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Abstract

Pricing is a fundamental problem in the banking sector, and is closely related to a number
of financial products such as credit scoring or insurance. In the insurance industry an important
question arises, namely: how can insurance renewal prices be adjusted? Such an adjustment has
two conflicting objectives. On the one hand, insurers are forced to retain existing customers,
while on the other hand insurers are also forced to increase revenue. Intuitively, one might
assume that revenue increases by offering high renewal prices, however this might also cause
many customers to terminate their contracts. Contrarily, low renewal prices help retain most
existing customers, but could negatively affect revenue. Therefore, adjusting renewal prices is a
non-trivial problem for the insurance industry. In this paper, we propose a novel modelization
of the renewal price adjustment problem as a sequential decision problem and, consequently,
as a Markov decision process (MDP). In particular, this study analyzes two different strategies
to carry out this adjustment. The first is about maximizing revenue analyzing the effect of this
maximization on customer retention, while the second is about maximizing revenue subject to
the client retention level not falling below a given threshold. The former case is related to MDPs
with a single criterion to be optimized. The latter case is related to Constrained MDPs (CMDPs)
with two criteria, where the first one is related to optimization, while the second is subject to a
constraint. This paper also contributes with the resolution of these models by means of a model-
free Reinforcement Learning algorithm. Results have been reported using real data from the
insurance division of BBVA, one of the largest Spanish companies in the banking sector.

Keywords: Pricing strategy optimization, Reinforcement learning

1. Introduction

The main goal of pricing is to set prices at which a company will sell its products and ser-
vices (Phillips, 2005; Hinterhuber, 2017). The margin between the price and the total cost of
the product or service is the revenue. If a company wants to adjust the price taking into account
customer characteristics, product features, market status, risk, price sensitivity, etc., the Pricing
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Strategy Optimization framework defines the techniques, methods and process to achieve this
goal.

Insurance is one example of an industry which deals with pricing. In the insurance industry
an important question arises, namely: how can renewal insurance prices of existing customers be
adjusted? The answer to this question requires addressing two different conflicting objectives: (i)
increase retention of the existing customers and (ii) increase revenue. Intuitively, high renewal
insurance prices may increase revenue, however this may also cause many customers to terminate
their contracts. A priority for an insurance company is to avoid losing customers, and customer
retention is critical to sustaining growth and maximizing revenue. Getting customers through
the door only leads to a loss of revenue, and insurance companies need a pricing strategy to
effectively retain customers. One may think that this strategy is to offer low renewal prices.
Undoubtedly, such a strategy will induce many customers to stay loyal, but it will also negatively
affect revenue. Therefore, striking a balance between revenue growth and customer retention
presents itself as a difficult challenge.

In this paper we consider the renewal price adjustment problem as a sequential decision
process. In particular, this problem is considered as follows: The insurer company has a portfolio
of customers. Then, when it is time to renew the customer prices, the insurer takes the first
client from the portfolio and makes a decision: which renewal price to offer him/her taking
into account the current situation of the company (i.e., current revenue, retention). Whether the
customer accepts the renewal price or not, the insurer’s decision leads to the company to a new
situation (e.g., if the customer does not accept the renewal price, the insurer company will have
one customer less and, hence, lower revenue). Additionally, we can know if the insurer’s decision
has been good or bad (e.g., if the insurer’s decision increases the revenue we can consider that
the decision has been good, and bad otherwise).Thus, one can take into account the utility of
each particular decision. Then, given the new situation of the company, the insurer takes the
next customer from the portfolio, makes a decision, and so on until the insurer makes a decision
for each of the customers in the portfolio. In this way, the problem can be seen as a succession
of situations (states), decisions (actions), and utilities (rewards). Therefore, we consider that
Markov decision processes (MDP) provide a more appropriate modelization of this problem.
Such modelization introduces two benefits: it takes into account the long-term effects of each
decision, and it also takes into account the expected value of each decision. The decision of each
particular customer should be optimized taking into account the sequential process involved and
the optimization criteria selected (e.g., maximization of the revenue). Thus, we might suggest a
new renewal price whose immediate reward is lower, but leads to more likely or more profitable
rewards in the future. These considerations are taken into account automatically by the policies
generated for an MDP.

Keeping these benefits in mind, in this paper we propose the use of Reinforcement Learning
(RL) techniques to learn these policies in such MDPs. RL (Sutton & Barto, 1998) is a type of
machine learning where the main goal is that of finding an action policy that makes the agent
act optimally in a given environment, generally formulated as an MDP. The present study ana-
lyzes the use of two different strategies to adjust the renewal prices by RL. In the first strategy
we formulate the proposed problem as an MDP with a single criterion to be optimized. In this
MDP, we aim to maximize revenue, while analyzing the impact of said maximization on cus-
tomer retention. However, with this problem we find two conflicting objectives which require
a balancing strategy. For this reason, in the second strategy to be analyzed, the problem is for-
mulated as a Constrained MDP (CMDP) with two criteria: the first is to be optimized, while the
second is subject to a constraint. In this CMDP, we aim to maximize the revenue subject to the
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client retention level not falling below a given threshold. The latter formulation of the problem
better models the issues currently facing insurance companies. Therefore, we raise the problem
as a multi-objective problem, in contrast to other approaches that only focus on maximizing the
revenue (Chizhov & Borisov, 2011; Rana & Oliveira, 2015). These two strategies will be applied
to real data provided by the insurance division of BBVA, one of the largest Spanish companies
in the banking sector.

Therefore, the main contribution of this paper is the novel modelization of the renewal price
adjustment problem as an MDP and a CMDP, in which the particular situation of each customer
but also the global situation of the company are taken into account for each decision. For each
decision, the global situation of the company is updated as customers accept or reject the re-
newal prices, which will influence future decisions. Additionally, each decision is made paying
attention to two objectives: the revenue, and customer retention. The second contribution is the
resolution of these models by means of an existing model-free RL algorithm: VQQL (Fernández
& Borrajo, 2000). The learned policies can be used by the insurers as a decision support system
or a price recommenders that allows them to decide the renewal price for the customers. To the
best of our knowledge, this is the first time that (i) this problem is modeled in this way and (ii) it
is solved by means of model-free RL techniques.

The remainder of the paper is structured as follows. Section 2 summarises relevant related
work. Section 3 introduces the background on RL needed to understand the proposed research.
This includes basic notions from RL field. Section 4 provides a detailed description of the prob-
lem to be solved by RL (i.e., Pricing Strategy Optimization for renewal portfolios), and also
describes the real data used in this research. Section 5 formulates the problem of adjusting the
renewal prices as an MDP and as a CMDP. Such modeling requires defining of all the elements
of an MDP: the state and action spaces, and the reward and the transition functions. Section 6
introduces the algorithm used for learning: the VQQL algorithm. Finally, Section 7 shows the
learning capabilities of the algorithm and Section 8 concludes and introduces future research.

2. Related Work

From a machine learning perspective, pricing represents a supervised prediction problem
(Lowe & Pryor, 1996; Wuthrich & Buser, 2016; Parodi, 2012; Spedicato et al., 2018; Yeo, 2009),
i.e., a model is learned that receives as input the features of a particular service or product (e.g.,
name, category,. . . ) and predicts its price. However, we consider that such approaches have two
main drawbacks. On the one hand, they do not consider the existing situation of the company.
The price of each service or product not only depends on its particular features but also on the
global situation of the company at that moment. For example, in the case of the insurance in-
dustry, a customer’s renewal price might depend on the number of customers that the company
already has. If the company has many customers, it can take risks offering a high renewal price
that may be rejected. However, if the company has few customers it cannot risk losing more
of them, so it should offer a low renewal price that increases the probability of being accepted.
On the other hand, they do not take into account that the global situation of company changes
over time as decisions are performed, and that current decisions impact future decisions and
opportunities. In other words, they do not take into account the sequential nature of the prob-
lem. Contrarily, in this paper we consider the renewal price adjustment problem as a sequential
decision process.

This is not the first time that pricing problems are modeled as sequential decision mak-
ing (Cesa-Bianchi et al., 2006; Blum & Hartline, 2005; Trovò et al., 2018). For instance, Cesa-
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Bianchi et al. (2006) address a similar problem to the considered in this paper. In that problem,
a vendor sells a product to a sequence of customers whom he attends one by one. To each cus-
tomer, the seller offers the product at a price he selects. The customer then decides to buy the
product or not. The goal of the seller is to achieve an income almost as large as if he knew
the maximal price each customer is willing to pay for the product. Similarly, Blum & Hartline
(2005) compute the best price to offer to bidders arriving one at a time in an auction. In all those
cases, the problem is considered as a type of multi-armed bandit problem with only one state in
which the reward perceived by the agent is the price offered to each customer. However, these
problems do not take into account that decisions can also modify the state in which the system
is. In contrast, we consider a decision taken in a state leads the system to a new state which has
an impact in the future decisions to be made.

Reinforcement Learning has been also applied to pricing problems but the literature is limited
and sparse (Chizhov & Borisov, 2011; Rana & Oliveira, 2015; Raju et al., 2006). For instance,
Raju et al. (2006) use RL to determine dynamic prices in an electronic retail market. Instead,
Rana & Oliveira (2015) use RL to dynamically adjust the price of interdependent perishable
products or services. In both cases, a state is described as the amount of inventory available
for each product or service, but such state description does not include customer features, nor
the global situation in which the company is. In other cases, the customer features are taken
into account, but not the global situation of the company (Kamishima & Akaho, 2011). In our
case, a state describes the particular situation of a given customer and the global situation of the
company as explained in Section 5. Including particular customer features in the state description
allows personalized pricing for each customer, while including global features of the company
allows taking into account the situation of the company in each decision.

Finally, all these papers use profit as the main metric of success, but do not consider other
optimization criterion such as customer retention. In summary, previous work address a different
problem from the one we are considering here. In this paper, we are focusing on the modelization
of the renewal price adjustment problem as a sequential decision problem. In such a problem
there is a portfolio of customers who are offered a new renewal price paying attention to two
different objectives: revenue, and customer retention. In addition, for each decision not only the
particular situation of each customer is taken into account, but also the global situation of the
company.

3. Background on Reinforcement Learning

A RL environment is typically formalized by means of an MDP (Barto et al., 1995; Sutton &
Barto, 1998; Wiering & van Otterlo, 2014). An MDP consists of a set of states S , a set of actions
A available from each state, the reward function R : S ˆA Ñ R which assigns numerical rewards
to transitions, and transition probabilities T : S ˆ Aˆ S Ñ r0, 1s that capture the dynamics of a
system. In this paper, we consider S and A to be infinitely large bounded sets, i.e., we consider
MDPs where both the states and actions are continuous. We also consider discrete-time MDPs,
i.e., at each discrete time step n the learning agent perceives a state s P S and takes an action
a P A that leads it to the next discrete time step n` 1, with n P t1, 2, 3, . . . u. The goal is to learn
a policy π, which maps each state to an action, such that the return Jpπq is maximized:

Jpπq
N
ÿ

n“0

γnrn (1)
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where rn is the immediate reward received in step n, and γ is the discount factor and affects
how much the future is taken into account (with 0 ď γ ď 1). We assume that the interaction
between the learning agent and the environment is broken into episodes, where N is a time instant
at which a terminal state is reached, or a fixed length for a finite horizon problem. Traditional
methods in RL, such as TD-learning (Sutton & Barto, 1998; Wiering & van Otterlo, 2014),
typically try to estimate the return (sum of rewards) for each state s when a particular policy π
is being performed. This is also called the value-function Vπpsq ErJpπq|s0 ss. The value
of performing an action a in a state s under policy π is represented as Qπps, aq ErJpπq|s0
s, a0 as- this value represents the estimated return, i.e. sum of rewards, the system will receive
when it performs action a in the state s, and follows the policy π thereafter. The Q-function is
also called the action-value function.

The Q-learning algorithm (Watkins, 1989) is one of the most widely used for computing the
action-value function. Given any experience tuple of the type xsn, an, sn`1, rny - where sn is the
current state, an is the action taken in that state, sn`1 is the state achieved when executing an

from sn, and rn is the immediate reward - it updates the Q-function following Equation (2)

Qπpsn, anq Ð Qπpsn, anq ` αprn ` γmax
a

Qπpsn`1, aq ´ Qπpsn, anqq (2)

where γ is the discount factor, and α is a learning rate. To correctly approximate the Q-function,
the Q-learning algorithm uses an exploration strategy (e.g., ε-greedy, softmax) as a balance be-
tween the exploration of random unexplored actions and the exploitation of the ongoing learned
policy (Tijsma et al., 2016). For problems with a continuous action space, selecting the optimal
action with respect to the Q-function is non-trivial, as it requires finding a global maximum for a
function in a continuous space. One way to extend Q-learning to continuous state-action space,
is to discretize the environment in order to reduce such space (Uther & Veloso, 1998; Lee & Lau,
2004; Garcı́a et al., 2010). Many different discretization methods have been proposed, but in this
paper we focus on the use of Vector Quantization (VQ) (Fernández & Borrajo, 2000; Fernández
et al., 2005) to discretize the state space and the use of an uniform discretization for the action
space (Section 6). In such discrete state-action space, it is usual to use a tabular representation
of the Q-function. Such Q-tables have as many rows as states existing in the domain, and as
many columns as actions that can be executed in each of these states. Each of the positions in
the Q-table is the value of the Q-function for the corresponding state and action.

While in typical RL environments the objective space consists of only one dimension, in
practical applications, there might be several possibly conflicting objectives requiring a strategy
that mediates between them (Vamplew et al., 2011; Roijers et al., 2013). In multi-objective RL
the objective space consists of two or more dimensions. Therefore, regular MDPs are generalized
to multi-objective MDPs or MOMDPs. One of the consequences is that MOMDPs provide a
vector of rewards instead of a scalar reward, i.e.,

#           »

Rps, aq pR1ps, aq, . . . ,Rqps, aqq (3)
where q represents the number of objectives. In the same way, the scalar Q-value turns into a
Q-vector that store a Q-value for each objective, i.e.,

#              »

Qπps, aq pQπ
1ps, aq, . . . ,Q

π
qps, aqq (4)

where q represents the number of objectives. Multi-objective RL has been successfully used for
urban traffic light control (Shengchao, 2010; Khamis & Gomaa, 2012), cognitive space commu-
nications (Ferreira et al., 2017), or robot control (Ahmadzadeh et al., 2014; Ansari et al., 2018).
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A particular type of MOMDPs are the CMDPs (Geibel, 2006). In CMDPs the learning agent
maximizes one of the objectives subject to constraints on the others as in Equation (5).

max Qπ
1ps, aq

s.t. Qπ
i ps, aq ě θi, i 2, . . . , q

(5)

CMDPs can be used to model a wide variety of different real problems. For instance, it can be
used to maximize the revenue on online advertising, while considering the constraint of budget
limits (Du et al., 2017), or, in robot control, to maximize the probability of reaching a target
location within a temporal deadline (Carpin et al., 2014). As explained in Section 5, CMDPs is
also used to model the problem considered in this paper.

4. Pricing Strategy Optimization for Renewal Portfolios

This section provides a detailed description of the problem to be solved by RL. It also in-
cludes a description of the data used in this research.

4.1. Problem Description

Generalized Linear Models (GLM) is the standard in the pricing industry (Murphy et al.,
2000) as it is easy to fit and interpret. GLMs are a rich class of statistical methods that include
linear regression, logistic regression, log-linear models, poisson regression and multinomial re-
sponse model (Agresti, 2015). From a mathematical point of view, pricing can be solved using
GLM as a general approach. For instance, we might use standard linear regression to learn a
model to predict the price for a given customer and product. We can define a GLM (Nelder
& Wedderburn, 1972; Lee & Nelder, 2003) as a relation between dependent and independent
variables which takes the following form:

ϕ gpµq Xβ (6)

where gpµq ” EpYq, g is the link function, X is the model matrix and β is the vector of
unknown parameters, with Y being independent and distributed as some exponential family dis-
tribution. Note that the standard linear regression model is a special case of GLM where the link
function, g, is the identity function.

While setting a price for a given customer and product can be solved with standard linear
regression models, the pricing strategy optimization deals with two main components: on the
one hand, the pricing model represented by Equation (6) and, on the other, the customer’s degree
of acceptance of a given price (sensitivity to the price).

Customer sensitivity represents a valuable piece of information to correctly adjust the price
and simulate several probabilistic scenarios. As the grade of acceptance of a given price can
be represented as a probability function, it can use a logistic regression model, i.e., a GLM
with a logistic link function (Germán, 2007) to represent the probability of renewal for a given
price. The distribution of the target variable (i.e., if the customer will renew the policy) is set
to be the binomial distribution. The mean of the binomial distribution, that is, the prediction
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generated by the model, is the probability that the event will occur. Equation (7) represents the
logit function (Kleinbaum & Klein, 2010):

η ln
ˆ

ρ

1´ ρ

˙

Xβ (7)

where η is the logit or log-odd function and ρ is the probability of renewal, X is the model matrix
and β is the vector of unknown parameters. Knowing the GLM model parameters, β, we can
obtain the probability of renewal directly from the above equation:

ρ
eXβ

1` eXβ
1

1` e Xβ
(8)

The logistic regression model in Equation (8) predicts the probability acceptance for a given
renewal ratio and customer. The renewal ratio, v, is the ratio at which customers renew the price
of their insurance. This renewal ratio decrements the price when v P r0.0, 1.0q or increments the
price when v P p1.0, 2.0s. Therefore, when v is equal to 1.0 it represents neither incremental nor
decremental, i.e., the same price of renewal.

As we saw, the optimization of a pricing strategy requires handling two main goal functions:

1. Revenue

f1pvq
ÿ

iPv

Bpρipviqq ˚ pricei ˚ vi (9)

where B represents the Bernoulli distribution for probability ρi of acceptance of a given
renewal ratio vi for the i-th customer in the portfolio, and pricei is the current price paid
by the i-th customer in the portfolio to the insurance company with f1 P R.

2. Retention

f2pvq
1
N

ÿ

iPv

ρipviq (10)

where ρi is the probability of acceptance of a given renewal ratio vi for the i-th customer
in the portfolio, and N is the total number of customers in the portfolio with f2 P r0, 1s.

Therefore, although GMLs are the standard in the industry to model the pricing problem as
described in Equation 6, such modelization adopts a static view of the problem and treats it as a
linear prediction problem. Furthermore, the addition of the probability of customer acceptance
transforms the problem into a stochastic problem which makes it difficult to solve it as a linear
problem. For these reasons, what we suggest in this paper is precisely that it is more appropriate
to model the renewal price adjustment problem as a sequential stochastic decision problem as
proposed in Section 5, in which the customers are attended one by one, and in which each
decision leads the system to a new state. Additionally, we assume the underlying model dynamics
are completely unknown for the learning agent. This makes necessary the use of other types of
techniques such as those based on model-free RL. In this paper, the proposed approach is able
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to go model-free and learn to price from data generated from a dynamic environment. In fact,
the proposed approach fits in better with what happen in the real life, in which the insurer offers
renewal prices to a sequence of customers whom he attends one by one.

Finally, one of the important points is the consideration of the business constraints that prices
may have. In our case, we consider such constraints Ci are defined for each customer i in the
portfolio. It represents the ranges in which each renewal ratio can be chosen, i.e., vi P rCi0,Ci1s.
These ranges can be adjusted by taking into account the company’s objectives, marketing cam-
paigns, changes in legislation or even the competence of other insurance companies. As an
example, the lower limit of these ranges can be reduced to offer lower renewal prices in response
to a market of aggressive competition or marketing campaigns that aim to retain the highest
number of customers.

4.2. Dataset Preparation: The Synthetic Dataset
The real data that we have from BBVA are a dataset of 83200 decisions with 11 features

from a home insurance portfolio. We will use it to validate the proposed framework of usage
of RL. However, during the research stage we will use a synthetic dataset in which only the
main features of the real dataset are taken into account. The selection of these features has been
proposed by insurer experts from BBVA who have discarded those features that were not relevant
for the considered task. Additionally, the values for the customer features in the synthetic dataset
are generated by drawing from a model fitted to the real data, ensuring that the synthetic and the
original dataset have the same statistical properties, but without compromising the privacy of the
original dataset. The final synthetic dataset has 7 features as shown in Table 1. Table 1 shows the
feature names, the feature types (numeric or nominal), the mean value and standard deviations of
the numeric features (with the notation A ˘ B, being A the mean and B the standard deviation),
and a brief description of the corresponding feature.

Table 1: Synthetic dataset
Feature Type Mean Description
price Numeric 207.1˘ 89.1 Insurance price
tier Nominal ´ Financial segment of customer
v Numeric 1.1˘ 0.1 Renewal ratio
ρpvq Numeric 0.7˘ 0.2 Probability of customer acceptance
C Numeric r0.9˘ 0.1; 1.1˘ 0.1s Range renewal ratio
gain Numeric 224.7˘ 97.9 price ˚ v
class Nominal ´ Price acceptance „ Bpρpvqq

Therefore, in this synthetic dataset we consider five main features for each customer: price,
tier, v, ρ, and C. Feature price is the price given from Equation 6, i.e., the insurance price. tier
is a well known feature in the insurance sector that indicates a financial segment of a customer.
Customer segmentation is usually performed through a clustering process considering several
customer features (e.g., age, number of claims during the last year) Abolmakarem et al. (2016).
In this way, in order to make a decision for a given customer, the company does not analyze each
one of its particular characteristics, but simply the segment to which it belongs to. It is expected
that all customers of the same group react in the same way to company decisions. Therefore,
companies can even customize the decisions for each segment (e.g., marketing strategies, com-
mercial plans, renewal prices). In this paper, the segment to which a customer belongs to is
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provided by the insurance company and it indicates a different customer risk. In particular, we
consider four segments and, accordingly, we consider four values for this feature: tier1, tier2,
tier3 and tier4, where the greater the value of tier, the greater the risk of the customer. Feature
v is the renewal ratio offered to the customer and ρpvq is an artificially created probability of
customer acceptance for that renewal ratio used for experimentation purposes. Finally, feature
C are the business constraints, i.e., the range in which the renewal ratio v can be chosen for
that particular customer. The features gain and class are derived from the previous features. In
particular, gain is the new insurance price offered to the customer (i.e., gain price ˚ v) and
class is the renewal acceptance class sampled from „ Bpρpvqq. Figure 1 graphically represents
the synthetic dataset including these features. Note that, in Figure 1, higher prices are applied to
customers with higher risk. Both variables price and ρ exhibit a non-lineal increment.

Figure 1: Synthetic dataset with price, tier, v, ρ and class

This synthetic dataset is used for two purposes. The first is to train the logistic regression
function ρ described in Section 4.1. For training, the selected input attribute is the feature v in
Table 1, and the outcome attribute is the feature class. If class 1 it means that the customer
accepts the new price, if class 0 s/he doesn’t. After training, the function ρ is able to predict
for a given increment the grade of acceptance. The function ρ will be used to model the Pricing
Strategy Optimization problem as an MDP as described in Section 5. Secondly, we assume
that the customers in this synthetic dataset are the customers in our portfolio, and their features
(price and tier) are part of the description of the state space. Then, each of these customers is
considered in a different state as described in Section 5. Therefore, such customers are used to
create the synthetic MDP described in Section 5, in which the agent travels for learning.
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5. Mapping Pricing Strategy Optimization onto Reinforcement Learning

In this section, we model the renewal price adjustment problem as a non-deterministic MDP
with continuous state and action spaces. In particular, we describe the mapping of the problem
of renewal portfolios described in Section 4 onto a RL task. We consider this task as an episodic
task, where each episode has as many steps as customers N are in the portfolio. Therefore, each
one of these episodes can be considered as a real-life renewal period, in which the company
renews one by one all the customers in its portfolio. For each step n, the learning agent receives
a state sn. In this paper, a state sn is a tuple in the form sn x f n

1 , f n
2 , tiern, priceny, where f n

1 and
f n
2 are respectively the revenue and the retention at step n, and tiern and pricen are respectively

the customer segment and the insurance price for customer n in the portfolio. Therefore, each
state sn is composed of global features relating to the status of the insurance company (i.e., f1 and
f2) and customer features (i.e., tier and price). From a RL point of view, it is also important to
note that the customer segmentation can be considered as a way of compacting several customer
features into only one feature already provided by the insurance company, tier, which allows
reducing the state space. Therefore, the features tier and price perfectly describes the particular
situation of a given customer. In respect to the global features, we have included in the state
description those directly related to the considered objectives.

For the first state of each episode, s1, the initial revenue and retention are computed as in
Equations (11) and (12), i.e., we start from a situation where we have the profit generated by all
the customers belonging to our portfolio (Equation (11)), but we also assume that we are going to
lose some of these customers even offering them the same price, which is simulated by a renewal
ratio of 1 (Equation (12)). This starting point is, in fact, the one that best fits the starting point in
the real world.

f 1
1

N
ÿ

i“1

pricei (11)

f 1
2

1
N

N
ÿ

i“1

ρip1q (12)

At state sn the agent performs an action an. In this paper, we consider action an is the
renewal ratio vi for the current customer n. The renewal ratios for each client are limited with
the constraints applied to each customer, rCn0,Cn1s, as explained in Section 4. This is to say
that each customer has their own constraints for renewal ratios. Therefore, an is sampled from
rCn0,Cn1s.

After performing an action an in state sn, the agent transits to a new state sn`1 x f n`1
1 ,

f n`1
2 , tiern`1, pricen`1y. Therefore, a transition function is required in order to compute the

values for f n`1
1 and f n`1

2 . These values are respectively computed using Equations (13) and (14)
where n 1, . . . ,N.

f n`1
1

n
ÿ

i“1

Bpρipaiqq ˚ pricei ˚ ai `

N
ÿ

i“n`1

pricei (13)

f n`1
2

1
N

˜

n
ÿ

i“1

ρipaiq `

N
ÿ

i“n`1

ρip1q

¸

(14)
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Both Equations (13) and (14) are divided into two main parts: the first takes into account the
customers for whom a renewal ratio an has already been selected in the episode, and the second
the customers in the portfolio for whom this renewal ratio has not yet been selected. For the
latter, we assume a renewal ratio of 1. In this way, Equation (13) and (14) remain consistent with
Equations (11) and (12). It is important to be aware of the fact that the transition function only
affects the f1 and f2 part of the state space, i.e., to the global situation of the company, since no
matter what action the learning agent takes in step n, tiern`1 and pricen`1 will be the customer
segment and the insurance price of the next customer in the portfolio.

Finally, when the learning agent performs an action an in a state sn and moves to a state sn`1,
it also receives a reward signal rn. Therefore, the definition of a reward function is also required.
In this paper, we formulate a reward function for each of the two proposed strategies to optimize
the renewal price: the maximization of the revenue, and the maximization of the revenue subject
to the retention does not fall below a given threshold. The former strategy is related to an MDP
with a single criterion to be optimized. In this case, the reward function is formulated as in
Equation (15), i.e. at step n the reward is the difference between the value of revenue function in
state sn`1 and state sn.

rn p f n`1
1 ´ f n

1 q (15)

Regarding the latter strategy, it is related to a CMDP with two criteria: the first is to be
optimized, and the second is subject to a constraint (Equation (5)). With this type of problem
it is common to formulate two reward functions: one for each objective. It is also common
practice to include the cumulative reward of the constrained objective in the state description.
Therefore, an additional negative reward Γ ă 0 is given, when the process enters a state such
that the accumulated reward of the constrained objective is below θ, i.e. when the constraint of
the CMDP is violated (Geibel, 2006; Achiam et al., 2017). However, in our case there will be no
need for an additional reward function for the constrained objective. The reason for this is that
the retention function f2 already belongs to the state description. Therefore, the MDP becomes
a CMDP using the reward function in Equation (16) instead of that in Equation (15).

rn

#

p f n`1
1 ´ f n

1 q, if f n`1
2 ě θ.

Γ, otherwise.
(16)

By the reward function in Equation (16), the agent receives a reward of p f n`1
1 ´ f n

1 q if f n`1
2 ě

θ, and a reward of Γ ă 0 otherwise. In this way, the agent learns to avoid states in which f2 ă θ,
i.e., states in which the constrained objective is violated.

It is important to be aware of the fact that an interesting property of this model is that the
competence is indirectly modeled by means of the probability of customer acceptance ρ used in
Equations 12 and 14. The probability ρ is related to the prices offered by other companies. As an
example, it is logical to assume that a given customer will have very low probability of accepting
a renewal price of 50e, if other companies offer him/her a price of 10e. By contrast, this cus-
tomer will have a high probability of accepting a renewal price of 10e, if other companies offer
him/her a price of 50e. Therefore, the learning agent will adjust the renewal prices indirectly
taking into consideration the competence by ρ in order to retain the highest number of customers.
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6. The VQQL Algorithm

As explained in Section 5, the state and the action spaces of the considered problem are
continuous. Therefore, in this paper, we propose to effectively discretize both spaces to obtain a
finite set of states and actions. First, we uniformly discretize the action space. To this end, we
divide uniformly the range of possible renewal ratios of each customer such that each one has
a finite number of actions. Then, we use the VQQL algorithm to deal with the continuous state
space and to learn a tabular representation of the Q-function (Fernández & Borrajo, 2000).

VQQL is based on the unsupervised discretization of the state space. Although any dis-
cretization of the state space breaks the Markov property, this has as its main consequence the
introduction of non-determinism in the problem (Fernández & Borrajo, 2008). Therefore, in
problems with continuous variables, it is crucial to choose a good discretization of the state
space. If we discretize too finely, we lose the ability to generalize and increase both the size of
the Q-table and the amount of training data required to learn the optimal policy. This is especially
true when the task state is multi-dimensional, where the number of discrete states can be expo-
nential in the state dimension. On the contrary, if we discretize the state space too coarsely, two
states may be considered similar states when they are really completely different and, hence, they
require completely different actions. For this reason, we use vector quantization methods, and
more specifically, the generalized Lloyd algorithm (GLA), also called k-means. It has been pre-
viously successfully applied to discretize the state space in a multitude of problems (Fernández
& Borrajo, 2000; Fernández et al., 2005; Garcı́a et al., 2010). This method generates a set of
centroids that together with the nearest neighbor rule define Voronoi regions. Each of these re-
gions clusters a set of states of the original state space representation. The use of the k-means
algorithm to solve the generalization problem in RL algorithms requires two consecutive phases:

• Learning of the discretization of the state space. The pseudocode of this phase is depicted
in Algorithm 1. In this phase, we have to collect a sufficiently large number of experience
tuples of the form xsn, an, sn`1, rny from the environment during exploration. To do this,
the algorithm receives as input the number of episodes to interact with the environment, H,
the number of steps of each of these episodes, N, and the number of centroids to generate,
k. For each step n in episode h, the algorithm takes an exploratory action an in sn and
perceives the new state sn`1 and the reward rn (line 5 of Algorithm 1). Then, it composes
the tuple xsn, an, sn`1, rny which is added to the set C (line 6). Next, we use the states Cs

in these tuples as input of the k-means algorithm to obtain a discretization, D, containing
k centroids (lines 10-11). In this way, given a state s, Dpsq assigns s to the closest centroid
in D.

• Learning of the Q-function. Once the discretization is designed (i.e., the environment is
clustered into k different states), the Q-function must be learned, generating the Q table
composed of k rows and a column for each action. The pseudocode of this phase is de-
picted in Algorithm 2. It receives as input a maximum number of learning episodes H,
a number of steps per episode, N, the discretization learned in the previous phase, D,
and the parameters α and γ for the Q-learning update equation. Then, it performs the
following steps to learn the Q-function. First, it chooses an action following an explo-
ration/exploitation strategy (e.g., ε-greedy) and receives the reward, rn, obtaining an ex-
perience tuple xsn, an, sn`1, rny (lines 5-6 of Algorithm 2). Then, it uses the discretization
D learned in the previous step to discretize the experience tuple, xDpsnq, an,Dpsn`1q, rny

(line 7). This discretized experience tuple is used to update the Q-function (line 8).
12



Algorithm 1: Learning of the discretization of the state space.
Data: H, N, k
Result: The discretization D

1 begin
2 Set h 0, n 0, C H;
3 for h ă H do
4 for n ă N do
5 Take action an in state sn (e.g., randomly), observe rn and sn`1;
6 C C Y xsn, an, sn`1, rny;
7 n n` 1;

8 n 0;
9 h h` 1;

10 Let Cs be the set of states of C;
11 Learn a discretization D with k centroids from Cs using k-means;
12 return D;

Algorithm 2: Learning of the Q-function.
Data: H, N, D, α, γ
Result: The policy π derived from Qps, aq

1 begin
2 Set h 0, n 0, Qps, aq 0,@s P S ,@a P A;
3 for h ă H do
4 for n ă N do
5 Take action an in state sn (using e.g., ε ´ greedy), observe rn and sn`1;
6 Obtain xsn, an, sn`1, rny;
7 Use D to discretize xsn, an, sn`1, rny obtaining xDpsnq, an,Dpsn`1q, rny;
8 QpDpsnq, aq Ñ QpDpsnq, anq ` αprn ` γmaxa1 QpDpsn`1q, a1q ´ QpDsn , anqq;
9 n n` 1;

10 n 0;
11 h h` 1;

12 return π derived from Qps, aq;

It is important to be aware of the fact that previous to the computation of the Euclidean
distance between two states in the k-means algorithm, the features f1, f2 and price have been
normalized in the range r0, 1s. Regarding the feature tier, it is split into three different features:
tier1, tier2 and tier3. Each of these features takes the value of 0 if the corresponding customer
is not within that risk segment and 1 otherwise. Note that if all these features are 0 it is assumed
that the customer is within the risk segment tier4. Therefore, these three features allow us to
identify to which of the four risk segments a customer belongs to. In this way, all features have
the same scale for a fair comparison between them.

Both phases - the learning of the discretization and the learning of the Q-function - are applied
within the VQQL model to the considered problem in Section 7.
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Figure 2: Performed actions with (a) the max and min baseline behaviors and (b) the random baseline behavior

7. Experimental Results

This section presents the experimental results collected from the use of the VQQL algorithm
in the problem of renewal price adjustment. Prior to the application of this algorithm, the range
of possible renewal ratios of each customer is uniformly divided that each individual has 10
possible actions (increments/decrements) including the value of 1 (when the price is the same for
the next renewal). In this way, we have a finite and discrete space of actions.

Subsequently, the VQQL algorithm is applied. As explained in Section 6, VQQL has two
consecutive phases: learning of the discretization and learning of the Q-function. This section
is structured following this same division. First, we provide a detailed description about the
learning of discretizations of different sizes (Section 7.1). Finally, we use these discretizations to
learn a Q-function (Section 7.2). As regards the latter, we provide results using the two proposed
strategies: maximization of the revenue, and maximization of the revenue subject to the retention
is above a given threshold.

7.1. Learning of the Discretizations of the State Space

This section explains the process for discretizing the state space. Prior to this discretization,
it is necessary to collect from the MDP described in Section 5 a significant number of experience
tuples of the form xsn, an, sn`1, rny. To this end, the state and action spaces need to be sufficiently
explored. In this paper we propose the use of three different action selection strategies to carry
out this exploration. Each one of these strategies corresponds to a different baseline behavior:
the first is selecting the minimal renewal ratio for each customer in the portfolio. The second is
selecting the maximal renewal ratio for each one, while the third consists of selecting a random
renewal ratio. Using these exploration strategies, we have collected half a million tuples. Figure 2
shows the performed actions for each of these baseline behaviors.

In particular, Figure 2 (a) shows the performed actions for the max and the min baseline
behaviors, and Figure 2 (b) shows the performed actions for the random baseline behavior. From
Figure 2 (a) we can observe that the min baseline behavior selects for each client n action an

Cn0 in the range rCn0,Cn1s, whereas the max baseline behavior selects action an Cn1 in the
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same range. In contrast, from Figure 2 (b) we can observe that the random baseline behavior
selected for each client n an action an randomly selected from the range rCn0,Cn1s.

The performance of these baseline behaviors for each learning objective is shown in Fig-
ure 3 (a). Figure 3 (a) shows the evolution of f1 and f2 for each baseline behavior throughout an
episode. The black point in Figure 3 (a) denotes the start situation at the beginning of an episode
(computed as in Equations (11) and (12)). Therefore, all the baseline behaviors start from the
same starting situation and, as the episode proceeds, the values of f1 and f2 are computed us-
ing Equations (13) and (14). In Figure 3, the max baseline behavior produces a decay in the
retention, producing also a reduction in the revenue because of a loss of customers. The min
baseline behavior allows for an increase in retention; in this case, revenue also decreases due to
the reduced renewal ratio selected. The random baseline behavior can be considered a ”balance”
behavior between the previous ones: it produces soft reductions in both the retention and the
revenue. Using this figure, we can have an estimation of the minimum and maximum values for
both retention and revenue. It does not seem possible to have a retention higher than 0.92, nor
lower than 0.75. Revenue seems to range from 0.75 to 0.92.

Figure 3: (a) Performance of the different baseline behaviors, and (b) the states visited during an exploration which uses
alternatively these baseline behaviors. Figure (a) shows the average results for each learning processes together with
their standard deviations computed from 10 different runs.

From Figure 3 (a) it is, however, easy to see that a random exploration is insufficient to
efficiently explore the state space in this problem. Therefore, in this paper, to efficiently explore
this space, we combine these three baseline behaviors during 100 episodes changing of baseline
behavior every 100 steps. Figure 3 (b) shows the states visited during this exploration. As we
can see, the use of this strategy allows us to explore a larger region of the state space. As a result
of this exploration, it is produced a dataset of tuples in the form xsn, an, sn`1, rny. The states sn

of this dataset are used as input of the k-means algorithm.
Finally, Figure 4 shows the centroids computed by the k-means algorithm for different (in-

creasing) discretization sizes. These sizes range from k 128 to k 16384 clusters. Figure 4
shows, as the number of centroids increases, the corresponding point cloud is denser and appears
more like the original in Figure 3 (b). In this way, the point cloud of the discretization of size
16384 is practically identical that in Figure 3 (b). All of these discretizations are used in the
learning of the Q-functions as described in the next section. Therefore, Figure 4 shows the statis-
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tical advantages that VQ provides over other discretization approaches. In Figure 3 (b) only some
regions of the bidimensional space have values, showing that not all combinations of the possible
values of the Revenue and Retention exist in the state space. As it can be seen in Figure 4, VQ
only generates centroids that represent minimally the states in Figure 3 (b), i.e., it only locates
centroids in relevant areas of the state space. In contrast, other discretization approaches such as
uniform clustering or tile coding (Sutton & Barto, 1998) do not take advantage of these statisti-
cal relationships between the state features, and discretize the whole state space without taking
into account that some regions will never be visited. Additionally, while VQ only requires to
provide as input the number k of centroids, in tile coding, for example, it is necessary to provide
the number of partitions of each feature, the number of tilings, the offset between these tilings,
Therefore, it is easier for VQ to define its learning parameters than it is for other discretization
approaches, while maintaining of even increasing the performance results (Fernández & Borrajo,
2002).

Figure 4: Centroids resulted from the k-means algorithm for k “ 128, k “ 1024, k “ 4096 and k “ 16384

7.2. Learning of the Q-Function

Once we have discretizations of different sizes for the state space, we can proceed with the
second phase of the VQQL algorithm. In this section we learn different policies using the op-
timization strategies stated in the introduction: the maximization of the revenue, and the max-
imization of the revenue subject to the retention does not fall below a given threshold θ. As
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Figure 5: Evolution of (a) the revenue, f1, and (b) the retention, f2, for five learning processes (each one using a different
discretization size) in the problem of maximization the revenue. The figure shows the average results for each learning
processes together with their standard deviations computed from 10 different runs.

explained in Section 5, the first is related to an MDP, and the second to a CMDP. As also ex-
plained in Section 5 the difference between the two lies in the use of a different reward function:
the reward function in Equation (15) for the first, and the reward function in Equation (16) for the
second. In the following experiments, we use a fully greedy exploration strategy, i.e., the learner
takes its current best action with probability 1. The parameter setting is as following: α 0.4
and γ 0.6. Next, we describe the results for each of the optimization strategies.

7.2.1. Maximization of the Revenue
First, we will focus on the first optimization strategy: the maximization of the revenue. Fig-

ure 5 shows the results for this strategy, i.e., the results when the reward function in Equation (15)
is used. In particular, Figure 5 shows the evolution of the revenue, f1, (Figure 5 (a)) and the re-
tention, f2, (Figure 5 (b)) during 500 episodes for five learning processes. For each one of these
learning processes we use a different discretization size. These sizes range from 128 clusters
(solid red line) to 32768 clusters (dashed light blue line). For each episode, Figure 5 shows the
revenue and the retention at the last step N of the episode (i.e., once all the customers in the
portfolio have been considered) by using the Equations (13) and (14). To test the performance
of our pricing policies, we need to compare it with some baseline pricing policies. For this rea-
son, Figure 5 also shows three horizontal lines, each one corresponding to the performance of a
different baseline behavior: the first is concerned with selecting the minimum renewal ratio for
each customer in the portfolio (dashed orange line), the second selects a renewal ratio for each
customer of 1 (dashed grey line), while the third line selects a random renewal ratio (solid black
line).

According to the results shown in Figure 5 we should highlight three main aspects. First, all
learning processes improve the performance of f1 and f2 of the random baseline behavior (Fig-
ure 5 (a) and (b)). However, concerning f1, only the learning processes associated respectively
with the clusters of sizes 4096, 16384, and 32768 improve the performance of the min baseline
behavior and the baseline behavior of ratio 1 (Figure 5 (a)). Regarding f2, all learning processes
are below the performance of these two baseline behaviors (Figure 5 (b)). Additionally, it is
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important to note that the min baseline behavior is an extreme behavior, i.e., it is not possible
to retain more customers since we are offering them the lowest possible renewal prices. There-
fore, in our portfolio, it is not possible to have an f2 greater than 0.94. The second aspect to
be highlighted from Figure 5 is that as the number of clusters increases, the performance of f1
increases while the performance of f2 decreases. Therefore, the higher the number of clusters
is, the higher the renewal ratios will be, which has also the effect of many customers decide to
leave. Finally, Figure 5 (a) also shows that the performance of f1 does not improve for a num-
ber of clusters larger than 16384. With a number of clusters of 16384 a turning point has been
reached, in which if the renewal ratios are increased, too many customers would decide to leave,
and the revenue instead of increasing would decrease. This is the reason why we have tried with
such so big values of k: we wanted to find the value of k from which no improvements could be
made in f1. The answer to this question is k 16386. Therefore, given our portfolio, it is not
possible to gain a value of f1 higher than 0.85.

Finally, Figure 6 shows two additional experiments designed to demonstrate that it is better
to consider the proposed problem as an MDP. Figure 6 (a) shows the evolution of the revenue,
f1, during 500 episodes for two learning processes. The two learning processes use the same
discretization size, 16384, but they use a different value for the discount factor γ: the first uses
γ 0.6 (pink dashed line) and the other uses γ 0 (blue dashed line). The discount factor γ
in RL determines the importance of future rewards. A discount factor of 0 means that the agent
only cares about immediate rewards, while a discount factor of 0.6 represents a correct trade-off

between present and future rewards. Figure 6 (a) shows that the learning process with γ 0.6
obtains a better performance than the learning process with γ 0. This means that the learning
process with γ 0.6 is able to sacrifice immediate rewards in order to gain more long-term
revenue, while the learning process with γ 0 only focuses on obtaining the greatest immediate
rewards. This demonstrates that the problem is not about considering the customers individually
and obtaining the greatest revenue for each decision, but it is about considering the problem as a
sequential decision problem where the objective is to obtain the greatest total revenue. Finally,
it is important to highlight that using values γ ą 0.6, produce a similar performance than when
using γ 0.6.

Figure 6: (a) Evolution of f1 for two learning processes each one using a different γ value and a discretization size
of 16384 and (b) renewal prices coloured from yellow (highest renewal prices) to dark blue (lowest renewal prices)
depending on f1 and f2.

18



In addition, Figure 6 (b) demonstrates that the renewal price offered to each customer depends
on the current situation of the company. In particular, it shows the states visited by the learned
policy with γ 0.6. For each state, it shows the value of f1 in the x-axis, and f2 in the y-axis.
Additionally, each state is colored in a different way depending on the action taken in that state:
from yellow (corresponding to the highest renewal price), to dark blue (corresponding to the
lowest renewal price). Figure 6 (b) shows that the highest renewal prices are offered when the
situation of the company is better (the highest prices are offered when f1 and f2 are above 0.91).
However, the lowest renewal prices are offered when the situation of the company is worse (the
lowest prices are offered when f1 is below 0.87 and f2 is below 0.88). This means that when
the company has a high revenue and retention it offers to the customers high renewal price.
However, if the situation is worse, the company cannot afford to lose more customers, so it offers
low renewal prices.

7.2.2. Maximization of the Revenue subject to Constraints
We will now focus on the second optimization strategy: the maximization of the revenue

subject to the retention does not fall below a given threshold θ. Therefore, in the following
experiments we will use the reward function in Equation (16) where the parameter Γ is set to
Γ ´1. Figure 7 shows the results using this reward function. For these experiments, we will
use the discretization of size 16384, as this obtained the best possible value of f1 in Figure 5.

Figure 7: Evolution of (a) the revenue, f1, and (b) the retention, f2, for three learning processes (each one using a different
threshold value) in the problem of maximization the revenue subject to the retention does not fall below a given threshold
θ. The figure shows the average results of each learning processes together with their standard deviations computed from
10 different runs.

Figure 7 shows the evolution of f1 and f2 during 500 episodes for three different learning
processes: the maximization of the revenue subject to the retention does not fall below θ 0.86
(dashed blue line), the maximization of the revenue subject to the retention does not fall below
θ 0.89 (dashed green line), and the maximization of the revenue subject to the retention does
not fall below θ 0.9 (solid red line). Figure 7 also shows an additional learning process:
the learning process without constraints which use a discretization of size 16384 from Figure 5
(dashed pink line). It is important to note that this one is only included as a reference in the
analysis. Finally, Figure 7 shows the same three baseline behaviors as in Figure 5.
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In all cases, the imposed constraints are correctly fulfilled (dashed blue line, dashed green
line and solid red line of Figure 7 (b)). However, the compliance of the constraints penalizes the
performance of f1: neither is able to reach the final performance of the learning process without
constraints (dashed pink line in Figure 7 (a)). However, this loss of revenue is rewarded with a
significant improvement in the performance of f2 with respect to the learning process without
constraints (Figure 7 (b)). Regarding the baseline behaviors, the three constrained learning pro-
cesses improve the performance of f1 for all the them (Figure 7 (a)), and they also improve the
performance of f2 for the random baseline behavior (Figure 7 (b)). Additionally, the learning
processes with θ 0.89 and θ 0.9 improve the baseline behavior of ratio 1 (Figure 7 (b)).

Figure 8 (a) shows the evolution of the mean renewal ratio values for each episode of the
learning processes in Figure 7. It can be seen that the unconstrained policy and the constrained
one with θ 0.86 obtain a mean renewal ratio greater than 1 (pink and blue dashed lines in
Figure 8 (a)). Therefore, the use of these two policies leads to an increase on average of the
insurance prices. On the contrary, the constrained policies with θ 0.89 and θ 0.9 are below
the mean renewal ratio of 1 (green dashed and solid red lines in Figure 8 (a)) and, hence, the use
of these two policies leads to a decrease on the average of the insurance prices.

Figure 8: (a) Evolution of the mean renewal ratio values for the learning processes in Figure 7, and (b) performance of
f1 and f2 for the policies in Figures 5 and 7. The figure shows the average results of each learning processes computed
from 10 different runs. Additionally, Figure (a) also shows the standard deviations.

Finally, Figure 8 (b) shows the final performance for each objective, f1 and f2, of the policies
shown in Figures 5 and 7. The Pareto comparison criterion can be used to compare the solutions
in Figure 8 (b). Using this principle, one solution y˚ strictly dominates (or ”is preferred to”) a
solution y if the performance for each of the objectives of y˚ is strictly better than the performance
of the corresponding objective of y. In accordance with the Pareto principle, we can assume the
blue points in Figure 8 (b) are strictly dominated by at least one red point. Additionally, we can
assume the red points in Figure 8 (b) are in the Pareto front, since these points are not strictly
dominated by any other solution (i.e., no other solution has, at the same time, a higher revenue
and retention). In this problem, the Pareto front is composed of the solutions of the min baseline
behavior, the constrained policies with θ 0.9, θ 0.89, and θ 0.86, and the unconstrained
policy with a number of clusters of 16384.

At this point we will analyze the performance of the Pareto front solutions by taking as
reference the performance of the baseline behavior of ratio 1. Additionally, this analysis will
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be carried out using the denormalized values for both f1 and f2, thus providing the reader with
a deeper grasp and understanding of the resulting improvements. Additionally, we relied on
the Mann-Whitney test (Corder & Foreman, 2014) to indicate a significant difference (using
a significance level of 5%) between the performance of the baseline behavior of ratio 1 and the
policies in the Pareto front. Figure 8 (b) shows that all the solutions in the Pareto front outperform
the performance of f1 794535e of the baseline behavior of ratio 1 (i.e., regarding f1, the
performances of the Pareto front solutions are statistically significant better with a confidence
level of 95% compared to the performance of the baseline behavior of ratio 1). The min baseline
behavior has revenues of f1 797065e (i.e., an improvement of 0.3% compared to the baseline
behavior of ratio 1). The constrained policies with θ 0.9, θ 0.89 and θ 0.86 have revenues
of f1 800235e, f1 808573e and f1 817077e respectively (0.7%, 1.8% and 2.8%
improvement rate in f1 with respect to the baseline behavior of ratio 1). Finally, the unconstrained
policy has revenues of f1 821151e (i.e., representing a 3.3% increase in f1 over the baseline
behavior of ratio 1). Regarding the performance of the retention, the baseline behavior of ratio 1
obtains a final retention of f2 91%. In this case, only the min baseline behavior ( f2 94%)
and the constrained policy with θ 0.9 ( f2 93%) outperforms this retention value (i.e.,
regarding f2, the performance of the baseline behavior of ratio 1 is statistically significant better
with a confidence level of 95% compared to the performance of the min baseline behavior and
the constrained policy with θ 0.9). Instead, there is no any significant statistical difference
between the performance of f2 of the baseline behavior of ratio 1 and the constrained policy of
θ 0.89 ( f2 91.1%). Finally, the constrained policy with θ 0.86 ( f2 88%) and the
unconstrained policy ( f2 86%) obtain slightly lower retention values.

8. Conclusions

The present paper describes the use of RL for the problem of renewal price optimization. At
this point we can summarize the following principal conclusions:

(i) The problem can be successfully modeled as an MDP and a CMDP. In this paper, we have
correctly modelled the proposed problem as an MDP and as a CMDP as detailed in Section 5.
In fact, this is the main contribution of the paper: the novel modelization of the renewal price
adjustment problem as an MDP and a CMDP. In this modelization we take both the global situ-
ation of the insurance company and the particular situation of each customer into consideration.
Additionally, the global situation of the company is updated according to the actions performed.
This allows us to consider the impact of current decisions on future decisions and opportunities.
As mentioned earlier, as far as we now, this is the first time that this problem is modeled in this
way. To accomplish this modelization, Section 5 describes all the elements of an MDP: the state
and action spaces, and the reward and the transition functions. Regarding the CMDP, we take
advantage of the fact that f2 is part of the state description so that we do not have to define an
additional reward function. For this reason, changing the problem from MDP to CMDP only
requires changing the reward function used, i.e., use the reward function in Equation (16) instead
of the reward function in Equation (15).

(ii) VQQL can be used to solve both the MDP and the CMDP. Formalizing the problem as
an MDP allows the use of any model-free RL algorithm to solve it. However, in this paper we
have opted for the well-known VQQL algorithm (Fernández & Borrajo, 2000). VQQL requires
two consecutive phases: the learning of the discretization of the state space, and the learning
of the Q-function. Regarding the former phase, we have to collect a sufficiently large number
of experience tuples. Although in many problems it is sufficient to use a random exploration
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to collect such tuples, Section 7.1 demonstrates that in this problem a random exploration only
partially explores the state space. It is for this reason that we use alternatively three baseline
behaviors to explore the state space: the max, min and random baseline behaviors. Section 7.1
shows that in this way the state space is explored more efficiently. Regarding the second phase
of VQQL, the experiments in Section 7.2.1 demonstrate that a correct selection of the number
of clusters is crucial to obtaining a good performance both for f1 and f2. Regarding the latter, a
turning point is reached with a number of clusters of 16384, and revenue cannot be improved with
current data from this point on. An increase in the renewal ratios would lead to a certain number
of customers terminating their contracts, which, in turn, would affect revenue. Additionally,
Section 7.2.1 also demonstrates that the renewal prices offered to the customers depend on the
global situation in which the company is at that moment and not only on the particular situation
of each customer. In our opinion, the latter reinforces the fact that it is better to consider the
problem as an MDP as proposed in this paper. Finally, the experiments in Section 7.2.2 show
that model-free RL algorithms such as VQQL can be successfully used to solve a CMDP.

(iii) Possibility of selecting the minimum acceptable retention value. The modelization of the
problem as a CMDP allows the user to select the value of the threshold θ. Therefore, the problem
now becomes one of maximising revenue, subject to the client retention level not falling below
threshold θ (Section 7.2.2). This is a very important achievement because individual insurance
companies can adjust the value of θ depending on their particular situation. In fact, modeling the
problem as a CMDP better models what actually happens in the real world: insurance companies
want to decide what level of customers they want to retain. However, it is necessary to keep in
mind that the higher the value of θ is, the lower the margin for improvement of the revenue will
be, as demonstrated in the experiments in Section 7.2.2.

(iv) Obtaining the Pareto front allows a posteriori selection of the policy. In Section 7.2.2
we have approximated correctly the Pareto front of the problem (Figure 8 (b)). This frontier
allows a posteriori selection of the solution and encapsulates all the trade-offs among the multiple
objectives. We cannot say which of the policies in the Pareto front is preferable. Nevertheless,
the user is able to select a policy a posteriori depending on whether they prefer increased revenue
over customer retention, or vice versa. If the most important objective is to achieve the maximum
possible retention, then the policy corresponding to the min baseline behavior should be selected.
Conversely, if the most important objective is to achieve the maximum possible revenue, then the
policy of the unconstrained learning process with 16384 clusters should be selected. The rest of
the policies in the Pareto front can be used to reach a trade-off between the two objectives.

Finally, a logical continuation of the present study would be the final deployment of the
proposed ideas in the insurance company. The policies learned by RL can be used by the insurers
as a decision support system that allows them to decide the renewal price for the customers. In
this sense, one possibility would be to integrate such learned policies into a software tool that
can be used easily by the insurers. Given a customer, the insurer provides to this tool the price
the customer is currently paying, and the segment to which it belongs. We assume that both the
revenue and the retention of the insurance company are already integrated in the tool. Note that
this price, segment, revenue and retention represent the state in which the system is. Then, for
this state the learned policy embedded in the tool gives as output the action, i.e., the renewal
price that the insurer should offer to that customer. It is important to be aware of the fact that
the output of the policy is simply a recommendation, i.e., the policy proposes a solution that the
insurer may accept or change using any other approach. Human experts are suspicious of tools
that provide solutions which cannot be changed, regardless of how sophisticated, intelligent or
autonomic the tool is. Therefore, the final action to be performed is not decided by the policy

22



but by the human expert. Anyway, the price recommended by the policy is a good starting point
for the insurer to start the negotiation. Once the negotiation with the customer is finished, the
insurer updates the policy by providing to the tool whether the customer has accepted or not, and
the final renewal price offered. This information is used to perform a new learning step and the
revenue and retention are recomputed as described in Section 5. In this way, the system keeps
learning continuously and adaptively also in the real environment.
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