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Abstract

Microscopic algae segmentation, specifically of diatoms, is an essential
procedure for water quality assessment. The segmentation of these microal-
gae is still a challenge for computer vision. This paper addresses for the first
time this problem using deep learning approaches to predict exactly those
pixels that belong to each class, i.e., diatom and non diatom. A comparison
between semantic segmentation and instance segmentation is carried out, and
the performance of these methods is evaluated in the presence of different
types of noise. The trained models are then evaluated with the same raw
images used for manual diatom identification. A total of 126 images of the
entire field of view at 60x magnification, with a size of 2592x1944 pixels, are
analyzed. The images contain 10 different taxa plus debris and fragments.
The best results were obtained with instance segmentation achieving an av-
erage precision of 0.85% with 0.86% sensitivity and 0.91% specificity (up to
0.92%precision with 0.98%, both sensitivity and specificity for some taxa).
Semantic segmentation was able to improve the average sensitivity up to
0.95% but decreasing the specificity down to 0.60% and precision to 0.57%.
Instance segmentation was also able to properly separate diatoms when over-
lap occurs, which helps estimate the number of diatoms, a key requirement
for water quality grading.

Keywords: Microscopic algae identification, deep learning diatom
segmentation, semantic segmentation, SegNet, instance segmentation,
Mask-RCNN
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1. Introduction1

The automatic identification of diatoms in water samples is a challenging2

problem that has a high impact on water quality assessment. Diatoms are a3

type of plankton called phytoplankton, a type of microscopic algae that live4

in water areas like oceans, rivers or lakes and which are used as a bioindicator5

of its quality [1]. Diatom identification and quantification in water samples6

are currently done manually, which is a time consuming task.7

In order to assess the quality of a water sample, as per the standard8

workflow, diatoms on 40 field of views (FoV) must be quantified. The imple-9

mentation of automatic tools based on computer vision and machine learning10

techniques to perform this task is needed. A number of recent works have11

dealt with automatic diatom classification, that is, from an image sample con-12

taining a single diatom the model tries to predict the correct taxon name.13

Some classifiers, based on general handcrafted features, have provided good14

results, around 95% [2] and 98% of accuracy [3]. However, approaches based15

on convolutional neural networks (CNN) obtain better results, above 99%16

accuracy [4].17

Although automatic classification results are very promising, in practice18

the taxonomist will handle full size microscopic images containing several19

taxon shells from different taxa in the same FoV. Thus, it is common that20

in a single FoV, several diatoms of different species, sizes and shapes appear,21

along with debris, fragments and dust specks, as shown in Figure 1.a).22

(a) Original image. (b) Modified image.

Figure 1: a) Microscopic image of one FoV from a water sample; b) Modified version of
an image for data augmentation with a 180o rotation and contrast enhancement.
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Therefore, segmentation methods or region of interest (ROI) detection23

algorithms are needed to locate all the diatoms present in the image. Once24

the diatom is detected, by generating a bounding box and/or mask for each25

instance a classification may be performed for all ROI detected.26

A recent review of phytoplankton image segmentation methods is pre-27

sented in Tang et al. [5]. Most of the methods are based on classical methods28

such region based segmentation [6], [7], [8], [9] and active contours (AC) [10].29

As far as the authors know, there are only two works using deep neural30

network based segmentation methods ([5] and [11]).31

The performance of previous classical methods ranges from 88% to 95%.32

The main drawbacks are that they are sensitive to noise, like those based33

on region segmentation, or they need to manually set the initial curve, in34

the case of AC. Moreover, all of them have been demonstrated only on a35

single taxon and on images containing a single diatom shell. Only the work36

of Zheng et al. [12] was demonstrated on images with multiple diatom shells37

but for a single taxon with an average precision of 0.91% and a sensitivity of38

0.81%.39

Segmentation techniques based on deep learning may be divided into two40

approaches: i) object detection and ii) pixel-wise binary classification, i.e.,41

into two classes (ROI or background). In (i) all the instances of the ROI can42

be located within the image using a bounding box and classified. In (ii) a43

mask with exactly the pixels that belong to each ROI is inferred.44

The object detection algorithms have been tested on diatoms, in previous45

work by the authors [11], using a Region-based Convolutional Neural Net-46

work (R-CNN) [13], [14] and a framework called Darknet [15] with YOLO47

method [16]. In R-CNN the first step is to provide region proposals and48

based on these proposals a CNN extracts image features to be classified by a49

Support Vector Machine (SVM). In YOLO, a single neural network is applied50

to the whole image. The network divides the image into regions and predicts51

the class and the bounding box probabilities.52

YOLO gives better results than R-CNN in the evaluation carried out with53

10 taxa in full microscopic images with multiple diatom shells [11]. This is54

due to the fact that the model has information about the global context since55

the network is fed with the full image. Thus, an average F1-measure value of56

0.37 with 0.29% precision and 0.68% sensitivity is obtained by the R-CNN57

against an average F1-measure value of 0.78 with 0.75% precision and 0.84%58

sensitivity obtained with YOLO. The main problem with these methods is59

that they do not separate properly the ROIs when overlap occurs. Therefore,60

3



the quantification of diatoms is limited.61

Segmentation methods based on pixel-wise classification can be roughly62

divided into two families: i) semantic segmentation and ii) instance segmen-63

tation.64

Semantic segmentation for diatoms is used by Tang et al. [5] but it is65

applied to a single taxon on images containing a single diatom shell. Although66

the authors claim an improvement compared to similar previous studies for67

the same taxon, with a balanced result between precision and recall, the68

F1-measure remains low with a value of 0.69.69

In this work, we present for the first time the application of instance70

segmentation applied to diatom segmentation and quantification. Instance71

segmentation is compared to semantic segmentation. Furthermore, the ro-72

bustness of the method in noise conditions is analyzed. An average value73

of 0.85 for F1-measure is obtained with instance segmentation against 0.7174

obtained with semantic segmentation applied to images containing multiple75

diatoms of 10 taxa. All overlapped diatoms were separated and correctly76

quantified.77

The paper is organized as follows. In Section 2, image acquisition, image78

labeling and dataset preparation are described. The techniques and experi-79

ments carried out are presented in Section 3 and the results obtained together80

with the evaluation metrics used are summarized in Section 4. Finally, con-81

clusions and future work are given in Section 6.82

2. Materials83

The development of an image segmentation model needs a dataset with84

samples to train the network effectively. This is a very important step in85

order to obtain good results, so the dataset selection, image acquisition and86

labeling tasks have to be done carefully.87

2.1. Image acquisition88

For this step, it is essential to recruit diatom experts. In this case, the89

taxonomist Dr. Saúl Blanco Lanza and his team from the Institute of En-90

vironment (University of León, Spain) were responsible for collecting a large91

number of microscopic diatom images, from the same real samples used for92

the manual identification task.93

The typical workflow is as follows. Once the diatom samples is collected94

from rivers or lakes, a chemical treatment is carried out in a laboratory. First,95
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the samples are processed with hydrogen peroxide to remove organic matter,96

leaving only the inorganic components like diatom frustules and valves, which97

are necessary to perform each taxon identification. Then, a few drops are98

taken in a microscope cover-objects and, after evaporation of water, using a99

synthetic resin, diatoms are fixed to the glass slide for further classification100

using microscopes.101

For this comparative study, 126 diatom images of 10 taxa are used, with102

variety in terms of diatom features (length, internal and external shape)103

and concentration. All the images are taken with a Brunel SP30 microscope,104

using a 60x objective and an image resolution of 2592x1944 pixels. In Figure 2105

an individual specimen for each selected species is shown and, in Table 1,106

the number of images per class is presented.107

Taxon or Class #Images #Diatoms
1. Achnanthes subhudsonis 21 395
2. Eolimna minima 12 220
3. Eolimna rhombelliptica 7 52
4. Gomphonema rhombicum 18 158
5. Nitzschia capitellata 10 31
6. Nitzschia frustulum var frustulum 14 198
7. Nitzschia inconspicua 11 170
8. Nitzschia palea var palea 10 105
9. Skeletonema potamos 5 55
10. Staurosira venter 18 62

Table 1: Diatom species chart, showing the total number of image samples and diatoms
per class.

As mentioned before, deep CNNs need many images for training and108

126 images may not be enough. However, a commonly used technique in109

deep learning to alleviate this is fine-tuning, that is based on taking CNNs110

pre-trained with larger labeled datasets of common objects, like COCO or111

ImageNet. In this way, useful image features are learned and the specific112

dataset is then applied to adapt the network weights to our problem.113

Another common technique in deep learning to enhance the size and qual-114

ity of the dataset used is data augmentation. It is based on applying differ-115

ent image processing algorithms to the original dataset, like image rotations,116

translations, crops, mirror effects, Gaussian noise, contrast enhancements,117
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(a) Achnanthes (b) Eolimna minima

(c) Eolimna rhombelliptica (d) Gomphonema

(e) Nitzschia capitellata (f) Nitzschia frustulum

(g) Nitzschia inconspicua (h) Nitzschia palea

(i) Skeletonema potamos (j) Staurosira venter

Figure 2: Examples of the 10 taxa taken into account.6



etc.118

In the evaluated segmentation approaches, both data augmentation tech-119

niques and pre-trained networks are used. The data augmentation done is120

based on applying random operations such as rotation, mirror and contrast121

enhancement for each input image for each epoch. In this way, the total122

number of different images used for training is Ne ∗ NimagesTraining, that is123

the total number of epochs configured for the training by the size of the124

training dataset. In Figure 1 an example of a modified version of an original125

training image through the data augmentation procedure is shown.126

2.2. Image labeling and dataset preparation127

The next step is to manually label the images that will be used later to128

train the segmentation models. Again, this work has to be carried out by the129

group of taxonomists due to the difficulty of correctly identifying the ROIs130

(diatom specimens) present in the images. In Table 1 the number of ROIs131

labelled per taxon in all images is presented, i.e., the entire ground truth is132

composed of 1446 diatoms.133

There are many free labeling tools widely used to help in this task. VGG134

Image Annotator (VIA) [17] was selected in our case. VIA is just a single135

HTML file that can be opened in any standard web browser, without in-136

stalling anything else. The graphical user interface is friendly and easy to137

use, so once the images are imported, the user only has to select the region138

shape (polygon in this case) and mark the points around the diatom shape.139

Finally, all the information can be stored in a JSON file, which is a standard140

format.141

To prepare the dataset, all images are divided into two different subsets,142

one for training (105 images), and the remaining 21 images for validation143

purposes. The validation subset is formed by images of all the 10 classes,144

different from the training subset.145

3. Methods: Deep learning diatom segmentation146

As mentioned in Section 1, an image segmentation algorithm aims to147

generate a mask indicating exactly which pixels belong to each class, that148

is, performing a pixel-wise classification into ROI (diatom) or background.149

There are several architectures or frameworks, which are generally grouped as150

semantic segmentation or instance segmentation. The main difference is that151

in semantic segmentation a pixel-level classification is performed directly,152
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while in instance segmentation approaches an additional object detection153

step is needed to obtain the individual instances of all classes in an image.154

In Figure 3 an output mask example for each method is represented. The155

semantic segmentation approaches perform a pixel-level classification, so only156

one mask for the whole image is generated and individual instances of each157

class cannot be differentiated. On the other hand, instance segmentation158

frameworks yield an individual mask for each ROI so that individual instances159

can be processed separately.160

In this work, a comparison of these techniques is carried out.161

(a) Semantic segmentation mask. (b) Instance segmentation mask.

Figure 3: Semantic segmentation mask compared to instance segmentation mask.

3.1. Semantic segmentation162

Some of the first deep learning semantic segmentation models tried to163

directly apply the deep neural network architectures designed for image clas-164

sification to pixel-level classification. However, the results obtained were165

not good enough. Convolution, pooling and sub-sampling operations per-166

formed by CNNs cause a reduction of the feature map resolution, losing167

spatial information which is essential for good boundary delimitation, and,168

therefore, for a good segmentation accuracy. To solve this, novel approaches169

emerged, such as Fully Convolutional Networks (FCNs) [18], DeconvNet [19],170

U-Net [20] or SegNet [21]. These models share a similar architecture, with171

slight differences. In this paper, SegNet is selected due to the good accuracy172

and efficiency in terms of memory and computational time.173
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Figure 4: SegNet flowchart. First, the input image is encoded using a set of convolution,
batch normalization, ReLU and pooling layers. Then, a decoder network performs the
upsampling using the encoder pooling indices. Finally, the output mask is generated
taking into account the class probabilities of the softmax layer.

SegNet is an architecture originally designed for scene understanding ap-174

plications, such as autonomous driving. For this reason, efficiency and speed175

at inference time are crucial. The architecture of SegNet is formed by an176

encoder network, a corresponding decoder network and a final pixel-level177

classification layer. The encoder network is formed by the first 13 layers178

of the popular VGG16 network [22], pretrained on a large image classifica-179

tion dataset, like ImageNet or COCO. These layers are a combination of180

convolution, batch normalization, ReLU and max-pooling operations which181

generate the feature maps. As aforementioned, convolution and pooling op-182
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erations performed cause a reduction of the feature map resolution, affecting183

the final segmentation accuracy. In SegNet, the fully connected layers of184

VGG16 are replaced by a decoder network (one decoder for each encoder),185

which is responsible for upsampling the input feature maps to a higher reso-186

lution. To achieve this, the indices of each max-pooling layer (position of the187

maximum feature value) at encoding stage are stored to capture the spatial188

information, and, at decoding stage, these indices are used to perform the189

upsampling. Finally, the output of this decoding stage (the high resolution190

feature maps) is the input of a softmax layer, which carries out a pixel-level191

classification. These steps are graphically summarized in Figure 4. In deep192

neural networks it is important to select a loss or cost function that allows a193

good estimate of class probability, especially in this kind of multiclass classi-194

fication problems. In [23], a depth study about the necessary and sufficient195

conditions that a cost function must satisfy to provide estimates of the prob-196

abilities of the classes. The well-known cross entropy loss is the cost function197

used in the SegNet architecture, which satisfies these established conditions.198

There are another interesting cost functions based on the estimation of the199

conditional density functions of the different classes [24][25], which may be200

useful in several situations, but are beyond the scope of this work.201

The other mentioned alternatives, like FCNs, DeconvNet or U-Net, differ202

mainly at the decoding stage. FCNs only have one decoder layer and uses203

bilinear interpolation for upsampling instead of multiple decoding layers and204

learnable weight filters. DeconvNet has a larger number of parameters and205

needs more computational resources and in U-Net the upsampling is done by206

taking the entire feature map at the encoding stage.207

3.2. Instance segmentation208

Instance segmentation models can be defined as a combination of object209

detection and semantic segmentation methods. Instance segmentation relies210

on object detection algorithms to obtain the individual instances of all classes211

present in an image. Then, each individual ROI is classified at pixel-level to212

generate the output mask. These approaches have several advantages, like213

segmentation accuracy and overlapping object differentiation. In the first214

case, as only individual ROIs are taken into account (instead of the whole215

image), the segmentation accuracy improves. Also, overlapping objects of the216

same class are easily separated, unlike in semantic segmentation techniques217

(which only have pixel-level classification). This is important in applications218

like diatom identification, in which it is essential to count the number of219

10



specimens of each class. However, instance segmentation has an important220

drawback. As they trust in object detection methods to find the individ-221

ual instances, only the detected ones will be segmented, so its performance222

depends on the performance of the object detection technique used.223

In the literature, several approaches have appeared recently related to in-224

stance segmentation. Some of them are based on segment proposals [26][27],225

which first propose segment candidates and then each candidate is classi-226

fied. Another group of methods, using the output masks of semantic seg-227

mentation models, tries to separate the pixels of the same classes to create228

instances [28][29]. Finally, other approaches follow a different strategy, like229

FCIS [30] and Mask-RCNN [31], which first generate instances and then per-230

form the segmentation and classification in parallel. In this paper, due to the231

good results achieved, outperforming COCO 2015 and COCO 2016 segmen-232

tation challenge winners, the Mask-RCNN method is applied to the diatom233

segmentation problem.234

Mask-RCNN is a modified version of the Faster-RCNN object detection235

framework with an additional branch to perform the segmentation of the236

detected ROIs. The first step of the framework is to create a feature map237

from a given image, using a CNN. Then, a Region Proposal Network (RPN)238

proposes candidate object bounding boxes. The RPN takes the input fea-239

ture map and, using a sliding window, several anchor boxes (of multiples240

scales and aspect ratios) are tested. As an output, RPN gives both the box241

coordinates and an object probability.242

Until this point, the architecture is the same as that of the Faster-RCNN243

framework, although next, we describe some important differences. RoiPool244

is the Faster-RCNN layer that obtains the individual ROI feature maps us-245

ing the bounding box proposals of the RPN. The way this operation is done246

introduces misalignments between the ROI and the feature maps. In seg-247

mentation tasks, an exact spatial location is crucial to predict pixel accurate248

masks, so in Mask-RCNN this layer is changed to a RoiAlign layer, which249

properly aligns the feature maps with the bounding boxes. RoiAlign, instead250

of using quantized bins in RoiPool, uses continuous bins and bilinear inter-251

polation to preserve the spatial correspondence better. A fully connected252

branch predicts at the same time both the class (using a softmax layer) and253

the object bounds (bounding box regression). Also, Mask-RCNN adds a254

parallel mask prediction branch to perform ROI segmentation. In this stage,255

a FCN performs a pixel-level classification for each ROI and for each class,256

that is, a mask is generated for each class, so there is no competition between257
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Figure 5: Mask-RCNN flowchart. The input image feature map is generated through a
CNN and the RPN. RoiAlign layer aligns the feature maps with the bounding boxes. The
class and the object bounds are inferred by a fully connected layer and, in parallel, a FCN
predicts the mask for each ROI.

classes. In this way, the total loss function of the framework, L, is calculated258

as the sum of the individual loss functions of classification Lcls, bounding259

box regression Lbox and segmentation Lmask, as defined in Equation 1.260

L = Lcls + Lbox + Lmask (1)

Common semantic segmentation networks, as SegNet, use a per-pixel261

softmax and multiclass cross entropy loss function. However, the FCN of the262

Mask-RCNN framework uses a per-pixel sigmoid binary cross entropy loss,263

so, as stated before, there is no competition between classes.264

In Figure 5 the main architectural components of the Mask-RCNN frame-265

work are presented.266
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4. Experiments and results267

In this Section, all the experiments and their results are presented. First,268

the validation metrics used for this study are reviewed. Then, the imple-269

mentation details of the tested frameworks and the results obtained are270

summarized. Finally, an image quality assessment of the images and the271

performance analysis of the methods with respect to different types of noise272

is carried out.273

4.1. Validation metrics274

The metrics used to measure the performance of segmentation methods275

are [32]:276

• Sensitivity : The sensitivity or recall can be measured in terms of True277

positive (TP) and false negative (FN), at pixel-level, following Equa-278

tion 2. TP pixels are those that belong to the class and are predicted279

as positives. On the other hand, FN, also known as type 2 error, are280

pixels that belong to the class although are predicted as negative. This281

metric gives the proportion of correctly classified positives.282

Sensitivity =
TP

TP + FN
(2)

• Precision: Similar to the previous one although taking into account283

false positives (FP) instead of FN (Equation 3). FP (type 1 error) pixels284

are those that do not belong to the ROI although they are predicted285

as positive. This metric gives the probability of correct segmentation286

if the prediction is positive.287

Precision =
TP

TP + FP
(3)

• Specificity : This metric gives the proportion of correctly segmented288

negatives, and follows Equation 4. True negative (TN) pixels are those289

that do not belong to the ROI and they are predicted as negatives.290

Specificity =
TN

TN + FP
(4)
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• IoU : Intersection over union (IoU) is the most commonly used metric291

to evaluate segmentation techniques. It is also known as the Jaccard292

similarity coefficient, and follows Equation 5. IoU metric is an statis-293

tical sensitivity measurement that penalizes FP.294

IoU =
TP

TP + FP + FN
(5)

• F1-Measure: F1-Measure score is the harmonic mean between precision295

and recall. This metric indicates how well the predicted and the true296

boundary are aligned. It follows Equation 6.297

F1-Measure = 2 ∗ Precision ∗ Sensitivity

Precision + Sensitivity
(6)

4.2. SegNet298

The SegNet implementation used for this experimentation is based on a299

VGG16 network pretrained with the ImageNet dataset for the feature extrac-300

tion stage. Then, a decoder network upsamples the input feature maps to a301

higher resolution to preserve the spatial information using the max-pooling302

indices. As the classes are unbalanced (there are more background pixels303

than diatom pixels), a class weighting is performed in the classification layer.304

The training procedure was configured with a learning rate of 0.05 and305

100 epochs. The selected optimizer was Stochastic Gradient Descent with a306

0.9 of momentum coefficient. The images were resized to 480x360, preserving307

the aspect ratio to allow a mini-batch size of 4 images. After the training308

stage, the model performance was evaluated using the validation dataset and309

the ground truth masks.310

In Table 2 the values of the evaluation metrics are presented. These311

metrics were calculated both for individual species and the whole validation312

dataset. As the classes are unbalanced (there are more background pixels313

than diatom pixels), the evaluation was performed using a bounding box314

around each diatom of the ground truth image. That is, only the pixels315

inside each bounding box were taken into account, so the results are more316

representative (taking the whole image means a higher number of TN).317

To graphically visualize the effectiveness of the trained model a plot was318

generated. The performance is evaluated in terms of True Positive Rate319

(TPR) or sensitivity and True Negative Rate (TNR), which is calculated320
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Class Precision Sensitivity Specificity IoU F1
1. Achnanthes subhudsonis 0.59 0.98 0.62 0.58 0.73
2. Eolimna minima 0.52 1.00 0.61 0.52 0.68
3. Eolimna rhombelliptica 0.45 1.00 0.22 0.45 0.62
4. Gomphonema rhombicum 0.69 0.96 0.84 0.67 0.80
5. Nitzschia capitellata 0.63 1.00 0.71 0.63 0.78
6. Nitzschia frustulum 0.54 0.95 0.60 0.53 0.69
7. Nitzschia inconspicua 0.53 0.90 0.51 0.50 0.67
8. Nitzschia palea var palea 0.62 0.78 0.82 0.52 0.69
9. Skeletonema potamos 0.59 0.89 0.56 0.55 0.71
10. Staurosira venter 0.58 1.00 0.49 0.58 0.74
Average 0.57 0.95 0.60 0.55 0.71

Table 2: SegNet results for each class in the validation dataset.

as (1 - specificity). A good model should have a high TPR and low TNR.321

In Figure 6, the performance plot for all the validation images is presented.322

The SegNet model gives a high TPR, that is, the number of FN is very low323

compared with the TP. However, the TNR is also too high, which means324

that the model predicts a high number of FP.325

4.3. Mask-RCNN326

The Mask-RCNN implementation employed in this study is built by Mat-327

terpot [33], based on the Keras and TensorFlow frameworks. As feature328

extraction CNN, a ResNet101 [34] pretrained with the COCO dataset was329

used. Also, this implementation uses a modified version of ResNet with Fea-330

ture Pyramid Network (FPN) architecture [35], which is a top-down approach331

that allows extracting features at different scales and gives better results in332

both accuracy and speed.333

The training procedure was configured with a learning rate of 0.001 and334

30 epochs. The selected optimizer was Stochastic Gradient Descent with a335

0.9 of momentum coefficient and the mini-batch size was fixed to 2 images.336

After the training stage, the model performance was evaluated using the337

validation dataset and the ground truth masks. In Table 3 the values of338

the evaluation metrics are presented. These metrics were calculated both for339

individual species and the whole validation dataset. In the same way, as in340

SegNet, the evaluation was done using a bounding box around each diatom341

of the ground truth image.342

The performance plot for the Mask-RCNN trained model is shown in Fig-343

ure 7. In this case, the TPR is lower compared to the SegNet model, that is,344
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Figure 6: SegNet performance graph. Each point represents one of the validation images.

there are TPs that are not predicted correctly. However, the TNR is lower345

too, which means that the model predicts a low number of FPs.346

In Figure 8 a pair of diatom images of the validation set with their cor-347

responding predicted mask for the SegNet and Mask-RCNN models is illus-348

trated. The green pixels indicate true positives, false negatives are marked349

in blue and false positives in red, taking into account the ground truth mask.350

As can be seen from the figure, the number of false negatives is smaller in351

SegNet mask images, although the number of false positives is higher.352

In addition to global differences at pixel-level classification, the biggest353

difference between SegNet and Mask-RCNN is the way in which the final354

masks are generated. As previously mentioned, SegNet generates a single355

mask, which makes it impossible to distinguish directly the different instances356

of the same class present in the image. To approximate this, it is necessary357

to carry out a mask post-processing to separate and locate the different ob-358

jects. The Mask-RCNN framework gives, for each located object, the class359

probability, a bounding box and the predicted mask, among others. In Fig-360
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Class Precision Sensitivity Specificity IoU F1
1. Achnanthes subhudsonis 0.87 0.86 0.92 0.75 0.86
2. Eolimna minima 0.79 0.90 0.89 0.73 0.84
3. Eolimna rhombelliptica 0.79 0.88 0.84 0.72 0.84
4. Gomphonema rhombicum 0.92 0.82 0.98 0.76 0.86
5. Nitzschia capitellata 0.86 0.94 0.91 0.81 0.90
6. Nitzschia frustulum 0.86 0.90 0.92 0.78 0.88
7. Nitzschia inconspicua 0.82 0.67 0.91 0.59 0.74
8. Nitzschia palea var palea 0.86 0.79 0.95 0.70 0.82
9. Skeletonema potamos 0.86 0.84 0.89 0.74 0.85
10. Staurosira venter 0.87 0.98 0.89 0.85 0.92
Average 0.85 0.86 0.91 0.74 0.85

Table 3: Mask-RCNN metrics results for each class in the validation dataset.

ure 9 and Figure 10 a comparison between SegNet and Mask-RCNN in terms361

of individual diatom localization is performed using 10 diatom images (one362

for each class). The differences are more remarkable in cases of overlapping363

or closer diatoms, which are difficult to separate in the SegNet masks. On364

the other hand, in Mask-RCNN the individual bounding boxes are obtained365

directly.366

Counting the number of diatoms present in an image is essential for water367

quality assessment. The final output of SegNet and Mask-RCNN aimed to368

quantified all diatoms per images from the predicted masks is illustrated in369

Figure 9, Figure 10 and Figure 11). The images represented a FoV where370

most of the diatoms belong to one of the taxa considered.371

It is possible to see in Table 4 how the count for Mask-RCNN masks is372

closer to the ground truth. SegNet cannot separate properly the diatoms373

and counts debris as diatoms. These errors lead to a higher value of FPs374

when counting individual diatoms. Mask-RCNN detects properly most of375

the diatoms and some FN errors happen.376

4.4. Image quality assessment and performance of segmentation377

Nowadays, there are metrics that can objectively approximate image378

quality using image features like color, contrast, entropy, luminance or tex-379

ture [36][37]. In this study, quality is evaluated in terms of defocusing and380

granular noise using anisotropy and Sum of Modified Laplace transform381

(SML) metrics.382

Anisotropy is measured as the variance of the entropy in several direc-383

tions and is based on the fact that degradation in the image damages the384
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Figure 7: Mask-RCNN performance graph. Each point represents one of the validation
images.

directional information. For that reason, anisotropy decreases as more dis-385

tortions are added to the image and it is sensitive to blurriness. The complete386

description of the method is presented in [38].387

SML is a derivative-based metric which uses the Laplacian operator (52I(x, y))388

to evaluate the sharpness in an image (I(x, y)), as defined in Equation 7,389

where Lx(x, y) and Ly(x, y) are the images after convolution with the Lapla-390

cian operator.391

FSML =
∑
x

∑
y

|Lx(x, y)|+ |Ly(x, y)| (7)

SML can be used to measure granular noise in an image. This metric392

also decrease if the image quality decrease. In Figure 12, the anisotropy and393

SML averaged results are presented for each class. The best average quality394

is provided by taxon 4, that is Gomphonema rhombicum and the worst by395

taxon 8, Nitzschia palea var palea and 10,Staurosira venter. These metrics396

show that, under standard conditions, there is no relationship between image397
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(a) Original image (b) Original image

(c) SegNet mask (d) SegNet mask

(e) Mask-RCNN mask (f) Mask-RCNN mask

Figure 8: SegNet vs Mask-RCNN prediction masks.

19



(a) SegNet (b) Mask-RCNN

Figure 9: SegNet vs Mask-RCNN individual bounding boxes 1
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(a) SegNet (b) Mask-RCNN

Figure 10: SegNet vs Mask-RCNN individual bounding boxes 2
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(a) SegNet (b) Mask-RCNN

Figure 11: SegNet vs Mask-RCNN individual bounding boxes 3

quality and segmentation performance for each class (Table 2 and Table 3).398

A deeper study is done to analyze if the presence of noise can modify the399

performance of the trained models. To this end, new datasets are created400

using modified versions of the original images, with different noise types and401

intensities. The first dataset is formed by several blurred images, using the402

Gaussian function over the original dataset. In this case, for each image, a403

set of 40 blurred images was generated varying the standard deviation of the404

Gaussian function, from 0.5 to 20 with a 0.5 step. For the second dataset,405

Speckle noise was selected, which is a synthetic granular noise. Similarly, as406

in the previous dataset, 40 noisy images were generated changing the variance407

of the Speckle function from 0.125 to 5 with a 0.125 step. Anisotropy and408

SML metrics present worse results as noise increases, so the image quality409

decreases.410
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Image Ground truth count SegNet count Mask-RCNN count
Sample 1 22 TP: 10; FP: 20 TP: 22; FP: 2
Sample 2 35 TP: 3 ; FP: 24 TP: 34; FP: 1
Sample 3 10 TP: 7 ; FP: 3 TP: 10; FP: 2
Sample 4 13 TP: 1 ; FP: 9 TP: 11; FN: 2
Sample 5 10 TP: 4 ; FP: 6 TP: 10; FP: 0
Sample 6 20 TP: 11; FP: 11 TP: 17; FN: 3
Sample 7 29 TP: 10; FP: 30 TP: 28; FN: 1
Sample 8 14 TP: 4 ; FP: 4 TP: 12; FN: 2
Sample 9 22 TP: 6 ; FP: 20 TP: 22; FP: 4
Sample 10 9 TP: 4 ; FP: 12 TP: 9 ; FP: 1

Table 4: Ground truth diatom count compared to both SegNet and Mask-RCNN predicted
masks.

Figure 12: Anisotropy and SML averaged results for each class.
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(a) Original image (b) Original image

(c) Gaussian noise (σ=15) (d) Gaussian noise (σ=15)

(e) Speckle noise (σ2=1) (f) Speckle noise (σ2=1)

Figure 13: Noisy datasets.

In Figure 13 an example of the two types of added noise compared to the411

original image is presented.412

The predicted masks for the two generated datasets were obtained for413

both Mask-RCNN and SegNet trained models, with the corresponding evalu-414

ation metrics for the segmentation, in the same way as in the original dataset.415

The results are graphically summarized in a plot that shows the performance416
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in terms of TPR and TNR. For clarity purposes, the total images are divided417

into 5 groups, one for the original images and the rest for different noise418

intervals, represented in different colors. In Figure 14, the graph for the419

Mask-RCNN model performance with Gaussian noise images is presented.420

As the standard deviation of the Gaussian function increases, the TPR de-421

creases too and the FPR remains low. The SegNet model performance for422

Gaussian noise images is shown in Figure 16. In this case, similarly to Mask-423

RCNN model, the TPR and FPR decreases as the standard deviation of the424

Gaussian function increases. Also, ROC representations for each class are425

provided in Figure 15 and Figure 17.426

The same procedure was applied for Speckle noise dataset. In Figure 18427

and Figure 20 the performance results are presented for Mask-RCNN and428

SegNet models, respectively. The Mask-RCNN model behaves similarly for429

both Gaussian and Speckle noise, when noise increases, TPR decreases too.430

However, for the SegNet model, the behaviour is different when Speckle noise431

increases the FPR also increases, that is, most pixels are marked as positives.432

Finally, ROC representations for each class are also provided in Figure 19433

and Figure 21.434

Figure 14: Mask-RCNN performance graph for Gaussian noise images.
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Figure 15: Mask-RCNN ROC graph for Gaussian noise images. Each line represents the
ROC curve for each class

Figure 16: SegNet performance graph for Gaussian noise images.
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Figure 17: SegNet ROC graph for Gaussian noise images. Each line represents the ROC
curve for each class

Figure 18: Mask-RCNN performance graph for Speckle noise images.
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Figure 19: Mask-RCNN ROC graph for Speckle noise images. Each line represents the
ROC curve for each class

Figure 20: SegNet performance graph for Speckle noise images.
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Figure 21: SegNet ROC graph for Speckle noise images. Each line represents the ROC
curve for each class

5. Discussion435

Mask-RCNN and SegNet models are capable of segment diatoms from436

the same raw images used for manual identification, without any cropping or437

preprocessing step. However, the Mask-RCNN model obtains better results438

because the model has information about the global context. Mask-RCNN439

first extracts the individual ROIs from the whole image and then performs440

the segmentation for each one. This approach has two main advantages.441

The first one is that an individual mask for each ROI is obtained, and so,442

unlike semantic segmentation approaches, all instances from the same class443

can be differentiated and quantified. The second one is that the segmentation444

quality is better in the Mask-RCNN model than in the SegNet model, that445

is, the border alignment between the ground truth and the predicted mask446

is more accurate, as the IoU and F1-measure scores show.447

The robustness of the trained models was evaluated with modified datasets.448

These datasets were created adding Gaussian and speckle noise of different449

intensities to the original images, obtaining 80 new images for each FoV. For450

the Gaussian noise dataset, in both Mask-RCNN and SegNet models when451

the noise intensity increases, the TPR decreases and less diatoms are seg-452
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mented correctly. For the speckle noise dataset, the Mask-RCNN behaviour453

is similar to the Gaussian noise dataset. However, for the SegNet model,454

the FPR increases as noise intensity increases, predicting as positive a large455

number of pixels in the image.456

6. Conclusions457

A comparison between semantic segmentation and instance segmentation458

is carried out to detect and quantify microscopic algae (diatoms) of 10 dif-459

ferent taxa. This is the first time that the use of deep learning approaches is460

demonstrated for the identification and quantification of diatoms in images461

with multiple diatom shells and for more than one taxon.462

Instance segmentation with Mask-RCNN achieved an average precision463

of 0.85% with 0.86% sensitivity and 0.91% specificity, and up to 0.92% preci-464

sion for taxon Gomphonema rhombicum with 0.98%, specificity. This taxon465

obtained the best image quality measured with the anisotropy and sum of466

modified Laplace transform metrics.467

Regarding future work, the promising results of the Mask-RCNN model468

encourage us to continue working on instance segmentation approaches, es-469

pecially with object detection techniques to extract the individual ROIs to470

be segmented. The main drawback of Mask-RCNN is that the performance471

of the detection step limits the performance of the segmentation. This fact472

explains why some diatoms are not segmented in the Mask-RCNN model, re-473

sulting in a lower sensitivity score than the SegNet model. Therefore, there474

is still room to improve this step of the Mask-RCNN procedure.475
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