paper, we present PoLIS: the Power Line In-
spection Software, which has been developed with the objective of assisting the
analysis of the data acquired during inspection flights. PoLIS is based on the
cooperation between computer vision and machine learning techniques to auto-
matically process video sequences acquired during inspection flights, resulting
in a set of representative images per electric tower which we call Key Frames.
These representative images can then be used for inspection purposes, leading to
a drastic reduction of the human operators’ workload. At the core of the strat-
egy lies an electric tower detector, which is in charge of estimating the location
of the towers within the images based on the combination of a sliding window
search technique and a supervised classifier. The location of the tower is then
tracked using a tracking-by-registration algorithm based on direct methods, esti-
mating the position of the tower in different images. Finally, different criteria are
applied for defining whether the image corresponds to a Key Frame image or not.
Extensive evaluation of the proposed strategy is conducted using videos acquired
during manned helicopter inspections. The videos constituting this database con-
tain several thousand frames representing both medium and high voltage power
transmission lines in the infra-red (IR) and visible spectra. The obtained results
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show that the proposed strategy can reduce the large amount of data present in the
inspection videos to a few Key Frames for each tower. It is also demonstrated that
the learning-based approach proposed in PoLIS is appropriate for detecting elec-
tric towers, a process which is made faster and more robust by coupling it with
a tower tracking algorithm. A Graphical User Interface allowing the application
of PoLIS to user-provided videos is also presented in this paper, illustrating the
whole process and the automated generation of an inspection report.
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1. Introduction

Nowadays society relies heavily on electric power to satisfy many vital neces-
sities and amenities, this is why uninterrupted electrical power supply is absolutely
crucial. Thus the inspection of transmission lines with highly demanding require-
ments, including accuracy, frequency and cost is required. In order to provide
safe, steady and reliable electricity supplies to its consumers, electric power com-
panies invest significant resources in inspection and pre-emptive maintenance of
these infrastructures. The most common inspection strategies consist of schedul-
ing regular manned helicopter flights over the power lines, while recording multi-
spectral data, typically of visual, infrared, and ultra-violet types; in addition to
Lidar and/or radar data.

This data is recorded, tagged with global positioning coordinates and com-
mented whenever necessary by the helicopter’s crew over thousands of kilome-
ters. This data is then handed over to ground-based operators in order to identify
faults in the power line infrastructure and generate the corresponding reports. Two
different types of inspection are conducted: intensive and non-intensive. Inten-
sive inspections provide close views of the electric towers and their components.
Non-intensive inspections are faster and safer for the helicopter crew at the cost
of a lower level of detail. These inspections have two major drawbacks. First,
the flights are very dangerous for the crew while performing intensive inspection
because it requires flying close to the power lines. Second, the global inspection
process is extremely costly both in hardware and personnel expenses. Hence com-
panies in charge of the power network are willing to automate both data gathering
and data processing stages.

Multiple solutions have been investigated in the past decades to answer this
demand. Some of the most interesting ones are the use of Unmanned Aerial Vehi-



cles (UAVs), Rolling On Wire (ROW) robots or hybrid approaches for replacing
the helicopter-based data acquisition with a safer and cheaper alternative. This
paper is focused on the software aspects of the solution, we will not expand on the
hardware part since the proposed Power Line Inspection Software (PoLIS) applies
both to manned and unmanned inspections.

Computer vision techniques have played a key role in the automatic iden-
tification of power line elements such as electric towers, insulators or cables.
They target the automation of the data analysis for finding faults in the inspected
power lines in a more cost-effective manner. However little research has been
done using multi-spectral data, especially with synchronized frames. In addi-
tion, few researchers target the inspection of multiple components, multiple defect
types and/or inspection type; instead focusing on only one combination compo-
nent/defect for either intensive or non-intensive inspections. Indeed, detecting
multiple components or defects is a challenging task (different types of towers,
insulators, meters, etc.), since scales (tower scale: dozens of meters, insulator
plate scale: dozens of centimeters) and defects (e.g. rust, contamination, current
leak, flashover damage, etc) vary widely. The range at which the inspection is
conducted also conditions the potentially detectable defects.

In previous papers [1] and [2], we have presented a machine learning-based
detection algorithm for finding electric towers inside video footage and a tracking
algorithm capable of keeping track of the detected towers. We present in this paper
a global strategy applied to the inspection of power lines using multi-spectral syn-
chronized frames assuming the a priori knowledge of the voltage category of the
power line, i.e. medium or high voltage. The output of this process consists of the
most suitable images for inspection, that is to say images that allow to check the
state of the tower and its components. These images, which we call Key Frames,
are the ones used by the operator to determine the state of the electric tower and
its components in order to generate the inspection report. The scope of this paper
is limited to non-intensive inspection although the presented inspection software
has a much more general scope and is applicable to intensive inspections as well.

This paper is organized as follows: Section 2 will first present a state of the
art of power line inspection using computer vision; Section 3 will then introduce
PoLIS; Section 4 will present performance evaluation and optimization of the
tower detector presented in [2], its integration with the tower tracking strategy
presented in [1] and the Key Frame selection strategy we propose. Section 5 will
present our conclusions and introduce future evolutions of PoLIS.



2. State of the art

Pagnano et al [3] highlighted some of the most important general challenges
for UAV based power line inspection:

* visual servoing, extended by information from other sensors in order to en-
sure power line tracking and autonomous navigation;

e obstacle detection and avoidance since an UAV should not crash into the
power line equipment;

* robust control for providing high stability and positioning, hence allowing
close-up and comprehensive inspections.

In resolving these general challenges, computer vision is expected to play a
key role. A UAV platform with on-board visual sensing and processing equipment
can greatly facilitate the autonomous inspection task. Some of the main problems
that need to be solved are related to autonomously:

detect and localize the tower, when it appears in the field of view (FOV);
track the tower in subsequent frames;

steer the camera to bring and maintain the tower in the center of FOV;
once the tower is in the FOV, depending on the kind of inspection, maneuver
the UAV and the camera, in order to focus on the tower components to be
inspected.

Sl

Much of the state of the art has focussed on the first two problems (primarily
the first one). Several researchers have applied computer vision techniques for
electric tower detection and segmentation in aerial images [4, 5, 6, 7, 8]. Since
towers are usually linear structures, most of these approaches are based on de-
tecting lines in an image. The detected lines are post-processed by applying user-
defined heuristics, in order to keep only the lines belonging to the tower. Various
image segmentation methods are then applied to extract the tower from the image,
e.g. direct template matching is used in [4], watershed segmentation in [6], graph-
cut in [7]. Golightly and Jones [5], instead of using lines, used corner features
to detect a tower in the image. The rest of this section reports in more detail the
current state of the art in tower detection and tracking in videos captured from
aerial inspections.

Whitworth et al [4] defined an abstract electric tower model as having two
straight, near-vertical edges close to each other. This simple model describes tow-
ers used for 11 and 33 kV overhead lines which typically consist of two or three
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bare conductors supported on ceramic insulators mounted on a steel cross-arm at
the top of a wood pole [5]. A template matching is performed between the ab-
stract model and the features in the image for locating the tower candidates. Other
features, such as two straight edges of the cross-arm and three equi-spaced pin
insulators, are used to refine the tower detection and segmentation. This template
matching approach was designed for segmenting simple “T-shaped” towers from
the video sequences. The template based approach is then recursively applied
for tracking as well. The reported results showed good performance in varying
quality video sequences, albeit only on a single type of tower.

Golightly and Jones [5] used a modified corner detector [9] to detect and track
the tower tops. The original corner detector is modified so that the proximal pixels
are clustered together such that only a single point is chosen as the representative
of a particular corner. The detected corners exemplify a tower top in an image.
The results were reported only for a single type of tower which supports medium
voltage (11-33 kV) lines. (similar to [4]). Additionally, a corner matching criteria
was proposed to find the correspondence between consecutive frames (beyond the
scope of the paper).

Tilawat et al [8] reported a three step approach to tower detection. The first
stage applies the “optimal line detector” for detecting the straight lines in an im-
age, giving a set of possible tower candidates. Another linear transformation is
then applied to the filtered image. The transformed image is divided into a set
of non-overlapping windows, and each window is weighted based on the number
of lines passing through each window. The windows with the highest number of
lines are considered to be a tower. The proposed approach is simplistic, and as
the authors suggest, presence of other linear objects in the image (roads, buildings
etc.) will render the approach less useful.

Cheng and Song [7] defined the shape and appearance of a tower by a general
rule set such as the tower and the cross-arm are straight; the main tower and the
cross-arms intersect at a right angle; the cross-arm is shorter and narrower than
the pole. The line segments detected in the pre-processing stage are filtered to
remove the segments which, based on the rule-set, are detected as not belonging to
the tower. It is assumed that the remaining segments roughly describe the tower.
Given the filtered image, a couple of regions are located around the predicted
tower. One region completely encompasses the tower, while the other contains
at least some internal part of the tower. Taking the internal region as the seed,
the graph-cut [10] algorithm is applied to segment the tower structure from the
complete region. Authors report accurate segmentation in a variety of conditions.
However, the results are reported for just one type of tower.



Sun et al [6] used the images from a stereo camera to segment the electric
towers. Given a pair of corresponding 2D images, their approach involves either
finding the intersection of the cross-arm with the tower body or the measure of
the top of the pole (in cases where the pole may not have a cross-arm). Using the
saturation channel of the HSV (hue, saturation and value) color space, a simple
threshold is applied to segment the background, based on the assumption that the
towers are gray and light in color. Several linear (horizontal and vertical) filters
are applied to detect the tower body and the cross-arm candidates. Further heuris-
tics are applied to the stereo image pair, based on the amount of overlap, angular
separation and distance between the centroids of the tower candidates, to segment
the tower body. Similar heuristics are applied to find the cross arms that inter-
sect the detected tower body. Amongst the set of possible tower candidates, the
best candidate is chosen using a simple comparison of the height and the num-
ber of cross-arms. In case no cross-arms were found, the watershed segmentation
algorithm [11] was used to segment the tower body candidates and especially to
locate the correct top of the tower. Authors use the segmentation result to locate
the position on the tower where the power line is connected, in order to model
the power lines between consecutive towers. This information is eventually used
to detect the vegetation which might be trespassing the power line corridor. Like
other state of the art works, the results on tower detection were reported only on a
single tower type.

Recent advances in power line inspection make use of Machine Learning tech-
niques in order to identify electric towers. Varghese et al [12] applied Deep Learn-
ing techniques for addressing the detection of several power line components,
such as wires, pylons and insulators. The method is tested using 150 images, and
authors report an F-score of 88% when detecting towers. In [13], a boost classifier
was used for detecting electric towers.

A big restriction of the above mentioned approaches is that they have been
reported on a single type of electric tower, and therefore the authors have made
several assumptions which relate to the shape of the tower. However, as shown in
Figure 7 and 8, electric towers come in a wide variety of shapes and sizes. Thus,
the current approaches can not be considered suitable to solve the tower detection
and tracking problem, since these approaches can not be generalized to different
types of towers.

Moreover, a complete solution is also missing in the state of the art. Whether
the visual inspection is carried out offline (on videos captured from aerial inspec-
tions), or online (e.g. on-board a UAV), it is expected that an autonomous in-
spection should be able to detect and track towers as soon as they appear. In
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a single aerial mission, one can expect a flight of several hours wherein several
hundred towers will be covered. During such missions, the image/video data usu-
ally changes drastically due to changes in the background, light conditions and
camera movements. A complete visual inspection solution must be robust against
such changes and be able to perform detection and tracking during the complete
mission.

Finally, once the towers are detected, the eventual objective is to inspect the
critical tower components (insulators, conductors, clamps etc.). Not all the frames,
where the tower is detected, can be considered suitable for locating and inspecting
tower components. Therefore, it is necessary to detect the most suitable frames
containing the tower, which we call Key Frames, which are the best candidates
for localizing and inspecting the tower components. Such Key Frames selection
is also lacking in the current state of the art. In fact, some recent works have fo-
cused on component detection and inspection, which implicitly assume that the
Key Frames are already available [14, 15, 16, 17]. This is the case of [18, 19]
where Support Vector Machines (SVMs) classifiers were used for insulator iden-
tification and analysis; and in [20] were Convolutional Neural Networks (CNN)
were used for electric wire detection.

Having a strategy for autonomous Key Frames selection is essential for filling
the current gap between the research on tower detection and the research on the
tower component detection and further inspection. Therefore, the present paper
extends the state of the art by presenting a complete strategy that covers the three
key aspects highlighted in this section. This strategy allows autonomous tower de-
tection, localization and tracking in different spectrums (visible and IR), which is
robust against motion, tower appearance changes, light condition changes, as well
as the background noise. Furthermore, as part of the existing strategy, a method-
ology is also proposed and developed to autonomously extract the Key Frames
which are the best candidates for tower components detection and inspection. The
next section describes the complete strategy in detail.

3. PoLIS: Power Line Inspection Software

The main objective of PoLIS is to reduce the amount of data and time needed
by human operators to conduct manual inspection of the power line infrastructures
(visually), on video sequences acquired in inspections flights. PoLIS interacts
with the human inspector through a GUI (Graphical User Interface) containing
different menus, which allows to execute the proposed image analysis strategy on
user-provided videos. In this GUI the inspector loads the video and defines the



type of inspection to be conducted (spectrum to be analyzed; voltage level; type
of analysis, which in the scope of this paper is Key Frames extraction; among
other features), as shown in Figure 1.

Once the video is selected by the inspector, it is automatically processed by
PoLIS. As a result, a set of representative frames per tower, which we call Key
Frames, are identified automatically by PoLIS. These frames will be the only
frames available to the inspector to conduct the inspection. PoLIS allows the
inspector to visualize the Key Frames and to define the kind of fault(s) found per
tower. In order to achieve this, PoLIS provides a set of menus, with typical faults
as well as user-defined faults. Finally, after all Key Frames have been inspected,
PoLIS generates an inspection report automatically. Figure 1 shows a representa-
tive image of PoLIS GUI.
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Figure 1: Graphical user interface of PoLIS. Different menus allow the inspector to set-up the
inspection (video to inspect, inspection type, etc) as well as inspect the Key Frames in order to
determine faults in the towers and generate inspection reports.

3.1. The Core of PoLIS

PoLIS reduces the human operator’s workload during inspection by automat-
ically identifying and selecting representative Key Frames. The Key Frames se-



lection process is the most important part of the proposed software, as it will
considerably reduce the amount of data the inspector has to analyze.

Figure 2 shows the flowchart of PoLIS. Its core is the Tower Detection stage.
The strategy used is based on computer vision and machine learning techniques.
Machine learning techniques are used for detecting and estimating the location
of electric towers within the images (Tower Detector); and computer vision tech-
niques are used for improving the tower detection, and also for tracking the towers
(Tower Tracker). The latter makes the tower detection process faster and more ro-
bust, by improving the estimation of the tower’s position in the different frames
(see Section 4).

The output of the Tower Detection stage is the position of the tower in the
current frame, i.e., the Region of Interest (ROI) of the tower. This ROI is used in
the Key Frame generation stage for analyzing if the current frame corresponds to a
Key Frame or not, based on different criteria (explained later in Section 3.3 ). If it
is considered a Key Frame, then the tower ID and the current image corresponding
to the Key Frame are stored.

After all the frames have been processed, only Key Frames are shown to the
inspector for conducting a manual inspection of the towers. With PoLIS, the in-
spector has the option of zooming in and out, in order to visualize carefully the
components in the tower; and also the option of specifying the kind of fault found.
Once all the Key Frames have been inspected, an automatic report is generated.
In this report, information about the number of towers inspected and the types of
faults found are presented.

3.2. Tower Detection Stage

For detecting the towers in the images, the Tower Detection Stage combines
the estimations from a machine learning based Tower Detector and the estima-
tions from a Tower Tracker, based on image registration techniques. The Tower
Detector is the first algorithm to operate. It is used to find an electric tower within
the current image. If a tower is detected, then the tracking algorithm gets initial-
ized. When a new image is analyzed, since a tower has been already detected in
the previous frame, the Tower Tracker algorithm is used to estimate the position
of the tower in the current frame and in the following frames. The results of the
Tower Detector and Tower Tracker are analyzed by different criteria, described in
[21], in order to define if the found region contains a tower. These criteria are used
to switch between the Tower Detector and Tower Tracker. If the criteria are not
satisfied, the estimation of the tower’s position, in the current frame, is considered
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Figure 2: Power Line Inspection Software: PoLIS. The first diagram shows the general structure
of PoLIS. The second diagram shows the strategy followed in the tower detection stage. The third
diagram shows the structure for Key Frame selection.

unreliable, which ends the tracking and puts the Tower Detector back in charge of
detecting a new tower.

Most of the time, the tracking stage operates in isolation. Nevertheless, the
Tower Detection stage acts as a backup to detect the position of the tower when-
ever the tracking stage needs to be reinitialized.

3.2.1. Tower Detector

The objective of the Tower Detector module is to recognize and locate the
electric towers within an image. For this purpose, the Tower Detector module
is composed of three main blocks: a preprocessing block, which is designed to
speed-up the detection process by detecting vertical structures in the image using
Hough Transform; a core block, which is based on a supervised electric tower
classifier applied to every region proposed by a Sliding Window algorithm; and a
post-processing block which is in charge of removing false positives. In the next
sections, each block of the Tower Detector is described in detail.

Preprocessing block (Figure 3a): This block is in charge of speeding-up the
entire detection pipeline by discarding some frames which do not fit several re-
quirements pertaining to the presence of valid vertical contours. For computing
the vertical contours in the current frame, the following strategy is applied: the
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vertical Sobel mask is computed over the input image (converted to gray-scale) in
order to extract vertical edges. Then, the resultant image is thresholded in order to
retain the most prominent vertical edges and remove noise. This threshold’s value
has been found experimentally (sThr = 40/255) giving a good compromise be-
tween noise reduction and vertical edge detection. The last step performed in the
Preprocessing stage is a Hough Transform operation applied over the thresholded
image to detect vertical lines. The implemented Hough Transform applied here is
based on the application of 2 filters within the Hough Space:

* Range of 6: The vertical lines have to be in the range: [—10°, 10°]

* Number of votes within the Hough space: a threshold in the Hough space
(RThr = 200) is applied in order to keep the lines which have a higher
length than AT hr.

Core block (Figure 3b): In the Core block resides most of the intelligence
of the Tower Detector. This block is composed of 3 sub-blocks: a Region Pro-
posal algorithm based on a Sliding Window approach, a Feature Extractor module
based on Histogram of Oriented Gradients (HOG) [22], and a Supervised Learn-
ing Classifier trained for Tower-Background classification. In the following lines
the three mentioned submodules are described in detail:

— Region proposal: This submodule is in charge of selecting the ROIs within
the image which can be potential candidates for belonging to the Tower
class. In the strategy presented in this paper, the region proposal algo-
rithm consists of a Sliding Window technique that uses three main win-
dow sizes for High Voltage (SW{:300 x 400 pixels; SW5:250 x 350; and
SW3:150 x 350 pixels), while one main window size is used for Medium
Voltage (SW{:120 x 250 pixels). These window sizes have been selected
experimentally based on the average size of the cropped images used for
training the classifiers.

— Feature Extractor: In each candidate ROI generated by the sliding window
algorithm, HOG features are computed. The configuration of the HOG fea-
ture extractor is shown in Figure 4 and summarized here:

e Window Size: 48 x 96 pixels.

e Cell Size: 8 x 8 pixels.

e Block Size: 16 x 16 pixels (2 x 2 cells).

e Block Stride: 8 pixels (50% of block overlapping).

e Histogram configuration: 9 bins, 20° each (unsigned gradient).
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Figure 3: Tower Detection Strategy. (a) Given an input image, a pre-processing step is applied to
detect vertical lines within the image. (b) If some vertical structures are detected, a Sliding Win-
dow algorithm is applied, using different window resolutions, combined with a supervised classi-
fier for Tower-Background classification. (c) A post-processing step based on k-means clustering
is computed for detection refinement. The ROI computed from the vertical structure detection is
depicted in red color. The blue ROI shows the final detection result provided by the Tower Detec-
tor
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Figure 4: HOG Feature extractor configuration.

The resulting HOG descriptor vector of size 1980 x 1 is used as input to
the corresponding classifier.

— Supervised Learning Classifier: In the work presented in this paper, four su-
pervised learning classifiers have been evaluated: Lo Regularized Logistic
Regression, Support Vector Machines (SVM) (with Linear and RBF ker-
nels), and Multi-Layer Perceptron (MLP). In the next lines, the theoretical
foundation of each of the evaluated classifiers is presented.

e 5 Regularized Logistic Regression. For the construction of this clas-
sifier, the implementation presented in [23] has been utilized. In this
implementation, the loss function of the Regularized Logistic Regression
is given as:

l

1 T
J(w) = §wTw + C’Z log(1 4 e~ viw" #i) (1)
i=1

where w are the parameters to be learned by the classifier. C' is the regu-
larization parameter, and (x;, y;) is the instance-label pair of the iy, train-
ing sample.

e SVM classifiers. For the construction of the SVM classifiers the imple-
mentation of [24] has been used. The loss function presented for this type
of classifier is given as:
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min —w" w + C iy
w,b,£2 + ;5

. 2
subject to: y;(wl d(z;) +b) >1— &,

& >0

where w (weights), b (intercept term) and &; (slack variables) are the pa-
rameters to be learned by the SVM classifier. C' is the regularization
parameter, (z;,;) is the instance-label pair of the i, training sample,
and ¢(x;) is a feature mapping function.

In the formulation presented in Eq. 2, a kernel function can be defined
as:

K (wi,25) = ¢(a:)" d(x;) 3)
The kernel function can lead to different type of classifiers. In this paper,

two different types of kernels have been considered:
o SVM with Linear kernel.

K(zi,7;) = x] x; 4)
o SVM with RBF kernel.

K (7, 25) = exp(— ||z — z4]%),7 > 0 (5)

As can be seen in Eq.2 and Eq.5, in this case C' and ~y are the parame-

ters to be selected for the SVM with RBF kernel classifier.

In Eq. 3 to 5, K(z;,z;) represents the kernel function, (z;,z;) are

points in the input feature space, ¢ is a feature mapping function, and

«v is the parameter which defines the width of the Gaussian kernel.
MLP: The Feed-Forward Neural Network utilized in the experiments pre-
sented in this paper is a 3-layered MLP, implemented using [25]. This
Neural Network configuration was utilized in [2], without optimal pa-
rameter selection. In this paper, we extend the work presented in [2],
selecting the optimal number of hidden units. Thus, the parameters to be
selected in this case will be the number of neurons in the hidden layer.
A Feed-Forward 3-layered MLP can be modeled as:

f(x) =G0 + WO (s(b® + Whg)) (6)
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where the vector h(z) = s(b") + W) x) represents the hidden layer, W (1)
is the weight matrix connecting the input vector to the hidden layer, b(!)
is the bias term of the hidden layer, W (?) is the weight matrix connecting
the hidden layer to the output layer, b(®) is the bias term of the output
layer, and s and G represent the activation function of the hidden and the
output layer respectively.
In this paper, the selected activation function for the neurons in the pro-
posed MLP is the tanh, which expression is given by Eq. 7.

e’ —e ”

Post-processing block (Figure 3c): This module is responsible for removing
the false positive windows. After the Core block has been executed, several win-
dows in the image are classified as positive, i.e. are supposed to contain electric
tower. With the aim of preserving the most representative windows (those which
are more susceptible to have an electric tower inside) and remove the windows
that can be false positives, a clustering algorithm based on K-means is applied.

For the work presented in this paper, an evaluation of two post-processing
approaches has been carried out:

* Based on the Image space: the proposed clustering algorithm takes as input
the = coordinate of the center of the ROIs defined by the windows, and
removes the clusters with less members in an iterative process. The result
after the application of this post-processing approach is shown in Figure 3c.

* Based on the Hough space and Image space: in this case, additionally to
the clusters computed in the Image space, the clusters in the Hough space
are calculated. For this purpose, the p parameter is used to feed the K-
means algorithm. Once both types of clusters are computed, the proposed
approach runs in an iterative process keeping in each iteration the closest
clusters in terms of image coordinates and removing the rest. The aim of
this approach is that the clusters corresponding to the windows computed by
the supervised learning classifier converge towards the clusters of vertical
lines computed using the Hough Transform.

3.2.2. Tower Tracker
The Tower Tracker is in charge of estimating more efficiently the position of

the tower in different frames. The strategy selected for conducting this task is
the HMPMR-ICIA (Hierarchical Multi-Parametric and Multi-Resolution Inverse
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Compositional Image Alignment Algorithm) proposed in [26]. This is a tracking-
by-registration algorithm based on direct methods, which has shown to have fast
and robust performance for tracking electric towers [21], and also for tracking
objects from cameras on-board UAVs [1].

Direct methods [27] use all the pixels of the object to estimate the motion
of the object from the previous frame (where the object’s position is known), to
the current frame (where the object’s position is unknown). Because they do not
extract specific features, direct methods are more generally applicable to different
scenarios. This is of great importance for tracking electric towers due to their
different kind of sizes and shapes.

The core of the HMPMR-ICIA is the Inverse Compositional Image Alignment
algorithm [28]. This algorithm estimates the parameters of the motion model that
defines the motion of the object from one frame to another. This is conducted by
minimizing the Sum of Squared Differences (SSD) as shown in Eq. (8), using a
gradient descent approach:

> [T0)(W(x; Ap)) — Iy (W (x; p)))” ®)

Where T is the template image found by the Tower Detector (see Section
3.2.1); I(r) is the current image; x = (z, y)T represents the pixel coordinates;
Ap is the increment in the parameters of the motion model; and W (x; p) is the
motion model that will be estimated, where p/ = (py, po..,p;)T is the vector of
parameters that describes the transformation from one frame to another.

This ICIA algorithm relies on the linearization of Eq. 8, which is only valid
when the range of motion is small (so that the first-order approximation can be
valid — i.e. close enough — to find a minimum). In the current application, this
assumption is not always applicable as the constant vibrations of the camera can
produce large and sudden motion from one image to the next. In addition, the
effects of this motion in the image plane increase when the tower is closer to the
camera (i.e. the closer the camera and the tower are, the greater the perceived
motion in the image). For this reason, in this application the HMPMR-ICIA algo-
rithm is used, i.e. the ICIA is extended with a HMPMR structure in order to cope
with large frame-to-frame motions. More details of the advantages of extending
the ICIA algorithm with the HMPMR structure can be found in [26].

In the HMPMR structure, the MR structure is created by repeatedly downsam-
pling the images by a factor of 2 [29] (creating a pyramidal structure), according
to the different levels (pL) defined for the MR structure. For this application, the
number of levels has been defined as pL. = 3 (i.e. levels: 0, 1, and 2) taking into
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account that the images have been taken at 30 FPS. Therefore, it is assumed that
the objects of the scene move smoothly from frame to frame.

On the other hand, in the multi-parametric MP structure of the HMPMR strat-
egy, different motion models are estimated in each pyramid level. The MP struc-
ture is created by defining different motion models to be estimated in each reso-
lution of the image. The complexity of the motion model, should increase, as the
resolution of the image increases [26] (the image with the higher resolution is
used to estimate the most complex motion model).

For tracking electric towers, in the lowest level of the pyramid W? (the one
with the highest resolution image, where the superscript represents the level), the
following motion model is estimated:

L+ p 0 D2
WO = 0 1+ P1 P3
0 0 1 9)

X/(F) =W¢ X(0) = WO(X(0)§ P)

The motion model WY is a 3 x 3 matrix (Eq. 9) parameterized by the vector
of parameters p = (p1, p2, p3) ", as follows: p, and p3 represent the translation in
the X and Y axes of the image coordinate frame (upper left corner in the image),
and p; represents the scale factor. This motion model transforms the 2D pixel
coordinates x (where x = (z,y,1)") in image Tq), i.e. in frame 0, into the 2D
coordinates x’ = (2/, 4/, 1)" in image I(f.

This motion model will be the most complex model estimated by the HMPMR-
ICIA algorithm and has been selected taking into account that during the inspec-
tion, the camera is fixed in the vehicle, therefore small rotations around the dif-
ferent axes, due to the vehicle’s movement, do not have a significant impact on
the visual characteristics of the tower in the image plane. Thus, most of the im-
age motion, in the image plane, between the vehicle and the electric tower can be
represented only by changes in position and in scale.

Therefore, in level O of the pyramid, the full motion model shown in Eq. 9 is
estimated, and in levels 1 and 2, only the translation parameters are computed (i.e.
when W' and W? are calculated, p; = 0, and only p, and ps are estimated).

Following the HMPMR strategy, i.e. by estimating only a small number of
parameters in the lowest resolution levels and smoothly increasing the complexity
of the motion model through the MR structure, it is possible to increase the range
of motion that the algorithm can tolerate, and therefore obtain a robust estimation
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of the motion model W, which is crucial for this application.

3.2.3. Detector and Tracker Interaction

Once an electric tower is detected by the Tower Detector, detection criteria
defined in [21] are then applied in order to define if the found region contains a
tower. If the detection criteria are satisfied (i.e. a tower is detected), the vertical
structure of the detected tower is used by the tracker to estimate the position of
the tower in the next frame. This new region will be the template image T (o) used
by the HMPMR-ICIA algorithm described in Section 3.2.2.

With this information, the tracking algorithm is now initialized. Different
components of the tracking-by-registration strategy, such as the pyramidal struc-
ture (the two hierarchical structures of the HMPMR strategy), the Hessian matrix,
etc., are created and calculated (see [26]). The tracking initialization stage is car-
ried out every time the template image is updated (this occurs when the tower
leaves the Field of View (FOV) of the camera, or when the estimation of the
tracker is not considered reliable).

When a new frame is analyzed, the tracking algorithm is in charge of estimat-
ing the position of the tower in the new frame. The result of the tracking algorithm
is checked by different criteria which analyze either the performance of the track-
ing algorithm or the position of the tower in the image plane (e.g. if the tower is
too close to the camera, the algorithm assumes the tower will leave the FOV of
the camera, in order to search the next electric tower).

These tracking criteria are used to switch between the Tower Detector and
Tower Tracker. If some of those criteria are not satisfied, the Tower Detector
will operate until a new electric tower is found. Conversely, if the criteria are
satisfied, then the position of the tower in the current frame is obtained by the
Tower Tracker.

An example of the general idea of the HMPMR-ICIA algorithm for tracking
towers can be seen in Figure 5. The reference image (T (g)) is defined in the first
frame (Frame O, upper left image). This reference image corresponds to a sub-
image or ROI ), that is found by the Tower Detector.

When a new frame is analyzed, e.g. I(;) (Frame 1, upper right image), the
motion W ) between I o) and I(;) (Frame 1, green solid arrow) is found by the
HMPMR-ICIA, assuming that an initial estimation of the motion Wy,;; is known
(Frame 1, yellow/dashed arrow). Thus iteratively estimating the incremental mo-
tion model AW. When an initial estimation is not known, it can be assumed as
the identity matrix when the frame-to-frame motion is small. Therefore, the mo-
tion Wy is estimated, and as a consequence of this, ROI(y) is found, i.e. the
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Figure 5: An example of the tracking-by-registration strategy. ROI ) is defined in I oy by the
tower detection algorithm. When Frame 1 (upper right image) is analyzed, the motion W
between 1oy and I(q) (green/solid arrow) is found by an image registration technique assuming
that Wyy;¢ is known (yellow/dashed arrow). Thus iteratively estimating the incremental motion
model AW. Using Wy the position of the tower RO1y) is found. Then, W ) is propagated to
the next frame, as an initial estimation of the motion Wiy = W ;) (Frame 2, bottom left image).
The process is repeated in each frame and therefore the tower is tracked.

position of the tower in the current frame (e.g. L(y)).

The estimated motion W ;) (Figure 5, Frame 1, green/solid arrow) is prop-
agated to the next frame, as an initial estimation of the motion Wi, = Wy
(yellow/dashed arrow, Frame 2, bottom left image). The process is repeated with
each frame of the sequence, and therefore, the tower is tracked throughout the
sequence.

3.3. Key Frame Selection Stage

For selecting Key Frames, the system needs to know the frames belonging to a
span, (i.e. the frames that belong to a specific tower), in order to determine which
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frames are the most appropriate for conducting visual inspection. This informa-
tion is automatically generated by PoLIS when processing the video, taking into
account when a tower is detected for the first time and when this tower leaves the
FOV of the camera (when the tower detector does not find a tower in a defined
number of frames)

It is important to mention that currently, this estimation is based only on image
information, if additional data is available (e.g. GPS coordinates of each tower),
this information could be used to improve the Key Frames selection strategy. The
way PoLIS estimates the number of towers is also used to determine when the
span starts and ends. All the frames belonging to a specific span are the ones
analyzed to determine the Key Frames of each tower.

PoLIS saves the images’ IDs of the frames belonging to a span (i.e. to a
specific tower). After all the video is inspected, PoLIS uses the images’ IDs to
select the Key Frames. Different criteria to select Key Frames have been explored:

* Select as Key Frames the last 20 frames of the span. This option can be
used when it is desirable to obtain a summary video for each tower.

 Select as Key Frames 4 frames from the last 40 frames. This option can
be used when the inspection is focused on analyzing, mainly the insulators.
Thus, taking into consideration the trajectory of the flight, it could be en-
sured that in the last frames, the tower is closer to the camera but it has not
left the FOV of the camera yet.

» Select as Key Frames 4 well distributed frames from the span, where the
tower can be seen at different scales. This option can be used when the
inspection aims not only at analyzing the insulators, but also at checking
the structure of the electric tower.

The current strategy used by PoLlIs is the last strategy: select as Key Frames
four well distributed frames from the span (when the tower is far, is not that far,
and two when the tower is closer to the camera). This strategy has been adopted
taking into account that the towers in the videos can have different trajectories, so
it is difficult to ensure that, by using only the last frames, the information required
for inspection is visible at least in one Key Frame. Additionally, this strategy
makes it possible to analyze for possible problems when vegetation is covering
the tower (when the tower is far from the camera), and for problems related to the
state of the insulators and other components of the tower (when the tower is closer
to the camera).
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Once PoLIS has selected Key Frames per tower, the inspector can visualize
these frames, inspect them (at different resolutions), and decide the type of faults
found, which could be based on pre-defined faults or new faults that can be in-
troduced to the software. Figure 6, shows the options available for inspecting the
Key Frames. In the right side of the GUI, the inspector can visualize the Key
Frames. Zoom in and zoom out features are available to provide a better view
the state of the tower. Additionally, on the left side of the GUI, the inspector can
specify the type of fault detected from drop-down menus that contain basic faults.
If the detected fault is not available in the menus, the inspector has the possibility
of creating a new fault.

Finally, after inspecting all the Key Frames, PoLIS allows the automatic gen-
eration of a report, where all the information related to the inspection and faults
found, will be summarized.

I12L Intelligent Power Line Inspection System

KEY FRAMES INSPECTION

Name: Carol Martinez
ID: 1233445 KF No. 11 KF deleted: 0

Date: martes 12, 2016 Frames: 2/4 Faults detected: 0
Time: 14:23:58

Faults detected Visible Spectrum IR Spectrum

E = Dirty

Pylon

% s Dirty

Insulator

Cable
Hot Spot

Others:

Delete KeyFrame? | |

save Data QUIT

Figure 6: Key Frame Inspection window in PoLIS. This window allows the inspector to visualize
the generated Key Frames (right side of the GUI). Zoom in and zoom out features are available
to determine the faults present in the tower. In the left side of the GUI, drop-down menus contain
basic faults. Additionally, new faults can be inserted.
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4. Experimental evaluation and results

4.1. Ground Truth for Tower Detection

In order to evaluate the performance of PoLIS, ground truth data was collected
from several real aerial inspection videos. The objective of the collected data is to
assess the performance of PoLIS against manual inspectors at the task of detecting
the presence of towers in the videos. A strategy for generating the ground truth
data was devised to manually label the frames inside a video to mark the presence
or absence of an electric tower. The strategy was divided into two key steps:
data collection and data cleaning. The following sub-sections describe each of the
steps in more depth.

4.1.1. Data Collection

Data: The data used for collecting the ground truth comes from the aerial
inspection videos provided by our industrial partners. A total of 14 videos were
labeled: 8 videos containing High Voltage towers, and 6 containing Medium Volt-
age towers. The videos are extremely diverse, that is, each video contains a huge
variety of towers (see Figure 7 for some example images). Furthermore, the videos
are of very low visual quality, captured in a variety of illumination conditions
and contain a huge variety of backgrounds (cities, villages, forests, deserts, etc.).
Overall, 477612 frames were labeled.

Labeling Strategy: A labeling software was developed which allows a human
user to go through each frame of a video and accordingly label the frames for the
presence or absence of a tower. Labeling, here, is very repetitive in nature and can
easily lead to human/labeler induced error. Therefore, there will surely be some
concerns related to the quality of the labeled data. For example, within a video
sequence, the exact frame where a new tower appears (or leaves) is quite subjec-
tive, and different people might label different frames where they first observe the
appearance (or leaving) of a tower in a sequence of frames. Furthermore, errors
in labeling due to fatigue (forgetting to label a region, or forgetting to press a key,
etc.) will also lead to erroneous labels. In order to solve this problem, each video
was labeled independently by three people.

Table 1 summarizes the key features of the labeled videos and, in the final col-
umn, reports the agreement in the labels given by the three labelers per video. As
can be noticed, the labelers do not reach a complete consensus on approximately
15% (approximately 71000) of the frames. This inconsistency in the labels is due
to the reasons mentioned earlier.
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Figure 7: Ground truth data. The videos selected are diverse, with a large variety of towers,
backgrounds (cities, villages, forests, deserts, etc.). Note should be taken of the videos’ low
quality and heterogeneity.

Data cleaning: Given the three labels per image, one possible approach to get the
final label can be the majority decision. However, it has been argued that the ma-
jority vote might not be suitable in scenarios such as ours [30, 31]. Whitehill et al
[31] present a probabilistic inference approach called GLAD (Generative model of
Labels, Abilities, and Difficulties), which, given the labels from multiple labelers,
computes the probability of a label being correct for each image. Additionally,
this method also provides two additional qualitative parameters - the quality of
the labelers; and the level of difficulty of an image. The GLAD tool (a software
implementation of system described in [31]) was used to combine the labels from
the three labelers, leading to a probabilistic label (probability of having an electric
tower within the current frame) for each frame. Additionally, for each frame, a
qualitative value expressing its difficulty is obtained (occurs especially with the
frames where the tower is first appearing or the ones where the tower is leaving).
Finally, for each video, an estimate of the labelers expertise is also obtained.

In order to evaluate the tower detection strategy, only the probabilistic labels
are used. For the experiments reported here, the probabilistic label was converted

23



Table 1: Characteristics of the labeled data: summary of the videos used for ground truth collection
as well as the percentage of frames, per DVD, for which the ground truth labels from all three
labelers are same.

Labeling
DVD # Frames Tower Type Consensus
(%)
DVD-01 16638 HV 85.92
DVD-02 52301 HV 83.75
DVD-03 46200 HV 83.88
DVD-04 24299 HV 85.50
DVD-05 31726 HV 85.82
DVD-06 52800 HV 88.89
DVD-07 30263 HV 84.13
DVD-08 13452 HV 88.37
DVD-09 12336 MV 88.85
DVD-10 95886 MV 87.51
DVD-11 24477 MV 83.77
DVD-12 23697 MV 89.35
DVD-13 29700 MV 83.25
DVD-14 23837 MV 81.98

to a deterministic one (if probability is greater than 0.95, then the label is 1, a
Tower; otherwise it is 0, Background). However, the extra information coming
from the measures of image difficulty as well as labeler quality might be exploited
in future.

4.2. Evaluation of Classifiers for Tower Detection

The purpose of this section is to evaluate, compare and select the most suit-
able classifier for the task of tower detection in both types of power transmission
lines, High Voltage (HV) and Medium Voltage (MV). At the end of the evaluation
process, two different classifiers were selected, one for HV and one for MV.

In this paper, four different classifiers have been studied and analyzed for both
types of power transmission lines: L2 Regularized Logistic Regression, SVM with
Linear kernel, SVM with RBF kernel, and Multi-layer Perceptron (MLP). For ob-
taining a reliable comparison of the different classifiers, the following methodol-
ogy has been applied:
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* Optimal parameter selection. For each classifier, a K-fold cross-validation
procedure over the parameters of the corresponding model is performed.
Once the cross-validation procedure is applied, the final parameter selected
is the one that minimizes the cross-validation error.

* Train and test the different classifiers using the same training and testing
datasets. Once the optimal parameters of each classifier have been se-
lected, several training and evaluation phases are performed using the se-
lected model for each classifier. In each of these evaluations, the Train and
Test sets are selected randomly.

4.2.1. Data collection for the Evaluation of the Classifiers

Due to the lack of public datasets specialized in the components of power
distribution lines, a dataset of images for training and evaluating the classifiers
was created from aerial inspection data provided by an electrical company. The
data supplied by the company consists of several videos of real aerial inspections
performed by a manned helicopter. The total amount of videos used for creating
the dataset for High Voltage was composed of 12 videos of non-intensive inspec-
tions of 720 x 576 pixels resolution, and of 6 videos of intensive inspections of
720576 or 1920 x 1080 pixels resolution. The data collected for Medium Voltage
was composed of 8 videos of 720 x 576 pixels resolution.

From these videos, a supervised dataset of cropped images was created where
each of those images was either labeled as Tower or Background. Several exam-
ples of the cropped images collected and labeled are depicted in Figure 8. As
can be noticed in Figure 8a, the structure of the high voltage towers is very het-
erogeneous, having structures with symmetric arms, non-symmetric arms, etc. In
addition, Figure 8c shows the enormous variety of backgrounds that compose the
dataset.

A total amount of 11635 images were labeled either as Background or Tower
class, differentiating in the latter case between high and medium voltage. In Table
2 a summary of the number of images utilized for each class is presented. The
4995 images of Background class were utilized in both types of power transmis-
sion lines, High and Medium voltage.

Taking into account the number of labeled images shown in Table 2, a data
augmentation method has been applied with the aim of increasing the total num-
ber of images used for training, preventing possible overfitting problems. The
data augmentation procedure consists of a horizontal flip of the images belong-
ing to Tower class, obtaining the mirrored image of each original one. With this
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(c) Training examples used for the Background class.

Figure 8: Examples of images labeled for training and evaluating the considered classifiers. (a)
Examples of images belonging to the Tower class (High Voltage). (b) Examples of images belong-
ing to the Tower class (Medium Voltage). (c) Examples of images belonging to the Background
class.
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Table 2: Total amount of cropped images collected and labeled.

| Voltage | Tower | Background |

High | 2325 4995
Medium | 4315 4995

approach, the total number of tower images is: 4650 of High Voltage towers and
8630 of Medium Voltage towers.

4.2.2. Selection of the Optimal parameters of each classifier

In this section, the process for selecting the optimal parameters of each clas-
sifier is presented. This procedure is needed not only for conducting a coherent
comparison between the different classifiers that have been evaluated in this pa-
per, but also to prevent overfitting problems by applying L, regularization and
cross-validation methods.

For the purpose of selecting the optimal parameter of each classifier, a 5-fold
cross-validation procedure over the training set has been conducted, where the
cross-validation error has been measured according to Eq. 10.

Ny
1 )
N (i)
Jov =+ Zl JS (10)
Where N is the total number of folds, and Jéi) is the validation error in fold <.
The range of values for each parameter of the corresponding classifier is pre-
sented in the following lines:

* L2 Regularized Logistic Regression: In this case the range of values of the
Regularization parameter C'is:
C =[0.0001, 0.0003, 0.0005, 0.0008, 0.001, 0.003, 0.005, ... , 10, 30, 50,
80, 100]

* SVM Linear: In this case the range of values of the Regularization parame-
ter C'is:
C =1[0.0001, 0.0003, 0.0005, 0.0008, 0.001, 0.003, ... , 1, 3, 5, 8]

* SVM RBF: In the case of this classifier, and as can be noticed in Eq. 5,
the parameters to be optimized are the regularization parameter (C') and the
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parameter related to the width of the gaussian (7). The ranges of values that
have been utilized for the cross-validation procedure are:

C = [0.008, 0.01, 0.03, 0.05, 0.08, 0.1, 0.3, 0.5, 0.8, 1]
~ = [0.008,0.01,0.03,0.05,0.08,0.1,0.3,0.5, 0.8, 1]

* MLP: The parameters to be evaluated in the case of the MLP are the number
of hidden units that configure the hidden layer of the neural network. The
range of values for the number of hidden units is:

# of hidden neurons = [1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]

After conducting the 5-fold cross-validation procedure to each of the values
of the aforementioned parameters (or combination of parameters in case of SVM
with RBF kernel), the results obtained are depicted in Figures 9, 10 and 11. As
shown in Figures 9a, 9b, 10a, 10b, the minimum value of the cross-validation error
can be easily derived, which provides the optimal L, regularization parameter
value (see Eq. 1 and 2 in section 3.2.1). In Figures 10c and 10d for the SVM RBF
configurations, a combination of the parameters C' and ~ has been applied over
the range explained above, which leads to a number of 2!'° x 5 = 5120 trainings
(taking into account the 5 folds performed using the cross-validation procedure).
As can be appreciated in Figures 11a and 11b for the MLP configurations, the
minimum cross-validation error obtained in the High Voltage case is 4%, whereas
in the Medium voltage case it is reduced to 2.85%, revealing the high influence
of the amount of data utilized for training the models in the accuracy of the MLP
classifier.

4.2.3. Comparison of the Classifiers

In this subsection, a comparison between the different classifiers has been
conducted, with the purpose of selecting the one that has the lowest error on the
test set. For the comparison procedure, 10 evaluations have been made, where
the Train and Test set have been randomly picked in each evaluation. In each
evaluation, 80 % of the data has been used for training and the rest 20 % for
testing. The total amount of images used in the comparison of the classifiers is
summarized in Table 3 for High Voltage and Table 4 for Medium Voltage.

Final results of the comparison between the different classifiers are depicted
in Figure 12. According to these results, the classifiers with the highest accuracy
in the Test set are the classifiers based on SVM, with the RBF kernel based SVM
giving the highest accuracy results, both in High and Medium voltage images.
From the analysis of Figure 12 it can be derived that the behavior of the MLP
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Figure 9: Results of the 5-fold cross-validation procedure for selecting the optimal parameters of

the L2 Regularized Logistic Regression classifier, for the High Voltage (HV) and Medium Voltage
(MV) datasets.

Table 3: Total amount of samples used in the comparison of the classifiers for HV images.

| Set | Tower | Background |

Train | 3720 3996
Test 930 999

Table 4: Total amount of samples used in the comparison of the classifiers for MV images.

| Set | Tower | Background |
Train | 6904 3996
Test | 1726 999

and Logistic Regression Classifiers is very similar in terms of test accuracy, being
the MLP classifier the one with highest generalization error (difference between
Train and Test error), as can be appreciated in Figures 12a and 12c, where the
percentage of accuracy in the Train set obtained with the MLP classifier is very
high, both in High and Medium voltage. This can be explained due to the fact that
the MLP classifier is the one that has more hyper-parameters within its model, and
therefore more prone to overfitting problems.

Another important result derived from the analysis of Figures 12b and 12d
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Figure 10: Results of the 5-fold cross-validation procedure for selecting the optimal parameters of
the SVMs classifiers, for the High Voltage (HV) and Medium Voltage (MV) datasets.

is the difference in percentage of accuracy between the High Voltage and the
Medium Voltage classifiers, which in average, is about 1% — 1.5% in most of the
tests. This result can be easily argued due to the number of images obtained for
each dataset (see Tables 3 and 4), where the number of images of Medium Volt-
age towers is almost twice the amount of images of High Voltage towers. This
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Figure 11: Results of the 5-fold cross-validation procedure for selecting the optimal parameters of
the MLP classifier, for the High Voltage (HV) and Medium Voltage (MV) datasets.

fact leads to a lower generalization error for all the classifiers in Medium Voltage,
as can be noticed by comparing Figure 12c with Figure 12d.

4.2.4. Comparison of the classifiers using an image sequence

From previous results, it has been shown that the SVM RBF classifier is the
one that obtained the lowest test error both in High and Medium Voltage. In this
test, POLIS is run using three different classifiers, the SVM RBF, the SVM with
linear kernel (SVM L), and logistic regression (LR). The MLP classifier is not
considered in this test due to its high generalization error obtained in the previous
test (see Figure 12).

In this test, DVD-02 file was chosen (see Table 1). This sequence contains
High Voltage towers and a variety of backgrounds. PoLIS was commanded to run
until detecting 28 Towers (20.0000 frames). Figure 13 shows the results of this
test, where the “Detection Status” variable is plotted. For visualization purposes,
we have given different values to this variable. The red line represents the ground
truth (GT) data. Every time a tower is present in the image, the detection status
variable of the GT data is equal to 3. The yellow, green and blue lines correspond
to the status of the detection variables when using PoLIS with the LR, the SVM
L, and SVM RBF classifiers, respectively.

In Figure 13, it can be seen that the performance of both classifiers (LR yellow
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Figure 12: Results of the Comparison between the different classifiers considered.
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Figure 13: Performance of PoLIS when using SVM L, SVM RBEF, or LR classifiers. The red line
corresponds to the ground truth (GT) data that represents the presence/absence of electric tower in
the frame. Every time the presence of a tower in the image is detected by PoLIS, the detection sta-
tus variable is set to a specific value (which is chosen manly for visualization purposes) depending
on the classifier that is being used: LR (yellow line =2), SVM L (green line = 2.5), and SVM RBF
(blue line = 3).

line and SVM RBF blue line) is very similar, every time there was a tower in the
image, both classifiers were able to detect it. All the towers in the sequence were
successfully detected by the classifiers. In some cases, the SVM-RBF detected
the tower earlier than the LR, but there is no situation where any of the classifiers
missed the tower. This is a very important result because if a tower is missed, then
this tower can not be inspected.

From these tests we can conclude that SVM-based classifiers and LR classi-
fier behave similarly in terms of detection accuracy. However, when analyzing the
processing time, the LR classifier is much faster than SVM. For the previous test,
when processing 4 spans, the mean processing time was 0.86s per frame for LR,
1.21s per frame for SVM L, and 7.65s per frame for SVM RBF. Therefore, con-
sidering a compromise between accuracy and processing time, the LR classifier
has been selected as the one to be used by PoLIS.

4.3. Evaluation of PoLIS

Different tests were conducted to analyze the performance of PoLIS (in terms
of detection of electric towers and of extraction of Key Frames). For these tests,
we selected some sequences from the available GT data: 5 containing High Volt-
age (HV) towers, and 3 containing Medium Voltage towers (MV). The sequences
selected are shown in Table 5. These sequences contain different types of towers
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and different backgrounds, all with variable quality as can be seen in the images
shown in Figures 7 and 8.

Table 5: Image sequences used for the evaluation of PoLIS.

Sequence # Frames Tower Type
DVD-01 16638 HV
DVD-02 52301 HV
DVD-04 24299 HV
DVD-05 31726 HV
DVD-08 13452 HV
DVD-11 24477 MV
DVD-13 29700 MV
DVD-14 23837 MV

4.3.1. Tower Detection Stage

In a previous work [26], the detection of towers using a strategy based only
on the Tower Detector (TD) was compared with a strategy that combines a tower
detector and a tower tracking algorithms (TD+TT). In this section, we extend that
evaluation using more videos with both MV and HV towers. Table 6 summarizes
the results obtained in this test.

Table 6: Comparison of the detection of towers when using TD and TD+TT strategies.

Image  Tower Type # Frames # Frames with | # Frames with Processing

Sequence Towers GT Towers Time (hr)
TD TD+TT | TD TD+TT

DVD-01 HV 16638 11035 4661 5647 2.6 0.73
DVD-02 HV 52301 31318 23660 25233 | 5.04 4.47
DVD-04 HV 24299 13336 4911 5392 3.78 1.35
DVD-05 HV 31726 19996 8261 9674 3.64 1.71
DVD-08 HV 13452 7910 4357 6403 3.65 1.66
DVD-11 MV 24477 18229 13084 15548 | 15.55 8.21
DVD-13 MV 29700 23324 18078 19958 | 17.42  8.83
DVD-14 MV 23837 20528 11372 14202 | 15.84 9.1

In Table 6, it can be seen that by combining tower detection and tower tracking
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(TD+TT), the number of frames containing electric towers is greater than when
using only the Tower Detector (TD) (compare the Frames with Towers column).
Additionally, the processing time reduces significantly (see Processing Time col-
umn). When using only the Tower Detector algorithm (TD), the search is con-
ducted in the complete image; whereas when using TD+TT, after a tower is de-
tected, the tracking algorithm estimates the position of the tower taking into ac-
count its previous position. This is why the computational cost when combining
TD+TT is lower.

Figure 14 shows some of the results obtained in two different sequences (DVD-
02 and DVD-08). The green lines represent the ground truth data, the blue lines
represent the results when using only the tower detector (TD), and the red lines
show the results when using the tower detector and tower tracker (TD+TT). For
visualization purposes, we have given different values to represent the presence
or absence of electric towers. When there is a tower in the image, the green line
reaches the value of 2, and when the algorithms found a tower in the image both
red and blue lines reach 1, otherwise the value is 0.

In Figure 14, it can be observed a more stable behavior of the detection of tow-
ers when the tower detector and tower tracker are used in combination (TD+TT),
this is due to the fact that once a tower is found by the TD, the TT estimates the
position of the tower in the following image. Therefore, coping with the insta-
bilities of Tower Detector (TD). This is why for PoLIS we have decided to use
TD+TT as the strategy for detecting towers.

4.3.2. Key Frame Selection Stage

In this section the Key Frame generation part of the Power Line Inspection
Software (PoLIS) is tested. This is the key component of PoLIS as it allows a
significant reduction of the time required to perform the inspection task. The
tests have been conducted using 8 different image sequences from the ground
truth data: five image sequences containing High Voltage towers (HV), and three
containing Medium Voltage towers (MV), see Table 5.

* High Voltage

Figure 15 shows a collection of representative images of the selected sequences
for High Voltage towers. The green rectangle shows the result of the Tower De-
tection stage of PoLIS. From those images it can be seen that the sequences have
different type of towers, backgrounds, and different resolutions, making it difficult
sometimes, to detect a tower. See for example, the lower right image of Figure 15,
where it is difficult for a human eye to recognize the whole tower.
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Figure 14: Tower detection test. Comparison of TD and TD+TT strategies. The green lines
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lines represent the results when using only the tower detector TD, and the red lines show the results
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be perceived when TD and TT are integrated.
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Figure 15: Tower Detection results in representative images from the HV sequences used for the
evaluation of PoLIS. Green rectangles represent the results of the Tower Detection stage, which is
the core of PoLIS.

Table 7 presents the results obtained when testing PoLIS with the five se-
quences containing HV towers. If columns 2 and 7 are compared, it is possible to
see the reduction of time that is achieved by the proposed software for power line
inspection. When PoLIS is used for power line inspection, the inspector instead of
checking for example, in DVD-01, 11035 frames, he will focus on analyzing 137
representative frames. Therefore, with the 137 frames, the inspector will define
the type of faults each tower has, using the PoLIS GUI and generate a report with
the inspection results.

Table 7: Results of PoLIS with different image sequences for HV towers

Image  # Frames Video # Frames with  # Frames with Processing # KeyFrames
Sequence Lenght (min)  towers GT towers POLIS  Time (hr)
DVD-01 16638 11.1 11035 5647 0.73 137
DVD-02 52301 35 31318 25233 4.47 307
DVD-04 24299 16.2 13336 5392 1.35 219
DVD-05 31726 21.1 19996 9674 1.71 229
DVD-08 13452 9 7910 6403 1.66 203

In Figure 16, it is possible to analyze in more detail the behavior of PoLIS.
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In that Figure, due to space limitations, only the results for DVDs 1 and 2, are
presented. In the plots, the green line represents the GT data, which shows in
which frames there are towers in the images (green line reaches a value of 2).
The red line represents in which frames towers were detected by PoLIS (red line
reaches a value of 1), and the blue lines represent the frames selected by PoLIS
as Key Frames. From these plots, it is possible to see that in most of the frames
containing towers, PoLIS detected towers. Additionally, following the blue lines,
it can be seen that from those frames containing electric towers, PoLIS selected
representative frames.

The four images that are located in the upper part of the plots shown in Figure
16 correspond to the Key Frames selected by PoLIS in the area indicated by the
arrow. These are the frames that the inspector will use, when using PoLIS, for
determining the state of the tower, instead of analyzing all the frames within the
span (which can be approximately 1000 images). Therefore, the inspection time
is reduced significatively.

* Medium Voltage

For the evaluation of PoLIS in image sequences containing Medium Voltage
towers, three sequences from the GT data were selected: DVD 11, 13 and 14.
Medium Voltage towers are more challenging for PoLIS in the sense that the
structure of the towers is more simple (see Figure 17), allowing it to be more
easily confused with background information; towers appear more frequently in
the images (sometimes two or more towers in the same image); and the quality of
the images in our dataset is not appropriate for inspection tasks (blurred images,
low resolution, among others).

Figure 17 shows some examples of challenging images found when inspecting
Medium Voltage towers. The green rectangle shows the result of the Tower De-
tection stage of PoLIS (the core of the system). In the images it is possible to see
the different kind of towers used for the evaluation of PoLIS in image sequences
containing MV towers, and how challenging it is to recognize them in the differ-
ent type of backgrounds. See, for example, in the last two images from Figure 17,
were it is difficult, even for a human, to identify a tower.

Table 8 presents the results obtained when evaluating PoLIS with videos con-
taining MV towers. Analyzing the Key Frame generation component of PoLIS, it
can be seen that when using PoLIS, the inspector instead of analyzing thousands
of images, only has to analyze a few hundred of them, thereby reducing the time
required for inspecting towers. For example in DVD-11 (see Table 8), instead of
analyzing 24477 images, the inspector will analyze only 362.
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Figure 17: Tower Detection results using MV image sequences. Green rectangle represents the
result of the Tower Detection stage of PoLIS.

Table 8: Results of PoLIS with different image sequences for MV towers

Image  # Frames Video # Frames # Frames with Processing # KeyFrames
Sequence Lenght (min) towers GT towers POLIS  Time (hr)
DVD-11 24477 16.3 18229 15548 8.21 362
DVD-13 29700 20 23324 19958 8.83 536
DVD-14 23837 16 20528 14202 9.1 329

On the other hand, Figure 18 shows the behavior of PoLIS when processing the
image sequences of DVD-11 and DVD-13. For visualization purposes, we have
given different values to represent the presence or absence of electric towers. In
the plots, the green line represents the GT data, which shows in which frames there
are towers in the images (green line reaches a value of 2). The red line represents
in which frames towers were detected by PoLIS (red line reaches a value of 1),
and the blue lines represent the frames selected by PoLIS as Key Frames. The
four images that are located in the upper part of the plots, correspond to the Key
Frames selected by PoLIS in the area indicated by the arrow.

The plots shown in Figure 18 reveal that PoLIS detected towers in the same
frames that the GT data shows the presence of towers. Additionally, in the images
located in the upper part of the plots, it is possible to see some of the challeng-
ing conditions that were mentioned before of the MV image sequences: towers
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appear more frequently, and the quality of the image sequence is not appropriate
for inspection purposes. This is reflected in the plots, the red line (PoLIS result)
is not as stable as the green line (GT data). This behavior was not observed with
HYV towers.

* Infrared Images (IR)

PoLIS was designed for processing the data acquired during power line in-
spection flights. Infrared images are usually captured when looking for hot-spots,
especially in areas close to the tower. This is why, the strategy followed by PoLIS
for extracting Key Frames could also prove useful when detecting hot-spots in
infrared images.

For showing the capabilities of PoLIS in this kind of images, an image se-
quence from an inspection flight, that contains both spectrums: infrared and visi-
ble images, was used. It corresponds to the same sequence of DVD-02. Figure 19
shows an example of the results obtained by the Tower Detection stage of PoLIS.
When processing this image sequence, towers were detected in the different spans,
obtaining therefore, similar results as the ones obtained when applying PoLIS in
the images caputed in visible spectrum.

The reason PoLIS is able to detect and track electric towers in IR images is
due to the strategies selected for the Tower Detection stage of PoLIS. The Tower
Detector (TD) uses HOG features to detect towers, which are based on image gra-
dients. On the other hand, the Tower Tracker (TT) is based on a direct method,
which tracks the object based on the information of all the pixels of the object.
These algorithms provide the Tower Detection with the ability to work with dif-
ferent image spectrums.

After processing all the images from the sequence, Key Frames were ex-
tracted. The Key Frame strategy that is currently active in PoLIS consisted on
extracting four Key Frames per tower. Figure 20 shows three from the four Key
Frames selected by PoLIS, for two different towers that appeared in the sequence
(one tower per raw). When analyzing Key Frames, PoLIS offers the zoom in and
zoom out options. Therefore, as can be seen in Figure 20, the Key Frames se-
lected by PoLIS in the IR spectrum can be used for detecting hot-spots. Thus,
these images show the potential use of PoLIS for inspecting also Infrared images.

* Report generation

After the inspection video has been automatically processed by PoLIS and
the Key Frames have been selected, PoLIS presents those Key Frames to the in-
spector and allows him to conduct the inspection. With this information PoLIS
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Figure 19: Tower Detection results using IR images. Green rectangle represents the result of the
Tower Detection stage of PoLIS.

Figure 20: KeyFrame selection results from IR images. First and second rows show three from the
four Key Frames selected by PoLIS, for two different towers.
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automatically generates an inspection report, based on the faults specified by the
inspector.

4.3.3. Result Analysis

The results presented in this paper have shown the different features of PoLIS
for power line inspection. PoLIS has been applied for processing image sequences
containing Medium Voltage (MV) and High Voltage (HV) electric towers. In
general terms, it has been demonstrated that PoLIS strategy allows to reduce the
inspection time significatively. In terms of performance, given that the quality
of the data from non-intensive flights is not the most appropriate for inspection
tasks, it was demonstrated that PoLIS performance is promising for automating
the demanding power line inspection process.

Table 9 shows the confusion matrices obtained in each test. These matrices
show the performance of PoLIS, in terms of detection of towers, compared with
the GT data that was available. The table shows that PoLIS can discriminate with,
a good success rate, background information (true negative TN is high, > 78%, in
all the image sequences). Additionally, POLIS success in detecting towers is high,
this is why the obtained false positive (FP) percentage was low in all the tests (FP
< 22%).

Table 9: Confusion matrices per DVD. Each row corresponds to the individual matrix. Here, the
True class is the Tower and the Negative class is the Background.

HV Sequence TP FP TN FN

DVD-01 5% 12% 88% 55%
DVD-02 78% 1% 93% 22%
DVD-04 41% 5% 95% 59%
DVD-05 49% 2% 98% 51%
DVD-08 1% 22% T78% 29%

MYV Sequence

DVD-11 8% 22% 18% 15%
DVD-13 1% 14% 86% 29%
DVD-14 85% 20% 80% 15%

Figure 21a shows some examples of the false positives found during the tests.
Most of the false positives occurred when vertical patterns appeared in the images,
for example roads (see first image from Figure 21a). This makes us think that the
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(b) Examples of challenging images encountered within the dataset.

Figure 21: Challenging images containing Medium Voltage towers used when evaluating PoLIS.
Green rectangle depicts the PoLIS prediction. Red rectangle shows the position of the tower in the
image, which has been manually selected.

main pattern the classifier is learning is the vertical structure of the tower, without
including its arms. This is because the images used for training and testing con-
tain both blurred and low resolution images (the arms are not as clearly visible).
However, it is important to mention that for an inspection based on PoLIS the
false positives are not relevant. This is because the final decision about the state
of the tower is taken by the inspector. The software allows the inspector to delete
Key Frames that do not contain towers.

On the other hand, in the tests, false negative (FN) rate was high, sometimes
reaching the 59% percent. Digging into details of those frames, one of the reasons
we have found is that in most of those frames it was in fact difficult for a human
to recognize a tower. PoLIS takes advantage of the vertical structure of towers for
detecting them. If this structure is not present, it is not possible for the classifier
to detect a tower. Figure 21b shows examples of the challenging images that are
found in the dataset used for testing PoLIS. The red rectangle (manually drawn)
shows the position of the tower. It can be seen that by simply looking at the
images, it is in fact difficult for a human eye to identify the tower. This happens
especially in the image sequences containing MV towers.

The other reason of high FN rate is related to the way PoLIS detects towers.
The tower detector TD is based on a sliding window approach with fix window
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sizes. If the towers of the span are smaller (at the beginning of the span) or bigger
(at the end of the span) than those windows, then PoLIS will not detect those
towers. Therefore, a high FN rate in this application can be interpreted as PoLIS
being conservative when detecting towers. This is because one span contains
thousands of images of the same tower, it is not a problem for PoLIS to skip
some of them, and this is why the FN rate is not a concern for measuring the
performance of PoLIS.

Table 10 compares the number of towers the GT data has, with the number
of towers detected by PoLIS. It is important to mention that for the application
proposed in this paper, PoLIS has to detect all the towers present in the GT data.
If a tower is missing, this means the tower will not be inspected. As it is shown in
Table 10, the percentage of towers detected by PoLIS is high (> 85%) in all the
tests, ensuring that most of the towers in the video will be inspected.

Table 10: Percentage of electric towers detected by PoLIS

HV Sequence # Towers GT # Towers PoLIS % Towers Detected

DVD-01 34 32 94%
DVD-02 69 67 97%
DVD-04 55 47 85%
DVD-05 51 51 100%
DVD-08 42 42 100%
MYV Sequence
DVD-11 100 99 99%
DVD-13 145 139 96%
DVD-14 56 54 94%

Taking into account the results in Table 10, we consider them very promising,
especially if both the data acquisition stage and PoLIS processing stage of the
inspection task are conducted in a coordinated way to help each other. Would this
happen, better resolution images, more appropriate for inspection, would become
available and PoLIS results will improve significantly. Additional features could
also be added to the software, such as automatic fault detection (for example for
locating hot-spots).
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5. Conclusions and future work

In this paper, a complete solution for power line inspection in multiple spectra
imagery has been proposed: the Power Line Inspection Software (PoLIS). The
proposed system aims to automate the power line inspection process by reducing
the time required to generate inspection reports, which are created based on the
analysis of the images captured in real inspection flights. The paper presented the
different stages used by PoLIS to automatically extract the Key Frames (most suit-
able frames for inspection), and analyzed the performance of PoLIS conducting
an extensive set of tests on a large dataset of real inspection videos which contains
the ground truth data of visible and IR images, with highly varying backgrounds
and electric towers.

An exhaustive evaluation of the different stages of PoLIS has been conducted
using a dataset from real inspection flights composed of thousands of images,
containing different types of electric towers in both, Medium and High Voltage
(138416 frames of HV and 78014 frames of MV).

In general, the tests conducted reveal promising results of PoLIS. This will
lead to a significan reduction in the workload of the inspector, simultaneously
increasing the quality of the inspection by minimizing the scope for human error
(e.g. tiredness of the inspector). It has also been shown that PoLIS can be used not
only for processing images in the visible spectrum, but also in the IR spectrum,
with promising results for improving the hot-spot detection procedure.

Additionally, results also show that the selection of HOG features, in com-
bination with a supervised classifier, and the HMPMR-ICIA tracking algorithm
provide PoLIS with the appropriate capabilities to automatically detect and track
towers with different shapes and in different image spectra (visible and infrared).
With the adopted strategy, robust estimations of the position of towers in the im-
age were obtained in images with low resolution and containing heterogeneous
backgrounds.

The different tests conducted have demonstrated that PoLIS is able to effi-
ciently detect electric towers in most of the image sequences that were used. The
percentage of detected towers was higher than 85% (reaching in some cases to
100%), when compared with the ground truth data. Results also showed that Po-
LIS can discriminate background information with an accuracy ranging between
78% and 98%.

During the tests, some false positive (FP< 22%) and false negative (FN<
60%) detections were found. For PoLIS, the false positives do not represent a
problem for PoLIS (the inspector can ignore those frames). However, false nega-
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tives would imply that some towers were not inspected. In this sense, in order to
have an even better performance out of PoLIS, it is important to ensure that the
images used for inspection are captured with good quality (e.g. avoiding blurring)
and with sufficient resolution to detect the targeted objects. Therefore, ensuring
the detection of towers, at least in some of the frames that belong to the span.

This is why we believe that for automating the power line inspection process,
both the acquisition of data from flights and the PoLIS processing stages should
be coordinated. For example, some of the problems encountered in this paper can
be avoided if the flight path and the image acquisition process are planned in order
to ensure good quality images, thus avoiding unnecessary processing time of the
algorithms.

Future work will focus on exploring strategies for the automatic detection of
faults including Deep Learning techniques for electric tower detection, compo-
nents detection such as insulators, and also for fault detection and analysis in order
to help and guide the inspector towards the detection of specific type of faults.
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