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Abstract

Earthquakes cause irreparable damages to the built environment, which has led

bridge engineers to develop structural control systems to mitigate damage and

improve vibration reduction in real-time. Among control systems, base isolation

is one of the most commonly used passive control strategies for seismic protec-

tion of civil structures. Yet, it lacks real-time adaptability, has lower energy

dissipation, and poor performance during near-fault earthquakes. To overcome

these limitations, a hybrid control system comprised of semi-active magneto-

rheological (MR) dampers and base isolation passive control is installed at the

deck and piers for vibration reduction of highway bridge structures. This pa-

per, inspired by evolutionary game theory and artificial intelligence, proposes

data-driven replicator dynamic control algorithms to distribute the command

voltage to the current driver of the semi-active MR dampers. It integrates a

load balancing strategy to reallocate additional resources. To achieve a high-

performance design of the game-theory inspired controllers, a patented Neural

Dynamic model is used to optimize the control parameters. The evaluation

of the proposed methodology uses a benchmark control problem based on the

91/5 highway bridge in Southern California subjected to near-field earthquake
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accelerograms. The performance of five different proposed controllers is com-

pared with conventional Lyapunov and fuzzy logic control algorithms using 21

performance criteria. Results show the load balancing capability of the pro-

posed control algorithms to mitigate the vibrations experienced by the bridge

structure and further increase the durability of semi-active devices. The novelty

of the methodology impacts how game-theory controllers make control decisions

among multiple devices in engineering problems.

Keywords: Replicator dynamic, Game theory, Neural dynamic, Load

balancing, Data-driven control, Structural control

1. INTRODUCTION

Civil infrastructure including bridges are vulnerable to man-made and nat-

ural hazard damages, which greatly affect the structural performance as well as

the life-cycle costs [1, 2]. Extensive research about the economic consequences of

failures and damages in bridges due to natural hazards, especially earthquakes,5

has highlighted the importance of vibration mitigation strategies for bridges

[3, 4, 5]. Among different kinds of control systems used for seismic protection of

bridges, base isolators are one of the most common systems [6]. Isolation sys-

tems increase the flexibility of the structures and therefore reduce the inertial

force transferred from the ground to the structural elements [7, 8]. However,10

this kind of control system has its limitations. The isolated structures usually

experience more significant relative deformations due to their increased flexi-

bility [9]. For instance, the significant relative displacement between a bridge

deck and pier can increase the damage and maintenance costs in an isolated

bridge. On the other hand, the isolation systems show a relatively lower energy15

dissipation compared with viscous or MR dampers [10]. Furthermore, isolation

bearings are not able to show adaptive performance in real time to improve the

performance of control systems.

Accordingly, semi-active control devices like MR dampers can significantly in-

crease the seismic performance of isolated bridges [11]. Different strategies have20
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been suggested to enhance the structural performance of seismically excited

bridges. Fuzzy control algorithms are known as practical tools to deal with

complex and nonlinear systems [12]. Eight different fuzzy rule bases for vibra-

tion control of bridge structures were proposed by Symans and Kelly [13]. A

fuzzy supervisory control system was also implemented on a cable-stayed bridges25

by Park et al. [14]. Ok et al. [15] used a fuzzy control algorithm to determine

the input voltage of MR dampers installed on cable-stayed bridges. Salari et al.

[16] designed a variable Tuned Mass Damper (TMD) comprised of MR dampers

for vibration mitigation of cable structures. The variable TMD incorporates

fuzzy controllers to improve the performance of the proposed device.30

Wang and Adeli [17] proposed a self-constructing wavelet neural network al-

gorithm applicable for nonlinear control of large bridges. Zhang and Agrawal

[18] investigated the energy dissipation patterns of MR dampers in semi-active

and passive-on modes and proposed the “simple passive semi-active” control

strategy for MR dampers. The authors numerically evaluated the effectiveness35

of the controller using the structural model of a three-story building. The re-

sults confirmed the satisfactory performance and robustness of the proposed

control algorithm. AlHamaydeh et al. [19] proposed a Quasi-Bang-Bang al-

gorithm for vibration reduction of a three-story linear frame structures using

MR dampers. The frame structural model was subjected to ground motion ac-40

celerograms and the Quasi-Bang-Bang algorithm was optimized using a genetic

algorithm. The authors concluded that the proposed optimized algorithm shows

acceptable performance and is simple to implement. Javadinasab Hormozabad

and Ghorbani-Tanha [20] evaluated the performance of data-driven fuzzy con-

trollers using a 3D nonlinear model of Lali Cable-Stayed Bridge. According to45

the numerical results, the proposed semi-active controllers effectively reduced

the seismic response of the bridge and showed promising robustness against

time lag. Soares et al. [21] proposed a model-based adaptive control system for

seismic protection of cable-stayed bridges. The system included MR dampers

for energy dissipation together with a linear–quadratic regulator to determine50

the command voltage. The results showed the enhanced robustness of the pro-
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posed system compared with passive and semi-active resettable devices made

with pneumatic springs.

1.1. Model-based and data-driven control

Model-based adaptive controllers have been proposed for vibration control55

of structures [22]. Model-based controllers require an accurate analytical model

of the structure which is commonly obtained through system identification and

dynamic parameter estimation techniques. However, the estimation error leads

to uncertainty in dynamic properties of the structural system which is known

as system or model uncertainty [23]. The system uncertainty together with60

measurement uncertainty can lead to serious problems in terms of performance

and robustness [24]. In addition, the dynamic properties of the structure may

change with time which requires especial considerations for continuous model

updating [25]. Therefore, there is a need for data-driven adaptive controllers,

including those originated from artificial intelligence and game theory, which65

are model-free and make control decisions based on the measured data. Data-

driven controllers are especially beneficial in cases where the analytical model

of the controlled system is either unavailable, difficult to obtain, too complex

for controller design, or containing serious uncertainties [24].

1.2. Game theory and load balancing70

Zhang and Guizani [26] present noncooperative and cooperative games to

efficiently solve resource allocation, power control, attack, routing, and energy

management problems. The authors found that game theory is particularly

useful in understanding complex interactions in wireless domains such as wire-

less sensor networks and vehicular networks, especially when there are limited75

resources such as bandwidth, power, and capacity. Bauso’s [27] comprehen-

sive book in game theory with engineering application introduces two-players

zero-sum games, coalition games, evolutionary game theory, differential games,

stochastic games, replicator dynamics, and learning in games. The author covers
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the following engineering applications: multi-agent systems, demand-side man-80

agement, synchronization of power generations, opinion dynamics, bargaining,

supply chain, and cyber-physical systems with a human in the loop. Marden

and Shamma [28] studied game theory applications in distributed control of

engineering systems. Game theory was employed to improve intelligent trans-

portation and traffic control systems [29, 30]. Despite its versatility, there is85

limited research studying game theory to solve structural engineering problems.

This paper proposes novel data-driven controllers that integrate the evolution-

ary game theory, load balancing, and neural dynamic model to reduce vibrations

of smart isolated bridge structures in real-time. Gutierrez Soto [31] proposed a

hybrid control system for vibration mitigation of isolated bridges based on evo-90

lutionary game theory and replicator dynamics. This controller was employed

to design a semi-active configuration for vibration control of isolated highway

bridges [11]. Gutierrez Soto and Adeli [32] investigated vibration control of

high-rise and base-isolated structures using game-theory inspired algorithms

that were optimized using the patented Neural Dynamic (ND) model of Adeli95

and Park [33, 34, 35]. The results showed that the optimal Replicator Dynam-

ics Controller (RDC) makes a remarkable reduction in seismic response of the

bridge, especially the midspan displacement of the deck. Sohrabi and Azgomi

[36] combined game theory and optimization methods for its application in con-

trol systems. In a multi-agent system designed to perform a specific task, load100

balancing or reallocation strategies are used to redistribute the task over under-

loaded agents so that no agent will be overloaded and the task will be carried

out with higher efficiency [37]. [38] reviewed deterministic and non-deterministic

load balancing mechanisms in software-defined networks.

In this paper, a new load balancing strategy is proposed for the semi-active105

control methodology. This strategy allows for the modification of resource allo-

cation process by adding a voltage redistribution strategy to prevent any MR

damper from being overloaded and assign the remaining voltage to the other

devices. The load balancing strategy improves the performance of the game-

theory inspired RDCs and reduces the required voltage supply.110
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• Fitness functions are devised to develop five evolutionary game theory-

based data-driven controllers.

• A load balancing strategy is proposed for effective reallocation in real-time

of available resources.115

• Introduces five semi-active data-driven control systems incorporating the

RDCs together with the load balancing strategy for semi-active vibration

reduction of highway bridge structures.

• Optimizes control parameters studying the U.S. patented neural dynamic

model to optimize the design of the proposed RDCs120

The proposed RDCs are implemented on the benchmark problem for an iso-

lated highway bridge subjected to seismic loading. Then, the performance of

the proposed control methodology is evaluated and compared to conventional

Lyapunov-based and fuzzy control algorithms.

2. METHODOLOGY125

2.1. Equations of motion

The dynamic equation of motion for the isolated bridge equipped with semi-

active MR dampers is presented below.

Mü(t) +Cu̇(t) +Ku(t) = −Mθüg(t) +Rr(t) +Ww(t) (1)

where u is the bridge displacement vector. M, C, and K are respectively the

bridge mass, damping, and stiffness matrices; θ is a vector which determines how

the inertial force acts on the bridge; üg(t) contains the ground acceleration in

two perpendicular directions. R and W are the influence matrices respectively

affecting the semi-active control force, r(t), and the passive (isolation) control
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force, w(t). This equation can be converted to the state space form as presented

in Equation 2.

ẋ(t) =

u̇(t)
u(t)

 = Ax(t) +Brzr(t) +Bwzw(t) +Eüg(t) (2)

where x(t) is the state variable vector, Br and Bw are the control force

matrices corresponding to zr(t) and zw(t), respectively. A, Br, Bw, E, zr, and

zw are formulated as:

A =

 [0] [I]

−M−1K −M−1C

 (3)

Br =

 [0]

−M−1R

 (4)

Bw =

 [0]

−M−1W

 (5)

E =

[0]
θ

 (6)

zr =

 [0]

r(t)

 (7)

zw =

 [0]

w(t)

 (8)

The output vector, y(t), is obtained through Equation 9.130

y(t) = Tx(t) +D

zr

zw

+ Lgüg(t) (9)

where T is the output matrix, D is the feedforward matrix affecting the con-

trol force vector, and Lg is the feedforward vector that contains the ground

acceleration.
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2.2. Replicator Dynamics Methodology

According to the biological concept of evolutionary game theory, the selec-135

tion in a population is affected by the fitness of each individual. Fitness shows

an individual’s rate of success to reproduce and develop his generation. In other

words, individuals with higher fitness deserve more population in the next gen-

eration [39]. This theory can be adopted in order to establish resource allocation

problem-solving models for engineering applications. In a typical resource allo-140

cation problem, a limited resource (in this case the voltage resource) must be

allocated to several consumers in such a way as to follow a specific goal. Each

consumer is assigned a fitness function describing its capability to receive the

voltage. Then the fitness values of different consumers are compared to each

other and those with higher fitness receive larger voltage.145

Replicator dynamics is a methodology for dealing with resource allocation

problems. It uses a specific rule to generate different generations of data. In

this research, replicator dynamics based on evolutionary game theory is used to

control the structural response of an isolated highway bridge. For this purpose,

the control devices installed on the bridge (herein the MR dampers) take the150

position of the consumers and the total available amount of electrical voltage is

allocated to the dampers. Therefore, the population vector at time t denoted

by v(t) can be presented as:

v(t) =


V1(t)
...

VN (t)

 (10)

where Vi(t) denotes the command voltage to the current driver of the ith MR

damper and N is the total number of MR dampers. In order to obtain the

variation of the population vector, a weighted average of fitness functions is

defined as follows:

ϕ(t) =
1

VT

N+1∑
i=1

Vi(t)fi(t) (11)

where fi(t) is the fitness function for the ith MR damper and VT is the total
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available voltage. Based on replicator dynamics [40], fN+1 is defined as the

fitness function of the fictitious device, and set to a very small positive number

to absorb the voltage recourse when the structure is not in motion. Following

the game theory concept, the fictitious device is the device closer to winning

the game and the one that all other devices aim to replicate. Now, the variation

of the command voltage to the current driver for each MR damper is obtained

through the following replication equation:

V̇i(t) = βVi(t)[fi(t)− ϕ(t)] for i = 1, . . . , N + 1 (12)

where β is the growth rate and determines how fast the population vector

components change over time t. Equation 12 shows that the variation of the155

input voltage for MR dampers with a fitness function larger than the average is

positive. Contrarily, the dampers with fitness functions smaller than the average

value are receiving decaying input voltages.

The bridge responses sensed at different locations on the bridge play the key

role in defining the fitness functions. In other words, the part of the bridge

experiencing a more significant response needs a relatively larger damping force

to mitigate the dynamic response. Accordingly, the sensor measurements at

control devices should be considered to define the fitness functions. In the

present study, five different fitness functions are devised to develop five RDCs.

The fitness functions are defined as follows:

f
(j)
i (t) =

Q
(j)
i (t), if i = 1, ..., N , j = 1, ..., Nc (13)

1.0x10−3, if i = N + 1, j = 1, ..., Nc (14)

where Q
(j)
i (t) is the measurement at the ith location using the jth RDC. In160

this study, five (5) proposed controllers are investigated (Nc = 5). Table 1

describes the measurements used to obtain fitness function of the jth RDC.

In this table, u denotes the displacement response of the bridge as a function

of time. Q
(j)
i is also described as a function of time and measured structural

response. The overall configuration of the RDCs proposed for isolated bridge165

structures is illustrated in Figure 1.
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Table 1: Definition of sensor measurements used to define fitness functions in different RDCs

RDC Measurement Description

RDC 1 Q
(1)
i (t) = |üdeck(t)− üabt(t)| Relative acceler-

ation across the

damper

RDC 2 Q
(2)
i (t) = |üdeck(t)| Absolute accelera-

tion of the deck

RDC 3 Q
(3)
i (t) = |u̇deck(t)− u̇abt(t)| Relative velocity

across the damper

RDC 4 Q
(4)
i (t) =

[u̇deck(t)− u̇abt(t)] · [udeck(t)− uabt(t)]

Relative velocity

multiplied by the

relative displace-

ment

RDC 5 Q
(5)
i (t) =


−1, if [·] < 0

0, if [·] = 0

1, if [·] > 0

where

[·] = |u̇deck(t)− u̇abt(t)| · |udeck(t)−uabt(t)|

The sign of mul-

tiplication of rel-

ative velocity and

displacement

2.3. Load Balancing

As described earlier, RDCs allocate the total voltage to control devices based

on their instantaneous fitness function. Accordingly, control devices with higher

fitness function receive larger input voltage and, in some cases, the voltage170

allocated to a device can be larger than its capacity. Particularly, considering

Vmax as the maximum input voltage capacity of an MR damper, there is a

time t where the sensor measurements at the ith location lead the algorithm to

allocate voltage larger than Vmax. When the device receives a command voltage

larger than Vmax, Vmax is applied and the excessive voltage is not redistributed175

properly over the rest of control devices.

To resolve this issue, a load balancing strategy is devised in the present
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Figure 1: Overall configuration of the RDCs proposed for the bridge structure

study to modify the distribution of the voltage resource. Accordingly, each time

a device is overloaded, the corresponding fitness function is modified so that

its value is decreased. Consequently, the voltage distribution is balanced, and

the additional available voltage is redistributed over under-loaded devices. To

implement the load balancing strategy in proposed RDCs, the fitness functions

are modified based on the following equation. The second term in this equation

reduces the fitness function for those control devices that are over-allocated.

f
(j)m
i (t) = Q

(j)
i (t) +Gb

min [Vi(t), Vmax]− Vi(t)

Ve(t)
, i = 1, ..., N (15)

where f
(j)m
i (t) denotes the modified fitness function and Gb is a constant that

modulates the load balancing strategy. Ve(t) is the additional available voltage

and is obtained through the following equation:

Ve(t) =

N∑
i=1

{Vi(t)−min[Vi(t), Vmax]} (16)

Once the modified fitness functions are obtained, the modified values of

average fitness function and the selection dynamics, respectively denoted by

ϕm(t) and V̇ m
i (t), are calculated through Equations 17 and 18.
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ϕm(t) =
1

VT

N+1∑
i=1

Vi(t)f
(j)m
i (17)

V̇ m
i (t) = βVi(t)[f

(j)m
i (t)− ϕm(t)], i = 1, ..., N (18)

Figure 2 illustrates the architecture of the control system including the RDC180

and the load balancing strategy. According to Figures 1 and 2, the proposed

control strategy encompasses the following steps which are repeated in real-time

during each sampling interval.

1. The seismic response data are measured through the sensory system and

fed into the RDC.185

2. The fitness function for each MR damper is calculated through Equations

13 and 14 according to the selected fitness function, Qi(t), in Table 1

defining each replicator dynamic controller.

3. The weighted average of allocated voltage and fitness functions (ϕ) is

calculated through Equation 11.190

4. The command voltage for each MR damper is calculated through Equation

12 and fed into the load balancing block.

5. The additional available voltage (Ve) is calculated through Equation 16.

6. The modified fitness function for each MR damper is calculated through

Equation 15.195

7. The modified weighted average of fitness functions (ϕm) is calculated

through Equation 17.

8. The modified command voltage for each MR damper is calculated through

the replicator dynamics equation (Equation 18) and fed into the current

driver of corresponding MR damping device.200

2.4. Fuzzy Controller

Fuzzy inference systems provide flexible tools to deal with control problems

because the algorithm is compatible with the human reasoning language and
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Figure 2: Overall configuration of control system including the RDC and the load balancing

(resource reallocating) strategy

effectively manages the if-then rules. Fuzzy controllers have a data-driven con-

figuration and show promising performance to handle complicated and nonlinear205

systems [41]. Fuzzy controllers are effective in a decentralized architecture be-

cause the outputs can be directly obtained from local structural response data

defined as the inputs to the fuzzy algorithm. Game theory-based controllers are

also data-driven and use mathematical modeling of cooperation and competition

among rational individuals. Based on these characteristics, this study will com-210

pare these innovative approaches with a soft computing method based on fuzzy

logic that is a conventional approach accepted in current practice, data-driven,

and designed with human reasoning language. Accordingly, a fuzzy controller

based on a type-1 Mamdani fuzzy inference system is proposed as a semi-active

alternative to perform the comparative study. In order to implement the fuzzy215
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control algorithm, the fuzzy rule-base proposed by Ok et al. [15] is modified

to be used for the benchmark isolated highway bridge. In the proposed fuzzy

strategy, the measured response data are first fed into the fuzzification process.

Considering the relative velocity across the MR dampers as the input variable,

11 fuzzy sets including NVL, NL, NM, NS, NVS, ZO, PVS, PS, PM, PL, and220

PVL are defined. The letters N, ZO, and P stand for negative, zero, and posi-

tive, respectively. V stands for very and L, M, and S respectively stand for large,

medium and small. Then the fuzzy inputs are processed through a fuzzy rule

table which regulates the relationship between the fuzzy input and outputs. Af-

terwards, the fuzzy outputs are obtained and fed into the defuzzification process225

to be converted to actual outputs based on the output fuzzy sets. In the present

study, a centroid method is utilized for defuzzification. The command voltage

of the MR damper is regarded as the output of the fuzzy inference system and

six fuzzy sets including VL, L, M, S, VS, and ZO are defined for defuzzification

procedure. The fuzzy sets and corresponding membership functions defined for230

input and output variables are graphically presented in Figure 3. The rule table

used for the inference system is also presented in Table 2.

Table 2: Tabular presentation of the rule-base used in the fuzzy controller

Relative velocity across MR damper, [u̇deck(t)− u̇abt(t)]

NVL NL NM NS NVS ZO PVS PS PM PL PVL

Command voltage,

Vi(t)

VL L NL S VS ZO VS S M L VL

2.5. Optimization via Neural Dynamic Model

The numerical model of the proposed system is comprised of the finite el-

ement model of the bridge structure, nonlinear model of passive and semi-235

active control devices, measurement simulations, and control strategy algorithm.

Therefore, the optimization algorithm must be competent enough to handle such

complicated numerical model and effectively optimize the parameters of the pro-

posed RDCs. Accordingly, the patented Neural Dynamic model of Adeli and
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Figure 3: The membership function of different fuzzy sets related to a) input and b) output

variables

Park (U.S. patent 5,815,394 issued date on September 29, 1998) is investigated in240

the present study to determine optimal game-theory based control parameters.

Showing a robust performance for nonlinear and large-scale problems is one of

the advantages of this method [42, 43]. Implementation of this method together

with the Lyapunov stability theorem as well as the Karush-Kuhn-Tucker (KKT)

conditions guarantees the global convergence of optimization process [34]. The245

topology of the neural dynamic model used to optimize the RDCs is presented

in Figure 4.

A typical optimization problem can be mathematically represented as fol-

lows.

Minimize F (z) subjected to250
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Figure 4: Topology of the neural dynamic model for optimizing the RDCs

gj(z) ≤ 0 j = 1, ..., G (19)

hk(z) = 0 k = 1, ...,H (20)

where z is the state vector comprised of design variables, gj(z) and hk(z) rep-

resent the jth inequality and the kth equality constraints, respectively. G and

H are the number of inequality and equality constraints, respectively. Accord-

ing to KKT conditions, the inequalities in Equation 19 are converted to their

corresponding equalities as presented in Equation 21.255
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gj(z) + ω2
j = 0 j = 1, ..., G (21)

A Lagrange function including the constraints and the objective function is

then defined using λ, α and γ as Lagrange multipliers (Equation 22).

L(z, λ, α, γ, ω) =

M∑
m=1

λm∇Fm(z) +

G∑
j=1

αj

[
gj(z) + ω2

j

]
+

H∑
k=1

γkhk(z) (22)

By adding a penalty function to Equation 22, the Lagrange function can be

restated in Equation 23.

L(z, rn) =

M∑
m=1

λm∇Fm(z) +
rn
2


G∑

j=1

[
g+j (z)

]2
+

H∑
k=1

[hk(z)]
2

 (23)

Where g+j (z) = maxj{0, gj(z)} and rn is the exterior penalty parameter defined

as:

rn = r0 +
ni

ϵ
(24)

Where, r0 is the initial penalty parameter, and ϵ is a strictly positive number

dependent on the optimization problem. ni is the iteration number. Obtaining

the derivative of both sides of Equation 23 gives:

dL
dt = L̇(z, rn) ={∑M

m=1 λm
∂Fm(z)

∂z + rn

[∑G
j=1 g

+
j (z)

∂gj(z)
∂z +

∑H
k=1[hk(z)

∂hk(z)
∂z

]} (
∂z
∂t

)
={∑M

m=1 λm∇Fm(z) + rn

[∑G
j=1 g

+
j (z)∇gj(z) +

∑H
k=1[hk(z)∇hk(z)

]}
ż

(25)

where ∇ denotes the gradient, and the variation of state vector is obtained

through Equation 26.

ż = −
M∑

m=1

λm∇Fm(z)− rn

 G∑
j=1

g+j (z)∇gj(z)−
H∑

k=1

hk(z)∇hk(z)

 (26)

By substituting ż (Equation 26) into Equation 25, L̇ can be restated as:

L̇ = −

∣∣∣∣∣∣
M∑

m=1

λm∇Fm(z) + rn

 G∑
j=1

g+j (z)∇gj(z) +

H∑
k=1

hk(z)∇hk(z)

∣∣∣∣∣∣
2

(27)
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Equation 27 shows that the derivative of the Lagrange function is always neg-260

ative, and the stability of the dynamic system is guaranteed. Accordingly, the

equilibrium point can be calculated using a fourth order Runge-Kutta method

through Equation 28.

z =

∫
żdt (28)

The following describes the optimization problem in terms of the design

variables, constraints, and objective function.265

2.5.1. Design variables

The design variables of the optimization problem include the total available

voltage (VT ) and the growth rate (β).

2.5.2. Objective function

In order to maximize the performance of the controller, an objective function

is defined in order to minimize the average value of the first three performance

criteria (Equation 29). J1 to J3 respectively describe the peak base shear,

peak overturning moment, and peak mid-span displacement in controlled bridge

normalized by the corresponding values in uncontrolled bridge.

F (z) =

∑3
i=1 Ji
3

(29)

2.5.3. Constraints270

The total available voltage is considered to vary in (0, V max
T ) interval and

the growth rate should have a positive value. Therefore, the constraints can be

expressed mathematically through the following equations.

g1(z) : VT − V max
T ≤ 0 (30)

g2(z) : −VT < 0 (31)

g3(z) : −β ≤ 0 (32)
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3. MODEL

In the present study, the proposed control methodology is evaluated using an

isolated highway bridge structure subjected to earthquake loading. The struc-

tural model of the bridge as well as the model of the control system components

are created in MATLAB and SIMULINK. The following describes the bridge275

and the control device model.

3.1. Bridge model

The benchmark control problem proposed by Nagarajaiah et al. [44] is used

to evaluate the proposed load balancing RDC methodologies. This problem is

defined based on the actual 91/5 highway bridge equipped with fluid viscous280

dampers and isolation systems constructed in Southern California subjected to

near-field earthquake accelerograms. The bridge finite element model includes

108 nodes, 430 DOF, 70 beam elements, 4 rigid links, 24 springs, 8 bearings at

abutments, and 27 dashpots [45].

To control the dynamic response of the bridge, 20 MR dampers are included285

at 10 different locations in the bridge model. The overall configuration of the

benchmark bridge is illustrated in Figure 5. Figure 6 presents the 3D view of

the MR dampers connecting the deck to the abutments. The layout of the bent

column and the isolation bearings is shown in Figure 7. The arrangement of

control devices and sensors is also demonstrated in Figure 8.290

3.2. MR damper model

In order to simulate the behavior of MR dampers, the Bouc-Wen model

proposed by Jansen and Dyke [46] is employed. Accordingly, the damping force

Fd is obtained through the following equations:

Fd(t) = C0u̇(t) + azd(t) (33)

żd(t) = −γdzd(t) |u̇(t)| |zd(t)|n−1 − βdu̇(t) |zd(t)|n +Amu̇(t) (34)
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Figure 5: Overall configuration of the benchmark bridge

Figure 6: 3D view of the MR dampers installed between the deck and abutment

where, u(t) is the displacement of the damper and zd(t) is the evolutionary

variable. γd, βd, n, and Am are constant values obtained through experiments.

C0 and a are defined based on the control voltage ν through the following

equations:

a = a(ν) = aa + abν (35)

C0 = C0(ν) = C0a + C0bν (36)
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Figure 7: 3D view of the bent column and the isolation bearings

where ν is the applied control voltage to the current driver and other parameters

including aa, ab, C0a, and C0b are specified through experiments. The time lag

related to applying the command voltage is simulated using the following first-

order filter with a time constant of η:

ν̇ = −η (ν − V ) (37)

Where, V is the command voltage applied to the current driver of the MR295

damper. To determine the parameters of MR dampers based on a feasible and

practical configuration, the experimental study conducted by Yi et al. [47] is

considered. Then, the parameters are scaled up to get a maximum damping force

capacity of 1,000 kN with a maximum command voltage of 10 V, as suggested

by Tan and Agrawal [48]. The parameters used for MR damper model are300

presented in Table 3.

4. EVALUATION OF PERFORMANCE

Nonlinear time history analyses are employed to obtain the dynamic re-

sponse of the bridge subjected to four near-fault records. Table 4 presents the

properties of these earthquake records. To synchronize the control system with305
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Figure 8: Arrangement of the benchmark control system components

the measured dynamic responses, the sampling time of the proposed digital con-

trollers is set equal to the integration step of the simulation. The A/D and D/A

converters on the digital controller have 16-bit precision and a span of ±10 V.

A root mean-square noise of 0.03 V (0.3% of the full span of the A/D convert-

ers) is included in the measured responses. Rectangular pulses with Gaussian310

distribution are considered for the measurement noises. The pulse width is also

set equal to the integration step. The performance of each controller is then

evaluated using 21 different performance criteria suggested by Agrawal et al.

23



Table 3: The parameters used to simulate the mechanical behavior of MR dampers (adapted

from Yi et al. [47] and Tan and Agrawal [48])

Parameter Value Unit

aa 1.0872× 105 N/cm

ab 4.9616× 105 N/(cm.V)

C0a 4.40 N.s/cm

C0b 44.0 N.s/(cm.V)

γd 3.0 cm−1

βd 3.0 cm−1

n 1.0 -

Am 1.2 -

η 50.0 s−1

[45]. These performance criteria are described in Table 10 in Appendix A.

Table 4: Characteristics of the near-fault earthquake records used to carry out the time history

analyses (adapted from Agrawal et al. [45])

Station EQ Year
Peak acceleration (g) Peak velocity (cm/s)

EW

component

NS

component

EW

component

NS

component

TCU084 Chi-

Chi

1999 1.157 0.417 114.7 45.6

El

Centro

Imperial

Valley

1940 0.313 0.215 29.8 30.2

Bolu Duzce,

Turkey

1999 0.728 0.822 166.1 62.1

Nishi-

Akashi

Kobe 1995 0.509 0.503 37.3 36.6

24



4.1. Computational complexity and implementation costs315

To determine the optimal parameters of the RDCs, two interconnected nu-

merical models are studied simultaneously: the neural dynamic model and the

structural simulation model. At each iteration of the optimization algorithm,

the structure’s dynamic performance is evaluated. Considering the highly com-

plex finite element model of the structure and the proposed nonlinear control320

systems, the optimization and structural models’ calculation speed is essential.

The convergence and rate of analysis in neural networks requires special con-

siderations when studying a highly nonlinear problem. The patented neural

dynamic model adds a penalty function method, Lyapunov stability theorem,

Kuhn-Tucker conditions to handle nonlinearities in the optimization process.325

Making an appropriate balance between Lagrange multiplier λm and the penalty

function rn is the key to prevent divergence and save computational effort. Al-

though the optimization procedure has its challenges and computational costs,

the controller’s numerical model is efficient enough to work in real-time once

the controller is optimized. Moreover, the proposed data-driven controllers do330

not rely on the structural model. The control decisions are computed based on

the dynamic response data, which can be processed very quickly through the

proposed RDC formulation. In general, the numerical simulations show that the

computation time for each step of analysis is negligible. The controller works

efficiently in real-time with other components of the control system, including335

the MR dampers. Investigations have shown that the semi-active control sys-

tems with MR dampers are bounded-input and bounded-output stable [49], and

instability due to time delay is unlikely in these systems [50].

The total Life Cycle Cost (LCC) of the structures includes the initial construc-

tion or retrofit cost, the maintenance cost, and the seismic-induced damage340

costs. When using control systems, although the initial installation and mainte-

nance costs of the control system add up, the total LCC is reduced because the

seismic-induced damage costs are diminished by a larger extent. The LCC anal-

ysis of controlled structural systems has been performed by researchers to com-

pare various smart systems and quantify the immediate and long-term impacts.345
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Risk-based probabilistic LCC analysis of controlled structures has proven the

cost benefits of control systems [51]. Micheli et al. [52] investigated the cost ben-

efits of three passive control systems implemented on a 39-story building struc-

ture located in Boston, MA. The authors used friction and viscous dampers in

the proposed systems and concluded that the friction damping provides a more350

cost-effective solution. Semi-active control systems are economically promising

as they provide higher performance, compared with passive systems, with a

small increase in costs [53]. Pinkaew and Fujino [54] discussed how semi-active

control devices are less costly than active dampers. The practical applications

and cost performance of active hydraulic actuators were discussed by Yamamoto355

[55]. Since 1980s, the extensive and continuous application of semi-active and

active structural vibration control systems in more than 70 buildings and bridges

in Japan [56, 57] implies the economic effectiveness of this methodology. Cost

analysis of smart TMDs installed on a 60-story reinforced concrete building

showed that the total cost contribution of the semi-active device to the total360

construction cost of the building is only 2.0%. In terms of maintenance, the

contribution of the control system is less than 0.2% of the total construction

cost [58]. Other widespread applications of semi-active systems in bridges [59],

including semi-active variable friction dampers on a highway bridge in Okla-

homa [60], implies the cost-effective performance of these systems.365

5. RESULTS

To evaluate the performance of the proposed load balancing strategy, the

calculated input voltage of MR dampers obtained through RDC 1 and consid-

ering Chi-Chi earthquake is demonstrated in Figure 9(a). A typical value of370

Vmax =10 V is considered as the maximum input voltage capacity for each MR

damper [46]. Figure 9(b) shows how the load balance strategy reduces the volt-

age of overloaded devices and redistributes the additional available voltage over

other control devices based on their fitness functions. In order to present Figure

9 with more details and track the changes in voltage more accurately, a close-up375

version of Figure 9 with the vertical and horizontal axes ranges are limited, is
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presented in Figure 14 in Appendix A.

Figure 9: Variation of calculated input voltage of MR dampers obtained from the RDC 1

a) without load balancing b) with load balancing strategy, subjected to Chi-Chi earthquake

accelerogram

The relative displacement of the deck at midspan in x direction for three

different systems subjected to Chi-Chi earthquake is shown in Figure 10. The

systems include: the isolated bridge without MR dampers, the isolated bridge380

equipped with RDC 1 without load balancing strategy (β = 0.1 and VT = 150),
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and the isolated bridge equipped with RDC1 with load balancing strategy

(β = 0.1 and VT = 80). β and VT values for these two cases are the opti-

mal values obtained through a grid search. This example shows that the load

balancing strategy improves the performance of the controller and reduces the385

total required voltage resource.

Figure 10: Time history of midspan displacement along x direction in isolated bridge, RDC

1 without load balancing strategy (β = 0.1 and VT = 150), and RDC1 with load balancing

strategy (β = 0.1 and VT = 80)

In order to optimize VT and β, the neural dynamic model is implemented and

the following results are obtained. Considering a maximum command voltage of

10 V per [46] for each of the 20 MR dampers, the total available voltage is limited

to V max
T = 200 V. As an example, Figure 11 shows the variation of objective390

function during the optimization procedure for RDC 3 subjected to Chi-Chi

earthquake accelerogram. In general, the objective function follows a descending

trend. However, few ascending steps are also observed in Figure 11. The reason

is that the ND optimization model uses the gradient of objective function which

is calculated separately for each design variable in each iteration. However,395

when the incremental changes in all design variables are applied together, the

variation of objective function may become positive due to the highly nonlinear

behavior of the overall system including the bridge and the controller. To avoid
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this, one can use smaller λm and rn and repeat more iterations. Herein, as

the general descending trend is achieved, λm and rn are not decreased to save400

computational effort.

Variation of design variables including the growth rate factor and the total

available voltage is also demonstrated in Figures 12 and 13. As expected, the

design variables gradually converge to the optimal values. The optimal value for

VT is about 50 V which means that on average, the control devices are operating405

at 25% of their capacity (considering that VT = 200 V when all 20 dampers

operate at the maximum capacity, i.e Vi = 10 V). According to Figures 11 to

13, the ND model effectively finds the optimal design variables and improves the

performance of RDCs. The results of optimization procedure for all controllers

and earthquake records are summarized in Table 5. In future research, Monte410

Carlo simulations with large number of earthquake records will be conducted to

further enhance the robustness of the proposed control strategy along with risk

assessment and uncertainty analyses [40]. Moreover, the optimal parameters

can be used to train deep learning systems to enhance the proposed adaptive

data-driven controllers.415

Table 5: The optimal design variables for different RDCs subjected to earthquake records

EQ
Design
variables

Initial
value

Final values obtained through optimization

RDC 1 RDC 2 RDC 3 RDC 4 RDC 5

Chi-Chi
VT 100.0 94.59 34.29 49.98 100.69 98.88

β 0.1 1.21 0.81 2.50 0.22 0.29

Imperial
Valley

VT 100.0 99.96 95.68 100.08 110.35 91.74

β 0.1 0.01 0.18 0.11 0.71 0.13

Duzce,
Turkey

VT 100.0 66.31 86.04 74.30 72.70 73.74

β 0.1 0.72 0.33 2.61 0.50 0.57

Kobe
VT 100.0 92.01 60.20 100.68 74.39 73.74

β 0.1 0.25 0.81 0.18 0.64 0.57

The performance criteria resulted from the control systems with optimal

variables are compared in Tables 6 to 9. According to the results, the proposed
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Figure 11: Variation of objective function during the optimization procedure for RDC 3

subjected to Chi-Chi earthquake accelerogram

RDCs show a high performance in reducing the seismic response of the bridge.

According to J1 values in Table 7 and J9 values in Table 8, using the proposed

RDCs, the peak and normed values of the base shear are respectively reduced by420

up to 41 and 71% with respect to the isolated bridge without MR dampers. The

corresponding reductions in the peak and normed overturning moments are 42%

and 71%. J3 and J11 values in Tables 7 and 8 also show that RDC1 effectively

reduces the peak and normed displacement responses at the midspan by up to

77% and 90%, respectively. J15 in Table 9 reveals that RDC3 can reduce the425

maximum control force in MR dampers by up to 42% compared with Lyapunov

controller. Moreover, according to J11 and J13 in Table 6, RDC3 is capable of

reducing the normed midspan displacement and bearing deformation by up to

52 % compared to the Lyapunov controller.

In general, RDCs show a higher performance in reducing the peak and430

normed values of base shear, overturning moment, mid-span displacement, bear-

ing deformation, and column curvature, compared to the mid-span acceleration.
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Figure 12: Variation of the growth rate during the optimization procedure for RDC 3 subjected

to Chi-Chi earthquake accelerogram

Considering the output data presented for J4 and J12, all the control systems

increase the peak and normed values of mid-span acceleration. The reason is

that the MR dampers increase the overall rigidity of the connection between the435

deck and the bent columns. Consequently, more inertial force is transferred to

the deck and the deck vibrates with a higher acceleration. The fuzzy controller

is effective in avoiding highly increased accelerations since the rule-base is sensi-

tive to the variation of velocity. Among the proposed RDCs, RDC1, RDC2, and

RDC3 show a more satisfactory performance to reduce the acceleration response440

and inertial force in the deck. One of the most important factors affecting the

maintenance costs related to isolation bearings is the peak and normed values

of deformation in bearings. Considering the results obtained for J5 and J13, the

proposed controllers more effectively reduce the bearing deformation in isola-

tors, compared with the Lyapunov and fuzzy controllers.445

The Lyapunov controller is model-based and relies on structural properties of

the bridge. This leads to a reduced robustness due to the uncertainties in the
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Figure 13: Variation of the total available voltage during the optimization procedure for RDC

3 subjected to Chi-Chi earthquake accelerogram

stiffness and mass matrices as well as the variation of these matrices due to the

geometrical and material nonlinearities in real world. On the other hand, the

proposed RDCs only rely on the measured data and show robust performance450

against system uncertainties. Investigation on the LCCs specific to the proposed

system is an open subject for future research which requires detailed procure-

ment, installation, and maintenance cost information related to the control sys-

tem components. Future directions of this research also include validating the

proposed RDCs using novel testing technology of real-time hybrid simulation of455

bridge structures equipped with semi-active dampers [61].

6. CONCLUSION

A new design of Replicator Dynamic Controllers (RDCs) integrated with

a load balancing strategy for semi-active vibration control of bridge structures

was investigated in the present study. Five RDCs with different fitness functions460

were proposed for controlling the performance of 20 MR dampers installed on

an isolated highway bridge. The bridge was simulated based on the benchmark
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Table 6: Performance criteria of different control systems subjected to Chi-Chi earthquake

(best result is shown in bold)

Criteria RDC 1 RDC 2 RDC 3 RDC 4 RDC 5 Fuzzy Lyapunov

J1 1.0511 0.7867 0.7458 1.0649 1.0568 0.7981 0.9154

J2 1.0436 0.9199 0.7905 1.0652 1.0333 0.8850 0.8869

J3 0.9220 0.9183 0.8457 0.8743 0.8812 0.8058 0.7410

J4 1.4855 1.0861 1.1697 1.4559 1.4256 1.2776 1.1338

J5 0.9117 0.9150 0.8396 0.8646 0.8712 0.7999 0.7444

J6 1.0436 0.9199 0.7905 1.0652 1.0333 0.8850 0.8869

J7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

J8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

J9 0.8914 1.0023 0.6795 0.8626 0.8584 0.6918 1.0050

J10 0.8817 0.9862 0.6709 0.8517 0.8484 0.6908 0.9964

J11 0.6225 1.0682 0.4392 0.5909 0.5854 0.6189 0.9044

J12 2.0169 1.3955 1.5616 2.0736 2.0631 1.4054 1.5845

J13 0.6270 1.1040 0.4327 0.5951 0.5850 0.6182 0.9060

J14 0.8817 0.9862 0.6709 0.8517 0.8484 0.6908 0.9964

J15 0.0052 0.0049 0.0050 0.0052 0.0051 0.0048 0.0051

J16 0.9117 0.9150 0.8396 0.8646 0.8712 0.7999 0.7444

J17 NaN NaN NaN NaN NaN NaN NaN

J18 NaN NaN NaN NaN NaN NaN NaN

J19 20 20 20 20 20 20 20

J20 40 40 40 40 40 40 40

J21 28 28 28 28 28 28 28

control problem of 91/5 highway bridge in Southern California subjected to

near-field earthquake records. The RDCs were configured to allocate the total

available voltage to the current drivers of the MR dampers. The allocation of to-465

tal voltage/current was then modified using a load balancing strategy intended

to reallocate additional voltage considering a maximum voltage to the current
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Table 7: Performance criteria of different control systems subjected to Imperial Valley earth-

quake (best result is shown in bold)

Criteria RDC 1 RDC 2 RDC 3 RDC 4 RDC 5 Fuzzy Lyapunov

J1 0.6211 0.5884 0.6241 0.7095 0.6040 0.5800 0.7608

J2 0.5843 0.5761 0.5817 0.7226 0.5992 0.5612 0.7107

J3 0.3331 0.3244 0.3377 0.2742 0.3141 0.5361 0.3647

J4 1.6201 1.6387 1.6196 1.7727 1.6654 1.2957 1.3530

J5 0.3375 0.3241 0.3407 0.2552 0.3042 0.5674 0.3458

J6 0.5843 0.5761 0.5817 0.7226 0.5992 0.5612 0.7107

J7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

J8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

J9 0.6597 0.6499 0.6590 0.7696 0.6832 0.7834 0.5352

J10 0.6527 0.6416 0.6522 0.7599 0.6749 0.7785 0.5122

J11 0.4382 0.4122 0.4394 0.1265 0.3821 0.7265 0.3244

J12 1.3466 1.3971 1.3427 1.5353 1.4021 1.0638 1.2323

J13 0.4607 0.4246 0.4604 0.1243 0.3846 0.7643 0.3314

J14 0.6527 0.6416 0.6522 0.7599 0.6749 0.7785 0.5122

J15 0.0030 0.0048 0.0027 0.0050 0.0044 0.0018 0.0050

J16 0.3375 0.3241 0.3407 0.2552 0.3042 0.5674 0.3458

J17 NaN NaN NaN NaN NaN NaN NaN

J18 NaN NaN NaN NaN NaN NaN NaN

J19 20 20 20 20 20 20 20

J20 40 40 40 40 40 40 40

J21 28 28 28 28 28 28 28

driver for each MR damper. The patented Neural Dynamic (ND) model of Adeli

and Park incorporating the Lyapunov stability theorem and the Karush-Kuhn-

Tucker conditions were utilized to optimize the control parameters, including470

the total available voltage and the growth rate of the replicator. The perfor-

mance of the proposed controllers was compared with conventional Lyapunov
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Table 8: Performance criteria of different control systems subjected to Duzce earthquake (best

result is shown in bold)

Criteria RDC 1 RDC 2 RDC 3 RDC 4 RDC 5 Fuzzy Lyapunov

J1 0.7837 0.7921 0.8031 1.1583 1.1582 0.6617 0.8265

J2 0.8333 0.8213 0.8324 1.1954 1.1954 0.7175 0.8684

J3 0.5465 0.5554 0.5506 0.4955 0.4931 0.5647 0.3639

J4 1.0060 1.1555 1.0464 1.2307 1.2397 1.0045 1.1494

J5 0.5161 0.5307 0.5233 0.5112 0.5086 0.5348 0.3814

J6 0.8333 0.8213 0.8324 1.1954 1.1954 0.7175 0.8684

J7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

J8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

J9 0.3017 0.2885 0.2999 0.4199 0.4282 0.4818 0.4290

J10 0.2980 0.2853 0.2963 0.4173 0.4260 0.4795 0.4216

J11 0.0989 0.1354 0.1012 0.2959 0.3116 0.3967 0.3191

J12 1.1399 1.2557 1.1569 1.2344 1.2477 0.9369 1.1278

J13 0.0943 0.1315 0.0958 0.2949 0.3109 0.3966 0.3360

J14 0.2980 0.2853 0.2963 0.4173 0.4260 0.4795 0.4216

J15 0.0050 0.0049 0.0049 0.0037 0.0040 0.0039 0.0050

J16 0.5161 0.5307 0.5233 0.5112 0.5086 0.5348 0.3814

J17 NaN NaN NaN NaN NaN NaN NaN

J18 NaN NaN NaN NaN NaN NaN NaN

J19 20 20 20 20 20 20 20

J20 40 40 40 40 40 40 40

J21 28 28 28 28 28 28 28

and fuzzy control algorithms in terms of 21 different performance criteria de-

scribing the reductions in dynamic response of the bridge. The proposed fuzzy

controller uses a rule-base focusing on the relative velocity across the damper475

to determine the command voltage. The results showed that the ND optimiza-

tion procedure effectively optimizes the controller performance and achieves the

35



Table 9: Performance criteria of different control systems subjected to Kobe earthquake (best

result is shown in bold)

Criteria RDC 1 RDC 2 RDC 3 RDC 4 RDC 5 Fuzzy Lyapunov

J1 0.7884 0.6939 0.7407 0.7754 0.7203 0.8899 0.8922

J2 0.8974 0.7453 0.8437 0.8322 0.8014 0.8817 0.8548

J3 0.2350 0.2695 0.3154 0.3108 0.2788 0.6852 0.2609

J4 2.2204 2.2090 2.0606 2.2950 2.1843 1.4457 1.9050

J5 0.2259 0.2619 0.3051 0.3010 0.2715 0.6752 0.2659

J6 0.8974 0.7453 0.8437 0.8322 0.8014 0.8817 0.8548

J7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

J8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

J9 0.5785 0.4681 0.5209 0.5294 0.5079 0.8989 0.5257

J10 0.5726 0.4623 0.5150 0.5238 0.5019 0.8909 0.5165

J11 0.1352 0.2221 0.1558 0.2067 0.1568 0.8146 0.2777

J12 1.4753 1.5379 1.3768 1.5093 1.4950 1.0847 1.1916

J13 0.1174 0.2074 0.1373 0.2079 0.1577 0.8168 0.2799

J14 0.5726 0.4623 0.5150 0.5238 0.5019 0.8909 0.5165

J15 0.0050 0.0049 0.0029 0.0039 0.0039 0.0029 0.0050

J16 0.2259 0.2619 0.3051 0.3010 0.2715 0.6752 0.2659

J17 NaN NaN NaN NaN NaN NaN NaN

J18 NaN NaN NaN NaN NaN NaN NaN

J19 20 20 20 20 20 20 20

J20 40 40 40 40 40 40 40

J21 28 28 28 28 28 28 28

optimal design variables. The optimal RDCs also showed a significant perfor-

mance in improving the dynamic response of the bridge including the peak and

normed values of base shear, overturning moment, mid-span displacement, bear-480

ing deformation, column curvature, dissipated energy, and the number of plastic

hinges. The proposed fuzzy controller showed acceptable performance to avoid
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major increases in acceleration response.
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8. APPENDIX A

Table 10: Description of different performance criteria used to evaluate

the effectiveness of controllers (adapted from Agrawal et al. [45])

Criterion Description Formula

J1 Peak base shear in controlled state normalized by the cor-

responding value in uncontrolled state

max |Fb(t)|
Fmax
0b

J2 Peak overturning moment in controlled state normalized

by the corresponding value in uncontrolled state

max |Mb(t)|
Mmax

0b

J3 Peak mid-span displacement in controlled state normalized

by the corresponding value in uncontrolled state

max |udeck(t)|
umax
0deck

J4 Peak mid-span acceleration in controlled state normalized

by the corresponding value in uncontrolled state

max |üdeck(t)|
ümax
0deck

J5 Peak bearing deformation in controlled state normalized

by the corresponding value in uncontrolled state

max |yb(t)|
ymax
0b

J6 Peak bent column curvature in controlled state normalized

by the corresponding value in uncontrolled state

max |ϕb(t)|
ϕmax
0b

J7 Peak dissipated energy at bent column in controlled state

normalized by the corresponding value in uncontrolled

state

maxEb
Emax

0b

J8 Number of plastic hinges in controlled state normalized by

the corresponding value in uncontrolled state

Nc
d

Nd
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J9 Normed base shear in controlled state normalized by the

corresponding value in uncontrolled state

∥Fb(t)∥
∥Fmax

0b ∥

J10 Normed overturning moment in controlled state normal-

ized by the corresponding value in uncontrolled state

∥Mb(t)∥
∥Mmax

0b ∥

J11 Normed mid-span displacement in controlled state normal-

ized by the corresponding value in uncontrolled state

∥udeck(t)∥
∥umax

0deck∥

J12 Normed mid-span acceleration in controlled state normal-

ized by the corresponding value in uncontrolled state

∥üdeck(t)∥
∥ümax

0deck∥

J13 Normed bearing deformation in controlled state normal-

ized by the corresponding value in uncontrolled state

∥yb(t)∥
∥ymax

0b ∥

J14 Normed bent column curvature in controlled state normal-

ized by the corresponding value in uncontrolled state

∥ϕb(t)∥
∥Φmax

0b ∥

J15 Peak control force in MR dampers normalized by the mass

of superstructure

max |Fc(t)|
Wb

J16 Peak stroke of the MR dampers normalized by the maxi-

mum peak bearing deformation in the uncontrolled struc-

tures

max ds
ymax
0b

J17 Peak instantaneous power required by the MR dampers

normalized by the product of the weight and the peak

bearing velocity in the uncontrolled state

max
∑

Pc(t)|
ẏmax
0b

Wb

J18 Peak total power required for all MR dampers normalized

by the product of the weight and the peak bearing defor-

mation in the uncontrolled state

max
∫
Pc(t)|

ẏmax
0b

Wb
)

J19 Number of MR dampers -

J20 Number of sensors -

J21 Dimension of the discrete state vector required for the con-

trol algorithm

-

490
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Figure 14: Detailed variation of calculated input voltage of MR dampers obtained from RDC1

a) without load balancing b) with load balancing strategy, subjected to Chi-Chi earthquake
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9. APPENDIX B

The following is the list of notations together with the related values and units

considered in the present study.

A = system matrix in state space model;

Am = constant value affecting the evolutionary variable (1.2);

Br = control force matrices corresponding to zr(t);

Bw = control force matrices corresponding to zw(t);

C = bridge damping matrix;

C0 = velocity coefficient affecting the damping force (N.s/cm));

C0a = first coefficient affecting C0 (4.40 N.s/cm);

C0b = second coefficient affecting C0 (44.0 N.s/(cm.V));

D = feedforward matrix affecting the control forces vector;

E = input force vector corresponding to the ground acceleration;

F = objective function;

Fd = damping force of MR damper (N);

G = total number of inequality constraints;

Gb = modulation constant for the load balancing strategy;

K = bridge stiffness matrix;

K = total number of equality constraints;

Lg = feedforward vector affecting the ground acceleration term;

L = Lagrange function;

M = bridge mass matrix;

M = size of design variable vector;

N = total number of MR dampers;

Nc = number of proposed RDCs (5);

Q
(j)
i = measurement at the ith location using the jth controller;

R = influence matrix affecting the semi-active control force, r(t);

T = output matrix in state space model;

Ve = additional available voltage (V);

Vi = command voltage to the current driver of the ith MR damper (V);

V m
i = modified command voltage to the ith MR damper (V);

Vmax = maximum input voltage capacity of MR dampers (V);
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VT = total available voltage (V);

W = influence matrix affecting the passive (isolation) control force, w(t);

a = coefficient acting on the evolutionary variable (N/cm);

aa = first coefficient affecting a (1.0872× 105 N/cm);

ab = second coefficient affecting a (4.9616× 105 N/(cm.V));

fi = fitness function for the ith MR damper;

f
(j)m
i = modified fitness function for the ith MR damper in the jth controller;

hk = kth equality constraint;

j = number of inequality constraint;

k = number of equality constraint;

n = order of the evolutionary variable equation (1.0);

ni = iteration number in the optimization algorithm;

r = semi-active control force vector;

r0 = initial penalty parameter;

rn = exterior penalty parameter;

u = bridge displacement vector;

üg = ground acceleration;

gj = jth inequality constraint;

t = time (s);

u = displacement response (m);

v = population vector in replicator dynamic model;

w = passive (isolation) control force vector;

x = state space variable vector;

y = output vector in state space model;

z = design variable vector;

zd = evolutionary variable;

zr = semi-active control force vector in state space model;

zw = passive control force vector in state space model;

θ = inertial force distribution vector;

α = Lagrange multiplier for inequality constraint term;

β = growth rate in replicator dynamic model;

βd = constant value affecting the evolutionary variable (3.0 cm−1);

γ = Lagrange multiplier for equality constraint term;
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γd = constant value affecting the evolutionary variable (3.0 cm−1);

ϵ = strictly positive number used to obtain penalty parameter;

η = time lag constant (50.0 s−1);

λ = Lagrange multiplier for objective function term;

ν = applied control voltage to the current driver (V);

ϕ = weighted average of fitness functions;

ϕm = modified averaged fitness function;

ωj = square root of absolute value of gj(x);

∇ = the gradient of a function;
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