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Abstract

This paper provides an in-depth review of the optimal design of type-1 and type-2 fuzzy

inference systems (FIS) using five well known computational frameworks: genetic-fuzzy

systems (GFS), neuro-fuzzy systems (NFS), hierarchical fuzzy systems (HFS), evolving

fuzzy systems (EFS), and multiobjective fuzzy systems (MFS), which is in view that

some of them are linked to each other. The heuristic design of GFS uses evolutionary al-

gorithms for optimizing both Mamdani-type and Takagi-Sugano-Kang-type fuzzy systems;

whereas, the NFS combines the FIS with neural network learning method to improve the

approximation ability. HFS combines two or more low-dimensional fuzzy logic units in a

hierarchical design to overcome the curse of dimensionality. EFS solves the data streaming

issues by refining (evolving) the system incrementally, and MFS solves the multi-objective

trade-offs like the simultaneous maximization of both interpretability and accuracy. The

overall synthesis of these dimensions explores the FIS’s potential challenges and opportu-

nities; the complex relations among the dimension; and the FIS’s potential to combining

one or more computational frameworks adding another dimension: deep fuzzy systems.

Keywords: genetic algorithm; neuro-fuzzy systems; hierarchical fuzzy systems; evolv-

ing fuzzy systems; deep fuzzy system; evolutionary multiobjective.
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1 Introduction

Research in fuzzy inference systems (FIS) initiated by Zadeh (1988) has drawn the attention of

many disciplines over the past three decades. The success of FIS is evident from its applicability

and relevance in numerous research areas: control systems (Lee, 1990, Wang et al., 1996),

engineering (Precup and Hellendoorn, 2011), medicine (Jain et al., 2017), chemistry (Komiyama

et al., 2017), computational biology (Jin and Wang, 2008), finance and business (Bojadziev,

2007), computer networks (Elhag et al., 2015, Gomez and Dasgupta, 2002), fault detection and

diagnosis (Lemos et al., 2013), pattern recognition (Melin et al., 2011). These are just a few

among numerous FIS’s successful applications (Liao, 2005, Castillo and Melin, 2014), which

is mainly attributable to FIS’s ability to manage uncertainty and computing for noisy and

imprecise data (Zadeh and Kacprzyk, 1992).

The enormous amount of research and innovations in multiple dimensions of FIS propelled

its success. These research dimensions realize the concept of: genetic-fuzzy systems (GFS),

neuro-fuzzy systems (NFS), hierarchical fuzzy systems (HFS), evolving fuzzy systems (EFS),

and multiobjective fuzzy systems (MFS) which are fundamentally relied on two basic fuzzy

rule types: Mamdani type (Mamdani, 1974), and Takagi–Sugano–Kang (TSK) type (Takagi

and Sugeno, 1985). Both rule types have “IF X is A THEN Y is B” rule structure, i.e., the

rules are in the antecedent and consequent form. However, the rule types Mamdani-type and

TSK-type differ in their respective consequent. For the consequent, Mamdani-type takes an

output action (a class), and TSK-type takes a polynomial function. Thus, they differ in their

approximation ability. The Mamdani-type has a better interpretation ability, and the TSK-

type has a better approximation accuracy. For antecedent, both types take a similar form that

is a rule induction process take place for input space partition to form antecedent part of a

rule. Therefore, the rule types, the rule induction process, and the interpretability-accuracy

trade-off govern the FIS’s dimensions.

In GFS, researchers investigate mechanisms to encode and optimize the FIS’s components. The

encoding takes place in the form of genetic vectors and genetic population and the optimization

take place in the form of FIS’s structure and parameters optimization. Herrera (2008), Cordón

et al. (2004), and Castillo and Melin (2012) summarized research in GFS with taxonomy to

explain both encoding and structure optimization using a genetic algorithm (GA). NFS research

investigates network structure formation and parameter optimization (Jang, 1993) and answers

the variations in network formation methods and the variations in parameter optimization

techniques. Buckley and Yoichi (1995), Andrews et al. (1995), and Karaboga and Kaya (2018)

offer summaries of such variations. Torra (2002) and Wang et al. (2006) reviewed research in

HFS which summarizes the variations in HFS design types and HFS parameter optimization

techniques. The EFS research enables incremental learning ability into FISs (Kasabov, 1998,
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Angelov and Zhou, 2008), and the MFS research enables FISs to deal with multiple objectives

simultaneous (Ishibuchi, 2007, Fazzolari et al., 2013).

This review paper offers a synthesized view of each dimension: GFS, NFS, HFS, EFS, and MFS.

The synthesis recognizes these dimensions being linked to each other where the concept of one

dimension applies to another. For example, NFS and EFS models can be optimized by GA.

Hence, GFS entails its concepts to NFS and EFS. The complexity and concept arises from the

synthesis offer a potential to investigate deep fuzzy systems (DFS), which may take advantage

of GFS, HFS, and NFS simultaneously in a hybrid manner where NFS will offer solutions to

network structure formation, HFS may offer solutions to resolving hierarchical arrangement of

multiple layers, and GFS may offer solutions to parameter optimization. Moreover, EFS and

MFS also play a role in DFS is if the goal will be to construct a system for the data stream

and to optimize a system for interpretability-accuracy trade-off.

This review walks through each dimension: GFS, NFS, HFS, EFS, and MFS, including a

discussion on the standard FIS. First, the rule structure, rule types, and FISs types are discussed

in Sec. 2. A discussion on the FIS’s designs describing how various FIS’s paradigms emerged

through the interaction of FIS with neural networks (NN) and evolutionary algorithms (EA)

is given in Sec. 2.3. Sec. 3 discusses the GFS paradigm which emerged through FIS and

EA combinations. Sec. 4 describes the NFS paradigm including reference to self-adaptive

and online system notions (Sec. 4.1); basic layers (Sec. 4.2); and feedforward and feedback

architectures (Sec. 4.3). They are followed by the discussions on the HFS’s properties and the

HFS’s implementations (Sec. 5). Sec. 6 summarized the EFS which offers an incremental leaning

view in FIS. Sec. 7 offered the discussions on MFS which covers the Pareto-based multiobjective

optimization and the FIS’s multiple objective trade-offs implementations. Followed by the

challenges and the future scope in Sec. 8, and conclusions in Sec. 9.

2 Fuzzy inference systems

A standard FIS (Fig. 1) is composed of the following components:

(1) a fuzzifier unit that fuzzifies the input data;

(2) a knowledge base (KB) unit, which contains fuzzy rules of the form IF-THEN, i.e.,

IF a set of conditions (antecedent) is satisfied

THEN a set of conditions (consequent) can be inferred

(3) an inference engine module that computes the rules firing strengths to infer knowledge

from KB; and

(4) a defuzzifier unit that translates inferred knowledge into a rule action (crisp output).
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Fig. 1: Typical fuzzy inference system.
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Fig. 2: Input examples: (a) singleton input µXj
(Xj) and (b) non-singleton input µXj

(Xj) = f(Xj).

The KB of the FIS is composed of a database (DB) and a rule-base (RB). The DB assigns fuzzy

sets (FS) to the input variables and the FSs transforms the input variables to fuzzy membership

values. For rule induction, RB constructs a set of rules fetching FSs from the DB.

In a FIS, an input can be a numeric variable or a linguistic variable. Moreover, an input variable

can be singleton [Fig. 2(a)] and non-singleton [Fig. 2(b)]. Accordingly, a FIS is singleton FIS

if it uses singleton inputs, i.e., FIS uses crisp and precise single value measurement as the

input variables, which is the most common practice. However, real-world problems, especially

in engineering, measurements are noisy, imprecise, and uncertain. Thus, FIS that uses non-

singleton input is a non-singleton FIS. Thus, in principle, a non-singleton FIS differs with a

singleton FIS in input fuzzification process where a “fuzzifier” transform a non-singleton input

and a singleton input to a fuzzy membership value.

A fuzzifier maps a singleton input (crisp input) Xj ∈ X, X = (X1, X2, . . . , XP ) for mXj (a

value in Xj) [Fig. 2(a)] to the following membership function for the input fuzzyfication:

µXj
(Xj) =

{
1, Xj = mXj

0, Xi 6= mXj ∀Xj ∈ X
(1)
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Fig. 3: Product (as a t-norm operation) µAX of input FS µX and the antecedent fuzzy set µA as per Eq. (3).

For non-singleton inputs, a fuzzifier maps input Xj (that is considered as noisy, imprecise, and

uncertain) onto a Gaussian function (typical choice for numeric variables) as:

µXj
(Xj) = f(Xj) = exp

[
−1

2

(
Xj −mXj

σX

)2
]

(2)

where mXj is input (considered as mean, a value along line Xj) and σX ≥ 0 is the standard

deviation (std.) that defines the spread of the function µXj
. The value of the fuzzy set at mXj is

µXj
(mXj) = 1 and µXj

(Xj) decreases from unity as Xj moves away from mXj (Mouzouris and

Mendel, 1997). In general, for a singleton or non-singleton input Xj, inference engine output

µAXj
is a combination of fuzzified input µXj

(Xj) with an antecedent FS µAj
(Xj) as per:

µAXj
(X̄j) = sup

{
µXj

(Xj) ? µAj
(Xj)

}
(3)

where ? is t-norm operation that can be minimum or product and X̄j indicate supremum of

Eq. (3). Fig. 3 is an example product operation in Eq. (3). Fig. 3 evaluates the product of

input FS µX and the antecedent fuzzy set µA that result in µAX = 0.04 for where mX +j = 2.0,

σX = 2.0, mA = 0.0, and σA = 1.5. The product µAX(X̄) gives a maximum value at X̄ = 0.72

(in Fig. 3) which is calculated as:

X̄ =
mAσ

2
X +mXσ

2
A

σ2
A + σ2

X

(4)

The design of RB further distinguishes the type of FISs: a Mamdani-type FIS (Mamdani,

1974) or a Takagi-Sugano-Kang (TSK)-type FIS (Takagi and Sugeno, 1985). A TSK-type

5



FIS differs with a Mamdani-type FIS only in the implementation of fuzzy rule’s consequent

part. In Mamdani-type FIS rule’s consequent part is an FS, whereas in TSK-type FIS rule’s

consequent part is a polynomial function.

The DB contains FSs that are either a type-1 fuzzy set (T1FS) or a type-2 fuzzy set (T2FS).

The basic form of a fuzzy membership function (MF) is coined as a T1FS; whereas, T2FS

allows an MF to be fuzzy itself by extending membership value into an additional membership

dimension. Hence, the fuzzy set (FS) types also differentiate FIS types: type-1 FIS (T1FIS)

and the type-2 FIS (T2FIS).

For simplicity, this paper is singleton FIS centric and refers non-singleton FIS to appropriate

research. As well as, since Mamdani-type FIS differs with TSK-type FIS only in its consequent

part, this paper focuses on TSK-type FIS.

2.1 Type-1 fuzzy inference systems

A TSK-type FIS is governed by the “IF–THEN” rule of the form (Takagi and Sugeno, 1985):

ri : IF X i
1 is Ai

1 and · · · and X i
pi is A

i
pi THEN Y i is Bi, (5)

where ri is the ith rule in the FIS’s RB. The ith rule has Ai as the T1FS, and Bi as a function of

inputs X i
1, X

i
2, . . . , X

i
pi that returns a crisp output Y i. At the ith rule, pi ≤ P inputs are selected

from P inputs. Note that pi varies from rule-to-rule, and thus, the input dimension at a rule

i is denoted as pi. That is, the subset of inputs to a rule has pi ≤ P elements, which leads to

a incomplete rule because all available inputs may not be present to rule premises (antecedent

part). Otherwise, a complete rule has all available inputs at its premises. The function Bi, for

TSK-type, is commonly expressed as:

Bi = ci0 +

pi∑
j=1

cijX
i
j, (6)

where X i
j is the inputs and cij for j = 0 to pi is the free parameters at the consequent part of a

rule. For Mamdani-type, Bi may be expressed as a “class.” The basic building blocks of a FIS

is shown in Fig. 1 whose defuzzified crisp output is computed as follows. At first, the inference

engine fires the RB’s rules, each rule has a firing strength F i as:

F i =

pi∏
j=1

µAi
j
(X i

j), (7)
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where µAi
j
∈ [0, 1] is the membership value of jth T1FS MF (e.g., Fig. 4a) at the ith rule.

Assuming firing strength F i has to be computed for a non-singleton input µXi
j
(X i

j), then firing

strength F i will replace µAi
j
(X i

j) in Eq. (7) by µAXi
j
(X i

j) as per Eq.3. A detail generalization

definition of firing strength computation is given by Mouzouris and Mendel (1997).

The defuzzified output Ŷ of T1FIS, as an example, is computed as:

Ŷ =

∑M
i=1B

iF i∑M
i=1 F

i
, (8)

where M is the total rules in the RB.

2.2 Type-2 fuzzy inference systems

A T2FS Ã is characterized by a 3D MF (Mendel, 2013): The x-axis is the primary variable,

the y-axis is secondary variable (primary MF denoted by u), and the z-axis is the MF value

(secondary MF denoted by µ). Hence, for a singleton input X, a T2FS Ã is defined as:

Ã = {((X, u) , µÃ (X, u)) | ∀X ∈ X,∀u ∈ [0, 1]} . (9)

The MF value µ has a 2D support, called “footprint of uncertainty” of Ã, which is bounded a

lower membership function (LMF) µ
Ã

(X) and an upper membership function (UMF) µ̄Ã(X). A

T2FS bounded by an LMF and a UMF is an interval type-2 fuzzy set (IT2FS), e.g., a Gaussian

function [Eq. (10)] with uncertain mean m ∈ [m1,m2] and std. σ ≥ 0 is an IT2FS (e.g., Fig. 4b):

µÃ(X,m, σ) = exp

(
−1

2

(
X −m
σ

)2
)
, m ∈ [m1,m2]. (10)

An LMF [Eq. (11)] µ
Ã

(X) ∈ [0, 1] and a UMF [Eq. (12)] µ̄Ã(X) ∈ [0, 1] of an IT2FS can be

defined as (Karnik et al., 1999):

µ
Ã

(X) =

{
µÃ(X,m2, σ), X ≤ (m1 +m2)/2

µÃ(X,m1, σ), X > (m1 +m2)/2
(11)

µ̄Ã(X) =


µÃ(X,m1, σ), X < m1

1, m1 ≤ x ≤ m2

µÃ(X,m2, σ), X > m2

(12)

In Fig. 4b, a point v along the x-axis of 3D-IT2FS cuts the UMF and LMF along the y-axis,

and the value µ of the type-2 MF is taken along the z-axis [dotted line, which a MF in the

third dimension in Fig. 4b between µ̄Ã(X = v) and µ
Ã

(X = v)]. Considering the IT2FS MF,
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Fig. 4: Fuzzy MF examples: (a) Type-1 MF µA(X) = 1/[1 + ((X −m) /σ)
2
] with center m = 5.0 and width

σ = 2.0. (b)Type-2 MF with fixed σ = 2.0 and with means m1 = 4.5 and m2 = 5.5. UMF µ̄Ã(X) as per
Eq. (12) is in solid line and LMF µ

Ã
(X) as per Eq. (11) is in dotted line.

the ith IF–THEN rule of TSK-type T2FIS, for inputs X = (X1, X2, . . . , Xpi), takes the form:

ri : IF X i
1 is Ãi

1 and · · · and X i
pi is Ãi

pi THEN Y i is B̃i, (13)

where Ãi is a T2FS, B̃i is a function of X that returns a pair [bi, b̄i] called left and right weights

of the consequent part of a rule. In TSK, B̃i is usually written as:

B̃i = [ci0 − si0, ci0 + si0] +

pi∑
j=1

[cij − sij, cij + sij]X
i
j, (14)

where X i
j is the input and cij for j = 0 to pi is a rule’s consequent part’s parameter and sij for

j = 0 to pi is its deviation factor. The firing strength F i = [f i, f̄ i] of IT2FS is computed as:

f i =

pi∏
j

µ
Ãi

j

and f̄ i =

pi∏
j

µ̄Ãi
j
. (15)

At this stage, the inference engine fires the rule and the type-reducer, e.g., center of set Ycos as

per Eq. (16) reduces the T2FS to T1FS (Karnik et al., 1999, Wu and Mendel, 2009):

Ycos = [Yl, Yr] (16)

where Yl and Yr are left and right ends of the interval. For the ascending order of bi and b̄i, yl
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and yr are computed as:

Yl =

∑L
i=1 f̄

ibi +
∑M

i=L+1 f
ibi∑L

i=1 f̄
i +
∑M

i=L+1 f
i

and Yr =

∑R
i=1 f

ib̄i +
∑M

i=R+1 f̄
ib̄i∑R

i=1 f
i +
∑M

i=R+1 f̄
i
, (17)

where L and R are the switch points determined as per bL ≤ Yl ≤ bL+1 and b̄R ≤ Yr ≤ b̄R+1,

respectively. Subsequently, defuzzified crisp output Ŷ = (Yl + Yr)/2 is computed.

For a non-singleton interval type-2 FIS, lower and upper intervals of non-singleton inputs are

created. Additionally, similar to the non-singleton input fuzzification µAX in the case of non-

singleton type-1 FIS using input FS µX and antecedent FS µA shown in Eq. (3), for non-

singleton type-2 FIS, both lower µ
ÃX

and upper µ̄ÃX intervals products are calculated using

lower and upper input FSs µ
X

and µ̄X and lower and upper antecedent FSs µ
Ã

and µ̄Ã. Sahab

and Hagras (2011) describe the computation of non-singleton type-2 FIS in detail.

2.3 Heuristic designs of fuzzy systems

The FIS types: Type-1 (Sec. 2.1) and Type-2 (Sec. 2.2) follow a similar design procedure and

differ only in the type of FSs being used. The heuristic design of FIS can be viewed from its

hybridization with neural networks (NN), evolutionary algorithms (EA), and metaheuristics

(MH) (Fig. 5). And, such a confluence offers (Herrera, 2008):

(1) genetic fuzzy systems (A);

(2) neuro-fuzzy systems (B);

(3) hybrid neuro-genetic fuzzy systems (C); and

(4) heuristics design of NNs (D).

This paper discusses areas A, B, and C of Fig. 5, area D in Fig. 5 is discussed in detail by Ojha

et al. (2017). The heuristic design installs learning capabilities into FIS which come from the

optimization of its components. The FIS optimization/learning in a supervised environment is

common practice.

Typically, in supervised learning, a FIS is trained/optimized by supplying training data

(X,Y) of N input–output pairs, i.e., X = (X1, X2, . . . , XP ) and Y = (Y1, Y2, . . . , XQ). Each

input variable Xj = 〈xj1, xj2, . . . , xjN〉T is an N–dimensional vector, and it has a corresponding

N–dimensional desired output vector Yj = 〈yj1, yj2, . . . , yjN〉T . For the training data (X,Y),

a FIS model f(X, R) produces output Ŷ = (Ŷ1, Ŷ2, . . . , ŶQ), where f : X × Y → Ŷ, R =

{r1, r2, . . . , rM} is a set of fuzzy M rules, and Ŷj = 〈ŷj1, ŷj2, . . . , ŷjN〉T is an N–dimensional

model’s output, which is compared with the desired output Yj, ∀ j = 1, 2, . . . , Q and ∀ k =

1, 2, . . . , N , by using some error/distance/cost function cf over model f(X, R).

The cost function cf can be a mean squared error function or can be an accuracy measure, de-
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pending on the desired outputs being continuous (regression) or discrete (classification) (Caru-

ana and Niculescu-Mizil, 2004). Learning of FIS is therefore rely on reducing a cost function cf

by employing strategies for designing and optimizing a FIS model f(X, R), where model design

may be refereed to how the FIS’s components interact with each other and optimization may

be referred to: RB design, RB parameter learning, and rule selection. In summary, FIS design,

optimization, learning, and modeling is viewed as:

(1) the selection of FSs via fuzzy partitioning of input-space;

(2) the design of FIS’s rules via an arrangement of rule and inputs;

(3) the optimization of the rule’s parameters; and

(4) the inference from the designed FIS.

Often a Gaussian function, a triangular function, or a trapezoidal function are selected as the

MF of an FS (Zadeh, 1999). The input-space partition corresponding to the MF assignments

is one of the most crucial aspects of FIS design. For example, a two-dimension input-space in

Fig. 6 having inputs X1 and X2 are partitioned using a grid-partitioning method (Jin, 2000,

Jang, 1993) or a clustering-based partitioning method (Juang and Lin, 1998, Kasabov and Song,

2002). Fig. 6 is an example of inputs space partitioning for numerical variables. An example of

partitioning for linguistic terms is explained by Cord et al. (2001). Mao et al. (2005) presented

an example of input-space partitioning using a binary tree, where the root of the tree takes

whole input X and partition it into two children nodes Xl ∈ X and Xr ∈ X. The partitioned

subsets {Xl, Xr} ⊂ X are assessed for a defined cost function cf . If the cost cf is lower than a

defined threshold εerr than the input-space partitioning stops, else continues.

After the input-space partition, FIS is designed via an arrangement of rules and optimization

of rule’s parameters for inference from FIS. As per Fig. 5, FIS design can be performed by

combining the FIS concept with GA and NN. Such synergy between two or more methods

improves the system’s approximation capabilities (Funabashi et al., 1995). In this respect, let
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us revisit four different synergetic models (Fig. 5) which indicate four ways of hybridizing

artificial intelligence (AI) techniques. The fuzzy system modeling combined with EA, MH,

and NN falls in within the synergetic model: (1) combination, when the produced rules are

optimized by an EA algorithm or an MH algorithm, and (2) fusion, when EA or an NN are

used to design FIS, i.e., to construct RB.

3 Genetic fuzzy systems

EA (Back, 1996) and MH (Talbi, 2009) have been effective in FIS optimization (Cordón et al.,

2004, Herrera, 2008, Sahin et al., 2012). EA and MH are applied to design, optimize, and learn

the fuzzy rules, and this gives the notions of evolutionary/genetic fuzzy systems (GFS). The

basic needs of GFS are:

(1) defining a population structure;

(2) encoding FIS’s elements as the individuals in the population;

(3) defining genetic/meta-heuristic operators; and

(4) defining fitness functions relevant to the problem.
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3.1 Encoding of genetic fuzzy systems

The questions how to define a population structure and how to encode elements of a FIS as the

individuals (called chromosome) of the population opens a diverse implementation of GFS. A

FIS has the following elements: input-output variables; rule’s premises FSs; rule’s consequent

FSs and rule’s parameters; and the rule set. These elements are combined (encoded to create

a vector) in a varied manner that offers diversity in answering the mentioned questions.

Lets R be an RB, a set of M rules ri ∈ R, ∀i = 1, 2, . . . ,M , then Fig. 8 represent two basic

genetic population structures: Sa and Sb.

Sa =


r1
r2
...

rM

 Sb =


r11 r12 . . . r1M
r21 r22 . . . r2M
...

...
. . .

...
rK1 rK2 . . . rKM


Fig. 8: Population structures: Sa and Sb where M is total rules in a RB and K is the population size in Sb.

A rule ri ∈ R that has pi FSs, Ai for T1FS and Ãi for T2FS, for i = 1 to pi, the ith rule

parameter vector ri may be encoded as (Herrera et al., 1995, Ishibuchi, Nakashima and Murata,

1997, Ojha et al., 2016):

ri =

{
〈Ai

1, A
i
2, . . . , A

i
pi , c

i
0, c

i
1, . . . , c

i
pi〉 for T1FS

〈Ãi
1, Ã

i
2, . . . , Ã

i
pi , c

i
0, s

i
0, c

i
1, s

i
1, . . . , c

i
p, s

i
p〉 for T2FS

(18)

where Ai has two parameters mi and σi represent center and width of T1FS; and Ãi has three

parametersmi, λ, and σi represent center, deviation factor, and width respectively. The variable

cij for j = 0 to pi are the type-1 rule’s consequent weights (parameters) and variable cij and sij
for j = 0 to pi are the type-2 rule’s consequent weights and weights deviations respectively.

For linguistic fuzzy terms, FS Ai will take a single integer ti ∈ {0, 1, 2, . . .} (e.g., the integers 0,

1, and 2, respectively may indicate a linguistic term “very small,” “small,” and “large”). For a

Mamdani-type rule, Thrift (1991) and Kim et al. (1995) proposed decision matrix [a rule table

as per Eq. (9)] for fuzzy rules. Such a decision table can be encoded as a genetic vector for the

FIS learning (Hadavandi et al., 2010).

Considering genetic fuzzy populations Sa in Fig. 8, the Michigan approach (Booker, 1982)

suggests encoding of a rule ri parameters as a chromosome, Ci = ri in population Sa, i.e.,

Sa = (r1, r2, . . . , rM) of M rules. Hence, optimization fuzzy system is the reduction of cost

function cf (Sa) over entire population. In Michigan approach, the optimization of population

is met through mutation and crossover of rules, discarding and adding new rules into the

population (Ishibuchi, Nakashima and Murata, 1997).
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X2

A1 A2 . . . Ak

A1 B1 B2 . . . B2

X1 A2 B3 B1 . . . B3
...

...
...

. . . B3

Ak B2 B3 . . . B2

Fig. 9: Fuzzy decision table for rule contraction (e.g., IFX1 is A1 AND X2 is A2 THEN Y is B2) and genetic
encoding consisting two input variables X1 and X2 and an output Y . The decision table has FSs Ai, i = 1, 2, . . .
at the premises part of the rule and at the consequent part of the rule Bj , j = 1, 2, . . . indicate output fuzzy set
in the case of Mamdani-type rule and linear equation [see Eq. (6) and Eq. (14)].

Second genetic fuzzy population Sb in Fig. 8 has each chromosome Ci representing a RB:

Ci = Ri = {ri1, ri2, . . . , riM}, (19)

a set of M rules/chromosomes for i = 1, 2, . . . , K. Thus, the population Sb = (R1, R2, . . . , RK)

for i = 1 to K enables both “rule optimization” and “rule selection” opportunities. The rule

selection using population Sb is known as the Pittsburgh approach (Smith, 1980) that suggests

encoding of fuzzy rule set into a single chromosome, a vectored representation of RB. Pittsburgh

approach suggest selecting a subset of m rules from a set (sometime randomly generated) of M

rules, m < M . In the Pittsburgh approach, the optimization of the population is met through

mutation and crossover of the RB and by enabling and disabling the rules in an RB. Hence,

the optimization of FIS is the reduction of the cost function cf (Ci = Ri) of the chromosomes

within the population Sb (Ishibuchi, Nakashima and Murata, 1997).

Relaying on the population structure Sa and Sb, numerous literature offers GFS with var-

ied FIS’s elements encoding methods: Lee and Takagi (1993) created a composite chromo-

some combining tuple of MF components and rule consequent parameters. Similar composite

encoding was performed by Papadakis and Theocharis (2002) for TSK-type rules. Wu and

Tan (2006) puts MF’s parameter of a type-2 fuzzy rule on a genetic vector. Using the pop-

ulation structure Sb, Ishibuchi et al. (1995) created rules as per Eq. (19), where each rule

rij, i = 1 to K, j = 1 to M takes one of three status: 1 if rij ∈ Ri, −1 if rij /∈ Ri, and 0 if rij

was created as a dummy rule.

Hoffmann and Pfister (1997) presented a concept of messy encoding by assigning an integer

value to FIS’s elements while encoding them as a chromosome. For example, the rule IFX1 is

A2 AND X2 is A3 THEN Y3 is A1 were encoded as per 〈1 2 2 3 3 1〉 where input variables were

X1 → 1, X2 → 2, X → 3 and FSs were A1 → 1, A2 → 2, A3 → 3. Hoffmann and Pfister (1997)

argued that such an encoding is benefited from GA since the sequence is messed up by GA

operations, and thus creates a diverse rule. Melin et al. (2012) amid for obtaining the best rule
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by assigning a status to TIFIS → 0 and TIFIS → 1, Mamdani-type rule → 0, and TSK-type

rule → 1 apart from assigning an integer value to a FS.

3.2 Training of genetic fuzzy systems

GFS training depended on FIS’s encoding, and the GFS training should answer the questions:

(1) Which EA/MH algorithms be used?

(2) Whether only a few elements of FIS training is sufficient?

(3) How should EA/MH operators be defined for the encoded GFS?

The answer to the first question relies on how an individual chromosome was encoded, as well

as; it is a matter of choice from the range of optimization algorithms (Back, 1996, Talbi, 2009).

The answer to second questions was investigative by Carse et al. (1996) with four GFS learning

schemes: (1) learning MF parameters for fix rules; (2) learning rules by keeping MF parameters

fix; (3) learning both MF parameters and rules in stages (one after another); and (4) learning

both MF parameters and rules simultaneously. Carse et al. (1996) concluded that learning

in both MF and rule is necessary for solving a complex system, and GFS benefits from the

cooperation of rules. However, it was left for an empirical evaluation to determine the best per-

formance of stage-wise or simultaneous learning. The answer to the third question is subjective

to population definition (Fig. 8) and encoding mechanisms (Section 3.1) since a chromosome

(solution vector) can be coded in three ways: a binary-valued vector, an integer-valued vector,

and a real-valued vector. Accordingly, an EA/MH optimization as per Algorithm 1 is employed,

and the algorithm’s operators are chosen and designed.

The binary-values vector and the integer-valued vector optimization is both a combinatorial

and a continuous optimization problem, both of which follow the general procedure as per

Algorithm 1. It is a combinatorial optimization when the binary vector and integer vector

encoding domain is discreet. That is, the encoding (assignment) of each FIS’s element takes

either 0 or 1 (Ishibuchi et al., 1995), or takes an integer number (Hoffmann and Pfister, 1997,

Tsang et al., 2007), and FIS’s fitness depends on finding the best combination of FIS’s ele-

ments. Hence, a global search algorithm like genetic algorithm (GA) (Goldberg and Holland,

1988), discrete particle swarm optimization (PSO) (Kennedy and Eberhart, 1997), or discrete

Ant algorithms (Dorigo et al., 1999) can be employed to optimize binary vector and integer-

valued vector. The FIS optimization is a continuous optimization problem when the domain

is continuous and FIS optimization is finding the best performing real-valued vector represent-

ing the rules parameters (Herrera et al., 1995). Hence, GA (Wright, 1991), PSO (Kennedy,

2011), ACO (Socha and Dorigo, 2008), or a search algorithm (Yang, 2010) can be used for the

real-valued vector optimization as per Algorithm 1.

The optimization in a binary or an integer vector invites crossover operator like single-point
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Algorithm 1 General optimization procedure

procedure Optimize (S for Sa or Sb)
For n := 0, set population S∗ := Sn;
Sn ∈ RK×L or Sn ∈ NK×L or Sn ∈ ZK×L

2

K → individuals (chromosomes) and L→ parameters (genes)
cnf := Evaluate (Sn)
repeat
Sn+1 := Operator (Sn)
cn+1
f := Evaluate (Sn+1)

if (cn+1
f < cnf ) then S∗ := Sn+1

end if
n := n+ 1

until cost cnf ≤ cfmin
or iteration n ≥ nmax

return S∗
end procedure
procedure Evaluate (S)

if S is Sa then
compute cost cf over S

else
compute cost cf over Ci, i.e., for each chromosome Ci in S

end if
return cf

end procedure
procedure Operator (S)

if EA then
Apply Selection, Crossover, Mutation, and Elitism on S

else for MH
Apply MH Operator(s) on S

end if
return S

end procedure

crossover, two-point crossover, and composite crossover; and the mutation operator like bit flip,

random bit resetting, (Goldberg and Holland, 1988). Whereas, real vector invites crossover

operators like uniform crossover, arithmetic crossover (Goldberg, 1991, Eshelman and Schaffer,

1993). Ishibuchi et al. (1999) exploited both approaches Pittsburgh and Michigan simultane-

ously, where for the Pittsburgh approaches they designed mutation operator as the Michigan

approach for rule generation.

Typically, as an example, for a one-point crossover and for two selected chromosomes Cp1 and

Cp2 (also called parents), two new chromosomes Co1 and Co2 (also called offspring) are produced

by swapping elements of the parent chromosomes (a chromosome is vector few elements) as
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follows:

Cp1 = {r11, r12,
point

↓ r13, r14} parent 1 ⇒ Co1 = {r11, r12, r23, r24} offspring 1

Cp2 = {r21, r22,
point

↓ r23, r24} parent 2 ⇒ Co2 = {r21, r22, r13, r14} offspring 2
(20)

Similarly, as an example, for a one-point mutation, one a chromosome Cp1 is selected and a

new chromosome Co1 is produced by replacing the an element r1j of the chromosome Cp1 by a

new element rnew or a random element (e.g., flipping 0 to 1 in binary chromosome, replacing a

integer by another integer, and replacing a real-value by another random real-value) as follows:

Cp1 = {r11,
point

↓
r12 , r13, r14} parent 1 ⇒ Co1 = {r11, rnew, r13, r14} offspring 1 (21)

The real-valued vector encoding of FIS’s elements allows a varied FSs to lie on the same genetic

vector. Hence, it is necessary to ensure that each gene (dimension) corresponding to a FIS’s

element takes a value within a defined interval. For example, in Eq. (18), the variables mi
1

and σi
j are MF’S parameter, and they need a defined interval like mi

j ∈ [mleft,mright] and

σi
j ∈ [σleft, σright] to control the MF’s shape. Cordón and Herrera (1997) defined interval of

performance for assuring a boundary for each dimension in the vector.

Martinez-Soto et al. (2010) employed PSO for finding optimal MF parameter of an encoded

GFS. Shahzad et al. (2009) combined PSO and GA in a hybrid approach where PSO and

GA start with similar populations of rules and swap the best solution iteratively among PSO

and GA populations to make communication between both optimizers. Mart́ınez-Soto et al.

(2015) extended Shahzad et al. (2009) hybrid PSO and GA approach to optimize T2FIS, and

Valdez et al. (2011) proposed a hybrid approach of PSO-based FIS and GA-based FIS where

depending upon their errors, the two rule types were activated and deactivated during the

FIS optimization. An empirical evaluation of bio-inspired algorithms summarized by Castillo

et al. (2012) suggests that ACO outperformed PSO and GA as GFS optimization. Examples

of MH-based GFS implementations are chemical optimization(Melin et al., 2013), harmony

search (Pandiarajan and Babulal, 2016), artificial bee colony optimization (Habbi et al., 2015),

bacteria foraging optimization (Verma and Parihar, 2017).

3.3 Other forms of genetic fuzzy systems

Similar to Michigan approach, also in iterative rule learning scheme (Venturini, 1993, González

and Herrera, 1997, Ahn et al., 2007) and cooperative-competitive rule learning (Greene and

Smith, 1993, Whitehead and Choate, 1996), each rule of an RB are encoded into separate geno-
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types, and the population of such genotype leads to the formation of RB iteratively. Iterative

learning scheme starts with an empty set and adds rules one-by-one to the set by finding an

optimum rule from a genetic selection process. For this purpose, the genetic operators such

as mutation and crossover are applied over one or two rule(s) to make offspring rule(s), and

the quality of the generated rule(s) is(are) evaluated using a predefined rule quality measure.

Therefore, iteratively selecting rules according to rule quality measure criteria for forms an

optimum RB in an iterative manner (Venturini, 1993).

The cooperative-competitive rule learning is also an RB learning method that determines an

optimum RB from competition and cooperation of rules from a genetic/meta-heuristic popu-

lation. GFS is also implemented as the reinforcement learning system. Juang et al. (2000)

proposed symbiotic evolutionary learning of fuzzy reinforcement learning system which uses a

cooperative coevolutionary GA for the evolution of fuzzy rules from a population of rules. A

reinforcement T2FIS optimization was performed by ACO in (Juang and Hsu, 2009). Aiming

cooperation among FIS’s components, Delgado et al. (2004) split the genetic population into

four separate populations: RB, individual rules, FSs, and FISs. They proposed a coevolution-

ary GFS relying on a hierarchical collaborative approach where each population, cooperatively

shared application domain fitness as well as the population’s individuals.

A fuzzy tree system, e.g., TSK rule in (Mao et al., 2005, Chien et al., 2002), allows the rules

to be implemented as a binary tree and an expression tree and the rules tree structures to

be optimized by genetic programming (GP) (Koza and Rice, 1994). Hoffmann and Nelles

(2001) implemented TSK rule as a local linear incremental model tree, where the algorithm

incrementally built the tree while partitioning the input-space using a binary tree formation.

On the other hand, the expression tree approach for fuzzy rule implementation and optimization

using rules tree population was performed in (Sánchez et al., 2001, Cordón et al., 2002). Their

approach also included a mapping of rule-tree parameters (leaf node) onto a vector for its

optimization using simulated annealing (Aarts and Korst, 1988).

4 Neuro-fuzzy systems

Since the early 90s (Jang, 1991, 1993, Buckley and Hayashi, 1994, Andrews et al., 1995,

Karaboga and Kaya, 2018), neuro-fuzzy systems (NFS) that represent a fusion of both FIS

and NN has been forefront among FIS’s research dimensions, especially attributed to its data-

driven learning ability which does not require prior knowledge of the problem. However, NN

needs sufficient training pattern to learn, and a trained NN model does not explain how to

interpret its computational behavior, i.e., NN’s computational behavior is a “black box,” which

does not explain how the output was obtained for the input data. On the other hand, FIS

requires prior knowledge of the problem and do not have learning ability, but it tells how to
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interpret its computational behavior, i.e., it explains how the output was obtained for the input

data.

The shortcomings of both NN and FIS can be eliminated by combining them while making an

NFS (Feuring et al., 1999, Ishibuchi and Nii, 2001). Usually, for the rule extraction from NFS,

two types of combinations are practiced (Andrews et al., 1995): cooperative NFS and hybrid

NFS. The cooperative NFS is the simplest approach closer to combination and association syn-

ergetic AI (Fig. 7). In cooperative NFS, NN and FIS work independently, and NN determines

FIS’s parameters from the training data (Sahin et al., 2012). Subsequently, FIS performs the

required interpretation of the data. Hybrid NFS is closer to fusion synergetic AI (Fig. 7), in

which, both NN and FIS are fused to create a model. Working in synergy improve the learning

ability of NFS since both NN and FIS are independently capable of approximate to any degree

of accuracy (Buckley et al., 1999, Li and Chen, 2000).

NFS are trained in two fundamental manners: supervised learning (See section 2.3) and rein-

forcement learning (Lin and Lee, 1994, Moriarty and Mikkulainen, 1996). This paper scope

includes supervised learning extensively; whereas, the reinforcement learning for NFS is avail-

able in (Berenji and Khedkar, 1992) through the implementation of generalized approximate

reasoning based intelligence-control and in (Nauck and Kruse, 1993) through model named

NEFCON.

4.1 Notions of neuro-fuzzy systems

Self-adaptive/Self-organizing/Self-constructing system In NFS’s context, the adaptive

systems or the self-adaptive systems may refer to the automatic tuning and adjustment of MF’s

parameters (Jang, 1993, Wang and Lee, 2002). Whereas, a system is non-adaptive if human

expert determines the MFs and their parameters. Similarly, self-organizing systems (Juang

and Lin, 1998, Wang and Rong, 1999) and self-constructing systems (Lin et al., 2001) refer to

the creation of fuzzy rules and the adaptation of MF’s parameters without the intervention

of human experts. The implementation of a self-organizing NFS and a self-constructing NFS

holds the key to formation appropriate RB (Juang and Lin, 1998, Lin et al., 2001).

There are two leaning aspects of self-adaptive NFS: structural learning and parameter learn-

ing (Lin, 1995). An NFS, therefore, will be self-adaptive if it performs either of these two

learning aspects or both of them during learning. In addition to the learning without human

intervention, adaptive systems like self-adaptive systems and self-construction systems when

strictly refer to online training and incremental learning for every piece of new training data,

then the system may be referred to as an evolving fuzzy system (EFS) (see Sec. 6).

18



Online learning system/Dynamic learning system Online learning refers to sample-by-

sample learning. A learning system is an online learning system that adapts its structure and

parameters each time it sees a training sample rather than seeing the entire training samples set

(batch) at once (Jang, 1993). Similarly, a dynamic learning system and a dynamically changing

system adapts its structure and parameters on receiving new training sample (Wu and Er,

2000, Wu et al., 2001). In a sense, systems that grow their structures by adding MFs nodes and

rule nodes are also referred to as the dynamically growing systems and the dynamic evolving

systems (Kasabov and Song, 2002, Kasabov, 2001b). FIS’s research dimension EFS encompass

online and dynamic learning systems (see Sec. 6).

Another viewpoint refers to dynamic learning systems as the recurrent fuzzy systems. In other

words, the systems which accommodate temporal dependency and whose next (one step ahead)

adaptation (learning) is a function of the model’s previous output (Jang, 1992, Juang and Lin,

1999). In FIS research, these jargons are used with diverging context.

4.2 Layers of neuro-fuzzy systems

An NFS architecture typically is composed of a maximum of seven layers as shown in Fig. 10

whose layers that can be customized in various forms for both type-1 and type-2 FISs. The

type-1 and type-2 FISs only differ in the type of FSs they used. Hence, the variations in

type-1 and type-2 NFS architecture depends on the FS type used at the MF layer LM and the

methods used at nodes to performs the computation for type-1 and type-2 FSs. Moreover, the

type-reduction that requires for type-2 FIS can be implemented at one of the layer indicated

available in the consequent part.

The implementation of NFS architecture categorized into two types of layers: the layers im-

plementing the antecedent part and the layers implementing the consequent part of a rule.

The number of layers in the design of NFS may vary depending upon how the antecedent and

consequent part were implemented. Regardless of a layer mention in Fig. 10 explicitly appear

or not in an NFS architecture, the functionality of that layer is accommodated in the either of

adjacent layers to that layer. Let us discuss the functionality of the typical NFS layers:

Input layer (LI): A node at the input layer holds X ∈ X, and primarily has a function

f(X) = X, i.e., the raw input is fed to the next layer without any manipulation. To the best

of our literature knowledge, all models agree to the transfer of inputs to the next layer without

any modification. Hence, a
(1)
i = f(Xi); 1 ≤ i ≤ P represents the output a node i of the input

layer, where P is the dimension of the input-space. However, models agree to either fuzzify

inputs at the membership function layer (LM) or fuzzify inputs by employing a fuzzy weight to

the link connecting input layer (LI) directly to rule layer (LR).
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LI LM LR LN LT LX LO

Optional layer

Fully connected linksCompulsory layer

Partially connected links

a(1) a(2) a(3) a(4) a(5) a(6)X Y = a(7)

Antecedent part Consequent part

Fig. 10: Neuro-fuzzy system architecture (NFS) with a maximum of seven layers. An NFS receives a vector X
as an input and subsequently propagated it through various layers producing outputs a(1) to a(7). The symbols
LI , LM , LR, LN , LT , LX , and LO stand for the NFS layers input, membership function, rule, normalization,
term, extra (additional), and output respectively.

The connections/links between LI and LM is therefore, not fully connected. Rather, each input

is connected to its partitioned FSs. Or in the absence of layer LM connection between LI and

LR are not filly connected. Such partially connections between LI and LM or between LI and

LR play an important role in obtaining diverse rules.

Membership function layer (LM): A node at the MF layer LM , also called fuzzifier layer,

holds µ, and primarily has a function f(X) = µ(a(1)) = µ(X), i.e., a MF µ(.) is applied on

input X. MFs are often problem specific. An MF can be a Gaussian function, a triangular

function, or a trapezoidal function. MF layer LM often refereed as the fuzzification layer that

performs fuzzification of the inputs. MF layer is also responsible for the partitioning of the

input-space (Fig. 6). The mapping of inputs to MF layer also helps to overcome the curse of

dimensionality (Brown et al., 1995).

Additionally, whether an MF layer LM is a separate layer or it acts as a fuzzy weight between

the layers LI and LR, the MF layer’s operation remains the same. The input to an MF layer

is a
(1)
i = Xi that has been partitioned into pi FSs with a

(2)
ij = µij(a

(1)
j ); 1 ≤ j ≤ P and

1 ≤ j ≤ pi. Traditionally, inputs partition pi is kept fixed. However, automatically determining

the input-space partition by using clustering based method gives flexibility to NFS’s structural

adaptation, and such an act is often refereed as structural learning. It also reflects the notions of

the self-constructing system (Lin et al., 2001). Examples of clustering for input-space partition

are: K-nearest neighbor (Wang and Rong, 1999); mapping constrained agglomerative (Wang

and Lee, 2002); evolving clustering (Kasabov, 2001a); and evolving self-organizing map (Deng

and Kasabov, 2003).

Rule layer (LR): A node at the rule layer holds a function
∏

(.), and primarily performs

a
(3)
j =

∏pi

j=1(a
(2)
j ) =

∏d
j=1 µj(X), i.e., a rule layer node typically computes T-norm of the

previous layer’s inputs a
(2)
j . Thus, a node at rule layer represents the antecedent (premises)

part of a rule that takes d inputs a
(2)
j ; 1 ≤ j ≤ d, where d ≤ pi is FS fed to a rule node.
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The inputs d to a rule node may or may not be equal to the total number of partitions pi of an

input a
(1)
i . It also indicates that connections between layer LM and layer LR, which are often

partly connected, govern the diversity of the rules being formed. It also gives flexibility for a

structural adaptation (structural learning) in the fuzzy system being realized. For example, an

algorithm may starts with no rule, and it only recruits a rule node if it is necessary during its

online leaning (Tung et al., 2011, Juang and Lin, 1998). The output of a rule layer node or in

other words antecedent part of a rule is denoted as a
(3)
k =

∏d
j=1 a

(2)
kj ; 1 ≤ k ≤ M . Hence, the

output of M rules (M nodes at the rule layer) can be denoted as a
(3)
k .

Normalization layer (LN): Normalization layer LN computes the firing strength of the

rules, which is a
(4)
i = a

(3)
i /

∑M
k=1 a

(3)
k ; i = 1, 2, . . . ,M . Therefore, the number of nodes at the

layer LN is thus equal to the number of nodes at the layer LR and the connection between LR

and LN is fully connected.

Term/Consequent layer (LT ): The nodes as term layer LT computes consequent part of

a rule. Thus, the number of nodes at term layer LT are the same as the number of nodes at

the layer LR and layer LN . Each node at this later has a function ϕ(.) and the definition of

ϕ(.) depends on the FIS’s type implemented, e.g., Mamdani or TSK. In other words, what

type of function implemented at the nodes of layer LT (Horikawa et al., 1992). Assuming

that nodes at the layer LT are constant, then the output a
(5)
k = a

(4)
k ck, where c is a constant.

Another type of consequent/term implementation of TSK (first-order liner equation) node,

where a
(5)
k = a

(4)
k (
∑n

i=1 xicki + ck0).

Additional layer (LX): Additional layer Lx is infrequent in NFS architecture design, which

performs specific operation ψ(a(5) producing the output a(6). The definition of ψ(.) in (Park

et al., 2002) is a polynomial neural network. Whether the additional layer LX is present

(a(6) = ψ(a(5)) or absent (a(6) = a(5)), the input to the output layer LO is a(6).

Output layer (LO): For a single output problem, output layer LO holds a single node that

usually is the summation of incoming inputs to the node, i.e., a(7) =
∑R

k=1 a
(6)
k . Therefore, the

output node act as a defuzzifier. Hence, the operation at the output layer with a function θ(.)

applied on a(6) is to obtain NFS’s output Y = a(7) = θ(a(6)).

4.3 Architectures of neuro-fuzzy systems

4.3.1 Feedforward designs

Feedforward NFS architecture have forward connections from one layer to another and have at

least three layers: input, rule, and output. Therefore, the simplest NFS architecture is IRO,
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i.e., Input, Rule, and Output layer architecture.

IRO architecture: Masuoka et al. (1990) represented IRO NFS architecture as a combina-

tion of the input-variable-membership net, the rule-net, and the output-variable-membership

net. Moreover, the fuzzy rules are directly translated into NNs where the nodes at layer LI

realize rule’s antecedent MFs, the node at layer LR represent fuzzy operation (e.g., AND), and

the nodes at layer LO realize the rule’consequent part. This type of representation can easily

be translated back and forth between fuzzy rules and NNs. However, the expert intervention

will be required in the NFS construction.

Buckley and Yoichi (1995) showed a design of three-layered IRO NFS architecture and imple-

mented IRO NFS for discrete fuzzy systems and non-discrete fuzzy systems (Fig. 11a). Being

a three-layered architecture, their discrete IRO NFS architecture implemented fuzzy rules as

the links between layers LI and LR, and the layer LO processed incoming signals from the

transfer functions (nodes at layer LR) using some aggregation function θ(.). The rules in the

discrete IRO NFS is, therefore, can run in parallel. However, for a large input, the rules can

grow to huge unmanageable size for a low discrete factor (Buckley and Yoichi, 1995). On the

other hand, in a non-discrete IRO fuzzy system, the hidden layer LR nodes represent the rules

and the links between LI and LR are set to 1. The nodes at the output layer LO represent an

aggregation of the signals from LR.

In (Buckley and Yoichi, 1995) IRO NFS, the fuzzy rules are implemented as a whole either

for the links between LI and LR or for the nodes at LR. Whereas, Nauck and Kruse (1997)

proposed a three-layered IRO NFS architecture with the link between layers LI and LR and

between layers LR and LO representing MFs also called fuzzy weights. In other words, the links

between LI and LR fuzzify the inputs before feeding them to nodes at LR and defuzzify them

before feeding them to nodes at LO.

IRO NFS architecture shown in Fig. 11b was proposed for specific problems like classification

and approximation bearing abbreviations NEFCLASS (Nauck and Kruse, 1997) and NEF-

PROX (Nauck and Kruse, 1999) respectively. NFSs are shown in Fig. 11(b) implement the

links as the fuzzy weights that improve the NFS interpretability since it avoids more than one

MFs to be assigned to similar terms (Nauck and Kruse, 1997).

IMRO architecture: NFS design IMRO: input, membership, rule, and output architecture

(Fig. 11c) directly computes the output a(6) of FIS by assigning weight to the links between

layer LR and LO (Lin et al., 2001, Wu et al., 2001). The IMRO NFS architecture by Wang

and Rong (1999) is a four-layered configuration, where layers LI and LM fuzzify the inputs.

The layer LR consists of two nodes: a
(6)
1 and a

(6)
2 . The first node a

(6)
1 computes a weighted sum

a
(6)
1 = a

(3)
1 =

∑m
i=1wia

(2); 1 ≤ i ≤ m of the incoming inputs from LM , where m is the number of
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nodes at layer LM , and wi is the links’ weights between LM from LR. The weight wi represent

consequent part’s FS’s center. The second node a
(6)
2 computes sum a

(6)
2 = a

(3)
2 =

∑m
i=1 a

(2) of

incoming inputs from LM , where the link’s weight between layers LM and LR are set to 1. The

output layer LO node, therefore, realizes a(7) = a
(6)
1 /a

(6)
2 .

IMRNO/IMRTO architecture: The five-layer NFS architecture (Fig. 11d) adds a layer

LN or LT between the layers LR and LO to perform fuzzy quantification via rule normalization

or via a fuzzy term nodes (Kasabov et al., 1997, Kim and Kasabov, 1999). Example of an

IMRNO NFS architecture with a normalization layer LN between LR and LO is in (Kasabov

et al., 1997). Whereas, an IMRTO NFS architectures with a term layer LT is the common

practice. The nodes at the layer LT compute fuzzy outputs, and the links between LR and LT

represent firing strength (confidence factor) of the rules at LR (Kasabov et al., 1997, Kim and

Kasabov, 1999, Kasabov, 2001b, Kasabov and Song, 2002).

Contrary to IMRNO and IMRTO architectures, the five-layered NFS presented by Leng et al.

(2006) is an IRNTO architecture that has layers LI , LR, LN , LT , and LO. In IRNTO model,

nodes at layer LR combine both MF layer LM and rule layer LR, and the term layer LT between

LN and LO perform a TSK-type consequent operation for the rule.

In general, five-layer NFS architecture implements LI , LM , and LR as its rule’s antecedent,

where nodes at LR implements rule’s
∏

(.) or AND function. The layer LT and LO implements

the rule’s consequent part and perform defuzzification. However, apart from
∏

(.) and defuzzy-

ification at layers LR and LT example of min(.) operator at LR and max(.) operator at LT is

available in (Shann and Fu, 1995).

IMRNTO architecture: IMRNTO NFS architecture is the most popular NFS architecture,

which is attributed to the efficiency and explicit presence of FIS’s components in the architec-

ture (Jang, 1991, Horikawa et al., 1992). ANFIS being the most popular implementation of

IMRNTO NFS (Jang, 1993). IMRNTO NFS are six-layered architecture with layers LI , LM ,

LR, LN , LT and LO. The functioning of the nodes are described in Sec. 4.2.

IMRNTXO architecture: Beyond IMRNTO NFS architecture, IMRNTXO NFS architec-

ture includes an additional layer that performs certain computation receiving inputs from layer

LT and fed the computed output a(6) to the node(s) at layer LO. The model: modified fuzzy poly-

nomial neural network (Park et al., 2002) is in an example of such seven-layered architecture,

where a polynomial NN that implements a polynomial function (like bilinear and biquadratic),

which resembles consequent part of TSK type.

Of general NFS architecture in Fig. 10, five variation in NFS architectures formation is shown

in Fig. 11 are IRO (three layers), IMRO (four layers), IMRNO/IMRTO/IRNTO (five layers),
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IMRNTO (six layers), and IMRNTXO (seven layers). The choice of a particular variation in

NFS formation has its advantages and disadvantages. For example, IRO architecture limits

itself to three layers, and that restricts it to compute entire FIS operations on a few nodes.

IRO architecture computes input fuzzification at input layer node that limits it to mix with

multiple FSs and when input fuzzification takes place at the links between input and rule layer

an input mix with all available FSs for a fully connected network, that limits a proper fuzzy

partitioning. However, IRO architectures are easy to implement and they can be translated to

fuzzy rules easier than more complex architecture.

The four-layer IMRO architecture solves the fuzzy partition issues that may appear in the layer

IRO architecture since it adds a membership layer between input and rule layer. In IMRO

architecture, the weight optimization of between the input and membership layer may lead

to direct optimization of the FS shapes in addition to a comparatively more variation in rule

design (Fig. 11c) than IRO architecture.

The five-layer and six-layer architectures IMRNO/IMRTO/IRNTO and IMRNTO add FIS

components more explicitly than the three-layer and four-layers architectures. Thus, they offer

more efficient ways to design of NFS as a FIS system. In five-layer architecture forth layer

is chosen as a normalization layer or term layer, whereas the six-layer architecture uses both

normalization and term layers to its architecture. Moreover, seven layer architecture IMRNTXO

adds an extra layer for a special purpose such as a polynomial network operation as an extra

layer.

The difference among the various architectures is apparent regards to the increasingly explicit

presence of the FIS components into the architectures with a higher number of layers than the

architectures with a lower number of layers. The explicit presence also offers efficiency and

opportunity to optimization NFS architecture to individual FIS component.

4.3.2 Feedback/Recurrent designs

Unlike feedforward architecture that models static system and can adapt to a dynamic system

through a prepared training set and incremental learning methods, the feedback/recurrent

design accommodates dynamic system directly into its structure (model’s learning) either via

an external feedback mechanism or via an internal mechanism (Mastorocostas and Theocharis,

2002). The recurrent/feedback NFS (RNFS) helps in the implementation of the systems that

require its output Yt at time step t is to be fed as the input Yt+1 to the network at next step t+1.

The external feedback RNFS is the most straightforward implementation of RNFS architecture

where rules receive network output directly as its input in the next time step. Whereas, the

internal feedback NFS design fits when a system require memory elements to be implemented

as an FIS component to define the temporal relation of a dynamic system. That is, in the next
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step, RNFS’s particular layer (e.g., membership, rule, or term layer) receives input yt+1 (the

output yt ot the previous time step). The example of both recurrent NFS (RNFS) categories

are as follows:

External feedback RNFS Let denote external RNFS architecture design by
←−−−−−−−−−
I . . . R . . . O,

which indicates that the NFS architecture may remain the same as a basic feedforward NFS,

but the system incorporates the feedback through one or multiple sources. Such a feedback

adaptation can be incorporated through the learning algorithm like temporal backpropagation,

e.g., recurrence in ANFIS (Jang, 1992).

Internal feedback RNFS Internal feedback NFS design I
←−
MRO (Lee and Teng, 2000)

takes inputs to its MF node as per a(1)(k + 1) = a(1)(k) + a(2)(k − 1). That is, the recurrence

occurs at the MF nodes which enabled the membership layer node to operate as a memory

unit that extends the NFS ability for the temporal problems (Fig. 12a). Unlike I
←−
MRO design,

the memory element in the design IM
←−
RTO are added at rule layer, and the nodes are called

context element (Fig. 12b) that accommodates both spatial firing from MF nodes and feedback

(temporal) firing from term nodes (Juang and Lin, 1999). IMR
←−
TO is the third type of internal

feedback design implements, where term nodes act as the memory element (Mastorocostas and

Theocharis, 2002).

4.3.3 Graph and network based architectures:

Apart from the two class of architecture, a general graphical model for information flow was

proposed as the Fuzzy Peri nets (Looney, 1988). Fuzzy Peri net is directed graph with nodes

(neurons) and transition bars (links) that are enabled or disabled when neurons fire. The

NFS feedforward and feedback architecture, therefore, can be thought of as the special case

of graphical representation. Additionally, examples of FISs combined with adaptive resonance

theory (ART) to create fuzzy ART architecture is available in (Carpenter et al., 1991). Similarly,

FISs were also fused with the min-max network to create a fuzzy min-max network architecture

(Simpson, 1992) and fused with radial basis function (RBF) network to created fuzzy RBF

architecture (Cho and Wang, 1996).

5 Hierarchical fuzzy systems

GFS is a process of empowering FISs for automatic optimization and learning, which focuses

on designing FIS’s components. NFS is NN inspired and it enables the arrangement of FIS’s

components into a network-like structure. Whereas, the hierarchical fuzzy systems (HFS) is

a hierarchical arrangement of two or more small standard FISs, (say fuzzy logic units - FLU
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denoted as Ni in Fig. 13) into a hierarchical structure. Hence, HFS invites the following

questions:

(1) What are the basic advantages of arranging small FLUs?

(2) What are the possible ways to arrange FLUs?

5.1 Properties of hierarchical fuzzy systems

Let’s take Fig. 9 example, a standard practice of rule set formation for FISs. Now assume

the rule table in Fig. 9 has P = 2 inputs, and each input takes k = 3 FSs. Hence, the

number of rules will be kP = 32, which means that the number of rules grow exponential at the

rate of kP , and subsequently, the number of parameters to be optimized grow exponentially.

This phenomenon is known as the rule explosion and the curse of dimensionality. The rule

explosion reduces the basic FIS’s property: interpretation, i.e., the reasoning as to how the

output was obtained for the inputs become unknown. It also led to infeasible computation in

both space (rule storage space) and time (Torra, 2002). Additional, in both GFS and NFS, the

input-space partitioning play a crucial role in the FIS’s construction and both GFS and NFS

have to employ an external method like clustering to reduce the input space dimensionality.

Hoffmann and Nelles (2001) illustrated a GP-based binary-tree like input-space partition that

hierarchically partition inputs space, but they form a standalone FIS.

Raju et al. (1991) initiated the design of hierarchical FIS (HFS) that was composed of low-

dimensional fuzzy subsystems, called fuzzy logic unit (FLU). One of the arguments for HFS

was to overcome the curse of dimensionality (Brown et al., 1995) and stop the rule explosion

by combining several sub-fuzzy systems receiving only a few inputs from the whole set of

inputs (Fig. 13) This allows the reduction of fuzzy rules, total system’s parameters, and the

computation time. Also, the hierarchical design of fuzzy subsystem found to have a universal

approximation ability (Wang, 1999, Zeng and Keane, 2005, Wang, 1998). Moreover, HFS offers

intelligent control over the system for a dynamically changing domain environment (Karr, 2000).

Such a control may be implemented by allowing one of the FLU in HFS to act as performance

checker and optimize entire HFS with its feedback.

Torra et al. Torra (2002) reviewed HFS that presents the following observations for the defin-

ing HFS architecture: If some functions are not decomposable then HFS design may not be

possible, but for some functions, HFS is proved to be a universal approximator (Wang, 1998).

If the system’s non-linearities are independent, then separate FLUs can be constructed. If

no preference is given to the order (importance) of variables, then a general HFS is trivial to

design, else preferred variables should go at beginning stages of hierarchy. If MF for a vari-

able is sharp, then more MFs should be defined for that variable (Wang, 1999). Finally, the

interpretability of HFS might become unknown while reasoning (defuzzification) are repeated
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Fig. 13: Typical hierarchical fuzzy systems (HFS): (a) A general combination of low-dimensional fuzzy systems
called fuzzy logic units (FLUs) Ni in multiple stages and (b) an incremental combination of low-dimensional
FLUs (Chung and Duan, 2000). The inputs X1, X2, . . . , XP in (a) and (b) are traditionally selected by applying
an expert’s knowledge (Raju et al., 1991). (c) Tree-like HFS (also called aggregated output HFS) with three
FLUs N1, N2, and N3 takes inputs X1, X2, X3, X4, and X5 (Ojha et al., 2018).

at multiple stages (Maeda, 1996).

Wang et al. (2006) summarized literature work to investigate the reasoning transparency for the

intermediate variable generated by defuzzification at the FLUs at different stages, and concluded

that a little work had been done to understand intermediate variables fully. However, in this

view, the HFS’s interpretability can be improved, provided sufficient monotonicity of FLUs

concerning the inputs Magdalena (2018). Kouikoglou and Phillis (2009) concluded that under

certain conditions (Won et al., 2002), the single-stage HFS’s output is monotonic. Hence, it is

sufficient for the monotonicity of multi-stage HFS design.

5.2 Implementations of hierarchical fuzzy systems

The classification of HFS types is intuitive since the HFS design is a modular arrangement.

Thus, HFS have variety in design and modeling Lee et al. (2003). A general HFS design

is any combination of FLUs in stages (Fig. 13). Special cases of general arrangement can

be a cascaded (incremental) design of FLUs (Chung and Duan, 2000) and chain wise FLUs

arrangement (Domingo and Sierra, 1997).

Converting standard FISs to HFS Standard FISs can be transformed to HFS. Joo (2003)

transformed standard FIS which has kP rules for P inputs and k FS. And the FIS was3-D matrix

(cube) with each 2-D slice (rule table as per Fig. 9). Each 2D slice was then transformed to

a FLU. Similarly, a type-2 HFS having multiple levels of FLUs implementation was proposed

by Hagras (2004) for automatic mobile robot navigation behaviors control. It divided layers

(stages) for managing navigation behaviors and as the navigation behaviors in multiple levels.

First level accommodated low level behaviors and highest level act as the coordination. An

HFS with combining layer wise rule in a hierarchical manner was presented by Fernández et al.

28



(2009) where rules were arranged in two layers and for each layer, KBs were generated by

linguistics rule generation method and the rules were selected by GA.

NNs inspired HFS Joo and Lee (2005) presented a feedforward NN like HFS design that

takes the previous layer FLUs input to the THEN part of the rule in current layers. Yu et al.

(2007) implemented a hierarchical fuzzy NNs approach and trained hierarchical fuzzy NNs

using the backpropagation-like algorithm. Unlike HFS by Joo and Lee (2005) where FLUs are

proposed to arranged in a network-like structure, in HFS by Yu et al. (2007), each FLU is an

NFS. Mohammadzadeh and Ghaemi (2016) proposed self-structuring hierarchical type-2 NFS

(SHT2FNN). Similar to Yu et al. (2007) approach, in SHT2FNN, each FLU is a self-structuring

NFS and that the arrangement of FLUs was a cascaded design.

Automatic HFS formation A majority HFS takes a manual design; whereas, Chen et al.

(2007) explained the structural optimization of the HFS where hierarchical arrangements of

low-dimensional TSK-type FISs were optimized using probabilistic incremental program evo-

lution Salustowicz and Schmidhuber (1997). Ojha et al. (2018) proposed a hierarchical fuzzy

inference tree approach (HFITM) that has an automatic arrangement of FLUs using GP for

type-1 and type-2 TSK FISs. HFITM offered automatic selection of the input variables for each

FLUs and that the order of input variables are automatically determined along with the HFS

structure’s automatic determination.

6 Evolving fuzzy systems

Standard FIS, GFS, NFS, and HFS are the concepts of creating a system for modeling and

learning from data. Often data are dynamic, i.e., domain environment changes in time. There-

fore, any systems relied on the data needs to be updated. Hence, GFS, NFS, and HFS system

that embraces and adapt itself to the dynamic nature of data is evolving fuzzy systems (EFS).

EFS systems embed provisions for dynamic (online) training of systems for streaming (real-

time) data Angelov (2009), Kasabov (1998). In EFS, a system incrementally evolves fuzzy

rules incoming new data (Lughofer, 2011). Hence, EFS answers the following questions:

(1) How a fuzzy system adapt to the incoming data stream?

(2) Which components of a fuzzy system are made flexible to evolve?

6.1 Incremental learning of fuzzy systems

Incoming data stream are processed to train and test a system incrementally, i.e., incremental

learning, dynamic learning and online learning (Losing et al., 2018). It is a strategy for data-

driven training and testing of a system incrementally for unseen data without re-training the
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system entirely from scratch. Incremental learning, therefore, should take care of noise and

concept drift in the data stream (Schlimmer and Granger, 1986). Noise and concept drift in

data may be introduced over time compared to initial training data, i.e., input feature does

not describe the output class (Gama et al., 2014). Often for the non-stationary environment,

the relation between input features and output class change over time (Elwell and Polikar,

2011). Fuzzy rules are capable of evolving to accommodate noise and concept drift for the data

stream (Baruah and Angelov, 2011).

EFS approaches manages the concept drift by first detecting the drift (data shift) and then

reacting to the drift. Lughofer and Angelov (2011) describes detection of drift includes tracking

of fuzzy rules age and evolving the rules’ antecedent part using evolving-clustering (Angelov

and Filev, 2004a, Angelov, 2010) and evolving-vector quantization (Lughofer, 2008a, Lughofer

et al., 2007) and evolving the rules’ consequent part. Moreover, the gradual concept drift that

is hard to detect can be managed by incremental rule splitting (Lughofer et al., 2018).

6.2 Implementations of evolving fuzzy systems

A fuzzy system, irrespective of its being a standard FIS, a GFS, an NFS, or an HFS when

implements incremental learning capability should evolve (alternately we may say modify or

refine) itself internally for it is incrementally fed unseen data stream (Angelov and Filev, 2004a).

There are two broad categories have been investigated to incorporate EFS concepts in FISs:

standard FISs to EFS (Angelov, 2009) and NFS to EFS (Kasabov, 2001a):

FISs → EFS In standard FISs, incremental learning is offered by adding or removing rules in

an RB (vertical direction manipulation), or by adding or removing antecedent part of the rules in

an RB (horizontal direction manipulation) as shown in Fig. 14. In Fig. 14, each rule may acquire

pi variables using the evolving clustering methods, i.e., the number of variables are determined

automatically; whereas, in traditional clustering methods, the number of clusters has to be

predetermined. Moreover, the antecedent part of the rules may expand and contract based on

incoming data. Similarly, the number of rules may also be reduced or increased by adding or

deleting rules from the RB. Hence, the total rules M t in the RB are time dependent (Angelov

and Filev, 2004a).

Evolving Takagi-Sugeno fuzzy system (eTS) (Angelov and Filev, 2004a, Angelov, 2010) is an

example of EFS that modify and update its RB on arrival of every piece of the new data point.

It employs online clustering that checks the influence of new data point on the input space

partitioning and then it modifies the cluster centers and add new rules in RB. Accordingly, it

modifies the rule’s consequent parameter. Similarly, flexible fuzzy inference systems (FLEX-

FIS) (Lughofer, 2008b) rely on the incremental update of cluster centers for the arrivals of new

data and accordingly adapt its antecedent and consequent parameters.

30



r1 : IF X1 is A1
1 and · · · and Xp1 is A

i
p1 THEN Y1 is B1

1 and · · · and Yq is B
1
q

ri : IF X1 is Ai
1 and · · · and Xpi is A

i
pi THEN Y1 is Bi

1 and · · · and Yq is B
i
q

rM
t
: IF X1 is AMt

1 and · · · and XpMt is AMt

pMt THEN Y1 is BMt

1 and · · · and Yq is B
Mt

q

contraction (removing antecedent parts, i.e., variable selection)

expansion (adding antecedent parts, i.e., variable selection)

horizontal operations

ve
rt
ic
al

op
er
at
io
n
s

ex
p
an

si
on

(a
d
d
in
g
ru
le
s)

co
n
tr
ac
ti
on

(r
em

ov
in
g
ru
le
s)

Fig. 14: Evolving fuzzy system: typical dynamic RB learning. The symbols are as follows: pi and qi indicates
the number of inputs X and outputs Y variable to a rule i, respectively; M t is the total rules in the RB at
time t; Ai is the fuzzy set at the antecedent part of a rule; and Bi is the function of the consequent part of a
rule (Angelov and Filev, 2004a).

The principle of applying incremental clustering to verify new data point and its influence leads

to several EFS designs like evolving participatory Kernel recursive least squares model (Lima

et al., 2010) that uses participatory learning (Lima et al., 2006). Both eTS and participatory

learning concepts were used for evolving a rule having multivariate Gaussian functions at its

antecedent part that preserve information between input variable interactions (Lemos et al.,

2011). Zhou and Angelov (2007) offers an evolving self-organizing map for clustering that

replaced the online clustering method in eTS for constructing an evolving EFS classifier.

Lughofer (2013) investigated interpretability aspects such as distinguishability, simplicity, con-

sistency, coverage and completeness, feature importance levels, rule importance levels and in-

terpretation of consequent. They concluded that a very few EFS approach takes care of com-

plexity reduction such as the elimination of redundancies (Lughofer et al., 2011) to improve

interpretability conclusion.

NFS → EFS EFS concept applies to NFS paradigms. NFS is evolved dynamically based on

every incoming new data (Kasabov, 2001a, Kasabov and Song, 2002). Such systems are also

called self-evolving NFS or adaptive NFS (Angelov and Filev, 2004b). In self-evolving NFS, the

network design has two main parts: antecedent and consequent. For every incoming data, the

antecedent part learns new information by using unsupervised means of learning through cluster

evolving method, and accordingly, the consequent part weights are updated to accommodate

the new information contained in the incoming data.

Incremental learning in NFS is a similar concept as incremental learning in NNs where growing

and pruning network architecture may refer to rule addition and deletion in NFS architecture,
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and learning of weights at the output layer may refer to learning NFS architecture consequent

layer parameters (Wang and Kuh, 1992, Feng et al., 2009). As of topological level refinement,

evolving NFS architecture may refer to augmented topological concepts (Stanley and Miikku-

lainen, 2002). Evolving NFS and evolving standard FISs has similar incremental mechanism

when it comes to input space partitioning. Both have a major dependency on evolving cluster-

ing method (ECM) of inputs space (Kasabov and Song, 2002).

Dynamic evolving neuro-fuzzy inference systems, DENFIS (Kasabov, 2001a, Kasabov and Song,

2002, Kasabov, 2001a) relay on ECM and refine its rule layer (LR) in its IMRNO/IMRTO

architecture (see 4.3.1) by operations like: creating new rule nodes, deleting existing rule nodes,

updating existing rules, aggregating two or more rule nodes. Like DENFIS, self-organizing

fuzzy neural network, SONFIN (Juang and Lin, 1998) employ clustering methods for input

space partitioning and methods of parameter optimization of rules consequent parts. However,

it starts with no rule in its structure by examining center of first incoming input data and the

first rule and subsequently perform a check on every a new piece of data for the aggregated firing

strength of existing rules in the structure an if the aggregated firing strength is found week (i.e.,

lower than a pre-defined threshold) new rule are added to the structure. Structure adaptation

on inputs space clustering are: sequential adaptive FISs (Tung et al., 2011), generalized dynamic

NFS (Wu et al., 2001), self-evolving interval type-2 NFS (Juang and Tsao, 2008), self-organizing

NFS (Wang and Rong, 1999), recurrent self-evolving NFS with local feedbacks (Juang et al.,

2010), and mutually recurrent interval type-2 NFS (Lin et al., 2013).

In summary, the EFS needs the following steps:

Step 1: Construct an initial fuzzy system in batch mode or construct EFS in online mode

from scratch with no rule in RB initial, and add rules as per step 2.

Step 2: Apply incremental clustering or an incremental inputs-space partitioning mech-

anism to check on incoming data.

Step 3: Evolve (add, delete, modify) existing EFS rules or rule structure as per step 2.

Step 4: Continue step 2 and step 3 for every new piece of data.

7 Multiobjective fuzzy systems

Multiobjective fuzzy system (MFS) enable a fuzzy system to manage multiple objectives asso-

ciated with the system, and that system may have been modeled using any of these concepts:

standard FIS, GFS, NFS, HFS or EFS. That is, an MFS empowers a FIS to manage multiple

objectives which may come from two directions: one, from the problem domain, and two, from

the system’s own trade-off. This review discusses the objectives inherent in FIS itself.

A data-driven modeling system owns a single objective: cost function. The cost function can be
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the approximation error minimization or the classification accuracy maximization. The min-

imization or maximization of the cost function is subjected system’s parameter optimization.

For a FISs, the cost function is subjected to rules and rule’s parameters optimization. The pri-

mary goal of a FIS is to draw reasoning from the system, i.e., FIS should have interpretability

property.

Additionally, FIS often gains complexity when having numerous rules. For NFS complexity can

be the nodes interconnections. The complexity reduction and interpretability improvement are

often FIS’s objectives. An MFS deals with multiple objectives that are conflicting with each

other. Hence, MFS answers the following questions:

(1 ) What are the multiple objectives that are conflicting associated with the system?

(2 ) Which two or more objectives associated with the system should be optimized?

(3 ) How to define the selected two or more objectives functions?

(4 ) How to manage conflicting objectives?

7.1 Multiobjective trade-offs

Two basic approaches manage the trade-offs of multiple objectives: (1) by aggregating multiple

objectives cf1 , cf2 , . . . , cfm into a single scalrized objective function cf , e.g., sum cf =
∑m

i=1 cfi ,

product cf =
∏m

i=1 cfi , or weighted sum cf =
∑m

i=1 cfiwi, etc. (Ishibuchi, 2007); and (2) by

optimizing multiple objectives cf1 , cf2 , . . . , cfm simultaneousy (Deb et al., 2002). These two

approaches may respectively be called non-Pareto approach and Pareto approach (Coello

et al., 2007). The Pareto-based approach, since optimize function simultaneously, offers a

nonominated solution where no one objective is dominant than the other, whereas, in non-

Pareto approach, one objective may dominate the other. Therefore, a Pareto-based approach

is a formidable option to obtain a generalized solution (a FIS) (Zitzler and Thiele, 1999).

Fig. 15 shows two-objectives solution space where solutions lying on Pareto optimal front are

feasible solution (Fig. 15a), and the solutions within the boundary of may vary in their ob-

jective, i.e., a solution (a FIS, R) may be complex but accurate and another solution may

be simple but inaccurate (Fig. 15b). Hence, no single solution exists that may satisfy both

objectives. Therefore, multiobjective optimization takes the form: min{cf1 , cf2 , . . . , cfm} or

max{cf1 , cf2 , . . . , cfm}, i.e., a multiobjective optimization needs to be performed as:

minimize (or maximize) {cf1(R), cf2(R), . . . , cfm(R)}
subject to (R) ∈ S,

where m ≥ 2 is the number of objective functions cfi : Rm → R≥0. The vector of objective

functions is denoted by cf = 〈cf1(R), cf2(R), . . . , cfm(R)〉. The solution R = {r1, r2, . . . , rM}
is a set of M fuzzy rules belonging to the set of solution space S. The set of rules R indicate
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Fig. 15: Multiobjective trade-offs: (a) Solutions on Pareto optimal front in a two-objective solution space. (b)
Fuzzy inference system solution space where objective 1 is the error (1-accuracy) of the system and objective 2
is the complexity (interpretability) of the system.

a solution of GFS, NFS, HFS, or EFS. The word “minimize” or “maximize” indicates the

minimization (or maximization) all the objective functions simultaneously.

A nondominated solution is one in which no one objective function can be improved without a

simultaneous detriment to at least one of the other objectives of the solution. The nondominated

solution is also known as a Pareto-optimal solution.

Definition 1. Pareto-dominance - A solution R1 is said to dominate a solution R2 if ∀i =

1, 2, . . . ,m, cfi(R1) ≤ cfi(R2), and there exists j ∈ {1, 2, . . . ,m} such that cfj(R1) < cfj(R2).

Definition 2. Pareto-optimal - A solution R1 is called Pareto-optimal if there does not exist

any other solution that dominates it. Pareto-optimal front is a set of Pareto-optimal solutions.

7.2 Implementations of multiobjective fuzzy systems

For FISs together with accuracy caccuracy (performance improvement) of systems the inter-

pretability cinterpretability (transparency and reasoning improvement) is always a desirable ob-

jective. Additionally, complexity ccomplexity of system play another important role in improving

computational time, as well as, it may play a role in a system’s interpretability improve-

ment (Jin, 2000).

Guillaume (2001) summarized the three necessary condition for the interpretability: (1) fuzzy

partition must be readable, (2) rule set must be small, (3) rule set must be incomplete. These

three necessary conditions were described by Guillaume (2001) to be met by two ways: a good

rule induction method and FIS’s structure and parameter optimization.

Defining a system’s accuracy is subjected to the domain of problem, whereas interpretability

definition is a challenging task (Guillaume, 2001, Casillas et al., 2013). Especially when con-
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dition (1) set by Guillaume (2001). However, the definition of interpretability and complexity

may be straightforward like reduction of rules and parameters in some case, but in some cases,

it can be challenging when interpretability and complexity may mean the interaction of rule

and interconnections of the node (Ishibuchi, 2007). Hence, based on the definition of a rule

vector in Eq. 18, the objectives interpretability (or complexity) can be formulated as:

cinterpretability =

{
countelements(ri)

countrules(S)
(22)

where ri a rule vector in Eq. (18) and S is a set (population) of rules.

A question “how the best parameter and best rules are to be selected” arises from the use

of count(·) as an interpretability objective function is answered by employing the following

methods: (1) variable selection: regularity criteria, geometric criteria, individual discriminant

power, and entropy variable index; and (2) rule base optimization: incremental rule generation,

rule merging, and statisc based rule evaluation (Guillaume, 2001). Moreover, multiobjective

optimization in conjuncture with these methods controls both accuracy and interpretability.

An evolutionary multiobjective algorithm like nondominated sorting GA (NSGA-II) (Deb et al.,

2002) or strength Pareto EA (SPEA) (Zitzler and Thiele, 1999) can be applied for optimiz-

ing FIS’s multiple objectives simultaneously. The interpretability against accuracy and

complexity against accuracy are typical evolutionary multiobjective optimization scenar-

ios (Ishibuchi and Nojima, 2007).

Ishibuchi, Murata and Türkşen (1997) formulated two objectives as the maximization of accu-

racy and minimization of a number of rules while applying a multiobjective GA for obtaining

a set on nondominated solutions. Similarly, Alcalá et al. (2007) considered the number of

rule minimization as the interpretability measures and mean squared error minimization as

the accuracy measure while applying SPEA for optimizing these two objectives simultaneously

to conclude that the multiobjective led to the removal of the rules having little importance.

Moreover, Pareto-based multiobjective optimization algorithms were used to optimize accuracy-

complexity trade-off as a number of rule reduction and the accuracy maximization (Ishibuchi

and Nojima, 2006, Gacto et al., 2009, Ducange et al., 2010).

Similarly, in (Cordón et al., 2003, Wang et al., 2005, Munoz-Salinas et al., 2008, Alcalá et al.,

2009, Antonelli et al., 2011), simultaneous learning of knowledge-base was proposed, which

included feature selection, rule complexity minimization together with approximation error

minimization, etc. In (Antonelli et al., 2012), a co-evolutionary approach that aims towards

combining multiobjective approach with single objective approach was presented. In a co-

evolutionary approach, first, a multiobjective GA determined a Pareto optimal solution by

finding a trade-off between accuracy and rule complexity. Then, a single objective GA was
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applied to reduce training instances. Fazzolari et al. (2013) summarized research works focused

on multiobjective optimization.

Pulkkinen and Koivisto (2010) defined transparency of fuzzy partitions as the interpretability

indicator where transparency was described as the MFs number reduction, MF’s diversity,

MF’s normality assurance, and MF’s shape symmetry assurance. The transparency-accuracy

trade-off was then optimized as multiobjective optimization. Similarly, Rey et al. (2017) took

a detailed description of interpretability to put interpretability-accuracy to test. In fact, they

took three objectives: maximizing accuracy, maximizing interpretability, and maximizing rule

relevance. Rey et al. (2017) measured the accuracy as a means squared error minimization and

defined the interpretability in terms of the reduction of (1) number of rules, (2) number of MFs,

(3) incoherence among rules (increase rule’s coherency), (4) irreverent rules. A details study

on rule coherence and rule relevance are offered by Dubois et al. (1997) and Yen and Wang

(1999), respectively.

For NFS, HFS, and the FISs that have structural representation, the structure simplification

is one of the objectives which may indeed indicate to a number of rule reduction, parameter

reduction, and rule interaction simplification like the number of MFs reduction. Ojha et al.

(2018) employed multiobjective genetic programming (MOGA) for the simplification of the

model structure while improving accuracy and improving diversity in the rules. These three

objectives are conflicting with each other. Therefore, the Pareto optimal set of nondominated

solutions offer to chose a solution as desirable in the problem’s context.

8 Challenges and opportunities

With the success of FIS and research in FIS’s multiple directions like GFS, NFS, HFS, EFS,

and MFS comes multiple challenges and multiple opportunities:

Nature of fuzzy systems The basic FIS’s property is its ability to model with an explana-

tion as to how for an input the model achieves its objectives. This FIS’s property is referred

to as transparency and interpretability Casillas et al. (2013). Although a lot of work has been

done to define and preserve transparency and interpretability of a FISs Guillaume (2001), Gacto

et al. (2011), Cpa lka et al. (2014), often with the growing number of fuzzy rules while solving

complex problems and with the complex interactions of rules within models (e.g., NFS and

HFS), FISs lose their reasoning ability. Hence, preserving transparency and interpretability

remains a challenging issue in FIS’s modeling (Buckley and Hayashi, 1994, Andrews et al.,

1995, Herrera, 2008, Fazzolari et al., 2013).

Additionally, the basic unit of FISs is MF. The designs and the assignments of MFs to inputs

variables have to be a careful art since it influences the FIS’s reasoning. For the most modeling
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methods, expert knowledge is required, in both cases: when the input-space partitioning is

performed manually, and when the input-space partitioned performed using clustering, number

of the clusters has to be predetermined. Therefore, efficient automatic input-space partitioning

can play a crucial role in FISs modeling (Jain, 2010). Moreover, research on incorporating

FSs like hesitant FSs (Torra, 2010), intuitionistic FSs (Atanassov, 1986) and their type-2 ver-

sions (Mendel and John, 2002) to data-driven FIS’s modeling present further opportunities.

Nature of data The quality of the data-driven model relies on the quality of data that is

sufficient and balanced (Bellman, 2013). Usually, FISs are good at managing noisy and im-

precise data, but most data source offer unstructured data (Feldman and Sanger, 2007), and

experimental research often produce heterogeneous data (Castano and De Antonellis, 2001).

Additionally, for pattern recognition problems, the training data supply for generalized extrap-

olation and modeling are sometimes insufficient (Jackson, 1972, Pradlwarter and Schuëller,

2008) and sometimes are imbalanced (Chawla et al., 2002, Alshomrani et al., 2015). These is-

sues are dealt with a method like synthetic minority over-sampling technique (SMOTE) (Chawla

et al., 2002). Here, rather than generating synthetic samples, training method may be modified

for the rule induction sensitive to imbalanced datasets such as the cost-sensitive rule-based

system (López et al., 2015) and the metacognitive learning scheme (Das et al., 2015).

Other crucial issues are high dimensionality and abundance. Some fuzzy systems like HFS

offer a solution to curse of dimensionality to some extent. However, the volume of data is a

challenge for FISs to maintain its interpretability-accuracy trade-offs (Ishibuchi and Nojima,

2007). In addition to high dimensionality, some training data are non-stationary that show

drift in concept when data are fed at a regular interval, i.e., data are fed in the stream. The

EFS manage using a refinement of the system for evolving FISs over time through incremental

learning (Kasabov, 1998, Angelov, 2009), and iterative rule learning algorithm like multi-stage

genetic fuzzy system (González and Herrera, 1997) are potential EFS and may use population-

based incremental learning (Baluja, 1994).

Nature of algorithms The optimization algorithms such as the EAs (Cordón et al., 2004),

MHs (Castillo and Melin, 2012, Valdez et al., 2014), least squares method (Wang and Mendel,

1992), gradient descent algorithm (Jang, 1993) are exhaustively used for optimization FISs.

However, their efficiency is subjective to formulation (encoding) of FISs. A variety of encoding

mechanism has been proposed in the past (Section 3) which indicate that FISs being the

integration of various decomposable components offer a reach possibility of encoding and their

optimization.

Mostly present approached under MFS treat two objective interpretability (complexity) and

accuracy (error) for the simultaneous optimization while applying evolutionary multiobjective.
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Popular evolutionary multiobjective like NSGA-II (Deb et al., 2002) is good at optimizing two

or three objectives, but their performance decreases as the number of objectives increases (Pur-

shouse and Fleming, 2003). Hence, challenges to simultaneously optimize multiple objectives

related to FIS such as FIS’s interpretability, consistency, coherence, complexity, and accuracy

by applying evolutionary multiobjective that deals with multiple objectives like NSGA-III (Deb

and Jain, 2014).

Nature of network The FISs like NFS, HFS, and EFS offer a connectionist model that beers

network structure. Algorithms built the network structure based on input-space partitioning,

and the intuition for input-space partitioning arrive from the problem domain. While doing

so, for high dimensional and complex problems, the network structure may grow big enough to

lose interpretability. Therefore, multiobjective optimization embedding growing and pruning

mechanism may check interpretability-accuracy trade-off. Additionally, connectionist models

optimization using EAs needs more attention (Seng et al., 1999).

Rules extracted from connectionist models beers complex interactions, therefore, an algorithm

capable of explaining the complex interaction of rules will help to solve complex problems

having abundance data and unstructured data without losing the basic FIS’s properties. In

this view, future research direction deep fuzzy systems (DFS) can be defined in two ways:

First straightforward definition, specifically in the context of pattern classification tasks, would

be a system whose input data go through a convolution process which is coupled with GFS,

NFS, HFS, or EFS. This definition is similar (and inspired by) to the deep convolutional neural

network (LeCun et al., 2015). Thus it may be termed explicitly as the deep convolution fuzzy

systems.

Second, a system will be a deep fuzzy system if it relies on multiple layers of network architecture

as described in (Hinton et al., 2012). A multilayer NFS architecture, e.g., by Deng et al. (2017)

and a multi-stage HFS architecture, e.g., by Ojha et al. (2018) may fit this definition. The DFS

dimension of FIS research is still an open problem to explore and innovate.

9 Conclusions

This paper reviewed five dimensions of fuzzy systems (FIS): genetic fuzzy systems (GFS), neuro-

fuzzy systems (NFS), hierarchical fuzzy systems (HFS), evolving fuzzy systems (EFS), and

multiobjective fuzzy systems (MFS). The review linked these dimensions since their are concepts

transcend to another dimension. For example, standard FISs, when encoded (formulated) as an

optimization problem, GFS offers methods and operators to yield optimal rule structure. FISs

also directly be formulated into other dimensions: NFS, HFS, EFS, and MFS. As well as the

NFS, HFS, EFS, and MFS when optimized using evolutionary algorithms and metaheuristics
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Fig. 16: Fuzzy system complexities and concept entailment.

are in some sense entails GFS concept. Similarly, NFS forward its concept to HFS, EFS,

MFS respectively when hierarchical arrangements of NFS are made, evolving NFS are made,

and multiobjective optimization of NFS are done. GFS, NFS, and HFS also offer deep fuzzy

systems (DFS) developments directions. When DFS have both evolving and multiobjective

viewpoints, it inherits EFS and MFS concepts. Fig. 16 is a summary of the links between the

multiple dimensions of FISs and complexity of concept entailment. The summary in Fig. 16

indicate the challenges and opportunities lie ahead in FISs research: in rules extraction as

the number of rules grows with the sophistication of the methods; in constructing network

structure for rules, in making hybrid optimizations approach like evolutionary algorithm and

particle swarm optimization; in combining one FIS dimension’s concept with another; and in

trend towards development of DFS. Moreover, challenges and opportunities in the treatment

of FISs for non-stationary data and multiobjective optimization of interpretability-accuracy

trade-off.
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Alcalá, R., Ducange, P., Herrera, F., Lazzerini, B. and Marcelloni, F. (2009), ‘A multiobjective evolutionary

39



approach to concurrently learn rule and data bases of linguistic fuzzy-rule-based systems’, IEEE Trans. Fuzzy

Syst. 17(5), 1106–1122.
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Gacto, M. J., Alcalá, R. and Herrera, F. (2009), ‘Adaptation and application of multi-objective evolutionary

algorithms for rule reduction and parameter tuning of fuzzy rule-based systems’, Soft Comput. 13(5), 419–436.
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