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Abstract

Every year about one third of the food production intended for humans gets lost
or wasted. This wastefulness of resources leads to the emission of unnecessary
greenhouse gas, contributing to global warming and climate change.

The solution proposed by the SORT project is to “recycle” the surplus of food
by reconditioning it into animal feed or fuel for biogas/biomass power plants. In
order to maximize the earnings and minimize the costs, several choices must be
made during the reconditioning process. Given the extremely complex nature
of the process, Decision Support Systems (DSSs) could be helpful to reduce the
human effort in decision making.

In this paper, we present a DSS for food recycling developed using two
approaches for finding the optimal solution: one based on Binary Linear Pro-
gramming (BLP) and the other based on Answer Set Programming (ASP),
which outperform our previous approach based on Constraint Logic Program-
ming (CLP) on Finite Domains (CLP(FD)).

In particular, the BLP and the CLP(FD) approaches are developed in
ECLPS¢, a Prolog system that interfaces with various state-of-the-art Mathe-
matical and Constraint Programming solvers. The ASP approach, instead, is
developed in clingo. The three approaches are compared on several synthetic
datasets that simulate the operative conditions of the DSS.
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1. Introduction

According to a study published by the Food and Agriculture Organization
of the United Nations (FAO) in 2011, every year about one third of the global
production of food for humans gets lost or wasted (Gustavsson et al., 2011).

Food loss refers to losses of edible food mass throughout all stages of the food
chain and have heavy repercussions on ecosystem degradation and on human
resource consumption.

The term food waste refers to food losses occurring at the last stages of the
food chain (retail distribution and final consumption). These losses depend on
the behaviour of retailers and final consumers. For instance, at retail level,
large quantities of food are wasted due to appearance standards (e.g. dented
but unbroken cans, vegetables with imperfections, etc.).

The solution envisioned by the SORT project! aims at “recycling” a signif-
icant part of food in excess or no longer consumable by humans, in order to
reduce as much as possible the food waste destined for landfill. The project in-
volved experts in production plants, veterinary, computer science, logistics, and
it identified, as main possible uses of the wasted food, reconditioning into feed
material for animals and production of biogas/biomass for sustainable energy
production. Moreover, the packaging is also recovered for recycling.

The process envisioned by SORT is complex and involves several parties and
actors, which can be split into four main categories:

e Retail companies, which gather the food in excess or no longer consumable
by humans.

e SORT plants, which are responsible of the reconditioning process of the
food in excess.

o Customers, which request orders to the SORT plants (animal feed factories
and biogas/biomass power plants).

e SORT logistics, that part of the SORT project which is responsible of the
delivery of orders from SORT plants to customers and of food articles
from retail companies to SORT plants.

Figure 1 shows the entire SORT process and the relations between the dif-
ferent actors. The food articles to recycle are gathered at large retailers and
collection centers and packaged into boxes with an RFID chip for identifica-
tion and tracking. These boxes are temporarily stored in the warehouses of

IThe SORT project is promoted by the Italian Ministry of Education, University and
Research. Code: SCN_00367, Ministerial Act n. 2427 http://attiministeriali.miur.it/
anno-2015/ottobre/dd-28102015- (1) . aspx.
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Figure 1: SORT process.

the retail companies, then the SORT logistics delivers the boxes from the retail
warehouses to the so-called SORT plants.

A SORT plant stores the incoming boxes and sorts the food articles according
to the received orders. The food articles are then unpacked and the feed material
is sent to customers, while the gathered packages are recovered for recycling.

Feed factories and biogas/biomass power plants are the main customers of
a SORT plant, each customer can make different orders of feed materials. The
satisfied orders are the main source of income for a SORT plant. On the contrary,
if an order was not satisfied and its deadline expired, the delay constitutes a
cost in terms of penalties to pay.

The feed materials can be organized into an ontology, as we did in our
previous work (Chesani et al., 2018). However, in this work this approach was
abandoned. We reserve the definition of a complete ontology when it will be
clear what kind of mixtures of feed materials can be requested by customers.

In order to be self-sustainable, the process must also produce economic profit,
which is attainable if a careful choice is made for each of the available freedom de-
grees, and considering all the involved parameters (income of the orders, expiry
dates, food articles to be reconditioned, penalties, storage costs, etc.). Making
decisions in this complex environment can be very hard for a human.

In this paper we propose a Decision Support System (DSS) that can be used
as aid by the process manager to make the best choices to maximize the profit
and reduce the human effort. This paper is an upgrade and an extension of our
previous work (Chesani et al., 2018) where we developed a DSS for the SORT
process based on Constraint Logic Programming of Finite Domains (CLP(FD))
for finding the optimal solution. We developed two new approaches, both imple-
mented in declarative programming languages: one is based on a mathematical
programming model (in particular, Binary Linear Programming (BLP)), imple-
mented in the Constraint Logic Programming language ECL‘PS® (Schimpf and
Shen, 2012), the other based on Answer Set Programming (ASP), a declarative
language with solvers based on artificial intelligence techniques, and we used
clingo (Gebser et al., 2012) as solver.

In order to find the most suitable of the proposed approaches, we experimen-



tally compare the three approaches on several synthetic datasets of increasing
size that simulate the operative conditions of the DSS. The experimental results
show that the new proposed approaches outperform the previous one based on
CLP(FD). Thanks to the new formulations, we are now able to address prob-
lems of significant size. In particular, we could find provably optimal solutions
even when considering a number of elements as large as half of the supposed size
of the warehouse. In case larger sizes will be necessary, sub-optimal solutions
are nevertheless provided?.

Note also that in this work we only used open-source solvers, however there
exist also commercial solvers, that usually provide solutions is shorter times.

The rest of the paper is structured as follows. The process chain of the
SORT plant is described in Section 2. Section 3 illustrates the paradigms used
for this DSS. In particular, it recalls the main concepts of CLP, BLP and ASP.
Section 4 recaps our previous approach based on CLP(FD). Section 5 and
Section 6 illustrate, respectively, the BLP approach and the ASP approach of
the DSS. Section 7 shows experimental results on synthetic datasets. Section 8
concludes the paper.

2. SORT Plant Process Chain

Before illustrating this process, we must make a terminological distinction
between food item, instance of a food item and food article. A food item is a
good identified by a European Article Number (EAN), i.e. a barcode, that has
a specific volume and weight, while an instance of a food item also has its own
production and expiry dates. For example, a coffee product of a specific brand is
a food item, while a specific bag of coffee of that brand produced on 13/05/2019
that expires on 20/06/2020 is an instance of a food item.

A set of instances of a food item that have (almost) the same expiry date can
be considered as a single food article. For instance, a set of ten cans of beans
with the same expiry date can be seen as a unique food article that has ten
times the weight and the volume of a single can of beans. Using this approach,
we reduce the number of variables in our declarative models.

Figure 2 shows the process chain of a SORT plant. The first phase of this
process is called input sorting. The boxes that reach the SORT plant are opened
and their contents are poured into a hopper. Then the instances of food items
are sorted into other boxes by the Sorter machinery, in order to create food
articles and, if possible, homogeneous boxes, i.e. boxes that contain similar food
articles with close expiry dates. When a box is full or the maximum weight is
reached, it is closed and then stored in an automated warehouse, which may
contain up to 1000 boxes. The size of the stored boxes is 400 x 600 x 420 mm
and a single box cannot be heavier than 15 kg in order to be lifted by a human

2We call in this context sub-optimal all solutions for which it was impossible to prove
optimality within the given timeout. Usually the proof of optimality takes more time than
finding the optimal solution; for this reason, a sub-optimal solution might actually be optimal.



operator. These are not limits of our DSS but they are imposed by the design
of the SORT plant and by Italian laws. It is worth noting that, during input
sorting, the Sorter does not receive any directive by the DSS. The policies of the
warehouse, such as efficiently allocating space, or filling as much as possible the
boxes, are not the subject of this work, and are completely independent of the
DSS. Indeed, the optimal allocation of warehouse space could be the subject of
another work.

In the following phase of the process chain, called output sorting, the DSS
assigns an output destination to each food article. The Sorter machinery has N
regular output destinations plus two non-regular output destinations: go back,
i.e. the article must go back to the warehouse, and stay, i.e. the article must
stay in the warehouse without moving. The DSS can associate a regular output
with an order requested by a customer. If some of the articles contained in a
box are chosen by the DSS to satisfy an order, then that box will be opened
and its items will be poured into the hopper again and, in accordance with the
guidelines defined by the DSS, each article will be routed by the Sorter to one
of the N regular output destinations or sent back to the warehouse (go back
destination). At the end of each output destination (except for stay) there is
a box that gathers all the sorted articles. When a box is full or the maximum
weight is reached, it is substituted automatically with an empty one. The DSS
does not need to take into account the composition of the actual boxes having
a go back destination, but only decides if each item must go back or if it is
used for some order. Also, the box substitution is automatic, and not handled
by the DSS. The articles contained in closed boxes remain in the warehouse
without moving (stay destination). The boxes that contain articles that must
go back to the warehouse, instead, can be extremely heterogeneous; therefore
their content must be poured again into the hopper, in order to repeat, for these
articles, the input sorting phase. Finally, the boxes containing the articles that
will be utilised to satisfy an order are sent to machinery for unpacking and food
processing.

Example 1. Consider the case where two orders, o1 and os, were commissioned
and that both of them are satisfiable. The DSS finds the best solution and as-
sociates order o1 with the first output destination (out 1) and order oy with the
second output destination (out 2) and, simultaneously, assigns some of the food
articles contained in the boxes 5 and 17 to o1 and some of the articles contained
in boxes 17 and 131 to os. The boxes with identifiers 5, 17 and 131 are then
picked from the warehouse, opened and their content is poured into the hopper.
The Sorter then sends to out 1 the articles chosen to satisfy o1 and to out 2 the
ones chosen to satisfy oo. The unused articles, which are the ones assigned to
go back, should be sent back to the warehouse after repeating the input sorting
phase.

It is worth noting that, in the current SORT plant’s design, there is only
one sorting line. That means that the Sorter machinery depicted on the left of
Figure 2 (input sorting phase) is exactly the same Sorter machinery on the right



(output sorting phase). Consequently, the Sorter is not able to execute input
sorting and output sorting at the same time.
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Figure 2: SORT chain. Each box in the warehouse has an RFID chip used for identification
and tracking.

3. Background

The three techniques used in this work are not only state of the art techniques
to solve the class of problems we are addressing, but they are also declarative
approaches. This means that the most important part is modelling the problem
in the devised language, and once the model of the problem is devised, the user
is encouraged to use the solver as a black-box, since other issues (like tuning the
parameters of the solver) are of secondary importance. For ASP and BLP, the
producers of the solver provide very good default parameters, that have been
carefully selected in order to provide, on average, the best possible performance,
making the solver competitive with other solvers. For CLP(FD), in a previous
work (Chesani et al., 2018) we did a systematic experimentation to find the
combination of parameters providing the best performance.

8.1. Constraint Logic Programming

CLP is a set of logic programming languages that can deal with particular
predicates named constraints. Constraints are not defined as all other predicates
in the knowledge base of the program, but they are handled by an external
solution algorithm, named constraint solver, that can simplify them and check
for their consistency during the resolution of the program. There exist various
CLP languages, each dealing with a specific domain, and featuring a constraint



solver. Notable examples of CLP languages are CLP(R), to deal with continuous
variables and using the simplex algorithm to deal with linear constraints, and
CLP(FD), that deals with variables ranging on finite domains.

In this work, we are mainly concerned with CLP(FD), with a solver aimed
at solving the so-called Constraint Satisfaction Problems by using constraint
propagation algorithms.

A Constraint Satisfaction Problem (CSP) involves a set of variables, that
are considered as unknowns, each ranging on a finite set, called domain. A set
of constraints are imposed on the variables, stating that not all combinations
of values for the variables are feasible. For example, the constraint A < B is
satisfied by all pairs of values such that the value taken by variable A is less
than the value of variable B. The aim is assigning to each variable one value
taken from its domain in such a way that all constraints are satisfied: this is
called a solution of the CSP.

In some cases, amongst all the solutions of a CSP one needs to find the
best one, according to some objective function. This is called a Constraint
Optimization Problem.

The solution algorithms employed in CLP(FD) are based on notions of con-
straint propagation with different levels of consistency of the constraints. Each
constraint has a propagation algorithm, that is tailored to solving efficiently
such constraint; such algorithms remove values inconsistent with the specific
constraints, since they cannot be extended to solutions of the whole problem.
The technologies used in CLP(FD) were later implemented also in non-logic
languages, giving rise to the area of Constraint Programming. CLP(FD) is usu-
ally particularly effective in solving problems that employ global constraints, i.e.,
constraints that involve many variables (possibly, all variables in the problem)
and for which there exist strong propagation algorithms.

3.2. Binary Linear Programming

Mathematical Programming (also known as mathematical/numerical opti-
misation) is a branch of operations research concerning the study of optimisation
using mathematical techniques. A Mathematical Programming problem is de-
fined by a set of variables, an objective function that must be minimised or
maximised and a set of constraints, expressed as equalities and inequalities, on
the variables.

Mathematical programming is divided in several problem classes, such as
Linear Programming (LP), quadratic programming, convex programming, etc.
In particular, in LP the objective function and the constraints are linear and
the variables are continuous. If the variables are required to be integers, then
the problem is in the Integer Linear Programming (ILP) class. Binary Linear
Programming (BLP) is a subclass of ILP where all the variables are binary-
valued.



A BLP problem is expressed as:

Maximize cT'x (1)
such that Ax<b

x>0
and x € {0,1}

The usual solution technique is based on the linear relaxation of the BLP
problem, in which the integrality constraint x € {0,1} is relaxed, requiring each
variable to belong to the interval [0,1]: x € [0,1]; in fact, if all variables are
allowed to take real values, the relaxed problem can be solved to optimality in
polynomial time. If in the optimal solution of the linear relaxation all variables
have integer values, the problem is solved. Otherwise, the value of the objective
function of the optimal linear relaxation provides a valid upper bound to the
optimal solution of the BLP: no integer solution can have a better objective
function value.

Two main techniques can be used to start a search for the optimal integer
solution. One is named cutting planes, and consists in adding further linear
constraints that eliminate fractional solutions without removing any integer
solution. The other, named branch-and-bound, consists in selecting one variable
x; with non-integer value and creating two sub-problems: one in which x; =
0 and the other in which z; = 1. Again, the two sub-problems are solved
recursively. In particular, their linear relaxation provides an upper bound to the
optimal solution of the two sub-problems, and if one of these is worse than any
previously obtained solution, the corresponding sub-problem can be discarded
without the need to fully solve it.

These techniques are usually very effective if the problem is naturally mod-
elled with linear constraints, in particular when the number of linear constraints
in the linear formulation is not exceedingly high. Also, since it relies heavily on
the linear relaxation, BLP is able to focus directly on the best solutions, so it
is a very effective technique for finding the optimum.

As in our previous CLP(FD) program (Chesani et al., 2018) (described
briefly in Section 4), we adopted ECL!PS® for modelling the BLP problem.
ECLPS® provides a library, called eplex (Shen and Schimpf, 2005), which al-
lows the user to model a Mathematical Programming problem in ECL!PS¢, and
then solve the problem by using external Mathematical Programming solvers.

In our tests we used COIN-OR CBC (Saltzman, 2002) as Mathematical
Programming solver because it is open source, but other (probably faster) com-
mercial solvers, such as Gurobi (Gurobi Optimization, LLC, 2018), could be
used.

3.8. Answer Set Programming

Amongst the logic languages, a recent proposal is ASP. While the most
widely used logic programming language, Prolog, includes language structures
that are not declarative (such as the cut to commit to some branching decisions,



or assert/retract that can be used to create a form of destructive assignment),
ASP rejects all possible sources of non-declarativity and is, therefore, a pure
logic language. There exist very efficient ASP solvers (Simons et al., 2002;
Lin and Zhao, 2004; Giunchiglia et al., 2006; Leone et al., 2006; Gebser et al.,
2011), some capable of obtaining efficiency comparable with that of SAT solvers
(as they won some SAT competitions); on the other hand the logic program is
usually grounded before the solving activity starts, and the ground program may
be very large. An ASP solver is able to find the stable models (Gelfond and
Lifschitz, 1988) of a logic program, also known as answer sets.
In ASP, a program is a set of clauses in the form

hi,ha, ... hy = p1,p2,. . Po.

where the head hq, hs, ... h, is a disjunction of atoms and the body pi,...,pn
is a conjunction of literals. Each literal is either an atom or the negation of an
atom. A clause with empty body is called a fact, while a clause with empty
head is named Integrity Constraint (IC), and its body must be false in each
answer set.

Modern ASP solvers extend the language of programs with a number of
features; we list the most relevant ones for this article.

Choice rules. A choice rule has the syntax
{h} :- Body.

and the meaning is that if the Body is true, then the atom in curly brackets h
can be chosen to be true, i.e., the solver can choose whether it is true or false.
The syntax of choice rules can be extended to cardinality rules of the form

[ {h} u - Body.

which state that the number of true atoms matching h is between a lower bound
[ and an upper bound u.

Conditions. A condition has syntax a(X) : b(X) where a and b are atoms. It
is expanded to the set of atoms {a(X)|b(X)}, i.e., the set of atoms a(X) such
that b(X) is true. If a condition occurs in the body of a clause, the atoms in
the set are considered in conjunction; if it is in the head, they are considered in
disjunction.

Aggregates. ASP features aggregates of sum #sum, maximum #max, minimum
#min etc. An aggregate #agg can only occur in an atom

#agg{t1,ta,...,t, : Goal} Op Expr,

where t1,t2, ..., 1, is a tuple of terms, Goal is a conjunction of literals, Op is a re-
lational operator (=, <, <, ...), and Expr is an expression. The meaning is that
the set of tuples {t1,%a,...,t, : Goal} making Goal true is considered; on such



set, the first term #; is the term subject of aggregation and the value obtained
is compared through Op with Expr. For example, #sum{A, B : p(4,B)} > 3

means
> A>3
(A,B)e{A,B:p(A,B)}

A number of ASP solvers have been developed (Simons et al., 2002; Lin and
Zhao, 2004; Giunchiglia et al., 2006; Leone et al., 2006; Gebser et al., 2011);
the usual solution technique is to ground the program, i.e., substitute each vari-
able in all possible ways (with all its possible instantiations). For this reason,
syntactic restrictions are imposed on the language in order to ensure that the
ground program is always finite. Still, the ground program is typically expo-
nentially larger than the original program. ASP solvers employ very advanced
search strategies to find quickly a feasible solution, i.e., a solution satisfying all
constraints, and rely often on technologies similar to those used in SAT solvers,
such as unit propagation, conflict directed clause learning, restarts. ASP solvers
are typically very effective at dealing with problems in which the satisfaction
component is very hard, i.e., when the hardest part is finding a feasible solution,
while they are usually less effective than mathematical programming techniques
at advancing directly to the optimal solutions.

8.8.1. Mapping Binary Linear Programming to Answer Set Programming
The BLP problem illustrated in Eq. 1 can be translated in the following ASP
program.

:— #sum{ Val_ij, J : x(J), a(I, J, Val_ij) } > Bi,
b(I, Bi),
row(I).

{ x(J) } :- column(J).

column(l..N) :- nvar(N).

row(1l..M) :- nrows(M).

where predicate x(J) represents the j-th binary variable in vector x, predicates
nvar/1 and nrows/1 return, respectively, the number of variables, i.e. the
number of elements in x, and the number of rows in matrix A. Predicate
b(I, Bi) unifies Bi with the i-th element of vector b, while a(I, J, Val_ij)
unifies Val_ij with the element a;; of A.

This program shows that ASP as expressive as BLP. However, it is worth
noticing that this direct transformation could lead to inefficient ASP programs,
therefore, a reformulation of the problem in ASP is usually more advisable.

8.4. Comparison of solvers

CLP(FD), ASP and BLP can be considered three modelling and solution
techniques for constrained optimization problems.

From a computational complexity point of view, CLP(FD) is a Turing-
complete programming language, while ASP typically addresses problems up
to the second level of the polynomial hierarchy (although there exist extensions

10



that make it Turing-complete) and BLP addresses NP-hard problems whose
satisfaction component is NP-complete.

This implies that any NP-complete problem can be formulated into these
three formalisms, and that it is always possible to automatically reformulate an
NP-complete problem given in one formulation to the other two; in Section 3.3.1
we showed one example.

On the other hand, automatic reformulation techniques in general cannot
capture many of the practical aspects. A same problem can be modelled with
different CLP(FD) formulations (and with different ASP or BLP formulations),
and some of them will be solved efficiently, as they exploit the strengths of the
chosen solver, while others may slow down the solution.

It is often impossible to select a-priori the best solver for a given application,
however some general rules of thumb can be given.

CLP(FD) leverages on strong constraint propagation of global constraints,
so it will be effective when the problem is formulated with many efficient global
constraints. Global constraints reduce, during search, the domains of the vari-
ables, effectively pruning the search tree. These are look-forward techniques,
tailored for many different global constraints, that strive to reduce as much as
possible the search space just after an assignment is made. Often, the user is
provided with many different search strategies, and (s)he has to select one or
implement a new one tailored for the problem to be addressed.

ASP solvers are more focussed on look-back techniques, that try to under-
stand the reasons of a failure and learn new constraints from them. They exploit
very efficient search strategies, based on clause learning and restarts. The idea
in ASP is that the user should not delve into selecting a search strategy or de-
fine tailored search strategies (although (s)he can), but use the default search
strategies of the solver, that work well, on average, in a variety of problems.
One drawback is that the grounding phase expands exponentially the program
written by the user, and it might reach the memory limits of the machine, or
become so large that the solution of such large programs might be overwhelming.

BLP, and, in general, mathematical programming formulations, are based
on the vast literacy on mathematical optimization, that is extremely efficient to
guide the search toward the optimum, in particular when most of the constraints
are naturally formalized as linear constraints. On the other hand, if the variables
take only integer values and the linear formulation is cumbersome or the linear
relaxation of the problem provides a bound that is uninformative, then such
techniques are less effective, and tend to enumerate large parts of the search
space, since they cannot use non-linear constraints to efficiently prune the search
space.

In general, it is very hard to know a-priori which technique will perform
best, and one possible strategy is to perform experimental evaluation.

It is worth noting that all these techniques are complete, meaning that they
can find the optimal solution in finite time and prove that it is the real optimum,
i.e., that no better solution can exist. Thus, all these techniques provide the
same optimal solution, or solutions of exactly the same quality (unless they are
terminated after some timeout). There exist other techniques, such as local

11



search or population-based methods, that are used for very large problems,
that usually can find quickly a reasonable solution but cannot prove that such
solution is optimal, and will loop forever if requested to find the real optimum.

4. CLP(FD) Model

In this section we recap the CLP(FD) model of the DSS introduced by Chesani
et al. (2018).

4.1. Variables

In the CLP(FD) constraint model, we have a list of decision variables as-
sociated to orders o = {o01,...,0x} and a list of variables associated to food
articles a = {ay,...,ap}. The domain of an order variable is

Vje{l,....,K} o0; €{0,1}

where 1 means that the order will be satisfied and 0 that it will be not. A
posteriori, i.e. after a solution is found, the DSS assigns each order to an
output destination. Order variables are sorted in descending order by income.

Each article can be used to satisfy at most one order. Therefore the domain
of an article variable contains the order indices plus the values -1 and 0:

Vie{l,....M}a; €{-1,...,K}

where 0 means “stay”, i.e. the article is not associated with any order and stays
in the warehouse without moving, while -1 represents “go back”, i.e. the article
goes through the Sorter but it will be sent back to the warehouse.

4.2. Constraints

We split the constraints into two categories: article constraints and order
constraints.

4.2.1. Article Constraints

The first article constraint simply states that articles cannot be associated
with incompatible orders

—Compatible(i,j) = a; # j Vie{l,....M}hVje{l,....,K} (2)

where Compatible(i, j) is true if the i-th article belongs to a feed category com-
patible with the feed category requested by the j-th order.

In the SORT environment, each order consists of a requested quantity of
only one feed material and each article belongs to only one feed category. Pred-
icate Compatible checks if the feed category of the order matches with the feed
category of the article. However, in the future, for more complex scenarios, we
plan to use ontological reasoning for compatibility checking.

The following constraint preserves the consistency of the boxes contained in
the warehouse. Once a box is opened, all of its contents are poured into the
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hopper and all the items contained in that box must be sorted by the Sorter
(note that one possible destination is to go back to stock). It is not possible to
have that an article in a box goes through the Sorter while the other articles
contained in the same box remain in storage:

a; #£0=>ar#0 Vie{l,...,M} Vk € ArticlesBox(Boz(i)) ~ {i}  (3)

where function Boz(i) returns the index of the box containing the i-th article
and function ArticlesBoz(l) returns the indexes of the articles that are contained
in the I-th box.

Suppose that we are using L boxes. The following constraint states that if
none of the articles contained in a box is used to satisfy an order, then the box
must not be opened and all the articles contained in that box must stay in the
warehouse without moving. This constraint avoids situations in which the box
is opened and all of its content goes back.

Bi € ArticlesBox(l) s.t. a; > 0 = Vk € ArticlesBox(l) ar =0 Vi€ {1,...,L}
(4)

If there is an article associated to an order, then that order must be com-
pletely satisfied:

az:],]>0:>o]:1 V’Le{l,,M} (5)

4.2.2. Order Constraints
At most N orders can be satisfied, where IV is the number of regular outputs:

K
> 0 <N (6)
j=1

This constraint was implemented by simply imposing an atmost/3 constraint
to the order variables.

If the j-th order must be satisfied (0o; = 1), then enough food product must
be available

0j=1= Z Quantity® (i) > Quantity®(j) Vie{l,...,K} (7)

a;=j

where function Quantity®(-) (respectively, Quantity®(-)) returns the quantity of
food product contained (requested) in an article (by an order). In our implemen-
tation, to iterate the sum over the list of article variables that have value equal
to j, we execute the following steps. First, we extract the list of compatible ar-
ticles, then this list is associated with a list of boolean variables. Each boolean
variable has value 1 if the corresponding compatible article is used to satisfy
the order and 0 otherwise. The summation above is implemented as a scalar
product of the compatible article quantities and the list of the corresponding
boolean variables.

13



In order to avoid using more food product than necessary for satisfying an
order, the following constraint fixes an upper limit of food product that must be
used to satisfy an order. It states that the sum of the quantities of food product
contained in the articles used to satisfy an order must not exceed the quantity
requested by that order plus a surplus quantity of food.

0j=1= Z Quantity® (i) < Quantity®(j) + Surplus Vj e {l,...,K} (8)

a;=j

In the experiments, we fixed the Surplus to 5 kg.
If there is not enough food product to satisfy an order, then the order is
unsatisfiable

Z Quantity” (i) < Quantity®(j) =0; =0 Vje{l,...,K} (9)

Compatible(i,5)

4.3. Objective function

The aim of the DSS user is maximize the earnings and minimize the costs.
In particular the user wants to maximize the incomes obtained by satisfying the
orders, while minimizing the storage costs, the penalties that must be paid if
the orders are not delivered on time and the processing cost, i.e. the cost for
using machinery for sorting, unpacking and food processing.

In order to obtain an optimal solution, we define the following objective
function that should be maximized

K
PROFIT = Z 0j - Income(j) — UNUSEDARTICLESCOST
j=1
— LATEPENALTY — SORTINGPENALTY (10)

where the function Income(j) returns the income obtainable by satisfying the
j-th order. UNUSEDARTICLESCOST is the cost of keeping the unused articles
one more day in the storage and it is defined as

UNUSEDARTICLESCOST = Y  StorageCost (i) (11)
aiSO

where StorageCost(i) is a function which returns the daily storage cost of the
i-th article, which is computed by multiplying the number of kilograms of the
i-th article with a constant value of storage cost.

LATEPENALTY is the cost of not satisfying not even today those orders whose
deadlines were missed, plus the cost of the accumulated delay:

K
LATEPENALTY = Y _ LatePenalty(j) - DaysLate(j) - (1 — o) (12)
j=1

where LatePenalty(j) is the penalty for being one day late in satisfying the j-th
order and DaysLate(j) is the number of days already passed since the deadline
expired, including the current day. The later an order is, the higher the cost.
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SORTINGPENALTY is a penalty for all those articles that must “go back” and
therefore should go through the sorter machine once again. It is defined as

SORTINGPENALTY = Z ArticleSortingPenalty (i) (13)

ai:—l

where ArticleSortingPenalty(i) is the penalty of sorting once more the i-th ar-
ticle, which is computed by multiplying the number of aggregated food item
instances represented by the i-th article with a constant value of sorting cost.

5. Binary Linear Programming approach

In this section we illustrate the BLP formulation of the DSS constraints.
5.1. Input data

The input data is provided by means of the following predicates:
order(Order_id, Feed_category, Deadline, Quantity, Income).
provides the data about the orders, predicate
item(Ean, Quantity, Volume, Feed_category).
identifies the food items that entered the SORT system, while predicate

article(Article_id, Ean, Box_id, Expiry, Storage_date,
< Feed_category, Quantity).

is about the food articles, where each article represent a set of instances of a
particular food item that have the same expiry date.

5.2. Variables
The variables of the BLP model are:

e The list of order variables o = {01 ...,0x}, where K is the number of
orders that the SORT plant received from clients.

e The matrix A (of size M x C) of article variables, where M (number
of rows) is the number of articles, and the number of columns C is the
number of orders K plus the number of non-regular outputs (stay and go
back), i.e. C = K + 2. The index of the columns of A varies from -1 to
K.

e The list of box variables b = {by,...,br}, where L is the number of boxes.
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The domain of an order variable is
Vie{l,...,K}o0; €{0,1}

where 1 means that the order will be satisfied and 0 that it will be not.
The elements of the matrix of article variables are boolean variables

Vie{l,....M}Vje{-1,...,K} a;; € {0,1}.
In particular, a;; = 1 means that the i-th article
e will be used to satisfy the j-th order if j > 1,
e must stay in the warehouse (without opening its box) if j = 0,
e will go back to the warehouse (after its box was opened) if j = —1.

There is also a boolean variable associated with each box
vie{l,...,L} b € {0,1}

where b; = 1 means that the [-th box will be opened.
Each box b; contains a set of articles; we define a function Boxz(4) that returns
the index of the box that contains the i-th article.

5.3. Constraints

We can split the constraints into two categories: article constraints and order
constraints.

5.8.1. Article Constraints
The first article constraint states that an article can be associated only with
one destination

K
> a;=1 Vie{l,...,M} (14)
j=—1

The second article constraint simply states that articles cannot be associated
with incompatible orders

—Compatible(i, j) = a;; =0 Vie{l,...,.M},Vje{l,...,K} (15)

where Compatible(i, j) is true if the i-th article belongs to a feed category com-
patible with the feed category requested by the j-th order.

To preserve the consistency of the boxes contained in the warehouse, the
following constraints are imposed

ai; < by I = Box(i),¥i € {1,...,M},¥j e {~1,1,...,C}  (16)
aip+b <1 l =Bozx(i),Yie{l,...,M} (17)
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Constraint 16 states that if the i-th article is associated with an order or must
go back, then the box that contains it must be opened. Instead, 17 states that
it is not possible that the i-th article must stay and that the box that contains
it is opened.

Moreover, we want to avoid situations where the box is opened and all its
content goes back. This can be done by imposing the following constraint

> ai,—1 < |ArticlesBox(l)| — 1 vie{l,...,L} (18)
1€ ArticlesBoxz (1)

where ArticlesBoz(l) is the set of the indices of the articles that are contained
into the I-th box.

The following constraint states that if an article ¢ is used to satisfy an order
J, then that order must be satisfied

aijSOj ViE{l,...7M}7Vj€{1,...,K}. (19)

5.8.2. Order Constraints
The following constraint states that at most /N orders can be satisfied, where
N is the number of regular outputs

K
> 0;<N (20)
j=1

The following constraint states that an order cannot be satisfied if not enough
food is assigned to such order

M
Z Quantity® (i) - a;; > oj - Quantity®(j) Vje{l,...,K} (21)

i=1
Compatible(i,5)

The following constraint fixes an upper limit to the quantity of food product
that can be used to satisfy an order

M
Z Quantity® (i) - a;; < o; - Quantity®(j) + SURPLUS Vj € {1,...,K}.

i=1
Compatible(i,5)

(22)

If the amout of compatible food requested by an order is not available in the
warehouse, then that order is unsatisfiable

Z Quantity® (i) < Quantity®(j) = 0; =0 Vje{l,...,K} (23)

Compatible(i,j)
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5.4. Objective Function
The objective function is the same as for the CLP(FD) approach:

K
PROFIT = Z 0j - Income(j) — UNUSEDARTICLESCOST

j=1

— LATEPENALTY — SORTINGPENALTY (24)

In this case, the cost UNUSEDARTICLESCOST of keeping the unused articles one
more day in the storage is defined as

M

UNUSEDARTICLESCOST = Z(aﬂ + a;2) - StorageCost (i) (25)
=1

where StorageCost(i) returns the daily storage cost of the i-th article.
LATEPENALTY is defined as in the CLP(FD) case.
SORTINGCOST is a cost for all those articles that must “go back” and there-
fore should go through the sorter machine once again. It is defined as

M
SORTINGCOST = Z a1 - ArticleSortingCost (i) (26)
i=1

where ArticleSortingCost(i) returns the cost of sorting once more the i-th article.

6. Answer Set Programming approach

In the ASP formulation of a problem, the solution is encoded in the model
of the logic program. Below, we develop a program providing the solution as a
model. The encoding of the input data is the same as in subsection 5.1.

6.1. Model Generation and Integrity Constraints

One of the main decisions is to select the orders that will be satisfied; we
define a predicate satisfied_order(Order_id,Income) that is true for each
order that must be satisfied. Such predicate is in the generation part of the
program, so that the solver is allowed “to guess” its truth value. More precisely,
for each order such that order (Order_id,_,_,_,Income) is true, the solver can
decide whether the corresponding atom satisfied order(Order_id, Income)
is true:

0 { satisfied_order(Order_id,Income) :
— order(Order_id,_,_,_,Income) } N
:= noutput (N).
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The previous clause also includes a cardinality constraint, stating that the
number of atoms for which satisfied order is true should be between 0 and
N (the number of outputs). This clause corresponds to the constraint defined
in Eq. (20).

The other decision to take is the destination of each article. An article identi-
fied by Article_id can be used to satisfy an order identified by an Order_id; in
such a case the atom article_used(Article_id,Order_id) will be true. Oth-
erwise, the article can stay (making true atom article_stay(Article_id)) or
be sent back (making true atom article back(Article_id)).

{ article_used(Article_id,Order_id) } :-
article(Article_id, _, _, _, _, Feed_category, _),
order(Order_id, Feed_category, _, _, _).

{ article_back(Article_id) } :-
article(Article_id, _, _, _, _, _, _).

{ article_stay(Article_id) } :-
article(Article_id, _, _, _, _, _, _).

Note that the article can be used only to satisfy orders of the same feed cat-
egory. Clearly, for a given article the three destinations are mutually exclusive;
this can be imposed through the following integrity constraints:

:— article_stay(ArticleId), article_back(ArticleId).
:— article_stay(ArticleId), article_used(Articleld, _).
:— article_back(ArticleId), article_used(ArticlelId, _).

We still have to impose that at least one destination must be selected for
each article. We first define that if an article is sent back or has to stay, then
that the article is unused:

article_unused(Article_id) :- article_back(Article_id).
article_unused(Article_id) :- article_stay(Article_id).

Then we state that, for a given article, it is impossible that it is neither used
for an order nor unused:

:— not article_used(Article_id, _),
not article_unused(Article_id),
article(Article_id, _, _, _, _, _, _).

It is not possible for an article to be used for different orders.

:— article_used(ArticleId,OrderIdl),
— article_used(Articleld,OrderId2),
OrderIdl !'= OrderId2.

All the clauses defined above involving the atoms article_used, article_back

and article_stay correspond to the constraints defined in Equations 14 and
15.
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We can now define the concept of open boxes; a box is opened if it contains
an article that is either used to satisfy an order or sent back to the warehouse.
The following clauses correspond to the constraints in Eq. (16):

open_box(Box_id) :-
article_used(Article_id,Order_id),
article(Article_id, _, Box_id, _, _, _, _).
open_box(Box_id) :-
article_back(Article_id),
article(Article_id, _, Box_id, _, _, _, _).

If a box was opened, all of its content must be extracted, so articles contained
in it cannot be in status stay. This clause corresponds to the constraints in
Eq. (17):

:— article_stay(Article_id),
article(Article_id, _, Box_id, _, _, _, _),
open_box (Box_id) .

To avoid that a box is opened just to send back all its content, we first define
that a box is used for some order (predicate box_used_in_order) if there is some
order using one of its articles:

box_used_in_order (Box_id) :-
article_used(Article_id,Order_id),
article(Article_id, _, Box_id, _, _, _, _).

and then impose that one box cannot be opened and not used for some order:
:— open_box(Box_id), not box_used_in_order(Box_id).

The two clauses above correspond to the constraints in Eq. (18).
Also, it should be forbidden for an article to be used to satisfy an order if
that order is not (fully) satisfied (it corresponds to Eq. (19)):

:— not satisfied_order(Order_id),
— article_used(Article_id,Order_id).

and an order cannot be satisfied if the sum of the quantities of the articles used
to satisfy such order is not enough (see Eq. (21) and (23))

:— satisfied_order(Order_id),

order (Order_id, Feed_category, Deadline, OrderQuantity,

— Income),

#sum { ArtQuantity, Article_id :
article_used(Article_id, Order_id),
article(Article_id, _, Box_id, _, _, Feed_category,
— ArtQuantity)

} < OrderQuantity.
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On the other hand, the sum of the quantities of the articles used to satisfy
an order should not exceed the request by more than a given surplus (see Eq.

(22)):

:— order(Order_id, Feed_category, Deadline, OrderQuantity,
<« Income),
max_order_surplus(Surplus),
satisfied_order (Order_id),
#sum { ArtQuantity, Article_id :
article_used(Article_id, Order_id),
article(Article_id, _, Box_id, _, _, Feed_category,
— ArtQuantity)
} > OrderQuantity + Surplus.

6.2. Optimization

The objective is maximizing the profit, as defined in Equation 10; it is the
algebraic sum of four terms, taking into consideration the income for satisfied
orders, the storage costs for unused articles, the sorting costs for articles sent
back, and the late penalty:

#mazrimize
{ Income,Order_id : satisfied_order(Order_id, Income) ;
-ArticleStorageCost,Article_id : storage_cost(StorageCost),
article_unused(Article_id),
article(Article_id, Ean, _, _, _, _, ArtQuantity),
item(Ean, ItemQuantity, _),
ArticleStorageCost = ArtQuantity / 1000 * StorageCost;
-ArticleSortingCost,Article_id : sorting_cost(SortingCost),
article_back(Article_id),
article(Article_id, Ean, _, _, _, _, ArtQuantity),
item(Ean, ItemQuantity, _),
ArticleSortingCost = (ArtQuantity / ItemQuantity) *
— SortingCost;
-LateDaysCost, Order_id : late_order_penalty(LateCost),
not satisfied_order(Order_id),
order(Order_id, _, Deadline, _, _),
LateDaysCost = @late_days(Deadline) * LateCost
}.

@late_days/1 is a predicate that calls an external Python function that returns
the number of delay days including the current one.

7. Experiments

A prototypical SORT plant is still under development, therefore real data
about orders and articles is still not available. To test the scalability of the
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proposed approaches we generated synthetic random datasets with 30 orders
and an increasing number of articles (and hence an increasing number of boxes).
In our experiments, each order has an income varying from 0.14 to 0.23 euros
per kg (the income of each order was randomly chosen), we used the price of
corn which can be variable and is used as economic point of reference for the
price of animal feed materials based on grain. The price of other feed materials
such as meat can be different but we do not have enough information to define
competitive prices for these materials (the economic model of the SORT project
is still under development). However, these differences of prices do not affect the
timings required for finding the optimal solutions by our models. The quantity
of requested feed material for each order, instead, varies® from 100 kg to 500 kg
and the surplus was set to 5 kg. Moreover, the maximum weight that a box can
carry was set to 15 kg (limit imposed by law) and its max capacity is 0.1008 m3
(400 x 600 x 420 mm).

The size of the datasets is expressed in number of articles. As mentioned
before, a food article is an aggregation of instances of a food item. In our exper-
iments, each food article was generated by aggregating a number of instances
between 1 and N, where NV is the maximum number of instances of a given food
item that a box can contain according to the maximum weight and capacity.
In our synthetic dataset generator, every time a food article is created, it is
assigned to the current box if there is enough space to contain it and if adding
it does not exceed the weight limit of the box. Otherwise, a new box identifier
is generated and the newly created article is assigned to it.

Each food item has a volume that can vary from 100 (small yogurt cup) to
4’000 cm? (limits imposed by the Sorter machinery) and a density that varies
from 85 (roughly the density of a box of cereals) to 1100 kg/m? (roughly the
density of a small yogurt cup). The quantity, i.e. the weight, of an item depends,
obviously, on the volume and the density chosen.

The quantity and the income of an order, the volume and the density of a
food item and the number of food item instances for an article are values that
are randomly chosen using the discrete uniform distribution. Finally, we set the
storage cost to 0.0005 euros per kg, which is the estimated electricity cost in
Italy for the designed refrigerated warehouse, and the sorting cost to 0.10 euros,
which is the estimated cost of one minute of time spent by a human worker (it
might be necessary to pour the content of the go back boxes into the hopper or
to check for accidental damages).

In our experiments we compare the performance of the three methods pre-
viously detailed: the BLP and ASP, and CLP(FD) approaches.

We performed two types of experiments. In the first, we compared the three
approaches on datasets containing up to 300 articles. In the second experiment,
we tested the scalability of the best performing approach on larger datasets. In

3Feed factories usually process tons of material, therefore, given that they can take feed
material from different sources, we expect to receive orders of the magnitude of hundreds of
kilograms.
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a previous work (Chesani et al., 2018), we evaluated the CLP(FD) program, im-
plemented in ECL?PS®, by combining several heuristics and strategies for search
and optimization. The experimental results in (Chesani et al., 2018) showed that
the best combination is the one where, for all the variables, select_income is
the variable selection method and indomain max is the value choice method,
i.e. the values of a variable are tried in decreasing order, and continue is the
optimization strategy*. Therefore, in this work, we report the performances of
the CLP(FD) approach using only this combination of heuristics.

All the tests were performed on GNU/Linux machines equipped with Intel
Xeon E5-2697 v4 (Broadwell) @ 2.30 GHz, using 1 core for each test. In all the
experiments, we set an execution timeout of 4 hours.

7.1. Test 1: comparison of different approaches

We consider a number of articles from 100 to 300 in steps of 10 and, for
each number of articles, we generated 10 datasets. We performed optimization
by using the CLP(FD) approach with the best configuration for the search, the
ASP and the BLP approaches. Then we compared the three approaches.

Figure 3 reports the geometric mean of the execution time in seconds for
finding the optimal solution for 10 different random datasets of increasing size.
The star symbol means that in one dataset the timeout occurred without finding
the best solution, therefore the execution time was averaged over 9 datasets. If
the timeout occurred at least in two datasets the timing is not reported.

The results show that the ASP program has the best performances up to
datasets with 230 articles and it is able to scale up to 240 articles. The CLP(FD)
approach starts having troubles already with 130 articles®. Note also that the
parameters of the search in ECL‘PS® were tuned in (Chesani et al., 2018) to
the values that gave best performance in the given application, while we left
the default parameters of clingo. This further shows the efficacy of the default
search values used in ASP solvers.

However, when the datasets become larger the ASP approach is no longer
able to scale, while the BLP approach does not have particular issues with
datasets containing up to 300 articles.

7.2. Test 2: evaluation of the BLP approach with bigger datasets

In these experiments we evaluate the BLP approach on datasets that have
a greater number of articles. We consider a number of articles from 400 to
1,000 in steps of 100 and, for each number of articles, we generated 10 datasets.
Table 1 reports the geometric mean of the execution time in seconds for finding
the optimal solution with the BLP approach for 10 different random datasets

4With the exception of select_income, the other heuristics are pre-defined options of
the search predicate of ECL!PS® (see http://eclipseclp.org/doc/bips/lib/gfd_search/
search-6.html).

5In (Chesani et al., 2018) the CLP(FD) program was able to scale up to 400 articles because
in that paper we had set the option delta to 10,000 and the sorting penalty to 0, while in the
current work we set delta to 1 and article sorting penalty to 10.
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Figure 3: Geometric mean of the execution time (in seconds) for the search of the optimal
solutions using the three approaches for each dataset size. The star symbol in the graph
means that in one dataset the timeout occurred without finding the best solution, therefore
geometric mean of the execution time was computed over 9 datasets.

of increasing size. The results show that the BLP approach is able to scale up
to 800 articles. With datasets containing 900 or 1000 articles, the timeout was
reached in 4 of them.

Table 1: Geometric mean of the execution time (in seconds) for the search of the optimal
solution using the BLP approach for each dataset size. The symbol “*’ (‘**’) means that in
one dataset (two datasets) the timeout occurred without finding the best solution, therefore

the execution time was averaged over 9 (8) datasets. The cells with ‘~’ indicate that the
timeout occurred at least in three datasets.

| Approach | 400 | 500 [ 600 [ 700 | 800 [ 900 | 1000 |
| BLP | 1.542 [ 6.429*% [ 8.560%F | 38.243% | 123.261* [ — [ — |

The results show that the BLP approach is able to find the optimal solu-
tion up to datasets containing 800 articles. With more than 800 articles the
SORT plant manager will have to settle for suboptimal solutions. It is worth
pointing out that, in our experimental setting, dealing with 800 food articles
means dealing with more than 500 hundred boxes (the average in our datasets
is 546 boxes) which is more than half of the maximum capacity of the designed
warehouse of the SORT plant.

7.8. Discussion

In this particular application the BLP approach showed best performance
amongst the three devised technologies. This is probably due to the fact that, in
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the given formulation, all the constraints were cast as linear constraints without
resorting to complex linearization schemes, so the linear relaxation provides a
good bound to the real value of objective function, which strongly empowers
the branch-and-bound algorithm employed in BLP. Also, the set of constraints
are not too tight, leaving many combinations as feasible solutions, so the main
difficulty is finding the optimum and proving optimality, two strong points of
BLP with respect to its competitors.

The CLP(FD) formulation was the worst performing, probably due to the
fact that it does not have strong global constraints guiding the search, and that
the satisfaction part of the problem was not the most challenging part.

ASP provided the best results for small instances, probably due to the ad-
vanced search strategies implemented in clingo. Still, it could not compete
with BLP in larger instances.

The source code of the proposed approaches and the synthetic datasets used
in our experiments are contained in the following git repository: https://
bitbucket.org/machinelearningunife/dss_models.

8. Conclusions

Using logic programming instead of imperative-based solutions provides sev-
eral well-known advantages such as declarativity, rapid prototyping and ease of
modifiability in case of changing requirements.

In this paper we presented a DSS that considers two paradigms for finding
the optimal solution given the content available in the warehouse of the SORT
plant. One approach is based on BLP and developed in ECL!PS®, while the
other one is based on ASP and developed in clingo.

The experiments showed that both BLP and ASP are valid approaches for
modelling and solving complex problems such as the SORT process. However,
for this process, the BLP approach outperforms the one based on ASP and the
previous one based on CLP(FD) (Chesani et al., 2018). This certainly does not
mean that the BLP approach is, in general, better than the other approaches,
but, for this particular problem posed by the SORT process, the BLP approach
has a much better performance.

The devised DSS has still some limitations. So far, in our model, every
article has the same storage cost, however there exist several kinds of warehouses
(refrigerated, room temperature, etc.); in the future we plan to use different
storage costs depending on the type of warehouse in which the article was stored.
Moreover, we will consider costs for using machinery for unpacking and food
processing. These last costs will depend on the type of packaging and on the
food type and consistency (opening a carton of milk can have a different cost
than opening a plastic can of powdered milk).

In addition, once the prototype of SORT plant has been built, we plan to
test our DSS with real data and to tackle more complex scenarios where orders
can request mixtures of feed materials. We would also like to improve our model
by taking into account not only articles already in the warehouse, but also those
currently being transported to the SORT plant.
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In our approach, we used ECL?PS® for representing the BLP constraints, it
could be interesting to encode our problem with MiniZinc (Nethercote et al.,
2007) and compare all the approaches. A completely different direction of re-
search could be to combine BLP and CLP(FD) solvers. Various combinations
could be considered; one of the possibility is to use a portfolio approach (Ama-
dini et al., 2016). However it makes sense to do all of this after we have real
data. We reserve the implementations of these different approaches as future
work.
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