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Abstract

The Matrix Profile is a state-of-the-art time series analysis technique that
can be used for motif discovery, anomaly detection, segmentation and oth-
ers, in various domains such as healthcare, robotics, and audio. Where re-
cent techniques use the Matrix Profile as a preprocessing or modelling step,
we believe there is unexplored potential in generalizing the approach. We
derived a framework that focuses on the implicit distance matrix calcula-
tion. We present this framework as the Series Distance Matrix (SDM). In
this framework, distance measures (SDM-generators) and distance proces-
sors (SDM-consumers) can be freely combined, allowing for more flexibility
and easier experimentation. In SDM, the Matrix Profile is but one specific
configuration. We also introduce the Contextual Matrix Profile (CMP) as
a new SDM-consumer capable of discovering repeating patterns. The CMP
provides intuitive visualizations for data analysis and can find anomalies that
are not discords. We demonstrate this using two real world cases. The CMP
is the first of a wide variety of new techniques for series analysis that fits
within SDM and can complement the Matrix Profile.
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1. Introduction1

The need for data analysis is increasing as more data is being recorded,2

stored and made available. One driving factor is the rise of the Internet of3

Things (IoT), where traditional dumb devices such as vehicles, household4

appliances or city infrastructure are enhanced with internet connectivity for5

monitoring and/or control. In 2018, there were an estimated 7 billion active6

IoT devices, and this number is expected to double in about 5 years [1]. Many7

sensors perform periodic monitoring, creating the need for a subdomain of8

data analysis: series analysis.9

Series analysis techniques deal with ordered collections of data points,10

rather than independent data points. Time series are most common, mea-11

suring specific features across time. However, not all series are time series.12

For example, in [2], skull outlines in images are converted to a series for13

classification purposes. Unlike non-series, consecutive points in series carry14

meaning and patterns will often occur throughout the series. Finding and15

analyzing these patterns can allow better insights in the data.16

From a business point of view, series analysis can lead to decreased costs.17

One such case is maintenance in industry [3]. Today, to prevent the high18

cost of unexpected machine breakdowns, machine owners perform preven-19

tive maintenance periodically. With condition-based maintenance, sensors20

monitor the health of a machine by recording and analysing time series data21

to gain insights. This way, machine health is known and owners can better22

align planned maintenance with the actual need for maintenance, resulting in23

fewer interventions and decreased maintenance costs and machine downtime.24

A different business case can be made for trend prediction and anomaly de-25

tection [4]. Imagine an online service provider that monitors various metrics26

related to the usage and load of their services. If the provider is able to gain27

insight in the usage patterns of the service, he can anticipate certain trends28

and be made aware of unexpected behavioral patterns of their users. This29

not only allows the provider to allocate resources more dynamically, but also30

gives him more time to act on unexpected behavior that might lead to more31

severe issues.32

One state-of-the-art series analysis technique is the Matrix Profile [5], in-33

troduced by Yeh et al. in 2016. Given two series S1 and S2, and a window34

length m, the Matrix Profile is a new series of length |S1|−m+ 1 containing35

the distance between any window of S1 and its best matching window in36

S2. By itself, the Matrix Profile can be used to find the top motifs (the best37
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matching subsequences in a series) and the top discords (the most unique sub-38

sequences in a series). Subsequently, it can be used for anomaly detection in39

contexts where anomalies are defined by unique behavior. Since its inception,40

many techniques have been published that either extend the Matrix Profile41

or use it as a building block for new insights [6, 7, 8, 9, 10, 11, 12, 13, 14, 15].42

While much progress has been made by going forward with the Matrix43

Profile, we believe there is also value in taking a step back. One of the implicit44

steps during the Matrix Profile calculation is the fragmented calculation of45

the distance matrix of all subsequences of the two input series. In this paper46

we present the Series Distance Matrix (SDM) framework as the base building47

block on which specialized techniques can be built, rather than the Matrix48

Profile itself. To the best of our knowledge, we are the first to present such an49

overarching framework. Whereas several methods to calculate the distance50

matrix have been published [5, 6, 16, 13, 14], they have never been suggested51

as (part of) an overarching framework.52

The presented SDM framework separates components that calculate dis-53

tances between subsequences of input series (SDM-generators) and compo-54

nents processing these distances in a meaningful way (SDM-consumers).55

Existing Matrix Profile extensions from literature can be packaged as ei-56

ther SDM-generators or SDM-consumers and plugged into the SDM frame-57

work. By separating these components, it becomes easier to combine dif-58

ferent techniques freely without additional effort or overhead, resulting in59

a much broader arsenal of techniques that can be tried on new challenges.60

Furthermore, distances can be generated once but processed by multiple con-61

sumers in combined calculations, resulting in an overall more efficient solu-62

tion. Lastly, because of this decoupling, components will be smaller, simpler63

and can be optimized independently from each other.64

We also introduce the Contextual Matrix Profile (CMP) and a new SDM-65

consumer to calculate the CMP. The CMP can be seen as a configurable, 2-66

dimensional version of the Matrix Profile, that tracks multiple matches across67

window regions of the series whereas the Matrix Profile tracks one match for68

each window. Besides data visualization, it can also be used for detecting69

anomalies that are not discords. As a component of SDM, the CMP can be70

calculated for any distance measure and can be calculated in parallel with71

other techniques such as the Matrix Profile.72

To summarize, our contributions in this paper are as follows: First, we73

use a new interpretation of the distance matrix to form the generalized SDM74

framework, which retrofits many published techniques in SDM-generators75
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or SDM-consumers. As second contribution, we introduce the Contextual76

Matrix Profile as a new SDM-consumer. As final contribution, we created77

an open source Python implementation of our SDM framework, our CMP-78

consumer and several Matrix Profile-based consumer and generator imple-79

mentations based on literature [5, 6, 10, 12, 17, 16, 15]. To the best of our80

knowledge, this is be the first Python library that provides an implementa-81

tion combining this many techniques.82

The remainder of this paper is structured as follows: Section 2 gives an83

overview of literature regarding the Matrix Profile. In Section 3, we describe84

our SDM framework. Section 4 describes our CMP as well as the new SDM-85

consumer to calculte it. Its value is demonstrated for data visualization86

and anomaly detection for two real world datasets in Section 5. Finally, we87

conclude our findings in Section 6.88

2. Background and Related Work89

In this section, we formalize the definitions used in this paper, summarize90

the core details of the Matrix Profile and list related literature.91

2.1. Definitions92

We start by defining the common concepts of series and subsequences.93

Definition 1. A series S ∈ Rn is an ordered collection of n real values94

(s0, s1 . . . sn−1).95

Definition 2. A subsequence Si,m is the continuous subsequence of S start-96

ing at index i of length m: (si, si+1 . . . si+m−1). The subsequence cannot be97

longer than the original series (1 ≤ m ≤ n) and has to fall completely within98

S: (0 ≤ i ≤ n−m).99

The distance measure used in the Matrix Profile is the z-normalised Eu-100

clidean distance. The reason for this is explained in the next subsection.101

Definition 3. The z-normalised series Ŝ is constructed by transforming S102

so it has a mean µ = 0 and standard deviation σ = 1: Ŝ = S−µS
σS

.103

Definition 4. The z-normalised Euclidean distance DZE(A,B) between 2104

series of equal length A ∈ Rm and B ∈ Rm is defined as the Euclidean105

distance DE of the z-normalised series Â and B̂.106

DZE(A,B) = DE(Â, B̂) =

√
(â0 − b̂0)2 + . . .+ (âm−1 − b̂m−1)2
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2.2. Matrix Profile107

In 2016, Yeh et al. [5] published a novel technique to perform series sub-108

sequence all-pairs-similarity-search on two series, producing two new series:109

the Matrix Profile and the Matrix Profile Index. The Matrix Profile is defined110

as the vector containing the z-normalized Euclidean distances between each111

subsequence from the first series and its closest matching subsequence from112

the second time series. The Matrix Profile Index contains the subsequence113

index in the second series for each match.114

Concretely, given two series S1 ∈ Rn and S2 ∈ Rk and a subsequence115

length m, the Matrix Profile M ∈ Rn−m+1 and Matrix Profile Index I ∈116

Rn−m+1 are new series such that for each i ∈ [0, n−m], Ii contains the index117

of the start of the subsequence of S2 of length m that best matches S1i,m and118

Mi contains the corresponding distance. In the case a self-join is performed119

where S1 = S2, an additional constraint is added to prevent trivial matches,120

where subsequences match themselves or nearby subsequences.121

The default distance measure used is the z-normalized Euclidean distance,122

which has been shown [18] to provide better results by removing the effect of123

a changing data offset over time and thus focussing more on shape instead124

of amplitude. Typical causes of a changing offset are wandering baselines125

in sensors or natural phenomena (e.g., the gradual change in temperature126

throughout seasons).127

2.3. Related Work128

Literature related to the Matrix Profile can be separated into 3 cate-129

gories: related work focusing on a) the calculation of the Matrix Profile, b)130

techniques that gain insights from the Matrix Profile or the Matrix Profile131

Index, and finally, c) ideas from the Matrix Profile for tackling new problems.132

a) Calculation of the Matrix Profile133

The Matrix Profile was published together with the STAMP algorithm [5], an134

anytime algorithm to calculate the Matrix Profile (and corresponding Index)135

of a series of length n in O(n2 log n) time. STAMP uses the MASS algorithm136

[19] to iteratively calculate the distances for each subsequence. Performance137

was later improved by the STOMP algorithm [6], which uses a dynamic pro-138

gramming technique to reduce the runtime to O(n2), at the cost of losing139

the anytime property. Another optimization came with the SCRIMP algo-140

rithm [16], which restores the anytime property while retaining the same141

complexity as STOMP. Finally, ACAMP provides another speed improve-142

ment by postponing some operations until the Matrix Profile is completed143
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[13]. We extended the calculation to reduce the effects of noise when dealing144

with flat sequences [15, 20], others have made extensions for handling miss-145

ing data points [21] and support for calculating the multidimensional Matrix146

Profile [10].147

Several recent works have suggested different distance measures to be148

used in the Matrix Profile. Silva et al. [22] use the Matrix Profile with149

the (non-normalized) Euclidean distance to perform music recognition and150

thumbnailing. Akbarinia et al. [13] suggest that using the Euclidean dis-151

tance, and more general p-norm might be more useful for data analysis in152

physics, statistics, finances and engineering. Though they present no evalua-153

tions, one can expect relevant results for cases where series are not subjected154

to wandering baselines [18], such as system monitoring. Another distance155

measure suggested is ψ-DTW [14]. The authors claim that for many ap-156

plication domains, the z-normalized Euclidean distance is too strict while157

looking for motifs and discords. The ψ-DTW measure performs a non-linear158

transformation along the (time) axis and can ignore a prefix or suffix of the159

subsequence being matched. The authors find improved results for domains160

such as motion tracking (e.g., athlete positioning, motion capture and ges-161

ture analysis) and music data mining, though they underline the difficulty of162

objectively evaluating the relevance of motifs and discords.163

b) Gaining insights164

Insight in a series can be gained using the Matrix Profile (Index). Motif and165

discord discovery consist of finding the top matching and worst matching166

subsequences in a series and can be solved quickly by finding the minima and167

maxima in the Matrix Profile [5]. Discord discovery can be interpreted as a168

form of anomaly detection (which has a wide range of applications in machine169

maintenance, healthcare or system monitoring). In cases where the user170

knows the type of pattern they are looking for, they can use the Annotation171

Vector [9] to transform the Matrix Profile before performing motif/discord172

discovery. Other insights are also possible such as finding gradually changing173

patterns [11] or finding changes in the underlying behavior being measured174

[12, 15].175

c) Matrix Profile as a building block176

The series motifs found by the Matrix Profile have been used for data vi-177

sualization [7] and classification [8] techniques. Furthermore, a series sum-178

marization technique [23] has been published which uses MPDist, a distance179

measure that considers two sequences similar if they share many similar sub-180

sequences [24]. The calculation of MPDist involves finding the best match for181
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all subsequences in both series. These could be found by performing a double182

Matrix Profile calculation, but can also be obtained in a single calculation183

by processing the subsequence distances in a different way.184

As we can see, a wide range of techniques has emerged, most focusing on185

an aspect closely related to the Matrix Profile.186

3. The Series Distance Matrix187

Many of the works in Section 2 have started from the idea of the Matrix188

Profile and created a new algorithm to obtain one specific variation. Look-189

ing forward to the future, we can expect the amount of algorithms to rise190

dramatically as the different distance measures and processing methods are191

further expanded and combined. Instead, we propose to view these varia-192

tions as instances of a more generalized framework which we call the Series193

Distance Matrix (SDM).194

3.1. SDM: General Concept195

We present SDM as a component based framework for deriving insights196

by processing pairwise distances of the subsequences of pairs of series (this197

includes self-joins by assuming two equal series). Given pairs of series, SDM-198

generators are responsible for calculating the distances between all pairs of199

subsequences. Because calculating the full distance matrix is not scalable,200

we instead calculate fragments of the distance matrix. These fragments are201

processed by the SDM-consumers, after which the fragment is discarded and202

a new fragment is calculated. Each consumer is responsible for processing203

all distance fragments in a way that provides certain insights.204

Conceptually, the distance matrix fragments can take any form, however,205

columns and diagonals have proven to work well for the Matrix Profile. The206

column based approach is used by the STOMP algorithm [6], it has the207

advantage of being easier to implement and is more suited for cases where208

one series is being streamed in an online fashion, since each new data point209

results in one new column of distance matrix values. The diagonal approach210

is used by the SCRIMP [16] algorithm. By processing diagonal fragments211

of the distance matrix, the calculated distances of each fragment are spread212

over many different pairs of subsequences. This can be utilised by some213

consumers, such as the Matrix Profile, to provide approximate intermediate214

results when processing all data takes a long time, making it well suited for215

interactive use cases.216
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Figure 1: The Matrix Profile calculation fitted into the SDM framework. Starting from
two input series (S1, S2), the z-normalized Euclidean distance generator iteratively creates
fragments, in this case columns (F), of the distance matrix of all subsequences (DM). Each
of these fragments are processed by the Matrix Profile consumer, storing the minimum
value for each column in the resulting Matrix Profile (MP).

Figure 1 shows a schematic visualization of the Matrix Profile calculation217

fitted into the SDM framework.218

By separating the distance calculation and processing, we can easily com-219

bine generators and consumers to our needs. For example, the techniques de-220

scribed by Akbarinia et al. [13] and Furtado Silva et al. [14] are a combination221

of the p-norm or ψ-DTW generator with a Matrix Profile consumer. Com-222

binations that have not yet been researched, such as combining a ψ-DTW223

generator with an MPDist consumer, are - thanks to the SDM framework -224

just as straightforward. A second benefit is that multiple consumers can be225

configured for a single generator, instead of having to adjust the algorithms226

itself, this way reducing calculation overhead. Lastly, by adopting a com-227

ponent based design, each component can be optimized independent of the228

others. For example, if a faster way is found to calculate the z-normalized229

Euclidean distance, only one generator has to be updated, instead of every230

technique using the z-normalized Euclidean distance.231

3.2. SDM: Python Implementation232

As part of this paper, we released a Python library1 under the MIT233

license implementing our SDM framework and CMP consumer. In addition234

1https://github.com/IDLabResearch/seriesdistancematrix/
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to the contributions of this paper, it contains implementations for the noise-235

corrected z-normalized Euclidean distance ([5, 6, 16, 15]), Euclidean distance,236

Matrix Profile [5], Multidimensional Matrix Profile [10], Left- and Right-237

Matrix Profile [11] and VALMOD [17]. It supports batch operations as well238

as streaming data. At the time of writing, and to the best of our knowledge,239

this is the first public Python library integrating this many different Matrix240

Profile related work as consumers and generators in our generic framework.241

4. Contextual Matrix Profile242

This section covers a new series analysis technique, the CMP, which can243

easily find repeated patterns in series and shares the benefits of the Ma-244

trix Profile: it is deterministic, domain agnostic, exact and is suited for245

parallelization. The CMP is calculated by the CMP-consumer in the SDM246

framework. Note that thanks to the SDM framework, we can focus purely on247

how the calculated distances should be processed, since we can combine the248

CMP with any distance measure that has a corresponding SDM-generator249

implementation.250

As the name implies, the CMP is closely related to the Matrix Profile,251

and can be best explained in how it differs from it. We make our compar-252

ison starting from the distance matrix (the implicit matrix containing the253

distances of all subsequences from the first input series to all subsequences254

from the second input series). Where the Matrix Profile is defined as the255

column-wise minimum over the entire distance matrix, the CMP is defined256

as the minimum over rectangular regions of the distance matrix. These rect-257

angles may overlap and may or may not cover the entire distance matrix.258

Their configuration is up to the user. A visual comparison of the Matrix259

Profile and the CMP can be seen in Figure 2. Note that the CMP-consumer260

may be configured in such a way that it calculates the Matrix Profile. In this261

way, the CMP can be seen as a generalization of the Matrix Profile.262

Given two input series S1 and S2 and subsequence length m, the Matrix263

Profile looks for the best matching subsequence in S2 for any subsequence in264

S1. The CMP on the other hand looks for the best matching subsequence265

in ranges over S1 and S2. These ranges allow us to group the data in dif-266

ferent ways and can reveal new insightful patterns. Specifically, because we267

aggregate the distances in ranges across both series, the CMP is very good at268

picking up repeated patterns, even if these patterns are not strictly periodic.269
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Figure 2: Matrix Profile and CMP differ in how they are created using the distance matrix
(light gray). The Matrix Profile (dark gray, left) consists of the column-wise minimum
of the values in the distance matrix. The Contextual Matrix Profile (dark gray, right) is
created by taking the minimum over rectangular areas. Note that these areas may overlap
and may or may not cover the entire distance matrix, depending on the user configuration.

We will show two use cases for the CMP, i.e., data visualization and anomaly270

detection, but first we discuss more thoroughly how the CMP is calculated.271

4.1. Calculating the CMP272

Many specialized algorithms could be conceived for specific region config-273

urations. Here, we provide a general purpose algorithm. In this algorithm,274

the regions of interest are provided by specifying ranges along the dimen-275

sions of the distance matrix. This principle is illustrated in Figure 3. One276

advantage of this approach is that for non-overlapping ranges, the resulting277

CMP resembles a reduced distance matrix. We will exploit this property in278

our use cases below.279

Our algorithm assumes the distance matrix is provided in a column-wise280

manner (similar to the STOMP algorithm [6]). A straightforward adaptation281

for diagonals is also made available in our reference implementation.282

The initialization of the CMP-consumer is outlined in Algorithm 1. We283

take two lists of ranges as input, each defining the contexts for one of the284

input series. We store the ranges in line 1 and 2. Next, we prepare containers285

for the CMP and corresponding indices, similar to the Matrix Profile Index.286

Note that the CMP indices are two-dimensional since we need to track the287

exact match index for both input series.288

The actual calculation of the CMP is listed in Algorithm 2. In line 1, we289

iterate over all ranges defined over the horizontal dimension of the distance290

matrix and skip any that do not contain the column being processed in lines291

2-4. Next, we iterate over all ranges for the vertical axis. Since all ranges will292
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Algorithm 1: CMP-consumer Initialization

Input : R1, ranges for the vertical axis of the distance matrix. A
range is a pair defining a start (inclusive) and end
(exclusive) index.

Input : R2, ranges for the horizontal axis of the distance matrix.

1 v ranges← R1;
2 h ranges← R2;
3 cmp← |R1| × |R2| matrix, filled with +∞;
4 cmp index← |R1| × |R2| matrix, filled with (−1,−1);

Algorithm 2: CMP-consumer Column Processing

Input : The column index col.
Input : A vector d containing all distances on column col.

1 for j, h range ← enumerate(h ranges) do
2 if col not in h range then
3 continue
4 end
5 for i, v range ← enumerate(v ranges) do
6 dists← d[v range];
7 min dist← min(dists);
8 if min dist < cmp[i, j] then
9 cmp[i, j]← min dist;

10 row ← argmin(dists) + v range[0];
11 cmp index[i, j]← (row, col);

12 end

13 end

14 end



Figure 3: Example of region definitions: a user has specified three horizontal ranges (A,
B, C) and five vertical ranges (1. . . 5) on the axes of the distance matrix (DM). Any pair
of ranges from both axes corresponds to one region of interest in the distance matrix. The
minimum value of the region is calculated and stored in the CMP. Note that the ranges
may overlap and may or may not fully cover the distance matrix dimensions.

have some overlap with the distance matrix column, we do not need to filter.293

In lines 6 and 7, we determine the minimum value of the distance matrix294

column that is contained in both ranges. We compare this minimum against295

the best value so far and update the distance and corresponding index if we296

find a better match (lines 8-12).297

Note that when h ranges is very long, a linear scan becomes inefficient.298

Depending on the intended use, optimizations are obvious: tree maps for299

general cases, hash based lookup for strictly periodic ranges, or storing the300

search index for non-overlapping ordered ranges. In this section, we did not301

attempt to list all possibilities and instead presented the approach best suited302

for understanding the technique.303

Lastly, we briefly discuss the complexity of the CMP. Strictly speaking,304

the space complexity is constant as it is determined by the configuration of305

the vertical (V) and horizontal (H) ranges: O(|H||V |). When ranges will306

be defined in function of the length of the input series (n), O(n2) is more307

representative. Note that this last form is overly pessimistic as |H| and |V |308

will typically be much smaller than n. The time complexity for processing309

a single column is O(|H| + |V | × S), where S represents the average span310

of a vertical range. In a typical case where ranges will not overlap, this can311

be simplified to O(n). As such, a full calculation can be done in O(n2), the312

same complexity as the calculation of the Matrix Profile using STOMP.313

12



2014-07 2014-08 2014-09 2014-10 2014-11 2014-12 2015-01 2015-02
0

25000

Pa
ss

en
ge

rs

NY Taxi (complete)

2014-07-01 2014-07-08 2014-07-15

10000
20000
30000

Pa
ss

en
ge

rs Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon
NY Taxi (first two weeks)

Figure 4: The New York Taxi dataset from the Numenta Anomaly Benchmark. It lists the
summed number of taxi passengers in New York at 30 minute intervals. Top: Complete
dataset. Bottom: The first two weeks of the dataset, where we see a clear periodic pattern.
Note how the pattern for the first Friday, Independence Day, resembles the pattern for a
weekend day.

5. CMP for Data Visualization and Anomaly Detection314

We will demonstrate the value of the CMP using two different use cases:315

data visualization and anomaly detection. For both cases, we use the public316

New York Taxi dataset and a dataset delivered to us by Renson (a ventila-317

tion manufacturing company) that we share as part of this publication [25].318

Additionally, in our most recent paper [20], we combine the CMP with the319

noise elimination technique [15] to visualize a UCI activity dataset and show320

potential for activity segmentation as well. Note that it is not our goal to im-321

prove upon the state-of-the-art anomaly detection techniques in this section,322

but rather to show the potential of the CMP.323

All figures in this section were created using Python-based Jupyter note-324

books, which we have shared online [25]. Besides providing an easy way to325

reproduce our results, they offer some additional visualizations we omitted326

due to size constraints.327

5.1. New York Taxi Dataset: Data Visualization328

The first dataset is the New York Taxi public dataset from the Numenta329

Anomaly Benchmark [26]. It lists the total number of taxi passengers in New330

York city for a period from July 2014 up to February 2015, bucketed per half331

hour. An overview and excerpt is shown in Figure 4.332

We calculated the CMP by self-joining the data using the z-normalized333

Euclidean distance, using a window length of 44 (22 hours) and a daily334
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context starting at midnight until 02:00 in the morning. Because we are self-335

joining the data, a constraint prevents any day from matching itself. Simply336

put, we are asking for the most (shape-wise) similar subsequences between337

any pair of days, where either subsequence is 22 hours long and can start338

between midnight and 02:00. These values were based on a quick visual339

inspection of the data. By choosing a two hour context range and a 22 hour340

window length, we allow temporal shifts when comparing windows, while341

always comparing values of the same day. Note that for slightly different342

values, we obtained similar results. Since the dataset contains 215 days and343

we define one context per day, the resulting CMP is a 215 by 215 matrix.344

It is shown in Figure 5. Note that the CMP is symmetrical because of the345

self-join, higher values in the CMP correspond to more dissimilarity.346

When visualized, the CMP can be used to gain insight into the dataset347

it was built on. For example, the pattern of small squares visible in Figure 5348

indicates that there are typically 5 days displaying similar behavior, followed349

by 2 days of different behavior. These patterns are of course caused by350

the cycle of weekdays and weekends. Other artefacts standing out are the351

wide band around New Year, near the end of November (Thanksgiving) and352

the stripe near the end of January (when a blizzard struck New York), all353

indicating different behavior in the dataset.354

Visualizations like these help data scientists explore new datasets. By in-355

specting the CMP, they can find patterns and deviations from these patterns356

that might require further investigation (as we will do in our next use case).357

Another application is the creation of visual thumbnails for series, helping358

users to navigate large collections of series. Other thumbnail techniques have359

been presented using SAX [27] and time series snippets [23] but are unable360

to provide this degree of insight into the underlying patterns.361

Of course, the Matrix Profile can also be visualized to gain insight in362

a series. We calculated the Matrix Profile using the same parameters as363

the CMP, it is shown in Figure 6. As mentioned before, the Matrix Profile364

is a one dimensional vector where high values correspond to more unique365

subsequences. Looking at the figure, we gain some insights in where the data366

displays unique behavior, which is further explored in Section 5.2. However,367

the Matrix Profile is unable to capture the periodic nature of the data since368

each sequence is compared against all other sequences rather than multiple369

spans like the CMP does.370

As a final demonstration of the possibility to gain insights from visual-371

izing the CMP, we would like to share an unexpected trivia we discovered.372
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Figure 5: The CMP for the New York Taxi dataset. Each point displays the distance
between 2 days, defined as the z-normalized Euclidean distance between the best matching
22 hour long subsequences of both days. Lower distances correspond to a better match. We
can clearly see a periodic pattern caused by weekdays versus weekends and the changed
behavior around Thanksgiving and between Christmas and New Year. The bright line
near the end of January is the effect of a blizzard hitting New York.
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Figure 6: The Matrix Profile for the New York Taxi dataset. Each value represents the
distance from the subsequence of the series starting at that index to its nearest match,
where higher distances mean more unique subsequences. While we see higher values cor-
responding to some holidays or other events (discussed in Section 5.2), the periodic nature
of the data is not captured in this visualization.
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Figure 7: Left: The CMP for the New York Taxi dataset, with values restricted to the
range [0.4, 1.2], highlighting the change in distance for days before and after September
1st. Right: The origin of the difference in distances. The number of taxi passengers before
and after September 1st differs noticeably around 07:30 in the morning.

Looking carefully, one can see a small difference in the values before and373

after September 1st (Labor Day). This is more clearly presented in Figure374

7 (left). We see the days before Labor Day have a worse match with the375

days after Labor Day and vice versa, indicating the taxi passenger behav-376

ior has changed. Indeed, when looking at the daily graphs (Figure 7 right),377

we see a noticeable difference in the behavior around 07:30 in the morning:378

after Labor Day, the number of taxi passengers is higher. The most likely379

explanation is the start of the school year, which also falls on September 1,380

enabling parents to leave earlier for work.381
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5.2. New York Taxi Dataset: Anomaly Detection382

As anomalies are defined as patterns that do not conform to expected be-383

havior [28], objectively evaluating them is particularly difficult for realistic384

datasets. What is interpreted as anomalous for one user, might be nor-385

mal behavior for another [29]. While the New York Taxi dataset contains386

a ground truth of 5 anomalies (listed in Table 1) that were specified by the387

dataset provider as “anomalies with known causes”2, we argue several devia-388

tions from expected patterns are present in the data but were not included in389

the ground truth because of background knowledge not present in the data.390

As a result, we find the ground truth to be biased towards techniques that391

find unique behavior, rather than unexpected behavior. Luckily, it is easy to392

further investigate and validate suspected anomalies, as we will do next.393

The visualization of the CMP in Figure 5 already gives a good visual394

indication about anomalies: on some days the expected repetitive pattern is395

not present. Based on the visual pattern, we divided the contexts into three396

groups and form smaller CMPs: one containing weekdays and two containing397

only Saturdays and only Sundays respectively. This is visualised in Figure398

8. These reduced CMPs each represent a collection of days that we expect399

to behave in a similar manner. Since each value in a column (or row) in the400

CMPs indicates how much a single day (context) deviates from other days401

(contexts), we can average each column to obtain a single value indicating402

how much this day deviates from the other days. We define this value as the403

anomaly score for that day. Note that we average the values in the reduced404

CMPs, meaning that, e.g. the anomaly score of any Sunday is based on405

how much it differs from all other Sundays in the dataset, irrespective of the406

differences with Saturdays or weekdays. After calculating the anomaly score407

for every day, we ordered all anomaly scores and using the Elbow method,408

we determined a threshold to obtain 18 anomalous days in total (Figure 8409

right). The anomalies are listed in Table 1 and visualized in Figure 9.410

We compare the anomalies against those found by the Matrix Profile. The411

Matrix Profile can be used to find series discords, subsequences that maxi-412

mally differ from any other subsequence, these discords can be interpreted as413

anomalies [5]. We calculated the anomalies using the Matrix Profile with a414

window length of 22 hours (similar as the CMP) and not allowing overlapping415

anomalies. We obtained 16 anomalies using the Elbow method, which are416

2https://github.com/numenta/NAB/wiki/FAQ
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Figure 8: Reduced CMPs from Figure 5, containing only the entries for weekdays (first),
Saturdays (second) or Sundays (third) on both axes. Fourth: The anomaly scores (ob-
tained by averaging each column of all reduced CMPs), ordered from high to low. We
determined the number of worthy anomalies to be 18.

listed in Table 1 and visualized in Figure 10. Note that the anomalies here417

have no starting time restriction and can partially cover one or two days.418

Of the 25 different anomalies listed in Table 1, only nine are flagged as419

anomalous by both techniques. For each of these nine, a reasonable expla-420

nation could be found, falling into the categories of holiday (Independence421

Day, Thanksgiving, Martin Luther King Day), holiday predecessor (day be-422

fore Christmas, New Year’s Eve) or large scale event (Climate March, Day-423

light Savings Time and blizzard). The CMP additionally detected Labor424

Day, and many weekdays in the Christmas and New Years period, typical425

days when people take time off from work. Note that since the anomalies426

by the Matrix Profile can span two days, it would not be fair to consider427

Christmas and New Year to be found exclusively by the CMP. For one CMP428

anomaly no clear explanation could be found, though we suspect it is an429

after effect of the Independence Day celebrations. The Matrix Profile on the430

other hand exclusively found one weather event, one large scale event (the431

Millions March against police brutality), Halloween (most likely due to the432

effect of late-night parties) and four days for which no clear-cut explanation433

could be found. However, two of the unknown anomalies precede Labor Day,434

so this could again be an effect caused by people heading out of town for435

celebrations. Perhaps surprisingly, the Matrix Profile cannot detect Labor436

Day itself, this is because it closely matches Martin Luther King Day and two437

weekends in the dataset, meaning it will not be flagged as a series discord.438

Rather than looking at individual anomalies, we can also look at the439

broader picture. By comparing each CMP anomaly against other days of the440

same type (the second or third column in Figure 9, whichever contains a solid441

red line), we see that all anomalous days noticeably differ from the majority442

of the reference days (gray band in the figure). This is less the case for the443
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Date Event Numenta MP CMP
Thu 2014-07-03 Evening thunderstorms 5

Fri 2014-07-04 Independence Day 6 5
Sun 2014-07-06 Unknown 15
Sun 2014-07-13 Unknown 10
Fri 2014-08-29 Unknown 8

Sun 2014-08-31 Unknown 15
Mon 2014-09-01 Labor Day 6
Sun 2014-09-21 Climate March 13 17
Fri 2014-10-31 Halloween 9

Sun 2014-11-02 Daylight Savings Time x* 3* 9
Thu 2014-11-27 Thanksgiving x 11* 12

Fri 2014-11-28 Day after Thanksgiving 11
Sat 2014-12-13 Millions March 16

Wed 2014-12-24 Christmas period 7 3
Thu 2014-12-25 Christmas x 7

Fri 2014-12-26 Christmas period 10
Mon 2014-12-29 New Year period 14
Tue 2014-12-30 New Year period 18

Wed 2014-12-31 New Year’s Eve 4 16
Thu 2015-01-01 New Year x 1

Fri 2015-01-02 New Year period 13
Fri 2015-01-09 Unknown 12

Mon 2015-01-19 Martin Luther King Day 14* 8
Mon 2015-01-26 Blizzard 2 2
Tue 2015-01-27 Blizzard x 1 4

Table 1: Anomalies as found by the Matrix Profile (MP) and CMP as well as the ground
truth for the dataset (Numenta). The numbers in column CMP and MP correspond
to the ordering used in Figure 9 and 10 respectively, where a lower number indicates a
higher anomalous behavior.

*: Actually listed on the preceding day, but visual inspection shows the aberrant
behavior takes place after midnight.
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dataset (gray). A dotted red line is used to visualize the anomaly in the column that does
not match its own type (weekday/weekend).



0

25000
MP-Anomaly 1

Anomaly vs all
Tuesday 2015-01-27 12:00

Anomaly vs weekday Anomaly vs weekend

0

25000
MP-Anomaly 2 Monday 2015-01-26 13:00

0

25000
MP-Anomaly 3 Saturday 2014-11-01 06:30

0

25000
MP-Anomaly 4 Wednesday 2014-12-31 07:30

0

25000
MP-Anomaly 5 Thursday 2014-07-03 05:30

0

25000
MP-Anomaly 6 Friday 2014-07-04 07:00

0

25000
MP-Anomaly 7 Wednesday 2014-12-24 03:00

0

25000
MP-Anomaly 8 Friday 2014-08-29 06:30

0

25000

Pa
ss

en
ge

rs MP-Anomaly 9 Friday 2014-10-31 07:00

0

25000
MP-Anomaly 10 Sunday 2014-07-13 03:30

0

25000
MP-Anomaly 11 Wednesday 2014-11-26 15:00

0

25000
MP-Anomaly 12 Friday 2015-01-09 06:30

0

25000
MP-Anomaly 13 Sunday 2014-09-21 01:00

0

25000
MP-Anomaly 14 Sunday 2015-01-18 12:30

0

25000
MP-Anomaly 15 Sunday 2014-08-31 04:30

0:00 6:00 12:00 18:00
0

25000
MP-Anomaly 16

0:00 6:00 12:00 18:00
Time of day

0:00 6:00 12:00 18:00

Saturday 2014-12-13 00:00

Figure 10: The 16 anomalous sequences found using the Matrix Profile, ordered from
most anomalous to least anomalous. Each row shows one anomalous sequence of 22 hours
(red) against all other days in the dataset (gray). A dotted red line is used to visualize
the anomaly in the column that does not match its own type (weekday/weekend).



anomalies found by the Matrix Profile (Figure 10). Here, about half of the444

anomalies resemble the reference days, but contain some local variation such445

as a spike, elongated tail or less pronounced bumps.446

The question arises: which of these techniques is best suited for anomaly447

detection? While we suspect most users will find the results of the CMP to448

be more insightful for this specific dataset, the general answer remains “it449

depends”. Fundamentally, both techniques are searching for different things.450

While the Matrix Profile is looking for the most unique patterns (discords)451

in the series, the CMP based anomaly detection is looking for patterns that452

differ most from a group of reference contexts. Both approaches will have453

applications depending on the type of anomalies the user is interested in.454

Whereas a simple distance matrix between weekdays and weekends could455

also have found these anomalies, this assumes knowing the underlying pattern456

in advance. One benefit of the CMP is that it allows us to discover these457

patterns in advance when the pattern is unknown in advance, which is often458

the case. So, assuming we did not know the weekday/weekend similarity459

beforehand, we could have easily deduced it by visualizing the CMP. The460

CMP has one other major advantage over a basic distance matrix, it allows461

for a (time) shift when comparing sequences (for which the added value is462

better demonstrated for the next dataset). A similar approach with typical463

techniques would result in a high complexity, instead we can rely on the464

computationally efficient implementations of the distance generators of the465

SDM framework [6, 16].466

5.3. Ventilation Dataset: Data Visualization467

Our second dataset is a proprietary dataset delivered to us by Renson, a468

ventilation manufacturing company. It contains measurements of various air469

quality metrics such as temperature, humidity, carbon dioxide and volative470

organic compounds, for all rooms within a building that are connected to471

a ventilation unit, for several anonymized buildings. The users of Renson472

ventilation products can use this data to observe the functioning of the ven-473

tilation system and to estimate the air quality of their home. The metrics474

are measured at 15 minute intervals and differ per room type. Here, we focus475

on the CO2 sensor of rooms designated as kitchen. The dataset is shown in476

Figure 11. Unlike the Taxi dataset, each household has a wide range of dis-477

tinct daily behaviors and no immediate obvious repeating patterns, it is also478

not possible to verify any root causes of anomalies. This use case represents479
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Figure 11: Measured CO2 air content in the kitchen for three ventilation units. Left:
The complete datasets. Right: Closeup of two weeks for each corresponding dataset.
A day/night pattern is somewhat discernible, but unlike the Taxi dataset, a week-
day/weekend pattern is much less obvious.

a typical use case wherein a data scientist has to explore data for which little480

to nothing is known.481

We calculated the CMP using the z-normalized Euclidean distance, using482

a subsequence length of 3 hours and specifying contexts ranging from 06:00483

until (including) 08:00 in the morning. The results are visualized in Figure 12.484

We see that all three units display very different morning behavior. The first485

unit displays a pattern that closely resembles the Taxi dataset, with distinct486

behavior for weekdays, weekends and holidays. It most likely belongs to a487

family household with regular school and working hours. The second unit488

shows no clear patterns, though we can see a change near the end of the489

dataset. The last unit shows a pattern at the start of the dataset, which490

changes starting January. While we have no explanation for the behavior in491

these units, the patterns are still interesting to discover and could prove useful492

for experts. In parallel, we calculated other CMPs for noon and evening,493

but do not list them in this paper due to size constraints and refer to the494

accompanying sources for more details [25].495

5.4. Ventilation Dataset: Anomaly Detection496

After exploring the data, we continue here with the dataset for the first497

unit. We choose this dataset as it shows most similarity to our expectations498

of a regular household and should therefore be easier to interpret. Similar499

to the Taxi dataset, we split the CMP into contexts linked to weekdays500

and weekends. Since the weekday mornings are very similar, the results are501

quite similar to those of the Taxi dataset and we refer the reader to the502

supplementary material for more detailed results. Instead, we will focus on503
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Figure 12: CMP calculated on the morning behavior of three kitchens. The first unit dis-
plays a weekday/weekend periodic pattern similar to the Taxi dataset, as well as different
behavior around the holiday period. The second unit shows no clear pattern, indicating
most mornings have a similar regime. The third unit shows a somewhat periodic pattern
that does not match with weekdays/weekends.

the more challenging weekend behavior in this section.504

The weekend measurements do not only have a wider range of behavioral505

patterns, but the start time of these patterns also varies from day to day.506

Using the CMP calculated on the morning contexts from the previous sec-507

tion, we created a smaller CMP only containing weekend days. Unlike the508

Taxi dataset, we did not split up Saturdays and Sundays, since there was509

no distinctive pattern visible for these days in the CMP data visualization.510

Using the Elbow method, we determined the presence of six anomalies.511

Due to the wide variation of the patterns in both values and time, it512

becomes harder to visualize the anomalies in an intuitive way. One useful513

approach is a matching table, of which an extract is shown in Figure 13514

(the complete figure is available in the source files [25]). Every row of the515

table corresponds to a single weekend day (one row in the CMP). This day516

is shown in the first column with the morning context highlighted. The517

remaining columns show the matches with other weekend days, ordered from518

best match to worst match. Rather than showing all matches, we simply519

select the matches on all three quartiles, as well as the best and worst match.520

Note that each match corresponds to one single value listed in the CMP.521

When inspecting the contents of the matching table, we see that the522

mornings classified as normal have many good matches, only showing mi-523

nor differences in the third quartile match. The matches for the anomalous524

mornings already show this level of difference in the first quartile, showing525
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Figure 13: Matching table for subset of weekend days for ventilation unit 1. Each row
corresponds to one weekend day, which is displayed in the first column with the morning
context (including the window length) highlighted. The first seven rows display days
classified as regular (green), the last three show anomalous days (red). The columns show
the matching of the morning context (blue) with other morning contexts (dotted orange,
one per column). Note that the matching uses subsequences of the context: each blue
fragment is a three hour subsequence of the five hour long green/red fragment. For each
match, the z-normalized Euclidean distance is displayed in the top left.

that they are in fact uncommon behavior for a weekend morning. This is526

quantified in the distances listed in Figure 13: the distances of the first quar-527

tile match of anomalies are already higher than those of the third quartile528

of the normal days. Going further into detail, we see that the normal morn-529

ings share a common pattern of a plateau followed by a smooth bump and530

a second, higher plateau. We suspect this pattern is caused by someone531

waking up, having breakfast in the kitchen and going to an adjacent room.532

The mornings marked as anomalous show subtly different patterns. The first533

lacks the second plateau, the second has an earlier start (causing the first534

plateau to fall outside the context) and also lacks the higher plateau, the535

third anomaly lacks the distinct high bump at the start. Note that the sec-536

ond normal morning should probably be classified as anomalous. But even537

though the first spike occurs before the context, the z-normalisation enables538
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a good match between the subtle second bump with the bumps of other539

days. This again demonstrates the need to finetune the anomaly detection540

algorithm to the needs of the user.541

When looking at the matches in detail, we see how the blue subsequences542

are not exactly the same for each match. Indeed, the contexts used to produce543

the CMP allow a time shift: the three hour long subsequence should start544

between 06:00 and 08:00. As we can see, this flexibility allows us to recognize545

similar behavioral patterns, despite them not being aligned in time. This546

flexibility comes at the cost of the user having to define the contexts, often547

having to rely on expert knowledge of the underlying process. In this case,548

we relied on our personal experience about kitchen usage patterns to define549

the contexts.550

5.5. Summary551

We conclude this section by reiterating our claim that anomaly detection552

is an inherent subjective topic and difficult to validate. Only when knowing553

what a user defines as anomalous, can the proper technique be chosen and554

tried. In this section, we defined normal behavior as behavior that closely555

matches the majority of the data, and found the CMP to be a suitable556

technique to detect outliers. We found 18 anomalies for the Taxi dataset,557

which is more than the five listed as ground truth, and could provide a558

straightforward explanation for all but one. In the ventilation dataset, we559

found six anomalies but had no way to validate them independent of the560

data.561

One advantage of the CMP over the Matrix Profile for anomaly detection562

is that the CMP does not depend on the uniqueness of anomalies (it does not563

simply find discords), but rather on the the expectations of the user regarding564

normal behavior. These expectations correspond to the CMP contexts and565

can be based on the insights retrieved using the CMP for data visualization.566

As part of the SDM framework, the CMP can be calculated using any dis-567

tance measure and calculated in parallel with other techniques such as the568

Matrix Profile.569

6. Conclusion570

In this paper we introduced the Series Distance Matrix framework (SDM),571

a generalisation of the original approach used to calculate the Matrix Profile.572

The SDM framework splits the generation and consumption of the all-pair573
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subsequence distances, putting the focus on the distance matrix itself. This574

allows for easier and more flexible experiments by freely combining compo-575

nents and eliminates the need to re-implement algorithms to combine tech-576

niques in an efficient way. The extensions of the Matrix Profile can be fitted577

in this framework as (part of) a SDM-generator or SDM-consumer. Further-578

more, we suspect new techniques will be discovered by further studying the579

properties of the distance matrix in future work.580

We introduced one additional SDM-consumer, namely the Contextual581

Matrix Profile (CMP). The CMP processes rectangular areas of the distance582

matrix, compared to the Matrix Profile processing columns. As a result, the583

CMP is able to compare a range of subsequences against many other ranges,584

rather than only tracking the best match.585

We proved the utility of the CMP for two use cases. When used for data586

visualization, the CMP was able to reveal repetitive and deviating patterns587

in the data, making it an ideal first step for data exploration, especially for588

data containing repetitive patterns. When used for anomaly detection, we589

defined contexts based on our expectations of the data and were able to find590

anomalies in the contexts not matching those expectations. Unlike the Ma-591

trix Profile, the CMP is able to detect anomalies that are not discords. Both592

cases were demonstrated on the New York Taxi dataset and a proprietary593

ventilation metric dataset. In the former, we were able to reasonably explain594

all patterns and anomalies. In the latter, we showed the visual difference595

between different ventilation units and relied on the time shift capability of596

the CMP to discover anomalous mornings.597

As part of this publication, we have released a Python implementation of598

the SDM framework, already comprising implementations for a substantial599

set of related work. Furthermore, the source code for all use case related600

processing has been made available online [25].601
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