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Abstract

Gas-liquid two-phase flow is a typical flow, and bubble characteristic measure-
ment is of great importance to study the flow mechanism and guide the practi-
cal fluid mechanical engineering. In this paper, a novel three dimensional (3D)
multiphase flow imaging device was designed to measure the transparent object
that has an opaque object in the center of the observed area. Its mathematical
model was built and the constraints were defined based on the geometrical rela-
tionship and design requirements. A modified harmony search (HS) algorithm
was integrated and applied to optimize the arrangement of the single-camera-
multi-mirror device. As a case study, the 3D multiphase flow imaging method
was applied in the the 3D reconstruction of the cavitation bubble cluster in-
side a water hydraulic valve. The statistics of the Pareto data shows the good
performance of the modified HS algorithm. And the cavitation experimental
results shows that the method is valid, and the cavitation bubble cluster can be
reconstructed with quite high precision.

Keywords: 3D multiphase flow imaging, harmony Search algorithm,
optimization design, cavitation bubble cluster reconstruction

1. Introduction

Multiphase flow is a typical flow, and bubble characteristic measurement
is of great importance to discover the flow mechanism and guide the practi-
cal fluid mechanical engineering [1]. With the development of computer and
optoelectronic techniques, visual inspection [2, 3] based on photography has
been widely used in multiphase flow measurement. However, the overlapping or
opaque objects, which would decrease the reconstruction accuracy of modality
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and motion feature parameters of bubbles in gas-liquid two-phase, exist widely
and cannot be recognized effectively. From the past studies, virtual binocular
stereo vision has been applied by Xue et al. [4, 5], who did an experiment by
using one camera and 4 mirrors to match and reconstruct bubble trajectory mo-
tion in a glass-made water tank from two direction. The mirror-based approach
was applied in numerous single-camera stereovision techniques in various fields
[6, 7, 8]. And Pan et al. optimized the parameters of the proposed 3D-DIC
system, including the 3D position and orientation of the camera, effective focal
length, principle point coordinates, and lens distortion coefficients [9]. Inspired
the emerging studies of the single-camera mirror-based stereo image correlation
technique [10], a 3D imaging device combining single camera and multi-mirror
was presented for capturing the comprehensive multiphase flow images infor-
mation with an opaque object in the center of the observation area. And its
design arrangement is a multi-objective problem (MOP), which is necessary to
be optimized.

For solving the multi-objective problem, there are a variety of available algo-
rithms [11, 12], including genetic algorithm (GA), particle swarm optimization
algorithm, artificial fish swarm algorithm, and harmony search algorithm. HS
algorithm was proposed and established first in 2001 by Geem et al. [13], which
simulated the process of improvisation music, that is, the music player adjusts
the performance to a wonderful harmony state through impromptu music ad-
justment. Harmony algorithm in the application of MOP, the search for the
optimal solution is rather similar to the production of offspring in GA with mu-
tation and crossover operations. The decision variables in the target problem
are similar to the pitch of each instrument. The HS algorithm is a heuristic
global search algorithm which also has the advantages of less parameters and
high efficient calculation [14].

As for the application of harmony algorithms in the MOP problems, many
researchers have applied it in various areas, such as the location, size and
power factor of Distributed Generation [15], the multi-objective flexible job shop
scheduling problem [16], the scheduling problem of hydraulic systems pump
[17, 18], the urban traffic light scheduling problem [19] and so on. However,
empirical studies have shown that the original harmony search algorithm in
dealing with multi-objective constrained optimization problems is being subject
to certain restrictions [20, 21]. To overcome these shortcomings, utilization of a
modified harmony search algorithm for multi-objective optimization to optimize
the shielding effectiveness of wheel for secondary development is necessary.

Dai et al. [21] improved HS to solve the trouble for novice users about the
parameters which need to be set by users according to experience and problem
characteristics. Amaya et al. [22] presented a novel modification of the Harmony
Search (HS) algorithm which is able to self-tune as the search progress. Yuan et
al. [23] integrated HS in the research of the weakness about parallel chaos opti-
mization algorithm, which aims to obtain optimum solution accurately. Meysam
Gheisarnejad [24] developed cuckoo optimization algorithm into HS algorithm
to design a secondary controller for two practical models of load frequency con-
trol problem. Gao et al. [25] propose two modified HS methods to deal with the
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uni-modal and multi-modal optimization problems. The first employed a novel
HS memory management approach to handle the multi-modal problems and
the second utilized the Pareto-dominance technique, which targets at the con-
strained problems. The MOP of the single-camera-multi-mirror device concerns
multiple constraint conditions. In this paper, the two modified HS methods
were applied and integrated into one improved HS algorithm, which absorbs the
advantages in both two HS methods.

2. Optimization Algorithm

It is known that when experienced musicians compose a harmony, it is usu-
ally by trying various possible combinations of the music pitches stored in mem-
ory. This kind of effective search for a perfect harmony is analogous to the pro-
cedure of finding an optimal solution in engineering problems. The HS method
is inspired by the working principles of the harmony improvisation [13]. And as
shown in Figure 1 the flowchart of the basic HS method was presented.

Figure 1: Flowchart of the basic HS method

The initial HS Memory (HM) consists of a given number of randomly gen-
erated solutions to the optimization problems under consideration. For a n-
dimension problem, a HM with the size of HMS can be represented as follows:

HM =


x11, x

1
2, · · · , x1N

x21, x
2
2, · · · , x2N

...
xHMS
1 , xHMS

2 , · · · , xHMS
N

 (1)

where,
[
xi1, x

i
2, · · · , xin

]
(i = 1, 2, · · · , HMS)is a candidate solution.

The basic harmony search method is difficult to find optimum result of multi-
objective problem because in the iterative process, the harmony memory mem-
bers easily stop in local optimal solution. Therefore, it is important to maintain
the diversity of HM.
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Assuming the current HM fitness value is expressed as fi(i = 1, 2, · · · , HMS)
and after a new candidate solution (x′1, x

′
2, · · · , x′n) as fitness, then the distance

di (i = 1, 2, · · · , HMS) between it and all other HMs is expressed as following
equation:

di =
∥∥[x′1, x

′
2, · · · , x′n]−

[
xi1, x

i
2, · · · , xin

]∥∥ (2)

Besides, the average fitness value of HM is expressed as follow:

F =

M∑
i=1

fi

M
(3)

where, M is the number of the HM members.
Though for the concept of di (i = 1, 2, · · · , HMS) must prevent the excessive

similarity between the members from HM. In other word, modified HS would
be suitable for handling multi-objective problem by maintaining the diversity
of HM. Most of the practical optimization problems are in fact constrained
optimization problems, whose goal is to find the optimal solution that satisfies
a set of given constraints [26, 27]. In general, a constrained optimization problem
is described as follows:

Find x = (x′1, x
′
2, · · · , x′n) to satisfy:

minf(x)

s.t.

{
gi(x) ≤ 0, i = 1, 2, 3 · · · I
hj(x) = 0, j = 1, 2, 3 · · · J

(4)

where, f(x) is the objective function, gi(x) ≤ 0 and hj(x) = 0 are the in-
equality and equality constraint functions respectively. As a matter of fact that
the equality constraint functions can be easily transformed into the inequality
constraint functions:

|hj(x)| ≤ ε

where, ε is a small enough tolerance parameter. Therefore, we only consider the
inequality constraint functions gi(x) ≤ 0, i = 1, 2, 3 · · · , I. Since the constraint
functions could divide the whole search space into some disjoint islands such
problems are generally difficult to deal. Numerous constraint-handling tech-
niques have been investigated during the past decades. One popular solution
is to define a new fitness function F (x)) to be optimized. For example, F (x))
is the combination of the objective function f(x)) and weighted penalty terms
P (x)), i = 1, 2, 3 · · · I, which reflect the violation of the constraint functions:

F (x) = f(x) +

I∑
i=1

wiPi(x) (5)

where wi, i = 1, 2, 3 · · · I, are the preset weights. The overall optimization per-
formance depends on the penalty terms and their weights, and may significantly
deteriorate with inappropriately chosen ones.
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Besides, the HM only stores the feasible solution candidates. The new HM
members are generated either from the existing HM members or in a random
way. Nevertheless, those are not guaranteed to always meet all the constraints.
In the original HS method, the new HM members satisfying the constraints
can be obtained based on only trial and error method which may lead to a time
consuming procedure particularly in the case of multiple and complex constraint
functions.

In this improved HS algorithm, the advantage of those HM members that
do not even meet the constraints is taken. The key issue is how to rank the HM
members according to their objectives as well as constraint functions values.
The HM members are divided into two different parts: feasible members and
infeasible members. The former satisfy all the constraint functions while the
latter do not. The ranking of the feasible HM members is straightforward that
means they can be sorted using their objective functions values. However, for
the infeasible ones, the ranking is based on the Pareto dominance of these HM
members [28, 29]. An infeasible HM member dominates another, if none of its
constraint functions values are larger and at least one is smaller. Formally, the
Pareto dominance is defined as follows.

Suppose there are two infeasible HM members xa and xb. If ∀i ∈ {1, 2, · · · , I},
gi(x

a) ≤ gi(x
b)
⋂
∃i ∈ {1, 2, · · · , I}, gi(xa) < gi(x

b), it can be concluded that
xa dominates xb. For each infeasible HM member, we can calculate the number
of the others that dominate it. That implies its relative degree of violation of
the constraint functions. It is the ranking of an infeasible HM member and
is determined by the number of other infeasible HM members by which it is
dominated.

Once after the whole HM has been ranked, the worst HM member x# can
be selected and compared with the new solution candidate x∗. Note, x∗ does
not need to be feasible. When x# is compared with x∗, x∗ will replace x# only
in one of the following three cases:

Case 1: x∗ is feasible, and x# is infeasible.
Case 2: Both x∗ and x# are feasible and f(x∗) < f(x#).
Case 3: Both x∗ and x# are infeasible and x∗ dominates x#.
The process is shown in Figure 2.

3. Design Expression of the Single-camera-multi-mirror Device

3.1. Measurement Principle of the 3-D Imaging

Figure 3 shows the arrangement of the single-camera-multi-mirror device
from the top view. The square the outer contour of the object being observed.
The blue circle is the area that needs to be photographed. And the red circle
is the area that was opaque. Using a single camera from one direction cannot
capture the comprehensive image information of the blue area, because of the
opaque object. To solve this problem, a novel single-camera-multi-mirror device
was designed to enable one camera to capture the images from four vertical faces
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Figure 2: Multi-objective optimization flowchart based on a modified HS algorithm
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Virtual Camera 2

Virtual Camera 4

Virtual Camera 3

Virtual Camera 1

Real Camera

Figure 3: Schematic diagram of the 3-D imaging principle

of a cuboid. The images of the 4 faces were reflected by the plane mirrors and
focused on the camera lens.

To eliminate the image refringence caused by the oblique angle between the
observed face and the virtual camera, the light center axes of the three virtual
cameras were all defined to be perpendicular to the observed faces. Besides, the
distance of the optical path of the four virtual cameras were set to be equal to
ensure the consistent image resolution from the four sides and enable the lens
to focus to the four observing areas.

3.2. Mathematical Model of the Single-camera-multi-mirror Design

To optimize the arrangement of the high-speed camera and six plane mir-
rors to build the mathematical model for optimization, the design diagram was
drawn, as shown in Figure 4. The point P and Q are the position of the virtual
camera 3 and 2 in Figure 3. Due to the symmetrical relationship of the virtual
camera 1 and 2, the optimal design of the two mirrors of virtual camera 1 and 4
was omitted. So the optimization design variables in practice were the position
parameters of the camera (point H) and the three mirrors (marked as A, B and
C). The radius of the observing area is defined as r. The length of the outline
of the observed cuboid is defined as lV . So, the coordinate of the point V0 is
( lV√

2
, 0). The default unit in this paper is mm.

The coordinates of the virtual camera 2 and 3 are expressed as follows:
Q( b+c+d√

2
,− b+c+d√

2
), P ( b+c+d√

2
, b+c+d√

2
). Besides, the coordinates of the plane mir-

rors A and B can be expressed as A( b√
2
, b√

2
), B( b√

2
,− b√

2
).

The three angle optimization variables are defined as follows θ1 (mirror A),
θ2 (mirror B) and θ3 (mirror C). The equations for the lines crossing the A and
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Figure 4: Establishment and parameter setting of the mathematical model
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B mirrors are respectively dissected as follows:

LA : y = x tan θ1 +
a√
2

(1− tan θ1)

LB : y = x tan θ2 −
b√
2

(1 + tan θ1)

As point P and point H are symmetrical about line LA, the coordinates of
H are obtained as follows:

xH = xP + yP tan θ1 − yH tan θ1

yH =
2xP tan θ1 + yP (tan2 θ1 − 1) +

√
2a(1− tan θ1)

1 + tan2 θ1

Due to xP = yP and xH = 0, the following equation is obtained:

d = −b− c+ a
2(tan θ1 − tan2 θ1)

1 + 2 tan θ1 − tan2 θ1

Similarly, because point Q and point R are symmetrical about line LB , the
coordinates of R are obtained as follows:

xR = xQ + yQ tan θ2 − yR tan θ2

yR =
2xQ tan θ2 + yQ(tan2 θ2 − 1)−

√
2b(1 + tan θ2)

1 + tan2 θ2

The equation of line LBR can be obtained from two points B and R.

LBR : y =
yB − yR
xB − xR

(x− xR) + yR

As point CP is the midpoint of the line segment RH, the coordinates of the
point C are (xR+xH

2 , yR+yH

2 ) and the equation of line LC can be expressed as:

LC : y = tan θ3(x− xR + xH
2

) +
yR + yH

2

As the point C is the intersection of Line LC and Line LBR, the coordinates
of the point C are obtained as follows:

xC =

yB−yR

xB−xR
xR − yR − xR+xH

2 tan θ3 + yR+yH

2
yB−yR

xB−xR
− tan θ3

yC =
yB − yR
xB − xR

(xC − xR) + yR

In addition, as the line LC is perpendicular to LBR, the following equation
can be obtained:

tan θ3 ·
yR − yH
xR − xH

= −1 (6)

9



Based on the coordinates of the point B and C, the geometrical relationship
must be met:

c = |BC| =
√

(xB − xC)2 + (yB − yC)2 (7)

The relative coordinate values of the points of B, C, R and H can be all
derived, when the design parameters a, b, c, θ1, θ2 and θ3 are given. So, the θ2
and θ3 can be obtained by solving the function set of Equation 6 and 7.{

xH − xR + tan θ3(yR − yH) = 0

xC(xC − 2xB) + yC(yC − 2yB) + b2 − c2 = 0
(8)

In above, the optimization variables are a, b, c and θ1. All the position and
angles can be derived by giving a set of values of these 4 variables.

3.3. Optimization Model

The optimal arrangement of the 3D imaging device in this paper is a multi-
objective constraint optimization problem. The resolution of the experiment
videos was limited by the capability of the high-speed camera and the distance
from the observed field to the camera lens. The resolution capability of the
camera and the lens used in the experiment are fixed. The cavitation bubbles
in the valve were quite small. In order to ensure the resolution of the bubble
images, the distance of the optical path were optimized as short as possible.
Then, the first optimization objective can be expressed as follows:

f1(x) = b+ c+ d (9)

Besides, the overall size of the 3D imaging device should be as compact as
possible. The vertical length is defined as the second optimization objective:

f2(x) = xB (10)

And the lateral length is defined as the third optimization objective:

f3(x) = yA − yH (11)

The objective function is mathematically defined by:

min J(x) = min(f1(x), f2(x), f3(x)) (12)

Subject to:
G(x) ≤ 0

where x = [a, b, c, θ1]T .

10



3.4. Model Constraint

The calculation of the following parameters was to define the constraint
conditions to meet the geometrical requirements of the single-camera-multi-
mirror design and ensure no interference between the optical paths.

To prevent the optical image reflected by the mirror A from being interrupted
by the valve, there should be a certain interval between A0 and V0, as expressed
in Equation 13:

xA0 − xV0 > 3 (13)

The left boundary of the optical path reflected by the mirror C is on the
positive side of the y axis, in case of influencing the mirror belonging to the
virtual camera 1, which is symmetrical with the mirror C. So, the x coordinate
of the point C1 should meet the following constraint:

xC1
> 2 (14)

The slope of the line HC2 and HV0 can be expressed as:

kHC2 =
yH − yC2

xH − xC2

, kHV0
=
yH − yV0

xH − xV0

To prevent the optical path from the mirror A and C from interfering with each
other, the slopes angle of the line HC2 and HA1 should meet:

arctan kHC2 − arctan kHV0 > 1◦ (15)

To prevent interference between the placement of the mirror C and the valve
body, the position of the points C1 and C2 should meet:

yC1
− yK1

< −30 (16)

yC2
− yK2

< −10 (17)

The visual scope is limited by the viewing angle of the camera lens. So,

β < 17.5◦ (18)

Above all, the constraint can be defined as:

G(x) = {g1(x), g2(x), g3(x), g4(x), g5(x), g6(x)}T

where, 

g1(x) = arctan kHV0
− arctan kHC2

+ 1◦

g2(x) = xV0
− xA0

+ 3

g3(x) = 2− xC1

g4(x) = yC1
− yK1

+ 30

g5(x) = yC2
− yK2

+ 10

g6(x) = β − 17.5◦
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4. Case Study

4.1. 3D multiphase flow imaging of a water hydraulic valve

In this section, the optimization arrangement of the 3D imaging device was
applied in the multiphase flow reconstruction of the 3D cavitation bubble cluster
in a water hydraulic valve. The main materials of the valve body is a type
of transparent thermoplastic called Polymethylmethacrylate (PMMA, Perspex,
acrylic glass). The two basic structural dimensions is given as r = 17 and
lV = 118 (unit: mm). Besides, there is the valve core in the center of the
observed area, which obscured quite much sight. Because of the inevitable
space for connecting the inlet/oulet hydraulic pipes, there is no space for the
mirror in practice, and the virtual camera 4 was omitted.

The linear constraints of design parameters are defined according to the
design requirements as follows.

150 < a < 400

150 < b < 400

150 < c < 400

145◦ < θ1 < 180◦

(19)

Figure 5: Optimization variables versus iterations during the optimization process

The relevant parameters in the HS algorithm are as follows: HMS=50,
HMCR=0.75, PAR=0.4. The number of the Pareto solution is equal to 10. The
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Figure 6: Objective functions versus iterations during the optimization process

number of iterations is 100 times, while 20 new sets of the optimization vari-
ables’ solutions will replace the worse solutions in each iteration. The changes
of the variables and objective functions during the optimization procedure are
illustrated in Figures 5 and 6. As shown in Figure 6, in the first 20 iterations,
the value of f1, f2 and f3 were greatly fluctuate. After that, all the three objec-
tive functions steadily decreases and converges. This shows the efficiency of the
algorithm in convergence speed. As a result, Table 1 gives the Pareto results
acquired.

Table 1: Pareto resolutions of optimization

No. a/mm b/mm c/mm θ1/rad f1(x)/mm f2(x)/mm f3(x)/mm

1 187.879 255.392 181.091 2.612 680.596 180.589 474.469
2 188.501 254.701 179.621 2.613 684.255 180.101 477.499
3 189.329 257.592 184.673 2.610 678.156 182.145 470.137
4 189.329 255.584 177.641 2.611 679.927 180.725 471.979
5 189.329 257.440 183.339 2.611 679.927 182.038 471.979
6 189.329 257.338 183.339 2.611 679.927 181.966 471.979
7 189.185 260.852 181.046 2.610 677.640 184.451 469.780
8 189.329 257.195 178.050 2.611 679.927 181.864 471.979
9 189.185 260.852 181.046 2.610 677.640 184.451 469.780
10 189.185 260.852 181.046 2.610 677.640 184.451 469.780
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Figure 7: GUI of the optimizations design
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Figure 8: 3D imaging experiment of the transparent water hydraulic valve

In order to facilitate other designers to apply the optimization method pre-
sented in this paper, a graphical user interface (GUI) was developed as shown in
Figure 7, which integrated the functions of inputting the initial object param-
eters, running the modified HS algorithm, displaying the optimization results
and drawing the optimal arrangement design. As a result, the optimal solution
is obtained and selected as follows:

xopt =[aopt, bopt, copt, θ1opt]
T

=[187.879, 255.392, 181.091, 149.679◦]T
(20)

Figure 8 shows the photographs of a 3D imaging experiment. As shown
in Figure 8(a), the water hydraulic experimental setup consisted of the water
hydraulic platform, industrial personal computer (IPC), and the 3D imaging
device. The transparent water hydraulic valve used as the observation object
was shown in Figure 8(b). The arrangement design drawing was printed on an
A2 sheet of paper. As shown in Figure 8(c). five plane mirror and a high-speed
camera were placed based on the printed design paper. From the front view,
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Figure 9: Kernel density of the point C

the images from three sides of the valve was captured.

4.2. Algorithm Performance

To testify the good performance on locating most of the local optima in ad-
dition to the global optimum, the Pareto data of every iteration was collected.
2000 arrangement solutions of the 3D imaging device were recorded. The po-
sition of the mirror C were decided by the coordinate of the point C. Point
A, B and H can only move on a certain line, while point C can move within a
certain area. And both xC and yC were decided by the optimal variables a, b,
c,θ1, which can comprehensively reflect the performance. So we select point C
to analyze its position distribution and density.

Figure 9 shows the density analysis of the point C. The 10 Pareto solutions
were more concentrated in the pea-shaped area around the optimal solution.

Figure 10 illustrates the contour maps of the optimization objectives’ values
about point C. The red star symbol is marked as the optimal position of the
point C. The distribution of the point C is quite extensive, which indicates
that there were spread selections considered as the optimal solutions. Compared
Figure 10(b) with Figure 10(a) and (C), the area of the relative small value of
the f2(x) is quite limited, which plays a more obvious role than f1(x) and f3(x).
And the point C optimal solution was at the lowest area of the f1(x) , f2(x)
and f3(x).

4.3. 3-D Cavitation Bubble Cluster Reconstruction

Figure 11 shows three randomly selected frames of the experimental video,
whose time interval was only about 23 milliseconds (ms). The cavitation bubbles
inside the valve were captured from the three sides.

An image processing algorithm called the frame differencing method was
applied to detect the features of the cavitation bubbles. All the two dimensional

16



Figure 10: Position distribution of point C and its optimization objectives’ value

(2D) bubble features of the relative motion compared to the previous near frame
were extracted. The 3D bubble reconstruction in this paper was based on space
rectangular coordinate system. The spatial coordinates of the cavitation bubbles
in the valve was provided by the position information of the experiment images
from the three directions of left (L), right (R), back (B). The bubble position
coordinates on the horizontal axis from the L and B sides’ images were directly
used as the x coordinate values of the bubbles in the spatial location and the
R side’s image provided the y coordinate values. After matching the 2D bubble
features, the 3D cavitation bubble cluster was reconstructed as shown in Figure
12. From the reconstruction results, the change process of the generation and
collapse of the cavitation bubbles can be analyzed. And the number and motion
rack of the bubbles can be further calculated.

5. Conclusion

In this paper, we proposed a novel 3D image capture method and applied an
improved HS algorithm to optimize its design arrangement. At last, as a case
study, this method was applied in a water hydraulic valve to capture and re-
construct the cavitation bubble cluster. By analyzing the position distribution
and density of the Pareto solutions about a representative point, the advantage
and improvement of the modified HS method was verified. Besides, the cavi-
tation experiment was implemented. Through analysis and calculation of the
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Figure 11: Experimental images in a short time

Figure 12: 3-D reconstruction results of bubble flow in a short time
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experimental images, the 3D image of the cavitation bubbles was realized. The
reconstruction results were quite accurate and effective. And the effectiveness
of the 3D imaging device was testified. The 3D imaging method can be also
applied in various multiphase flow measurements and has quite good flexibility
and adaptability for different observed object.
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