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ABSTRACT
Machine Learning (ML) techniques are becoming an invaluable support for network intrusion de-
tection, especially in revealing anomalous flows, which often hide cyber-threats. Typically, ML al-
gorithms are exploited to classify/recognize data traffic on the basis of statistical features such as
inter-arrival times, packets length distribution, mean number of flows, etc. Dealing with the vast
diversity and number of features that typically characterize data traffic is a hard problem. This re-
sults in the following issues: i) the presence of so many features leads to lengthy training processes
(particularly when features are highly correlated), while prediction accuracy does not proportionally
improve; ii) some of the features may introduce bias during the classification process, particularly
those that have scarce relation with the data traffic to be classified. To this end, by reducing the fea-
ture space and retaining only the most significant features, Feature Selection (FS) becomes a crucial
pre-processing step in network management and, specifically, for the purposes of network intrusion
detection. In this review paper, we complement other surveys in multiple ways: i) evaluating more
recent datasets (updated w.r.t. obsolete KDD 99) by means of a designed-from-scratch Python-based
procedure; ii) providing a synopsis of most credited FS approaches in the field of intrusion detection,
including Multi-Objective Evolutionary techniques; iii) assessing various experimental analyses such
as feature correlation, time complexity, and performance. Our comparisons offer useful guidelines
to network/security managers who are considering the incorporation of ML concepts into network
intrusion detection, where trade-offs between performance and resource consumption are crucial.

1. Introduction
With the rapid growth of digital technology and com-

munications, we are overwhelmed by network data traffic,
which are diverse for media type (e.g. video, voice, text, sen-
sory, etc.), and originate from (and are transported through)
a broad range of sources (e.g. mobile networks, cloud infras-
tructures, Internet of Things, etc.). Consequently, we handle
high-dimensionality data, calling for increasingly more so-
phisticated classification methods [1, 2].

Typically, we refer to high dimensionality when we deal
with data whereby a large number of features may be ex-
tracted, to the point that the features may even exceed the
number of observations. This leads to major issues, particu-
larly the massive increase in training times.

To this end, Feature Selection (FS) is a promising re-
search direction, looking at ways to reduce the feature space
in order to pinpoint only the most significant features. As
a fundamental pre-processing step in machine learning, FS
is gaining prominence in network management and, specif-
ically, for the purposes of network intrusion detection and
network traffic classification problems [3, 4, 5, 6].

More generally, FS finds an even much broader applica-
bility in field as diverse as bioinformatics [7, 8, 9, 10],image
recognition/retrieval [11, 12, 13, 14, 15, 16, 17], fault diag-
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nosis [18, 19], text mining [20, 21, 22] and, interestingly, in
network traffic analysis/classification, whose pertinent bib-
liography will be covered more closely in the following.

Machine learning engines can be easily embedded in net-
work intrusion detection systems (IDS), which represent an
essential part of network infrastructures to guarantee secu-
rity [23, 24, 25] and availability [26, 27, 28, 29, 30, 31, 32,
33, 34]. Specifically, modern NIDS can be equipped with
software probes in charge of analyzing network traffic on the
basis of some characterizing features such as: distribution
of inter-arrival times, distribution of packet sizes, presence
of specific TCP/IP flags, percentage of forward/backward
flows. Such statistical information is instrumental to reveal-
ing anomalous traffic, which is often behind Distributed De-
nial of Service (DDoS) attacks [35, 36], covert Voice-over-
IP sessions [37], threat diffusion [38] and Peer-2-Peer traffic
[39, 40, 41]. In many cases, these flows would pass unob-
served through other conventional signature-based analyses.

In principle, a larger number of features would allow to
perform more granular analyses; yet, two main drawbacks
emerge. First, a proliferation of correlated features leads to
levels of redundancy that are useless, while resulting in in-
creasingly longer training times. Also, not all features are
valuable in characterizing traffic, incurring bias during the
classification step.

If we consider, as an example, some novel probes such as
ISCXFlowMeter [42], these can actually generate more than
80 features to characterize data traffic, which makes it ex-
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tremely difficult for the network analyst to deal with this vast
amount of information. This is where an FS pre-processing
step becomes invaluable.

Across the scientific literature, many works are devoted
to surveying machine learning algorithms with applications
to internet traffic classification. Yet, few attempts have been
made in the field of FS techniques, where two main short-
comings emerge: i) many works analyze and compare FS
algorithms applied to non-specific datasets [43, 44, 45]; ii)
are either based on outdated datasets, or lack the experimen-
tal dimension. Overall, notmuch novel algorithms have been
compared (refer to details provided in Table 1, discussed fur-
ther ahead). Aimed at filling these gaps, our paper provides
the main following contributions:

• We perform an experimental analysis of more re-
cent datasets (classic literature focuses on the 20-year
old KDD99 dataset) by means of our designed-from-
scratch Python based routine. This allows us to i) per-
form cleaning, re-balancing, and data mixing opera-
tions, and ii) automatically interact with specific ML-
based engines.

• We present a variety of experimental results (in-
cluding: feature correlation, time complexity, perfor-
mance) aimed at critically comparing selected fam-
ilies of FS algorithms, ranging from classic ones
(rank search, linear forwarding selection) to modern
bio-inspired algorithms (genetic search, ant colonies,
multi-objective evolutionary), thus going well beyond
a conventional literature survey.

Our experimental-based, comparative assessment finds
fruitful applications in the field of network/security manage-
ment, where machine learning techniques are proved to of-
fer a precious support to intrusion detection tasks, and where
critical trade-offs between performance classification and re-
source consumption arise.

The paper is organized as follows: Section 2 offers a gen-
eral perspective on FS methods, in line with other accredited
taxonomies. In Section 3 we analyze how diverse FS tech-
niques have been applied in the literature, often based on the
old KDD99 dataset. Section 4 proposes an excursus of pop-
ular FS algorithms (classic and modern) along with some
necessary technical details. In Section 5 we analyze the ex-
ploited novel datasets by grouping the most relevant features
in families. In Section 6 we perform an experimental-based
comparative analysis of prominent FS algorithms, provid-
ing performance, feature correlation, and time-complexity
figures. Finally, Section 7 draws conclusions and provides
future-direction indications.

2. Overview of Feature Selection
Feature Selection refers to that set of techniques and

strategies that allow to optimize the feature space, namely,
an n-dimensional space where each sample is represented as
a point. When dealing with large feature spaces, the anal-
ysis of data, which starts from their representative features,

can be tremendously time and resource consuming. Hence,
the need to devise suitable FS strategies aimed at eliminat-
ing i) irrelevant features, namely, those features that are not
actually needed to build an optimal feature subset; and ii)
redundant features, namely, those features that strongly de-
pend on other features [46].

Feature selection can be considered as a special case of
feature extraction methods [47]. The latter refer to a set of
techniques (e.g. PCA, Single Value Decomposition, Linear
Discriminant Analysis and others) useful to transform the
original feature space in a new one aimed at alleviating the
effects of the notorious curse of dimensionality problem [48,
49]. It is important to note that feature extraction comes with
the critical risk of obtaining a transformed feature space that
could lose its original physical meaning, whereas classic FS
aims at preserving it [50, 51].

A more formal definition of the FS problem follows.
Given a feature set X = {xi ∶ i = 1,… , N}, find a subset
SK = {xi1 , xi2 ,… , xiK } with K < N , where an objective
function Y(⋅) is optimized, namely:

{xi1 , xi2 ,… , xiK } = argmax
K,ik

[Y {xi ∶ i = 1,… , N}]. (1)

Unless otherwise stated, the problem is to select the optimal
subset of features (according to a specific criterion) from the
initial set, where two steps are typically performed: the first
one involves a search strategy to pinpoint candidate subsets;
the second one involves an objective function to evaluate the
selected candidate subsets. The latter can be split in two
types [52, 53, 54, 55]: i) filters, referring to objective func-
tions that rely on properties of the data by evaluating the
information content (e.g. correlation measures, inter-class
distance); ii) wrappers, referring to objective functions that
exploit training models by starting from a subset of features
and, then, adding or removing features based on the previous
model.

A commonly accepted taxonomy of FS methods is pre-
sented in [56], where three classic approaches have been
identified as supervised, unsupervised, and semi-supervised.
According to the supervised approach, labeled data are ex-
ploited to single out a feature subset, considering specific cri-
teria for measuring the features importance. Conversely, un-
supervised techniques seek to unveil the intrinsic data struc-
ture to select the most significant features, without assuming
any a priori knowledge [57].

Finally, the semi-supervised approach is based on a
mixed strategy, striving to enrich an unlabeled set with some
labeled data, so as to improve the FS phase. Both the un-
supervised and the semi-supervised approaches exhibit the
drawback of neglecting potential correlations among fea-
tures, resulting in the analysis of sub-optimal sets. This
may prove critical when dealing with traffic analysis, where
we need to take into account statistical-based features (e.g.
inter-arrival times variance, average packet length, etc.) and
deterministic ones (e.g. IP addresses, port numbers, etc.).
Let us consider, for example, a particular kind of traffic di-
rected towards a fixed destination port for a certain period
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Table 1
Prominent related work surveying FS techniques applied to Network Intrusion Detection.

Authors Experiments Single/Multi Class Description
Wang et al. [58] Performance analysis Single Class Feature Selection performed on the KDD99

dataset, by applying C4.5 and Bayesian Net-
work algorithms

Janarthanan et al.
[59]

Performance analysis Single/Multi Class Empirical selection of features by performing
tests on KDD99 and UNSW-NB15 datasets
by means of Random Forest algorithm

El-Khatib [60] Performance analysis Single/Multi Class Feature selection combining Filter/Wrapper
methods for Wireless IDS. Tests have been
performed on a WLAN environment

Chen et al. [61] Performance analysis, Time
analysis

Single Class Correlation-based Feature selection using the
KDD99 dataset

Nisioti et al. [62] N/A N/A Classic survey on ML-based techniques (in-
cluding FS) with pointers to detailed sources,
but with no experiments

Iglesias et al. [63] Performance analysis Single/Multi Class Comparison among 4 FS algorithms on the
NSL-KDD dataset

Singh et al. [64] Performance analysis, Time
analysis

Single Class Comparison among various FS algorithms on
the KDD99 dataset

Bahrololum et al.
[65]

Performance analysis Single/Multi Class Comparison among PSO, Decision Tree,
Flexible neural tree algorithms on the KDD99
dataset

Dhote et al. [66] N/A N/A Limited survey of FS techniques applied to
network traffic, with pointers to detailed
sources, but with no experiments

This work Performance analysis, Feature
Correlation analysis, Time
analysis

Single/Multi Class Feature Selection performed on the CIC-IDS-
2017/2018 dataset, by considering 9 FS algo-
rithms from classic (Rank, Scatter) to mod-
ern (Genetic, Multi-Objective Evolutionary)

of time. An unsupervised approach could lead to a subset of
features which does not include the destination port. Thus,
a crucial (as well as deterministic) piece of information gets
lost.

On the other hand, a supervised approach can offer opti-
mal results, provided that the data are correctly labeled. This
case typically occurs in a controlled network environment,
where, with the help of network analyzers, it is possible to
automatically label the type of passing data traffic.

Because of the great potential of supervised methods,
and thanks to the availability of suitable labeled datasets, we
have decided to focus our experimental-based comparative
evaluation on supervised FS methods.

3. Related Work on Feature Selection applied
to ML-based Intrusion Detection
Most scientific literature involving ML approaches is

typically focused on the proposal of algorithms or tech-
niques for classification/detection of specific network traffic
([67, 68, 69, 70, 71, 72, 73, 74]). Unfortunately, the straight
application of machine learning to network traffic analysis is
not always feasible, due to the broad variety of traffic types,
which leads to unmanageable feature spaces. Intuitively, in
fact, a highly diversified traffic (multimedia, asynchronous,

bursty, etc.) requires a large set of features able to capture
the variegated “nature" of the different flows. That is why
appropriate pre-processing steps (i.e. FS) play a crucial role,
thus a significant portion of ML-based literature has shown
interest in FS techniques.

For instance, to improve the performance of IDS frame-
works, the authors of [75] propose a mixed strategy in-
volving Principal Component Analysis and fuzzy clustering
with KNN-based FS techniques. A correlation-based FS ap-
proach coupled with a Support Vector Machine (SVM) clas-
sifier is proposed in [76] to build a cloud-based IDS. An IDS
based on deep learning methods, along with a filter-based
FS algorithm, is introduced in [77]. Similarly, a Convolu-
tional Neural Network (CNN) approach is exploited in [78]
to select traffic features from raw data sets, improving the
accuracy of an intrusion detector. Yu and Liu propose a
mutual information-based algorithm that can analytically se-
lect optimal features for classification, by handling linearly
and non-linearly dependent data [79]. Again, FS is exploited
jointlywithArtificial Neural Networks [80] andDeepNeural
Networks [81], respectively, to improve IDS performance.
Furthermore, authors in [82] embed in an IDS two FS algo-
rithms that are compared against mutual information-based
methods.

A major shortcoming of these works is that methods
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are validated and compared through the outdated KDD99
dataset. This contains information about older network at-
tacks (that have been mitigated by now) or, in some cases,
adopts an updated version of KDD99, namely NSL-KDD
[83]. Yet, although NSL-KDD adds some improvements
onto KDD99 (e.g. no redundant records, better balancing
between training and test set, etc.), it does not take into ac-
count features that characterize novel cyber attacks. Other
works in the field of machine learning applied to intrusion
detection rely on more recent datasets such as UNSW-NB15
[84, 85, 86, 87]. Although quite recent, such a dataset has
two limitations: first, the traffic has been collected in a re-
duced testbed; and secondly, the number of features is lim-
ited to 49, which is too small to appreciate the effectiveness
of feature selection techniques. In contrast, in our work we
rely on an up-to-date dataset from the Canadian Institute for
Cybersecurity [88] which has the following benefits: i) it
contains data traffic gathered over a vast network area; and ii)
it accounts for about 80 features, allowing to extensively test
the feature selection algorithms. Additional details about
this dataset are provided in Section 5.

Going more specifically into the set of works that share
with this paper the aim to compare or survey FS methods for
intrusion detection, we have collected the significant papers
in Table 1. In it, we have identified the material covered in
the literature, which helps appreciating the contributions of
our paper. The first column of Table 1 points to the source;
the second column highlights the type of experimental anal-
ysis (if any); the third column pinpoints the type of datasets
utilized (single or multi-class); the last column provides a
concise description of the surveyed material.

4. Review of Feature Selection Algorithms
under Scrutiny
In this section, we briefly describe the algorithms under

scrutiny, which belong to different families of FS techniques,
ranging from classic rank-guided (Rank, Linear Forward Se-
lection) and meta-heuristic (Tabu, Scatter, Particle Swarm)
ones, to nature-inspired algorithms (Ant, Cuckoo), and up
to modern techniques (Genetic, Multi-Objective Evolution-
ary).

For each algorithm, we provide a brief recap along with
its pertinent application in network traffic analysis and secu-
rity in literature.
4.1. Rank-based Feature Selection

Algorithms belonging to this family follow an approach
based on two macro-steps: in the first one, the features are
ranked according to a certain statistical measure, whereas in
the second step the algorithm chooses the top ranked features
(eventually partitioned in clusters). We investigate and put
to test two representative algorithms of this family: Rank
Search and Linear Forward Selection.
4.1.1. Rank Search

The Rank Search technique refers not only to a single al-
gorithm, but, to an umbrella of methods able to produce a list

of attributes ranked with some criteria. One of the most ap-
plied rank-based techniques in FS relies on the Information
Gain (IG) concept [89]. Given an attribute A and a class C,
the entropy of the class without and with prior observation
of the attribute are, respectively:

H(C) = −
∑

c∈C
p(c)log2p(c), (2)

and
H(C|A) = −

∑

a∈A
p(a)

∑

c∈C
p(c|a)log2p(c|a). (3)

The IG is given byH(C) −H(C|Ai), and represents theamount of the class entropy decreasing due to the a priori
knowledge introduced by i-th attribute.

Over network traffic analysis literature, the rank search
method has been widely exploited in conjunction with stan-
dard machine learning algorithms typically used during the
classification step. In [90], having the NSL-KDD dataset as
input, the proposed algorithm i) evaluates the information
gain value, ii) applies fuzzy rules to remove unwanted fea-
tures, iii) calculates themean value of IG across the new sub-
set of features, iv) refines the feature subsets by applying an
algorithm based on conditional probability evaluation. Au-
thors in [91] propose a detection model able to cope with
network attacks based on the feature IG ranking; once ob-
tained a satisfying feature set, a triangle area based KNN,
combining both SVM and greedy techniques, is exploited to
single out even more discriminative and useful features. A
combination between an IG-based feature selection method
and a C4.5-based classifier is advanced in [92], where the re-
sulting algorithm has been optimized (in terms of power con-
sumption) to reveal DoS attacks in ad hoc networks. Simi-
lar ensemble has been exploited in [93], where authors con-
sider a broader set of classifiers (C4.5, RandomForest, Naive
Bayes, etc.) and where the analysis focuses on generic mal-
ware detection. Again, a mixed Genetic/KNN approach for
intrusion detection presented in [94] benefits from a feature
reduction procedure obtained applying ID3 algorithm to find
higher IG.
4.1.2. Linear Forward Selection

Such a technique to reduce the feature space dimension-
ality has been presented in [95]. Linear Forward Selection
(LFS) can be considered as an improvement of Sequential
Forward Selection (SFS) method which starts with an empty
set of features and sequentially adds one feature at a time.
In order to face the (N2) complexity of SFS, in LFS the
number of considered features at each step does not exceed
a certain user-specified constant, thus, the resulting perfor-
mance is impressively ameliorated. Two methods for limit-
ing the number of features have been implemented in LFS
algorithm: i) Fixed Set, where a score obtained by means of
a wrapper evaluator is used to choose the top-k ranked at-
tributes, thus, the maximum number of evaluations reduces
to k∕2(k + 1) ; ii) Fixed Width, where, at each forward
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selection step, the number of features is increased by one,
such that the set of candidate expansions consists of the best
k features not been selected so far during the search. In
such case, the maximum number of evaluations amounts to
N ⋅k−k∕2(k+1). Forward Selection-based techniques have
been exploited across the traffic classification domain for de-
tection of malicious application on Android [96], detection
of zero day attacks [97], designing novel anomaly detection
systems [98].
4.2. Meta-heuristic Feature Selection

Techniques belonging to this family rely on the principle
that it is possible to select heuristics, namely, approximate
algorithms searching for a sufficiently good solution to an
optimization problem, useful when some constraints arise
(e.g. limited computational resources, incomplete informa-
tion). We select three representative algorithms of this fam-
ily: Tabu Search, Scatter Search, and Particle Swarm Opti-
mization.
4.2.1. Tabu Search

Tabu Search (TS) algorithm has been originally pro-
posed in [99], and, then, it has been extended and exploited
to solve practical optimization problems [100, 101, 102].
TS is based on a metaheuristic method able to pilot a lo-
cal heuristic search in exploring the space of solutions be-
yond the local optimality. Two main features characterize
TS: adaptive memory and responsive exploration. The for-
mer allows to perform local choices guided by information
collected during the search, whereas, the latter allows to
make strategic choices. In other words, TS exploits a local
search procedure combined with memory-based strategies,
thus, the issue of getting trapped in local optimal solutions is
avoided. To implement the memory-based mechanism, TS
builds a map of recently visited solutions called Tabu List
(TL). A simplified TS algorithm is illustrated below:

Algorithm 1: Tabu Search
1. Given a function f (x) to be optimized over a set
 , start from initial solution x0 ∈  , initialize
Tabu List (TL), and initialize a counter i = 0.
2. GivenN(xi) ⊂  the neighborhood of xi,N(xi)can be reached by xi by means of a move
operation. Thus, generate a neighborhood move
listM(Xi).3. Given xi+1 the best solution inM(Xi), updateTL.
4. In case stopping conditions are met, terminate.
Otherwise, repeat Step 2.

It is interesting to notice that, the memory structures char-
acterizing TS method operate according four dimensions
[100]:

• Recency: concerns the ability of keeping track of so-
lutions attributes that have changed across the recent
past.

• Frequency: involves the mechanism exploited to
broad the foundation for selecting preferred moves.

• Quality: pertains to the capacity of discriminating the
merit of solutions visited during the search operation.

• Influence: takes into account the impact of choices
performed during the search.

In the field of network traffic classification, TS has been
exploited in [103] jointly with fuzzy techniques aimed at op-
timizing the exploration of feature search space in intrusion
detection problems. A combination of TS technique and
KNN is presented in [104], where KNN is initially exploited
to generate a subset of non-redundant features, whereas, TS
is used to refine the obtained subset. Again, authors in [105]
propose a wrapper FS algorithm, dubbed GATS-C4.5, that
embeds an hybrid Genetic and Tabu-basedmethod as feature
selection strategy and a supervised ML algorithm (C4.5) as
the evaluation function. Similar combinations between TS
and Genetic techniques have been used in [106] where some
tests (vs pure Genetic algorithms) across DARPA dataset
have been carried out, and in [107] where SVM has been
adopted as a classification criterion.
4.2.2. Scatter Search

Scatter Search is a metaheuristic algorithm involving
memory-based mechanisms similar to those exploited in
Tabu Search [108]. The main strategy relies on an iterative
process that organizes high-quality optimal solutions into
subsets, and where five “methods" emerge: i) Diversifica-
tion, to create a set of different trial solutions by exploiting a
seed solution; ii) Improvement, to convert a trial solution in
one or more improved solutions; iii) Reference Set Update,
to create and keep update a reference set of best solutions;
iv) Subset Generation, to manipulate the reference set aimed
at deriving a subset of solutions; v) Solution Combination,
to linearly re-combine the solutions on the basis of subsets
obtained with the previous methods.

As an effective FS procedure, Scatter Search has been
exploited together with NLP solvers for global optimization
[109], with rough sets for the implementation of credit scor-
ing mechanisms [110], or in a parallelized fashion to im-
prove the feature subset selection problem [111]. Again,
Scatter Search has been profitably exploited in issues involv-
ing credit cards fraud detection [112], and software security
characterization [113].
4.2.3. PSO Search

The Particle Swarm Optimization (PSO) algorithm has
been originally discovered in [114], through simulations car-
ried out across a simplified social model aimed at reproduc-
ing the behavior of birds flocking.

Then, the population of agents became more similar to a
swarm than flock, and single individuals were named parti-
cles that represent the candidate solutions. In a mathemat-
ical form, given  ⊂ Rn the search space, and f ∶  ←←→
Y ⊆ R, the swarm is defined by a set S = {x1, x2,… , xN}
of N particles, where xi = (xi1, xi2,… , xin)T ∈  with
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i = 1, 2,… , N . It is assumed that particles are able to it-
eratively move within search space  by means of a ve-
locity parameter defined as vi = (vi1, vi2,… , vin)T with
i = 1, 2,… , N . In PSO method, it is also defined a mem-
ory set P = {p1, p2,… , pN} containing the best positions
pi = (pi1, pi2,… , pin)T (with i = 1, 2,… , N) visited by
each particle. Given t the time counter, the current position
and velocity for particle i are, respectively, xi(t) and vi(t),whereas pi(t) = argmint fi(t). Accordingly, PSO is defined
by the following equations:

vij(t + 1) = vij(t) + 1r1[pij(t) − xij(t)] (4)
+ 2r2[g(t) − xij(t)],

xij(t + 1) = xij(t) + vij(t + 1), (5)
where: r1 and r2 denote random variables uniformly dis-
tributed in [0,1], 1 is the cognitive parameter which affects
the step size that the particle takes towards its best candidate
solution pij(t), and 2 is the social parameter which affects
the step size that the particle takes towards the swarm’s best
solution g(t). At each iteration, best positions pi(t + 1) are
updated as well, namely

pi(t+1) =

⎧

⎪

⎨

⎪

⎩

xi(t + 1) if f (xi(t + 1)) ≤ f (pi(t)),

pi(t) otherwise.
(6)

In the field of FS applied to network traffic analysis, PSO
has been profitably exploited jointly with classification tech-
niques. It is the case of [115, 116], where a particle swarm
selectionmethod has been exploited with SVM-based classi-
fiers. Again, a hybrid FS model based on PSO and Random
Forest has been exploited in [117], where independent mea-
sures and a learning algorithm are exploited to evaluate fea-
ture subsets. Interesting is also an evolution of classic PSO
advanced in [118], and dubbed Accelerated PSO, amenable
to deal with FS on Big Data streams.
4.3. Nature-inspired Feature Selection

Although relying on meta-heuristic concepts, this fam-
ily of algorithms takes inspiration from the nature ecosys-
tem, where many animal species exhibit impressive behav-
iors aimed at optimizing their life cycle. We assess Ant Op-
timization and Cuckoo search as representative algorithms
of such family.
4.3.1. Ant Search

This technique, originally proposed in [119], is inspired
by ants colonies behavior, where the optimization problem is
solved by a “colony" of cooperating agents. Analyses carried
out by ethologists showed that, following pheromone trails,
each ant is able to follow a preceding ant which releases such
substance, thus, a whole ant colony is able to self-organize
itself. The emerging collective behavior relies on a positive
feedback loop: the probability which an ant chooses a cer-
tain path increases with the number of ants that choosing the

same path, since the trail is continuously reinforcedwith new
pheromone. The Ant algorithm can be profitably exploited
in feature selection problems by evaluating the probability
pkij that the k-th “ant" could arrive to feature j by starting
from feature i, namely,

pkij =

⎧

⎪

⎨

⎪

⎩

[�ij ]� ⋅[�ij ]�
∑

k∈Uk
[�ik]� ⋅[�ik]�

if j ∈ Uk,

0 otherwise,
(7)

where,Uk is the set of feasible attributes (not visited yet), �ijis the amount of pheromone across the ij path, �ij representsthe heuristic information for the selected attribute j, � and �
are parameters in charge of controlling pheromone trials and
heuristic information, respectively.

As regards the FS problem in network traffic analysis,
Ant-based methods have been used in: [120] where a SVM
classifier is adopted on KDD99 dataset, after a feature re-
duction obtained through ACO (Ant Colony Optimization)
technique; in [121] where an ACO-based feature selection
method allows to deal with big streamed data; [122] where
an improved ACO-based algorithm (named FACO) has been
designed and tested across the classic KDD99 dataset.
4.3.2. Cuckoo Search

This technique is inspired to the brood parasitism strat-
egy characterizing some cuckoos species. In particular, such
species lay their eggs in the nests of other birds (hosts). Since
host birds can engage a conflict as they recognize alien eggs,
particular cuckoo species have evolved in such a way that fe-
males are able in mimicking colour and size of eggs of some
host species, thus the hosts are cheated, and the probabil-
ity of cuckoos reproductivity grows. Considering an egg in
a nest as a solution, three idealized rules emerge in Cuckoo
Search procedure [123]: i) each cuckoo lays one egg at time,
in a randomly chosen nest; ii) the bests nests (having high-
quality eggs) are candidate to carry over next generations;
iii) the number of nests is fixed and, as a host bird discovers
alien (cuckoo) eggswith a probability pd , it gets rid of it. Theaim of the algorithm is to exploit new (and eventually better)
solutions in place of not-so-good solutions in the nest. New
solutions xt+1i for cuckoo i are obtained through the follow-
ing expression which represents the stochastic equation for
random walk, namely,

xt+1i = xti + � ⊗ℒ (�), (8)
where, � > 0 is a scale factor, the product ⊗ refers to en-
trywise multiplications, whereasℒ is the Lévy distribution
with (1 < � ≤ 3).

Cuckoo search method has been exploited in network
traffic analysis paired with various techniques and technolo-
gies. In [124], authors propose an algorithm that uses PCA
and Cuckoo Search to reduce the feature space and to op-
timize the clustering center selection. A Cuckoo-based FS
algorithm is proposed in [125] to preprocess network data
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aimed at improving the IDS detection accuracy in cloud en-
vironments. A Cuckoo search strategy has been also used
in [126] to optimize Artificial Neural Networks when deal-
ing with traffic anomaly detection issues. Again, coupled
with SVM, Cuckoo search has been adopted in FS to deal
with problem of phishing mail detection [127]. Recently,
extended versions of Cuckoo Search algorithm have been
advanced to cope with classification of tweets in sentiment
analysis [128], or to defeat attacks in Software Defined Net-
work infrastructures [129].
4.4. Evolutionary Feature Selection

Such family of algorithms is inspired by natural selection
theory, claiming that living organisms survived across mil-
lions of years thanks to an adaptation process. In a similar
way, this aptitude can be translated in search for optimal so-
lutions to a problem. Two exemplary tested algorithms are:
Genetic search and Multi Objective Evolutionary search.

4.4.1. Genetic Search
Genetic Algorithms (GAs) have been designed around

themid-1950s, when biologists started to perform computer-
based simulations aimed at analyzing more in deep the
evolution of genetic processes [130]. Then, GAs have
been extended to face problems ranging from neural net-
works weight estimation [131] to inequalities-based prob-
lems [132]. A pioneering work in this field has been carried
out by Holland [133, 134], and, today, many variants of GAs
exist [135] and are applied in economy, computer science,
sociology.

The basic skeleton of a GA includes three operators
[136]: Reproduction, Crossover and Mutation.

Reproduction refers to a process in charge of evaluating
the ability of an individual to be selected (among others) for
reproduction, on the basis of a fitness score.

Crossover concerns the capability of a genetic operator
in recombining information to create new offspring. Typi-
cally, offspring is generated by exchanging genes of parents
until a crossover point is reached.

Mutation pertains to the probability that some offspring
genes could be modified or altered.

Genetic-based feature selection in network traffic analy-
sis has been used in conjunction with manyML-based meth-
ods. Authors in [137] exploit a GA-based FS approach to
optimize network traffic data before applying an artificial
neural network to perform attacks detection across cloud in-
frastructures. A combination of a genetic FS method and a
supervised classifier based on J48 algorithm is proposed in
[138]. More frequent across the scientific literature is the
coupling between genetic FS and SVM classifiers applied to
network traffic classification problems (see [139, 140, 141]).

When dealing with FS problems, GAs allow to explore
the solution space by selecting the most promising regions,
thus, avoiding a costly exhaustive search. In our domain, the
initial population is represented by the whole feature space
and the fitness function relies on the correlation among fea-

tures and expressed by means of a merit indicator defined
further ahead in eq. (12).

Once entered the cycle represented in Fig. 1, the algo-
rithm calculates the fitness of each candidate solution per
iteration, selects individuals to reproduce, and generates a
new population by taking into account crossover (feature re-
combination with a certain probability), and mutation (one
feature can be turned into another feature with a certain prob-
ability).
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Figure 1: Genetic Algorithms life cycle.

4.4.2. Multi-Objective Evolutionary Search
The family of solutions concerning a multiobjective op-

timization problem (MO) includes all the elements of the
search space whose objective vectors cannot be simultane-
ously improved (Pareto optimality concept) [142]. The set
of such objective vectors is said non-dominated.

More formally, a MO problem can be formulated as fol-
lows: given a vector of n objective functions f of a vector
variable x in a domain  defined as

f (x) = (f1(x), f2(x),… , fn(x), (9)
a decision vector xℎ ∈  is Pareto-optimal iff there is no
xk ∈  such that:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∀i ∈ {1,… , n}, ki ≤ ℎi

∧

∃i ∈ {1,… , n} ∶ ki < ℎi.

(10)

On the other hand, Evolutionary Algortihms (EAs)
can be profitably exploited in MO-based problems since
many “individuals" can search in parallel for multiple so-
lutions, with the possibility of taking advantage of similari-
ties among solutions belonging to the same family. Possible
implementations ofMO-EA techniques are ENORA (Evolu-
tionary NOn-dominated Radial slots based Algorithm), and
NSGA (Non-dominated Sorted Genetic Algorithm) com-
pared in [143].

Applied to the FS problem, the purpose of a multi-
objective search algorithm is to discover a subset of fea-
tures (a family of solutions) being a good approximation of
the Pareto front. The MO-EA approach has been exploited
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in network traffic classification jointly with ensemble ML-
based methods [144], where some objectives such as max-
imizing true positive rate, maximizing classification accu-
racy, minimizing feature number, and minimizing false pos-
itive rate, are satisfied simultaneously and with no conflicts.
An NSGA-based approach to ameliorate the performance
classification of IDS platforms has been adopted in [145] and
in [146]. Again, a MO-EA technique jointly with fuzzy clas-
sifiers for coping with the traffic classification problem has
been introduced in [147].

5. The considered Datasets
One of the great issues when dealing with supervised

FS approaches in traffic analysis, is finding training sets that
are both recent and labeled. As remarked in Sect. 3, many
works rely on the obsolete KDD99 dataset [148]. Created
about 20 years ago, KDD99 has been broadly employed to
validate machine learning algorithms, particularly to differ-
entiate malicious data traffic from benign one. However, the
KDD99 dataset does no longer reflect the characteristics of
modern data traffic, which has sensibly changed across time.
This is very much the case of multimedia traffic (e.g. voice,
video), being the principle revenue-making stream for ser-
vice providers but also the vehicle of covert malicious data.
Per contra, in this work we consider more recent datasets ob-
tained bymeans of CICFlowMeter [42, 149], an open-source
engine that can both gather and label network traffic in a con-
trolled environment. Each dataset contains records labeled
either as Benign or Malicious (malicious traffic is often split
in sub-labeled traffic representing different kinds of attacks).
Specifically, we consider the following datasets:

• DDoSwhich contains traffic relating to distributed de-
nial of service attacks, aimed at saturating the network
resources of specific targets;

• Portscan which contains traffic relating to Portscan
attacks, aimed at discovering open, network device
ports;

• Webattack, including malicious traffic which imple-
ments various web-based attacks such as Brute Force,
Cross-Site Scripting, and Sql Injection;

• TOR which includes traffic passing over the TOR net-
work, an anonymous and private data circuit often ex-
ploited to carry dangerous information or malicious
encrypted traffic;

• Android which embeds various families of Android-
based threats (adwares, ransomwares, etc.).

We want to notice that the first four datasets are exploited
into the single class analysis, whereas the Android dataset
is exploited in the forthcoming multi-class analysis. In this
latter analysis, we build a new dataset called MultiAndroid
(see Sect. 6.2), obtained by selecting the most relevant mo-
bile threats from the Android dataset mixed with some be-
nign traffic. In order to avoid the issue of bias that typi-
cally arises during classification in imbalanced datasets, we

have first re-arranged the datasets. We have achieved well-
balanced benign/malicious features, spanning across about
50k instances for each dataset. Each one contains up to 78
features, except for the TOR dataset including 30 features.
For the sake of convenience, we found it useful to group the
features in 5macro-classes (the complete list of features can
be found in [150]):

• Time-based features: Forward/Backward inter-
arrival times (IAT) between two flows, duration of ac-
tive flow (min, max, mean, std), duration of idle flow
(min, max, mean, std), etc.;

• Byte-based features: Forward/Backward number of
bytes in a flow, Forward/Backward number of bytes
used for headers, etc.;

• Packet-based features: Forward/Backward number
of packets in a flow, Forward/Backward length of
packets in a flow (min, max, mean, std), etc.;

• Flow-based features: Length of a flow (mean, max,
etc.);

• Flag-based features: Number of packets with active
TCP/IP flags (FIN, SYN, RST, PUSH, URG, etc.).

6. Experimental Results
Herein we describe our analytical study, which required

the development of a dedicated Python routine, to normal-
ize/balance the datasets and to automate the comparison
among FS algorithms. We have validated the scrutinized
search algorithms using the Correlation-based Feature Se-
lector (CFS) as objective function [151, 152].

The main idea behind CFS is that a good feature sub-
set includes those features that are highly correlated with the
class, while being strongly uncorrelated among them. A for-
mal definition is offered in [153]: a feature Xi is relevant iffthere is some xi and y for which p(Xi = xi) > 0 such that

p(Y = y|Xi = xi) ≠ p(Y = y). (11)
Namely, Xi is relevant if Y is conditionally dependent on
Xi. Thus, CFS is a filter algorithm that can rank feature
subsets according to a correlation-based heuristic function.
Precisely, given a subsetS including k features, the heuristic
meritMS,k is defined as:

MS,k =
krfc

√

k + k(k − 1)rff
, (12)

where rfc is the average value of feature/class correlations,and rff is the average value of feature/feature correlations.
The numerator of (12) may be seen as an indicator of how
far a set of features is predictive of a class; whereas, the
denominator contains information about how much redun-
dancy there is among features.
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(a) Ant (21 fts) (b) Scatter (4 fts) (c) MO-EA (5 fts)

(d) Ranking (10 fts) (e) Cuckoo (7 fts) (f) Tabu/LFS (6 fts)

(g) Genetic (27 fts) (h) PSO (18 fts)

Figure 2: Correlation maps for different algorithms - DDoS dataset. In parenthesis is
reported the number of features surviving after the FS process.

Our assessment is split into two parts: the first one con-
cerns a single class analysis, where we evaluate datasets ex-
hibiting dichotomous information (malign/benign); the sec-
ond one is focused on multi class problems, where we eval-
uate the effectiveness of FS in the presence of multiple
classes.
6.1. Single Class Analysis

Let us consider the Distributed Denial of Service
(DDoS) attack which, recently, is also affecting modern
SDN-based networks [154, 155]. DDoS attacks are designed

to overwhelm the target network resources by means of a
botnet, namely, a network composed of a large number of
malicious nodes sending tiny packets towards the target, ul-
timately coordinated by a botmaster.

Let us now analyze the results obtained by pre-
processing the DDoS dataset through the set of FS algo-
rithms introduced above. In Fig. 2 we report, for each al-
gorithm, the correlation map corresponding to a graphical
representation of covariance matrices. This representation
embeds three important pieces of information: i) the number
of features surviving after the FS processing step; ii) the type
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Figure 3: FS times - DDoS dataset (a); Training times - DDoS dataset (b).

of features; and iii) the relationship existing among surviving
features. The latter is taken into account by means of a gray
scale, in which darker shades indicate higher levels of cor-
relation. Thus, each (i, j) “pixel" gives the correlation level
between feature i and feature j. Accordingly, the pixels on
the main diagonal are always black (maximum correlation,
corr=1), due to the self-correlation. As was to be expected,
higher correlation are found among those features belonging
to the same family (Time-based, Flow-based, etc.).

Some interesting considerations about the various cor-
relation maps arise. First, the number of features retained
by different algorithms may significantly diverge, which is
due to the specific approaches adopted by each algorithm.
The Genetic algorithm is the one retaining the most features.
This is to be ascribed to the particular strategy of this al-
gorithm, which strives to escape local optima by applying
the mutation operator, thus allowing to consider more paths,
namely, more features. Second, some common features re-
tained by all the algorithms can be recognized. For in-
stance, the destination port feature is always present since, in
a DDoS attack, a target victim is typically reached on a par-
ticular exposed TCP/UDP port. Moreover, since DDoS at-
tacks are characterized by a large amount of small-size pack-
ets, features embodying information about packet lengths
are retained. The difference is that, some algorithms (e.g.
Scatter, MO-EA, Cuckoo, Tabu, LFS) just keep the essen-
tial features related to packet length (e.g. total packet length,
total number of bytes sent in initial window); whereas,
other algorithms (e.g. Ranking, Genetic, PSO, Ant) pre-
fer to retain more features belonging to the same family.
DDoS is also characterized by some kind of synchronization
among the bots, which are coordinated to launch an almost-
simultaneous attack. This means that time-related features
will often provide useful information to detect DDoS. Inter-
estingly, the Genetic algorithm retains 5 features relating to
the inter-arrival flow times, resulting in a dark gray cluster
at the center of the correlation map (Fig. 2(g)).

It is also possible for DDoS attacks to be evenmore effec-
tive through the modification of the IP flags (e.g. SYN/RST
flooding). Accordingly, features embodying information
about IP flags (e.g. RST-SYN-URG flag count) are retained
by algorithms such as Ant (Fig. 2(a)), MO-EA (Fig. 2(c)),
Cuckoo (Fig. 2(e)), Genetic (Fig. 2(g)), and PSO (Fig.
2(h)). Let us note that many algorithms opt for selecting
features that are uncorrelated among them (few dark gray or
black clusters are present) since they conveymore variegated
information.

Let us now analyze some findings obtained from the
time-complexity evaluation. To this aim, we use a PC
equipped with Intel CoreTM i5-7200U CPU@ 2.50GHz
CPU and 16 GB of RAM. In Fig. 3(a), we show how the FS
time varies with training size, for the DDoS dataset. No dra-
matic differences are observed across the various algorithms,
even more significantly as the training size grows. Consid-
ering a relatively large training size (with 5 ⋅ 104 training
instances), FS times range from about 10 seconds (Scatter
algorithm) to almost 26 seconds (MO-EA algorithm). Sur-
prisingly, the FS times are rather uniform, in spite of the
broad variation in number of retained features (by each of the
algorithms). For instance, remaining in the case of 5 ⋅ 104
training instances, Scatter retains the minimum number of
features (4), while Genetic retains the maximum number of
features (27); yet FS times are comparable (16.19 and 10.18
seconds, respectively). Although it is legitimate to expect
that higher FS time could be justified to produce a more re-
duced feature space, the scarce correlation between such ob-
servables is due to the particular logic implemented in each
FS algorithm.

On the other hand, Fig. 3(b) provides the training times
obtained by applying the J48 benchmark algorithm, down-
stream of the FS processing step. Here, the black line (with
empty circles) gives the training times obtained when no FS
processing is employed. We can observe how FS leads to
significant improvements, in terms of both times and trends.

Di Mauro et al.: Preprint submitted to Elsevier Page 10 of 19



Supervised Feature Selection Techniques in Network Intrusion Detection: a Critical Review

  NO F.S.       MO-EA         Rank          Ant         Tabu        Genetic        PSO        Cuckoo         LFS        Scatter   
0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

1.01
DDoS Dataset

Accuracy (DDoS)

F-Measure (DDoS)

Accuracy (Benign)

F-Measure (Benign)

(a)
  NO F.S.       MO-EA         Rank          Ant         Tabu        Genetic        PSO        Cuckoo         LFS        Scatter   

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

1.01
Portscan Dataset

Accuracy (Portscan)

F-Measure (Portscan)

Accuracy (Benign)

F-Measure (Benign)

(b)

  NO F.S.       MO-EA         Rank          Ant         Tabu        Genetic        PSO        Cuckoo         LFS        Scatter   
0.97

0.975

0.98

0.985

0.99

0.995

1

1.005
WebAttack Dataset

Accuracy (WebAttack)

F-Measure (WebAttack)

Accuracy (Benign)

F-Measure (Benign)

(c)
  NO F.S.       MO-EA         Rank          Ant         Tabu        Genetic        PSO        Cuckoo         LFS        Scatter   

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005
TOR Dataset

Accuracy (TOR)

F-Measure (TOR)

Accuracy (Non TOR)

F-Measure (Non TOR)

(d)

Figure 4: Performance in terms of Accuracy/F-Measures for different single class datasets:
DDoS (a), Portscan (b), WebAttack (c), TOR (d).

The black (benchmark) line grows rapidly to almost 80 sec-
onds, while most algorithms peak to almost 5 seconds, with
the exception of the Genetic algorithm (yellow line) and the
Particle Swarm algorithm (light blue line) that take over 10
seconds to complete. This indicates that the FS process, on
the whole, brings gains in the range of about one order of
magnitude, which may become even more significant as the
dataset grows.

Let us now analyze the performance of the proposed FS
algorithms in terms of Accuracy and F-Measure. These two
metrics, widely used in the field of traffic classification [156,
157], are defined as follows:

• Accuracy: the ratio of the correctly predicted obser-
vations to the total observations. This is the most in-
tuitive indicator.

• F-Measure: the weighted average of precision (ratio
of correctly classified flows over all predicted flows in

a class) and recall (ratio of correctly classified flows
over all ground truth flows in a class). This is an indi-
cator of a per-class performance.

To verify that the effectiveness of the FS algorithms is
not linked to specific datasets, we have considered the 4 dif-
ferent datasets introduced in Sect. 5 (DDoS, Portscan, We-
bAttack, and TOR), reporting our findings in Fig. 4. Just
like for the previous experiments, we have used the tree-
based J48 algorithm as a benchmark. We have adopted a
10-fold cross-validation which is typical in applied ML, and
offers a good trade-off between training time and robustness.
Noticeably, all FS algorithms perform satisfactorily (both in
accuracy and F-measure) in comparison to the benchmark
(first bars in all the histograms, labeled as “NO F.S.”) for the
four datasets.

In some instances the FS algorithms performed even bet-
ter than the benchmark (e.g., Rank and Genetic algorithms
in the WebAttack dataset). This can be explained by a phe-
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Figure 5: Correlation maps - MultiAndroid dataset. In parenthesis is reported the number
of features surviving after the FS process.

nomenon that is well-known in ML, whereby models based
on too many features may lead to biased classification. On
the other hand, when FSmanages to retain a sufficiently high
number of meaningful features, there is a positive effect on
accuracy. This is the case of the Genetic algorithm applied
to the TOR dataset (Fig. 4(d)) that performs better than the
other methods.

6.2. Multi Class Analysis
Another fruitful analysis is aimed at evaluating FS al-

gorithms when multi-instance datasets are considered. This
turns out to be particularly useful when it is not possible to
discern different types of data traffic via some pre-processing
filter (e.g. IP/Port-based filtering). To assess this case, we
consider two datasets: the MultiAndroid dataset, containing
benign traffic mixed up with five different types of Android-
based threats; and the DDoS/Portscan dataset, including a
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Figure 6: FS times - MultiAndroid dataset (a); Training times - MultiAndroid dataset (b).

mix of DDoS, Portscan, and benign traffic. The MultiAn-
droid dataset, includes the following types of malign traffic:

• FakeApp.AL: a scareware hidden inside a fake
Minecraft application, one of the most popular game
applications;

• Android Defender: a malware which, once acci-
dentally downloaded and installed, raises some fake
alerts;

• Gooligam: an insidious malware that has already in-
fected more than 1 million Android-based devices,
aimed at stealing Google accounts for Drive, Docs,
Gmail, etc.;

• Feiwo: belonging to the adware family, it acts by
showing advertisements in the system notification bar,
and by sending device GPS coordinates to a remote
server;

• Charger: a ransomware hidden in some Google Play
applications, which gains root privileges and steals
contacts before asking for a ransom.

Let us analyze how FS algorithms impact on the Mul-
tiAndroid dataset in terms of feature correlation referring
first to the panels of Fig. 5. Comparing these results with
the ones of Fig. 2, an interesting difference emerges: all FS
algorithms retain more features w.r.t. the single-class case.
This behavior is coherent with the fact that, to deal with dif-
ferent types of threats (ransomware, adware, malware) we
need more features, to be able to capture this higher vari-
ability. This effect is even more evident in time-based fea-
tures (mainly inter-arrival times) and in size-based features
(mainly packet lengths).

Looking at DDoS, we observe a difference between
single- and multi-class analysis. In the latter, the destina-

tion port is not retained as a crucial feature. This is possi-
bly because malwares exploit different mechanisms to create
damage: rather than directly overwhelming a particular tar-
get port, they first act in the background (e.g. by stealing pri-
vacy data) and then produce malicious traffic in egress. On
the other hand, DDoS attacks generate ingress traffic from
the infected device.

It is worth noticing that, when applied to multi-class
problems, all algorithms have preserved their original logic.
For instance, with 31 surviving features, the Genetic algo-
rithm is still the algorithm that saves more features, thanks
to the role played by themutation operator. Another example
is the MO-EA algorithm that, just like in the single-class ex-
periment, retains the smallest number of features (6). This is
mainly due to the diversity-preservation mechanism, which
forces the selection of a representative subset of the whole
Pareto front. It optimizes conflicting objective functions,
thus few solutions survive.

The time-complexity evaluation is reported in Fig. 6,
which evaluates the usual FS algorithms onto the MultiAn-
droid dataset. FS times exhibit the same order of magni-
tude as in single-class analysis (Figs.3(a)). For a training
size amounting to 5 ⋅ 104 instances, the fastest algorithm is
Scatter (FS time amounting to 9.541 seconds); whereas the
slowest one is MO-EA (FS time amounting to 24.827 sec-
onds).

The situation changes dramatically when we consider
training times for the J48 benchmark algorithm (Fig. 6(b)).
Notably, multi-class algorithms are roughly one order of
magnitude slower than their single-class counterpart. For in-
stance, let us consider the Genetic algorithm (yellow curve).
For a 103 training size, Genetic FS reduces the training time
to 1.861 seconds, growing to the following (X;Y) points:
(104; 10.731); (2 ∗ 104; 56.748); (3 ∗ 104; 133.346);
(5 ∗ 104; 301.997). The longer training times arise from the
process of training multiple classes. Nevertheless, signifi-
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Figure 7: MultiAndroid dataset: Accuracy (a), F-Measure (b); DDoS/Portscan dataset:
Accuracy (c), F-Measure (d);

cant gains are still obtained by all FS algorithms compared
to the “NO F.S.” benchmark, which peaks at 446.329 secs.

Turning now to the performance analysis, in Fig. 7
we compare the two multi-class datasets, MultiAndroid and
DDoS/Portscan, drawing some interesting considerations. It
is comparably more difficult to detect Android threats than
DDoS/Portscan attacks - MultiAndroid accuracy is below
0.7 and F-Measure is below 0.5. However, this issue is
not generated by the FS processes, since the “NO F.S.” per-
formance is poor too, particularly with the “Benign” class.
This issue arises from two facts. First, mobile network at-
tacks are often accompanied by activities that do not di-
rectly/immediately generate network anomalies. Examples
are ransomware and malware, whereby the anomalies arise
after the user has downloaded the malicious application.
There is typically a lag between infection and anomalies,
as the malicious program initially establishes a secret/silent
communication with a remote server, and then gradually

steals/sends private user data. Another example is adware,
where those annoying banners actually incur very little data,
thus making it hard to detect from the regular traffic. A sec-
ond reason for the poor MultiAndroid performance is the
strong similarity among different malign classes (e.g., scare-
ware, adware, ransomware). Similar considerations hold
true in the case in which we consider a dataset includingWe-
battack and TOR traffic (not reported for space constraints),
whereby the high similarity between the two classes re-
sulted in poor classification performance. We should how-
ever stress that FS algorithms are still very beneficial, since
the time-complexity benefits identified are achieved with no
dramatic loss in accuracy.

By contrast, the DDoS/Portscan multi-class case
achieves outstanding performance (Figs.7(c) and (d)). This
is because these types of attacks are radically distinct in
the way they exploit network vulnerabilities: DDoS falls
under the umbrella of volumetric attacks; whereas Portscan
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attacks employ monitoring strategies to unveil possible
open ports. In other words, a peculiar symptom of a DDoS
attack is the presence of an exceptionally large number
of connections coming from different nodes and heading
towards one network target’s port. Conversely, a symptom
of Portscan attacks is the presence of just a single node (or
a few nodes in case of simultaneous Portscans) opening a
considerably large number of connections towards multiple
ports of a certain network target. Thus it is relatively easier
to differentiate between these two attacks.
6.3. General Remarks

Overall, we can observe that FS algorithms do lead to
an effective reduction in feature space, ranging from 65%
(Single Class, Genetic) to 95% (Single Class, Scatter) and
from 60% (Multi Class, Genetic) to 92% (Multi Class, MO-
EA). Such feature-space reduction translates into signifi-
cant computational-time improvements, which become even
more remarked as the training size grows. For instance,
with a training set of 50k samples (single-class DDoS) the
MO-EA algorithm takes 24.8 secs to perform FS, while the
training time compared to the benchmark drops from 72.2 to
5.13 secs. At the same time, performance is not significantly
degraded by the feature reduction process - accuracy drops
from 0.9993 to 0.9971. Similar considerations hold for all
other algorithms.

The performed assessment provides invaluable guide-
lines for network/security management practitioners dealing
with traffic classification problems. Our evaluation frame-
work aims at weighing the practical benefits of the vari-
ous FS techniques in terms of time-complexity reduction
and performance guarantees. For instance, if we aimed at
minimizing the overall processing time (i.e., FS plus train-
ing times), the Scatter algorithm would be the best choice.
This incurs a total processing time amounting to 14.338 sec-
onds for the single-class case (FS= 10.178 secs plus train-
ing= 4.16 secs), and to 219.963 seconds formulti-class (FS=
9.541 secs plus training= 210.422 secs). Conversely, the Ge-
netic method would be preferable to maximize performance.

7. Conclusion and Future Direction
A prominent research direction for network intrusion de-

tection is the adoption of machine learning methods, partic-
ularly for the detection of anomalous (and often malicious)
network-traffic flows. Looking at the literature, we find am-
ple examples of network classification problems. Yet, little
attention has been turned towards feature selection, which
is an essential classification pre-processing step. We argue
that the main reason for this overlook is that most studies
have been based on the obsolete KDD99 dataset, which in-
cludes few features, thus making FS irrelevant. On the other
hand, we consider that modern network engines generate
much richer features (in fact, hundreds of features), which
allow more fine and granular network traffic analyses. How-
ever, this extra capability results into impractical ML train-
ing times, making it necessary to understand how FS may be
realized effectively.

To this end, herein we have carried out an experimental
comparative evaluation of prominent methods, with the view
to provide insights as to how the different FS algorithms
perform in the peculiar context of network-traffic classifica-
tion. Our assessment shows how few, relevant features are
retained, but also that the FS reduction process is virtually
lossless, with a significant acceleration of the overall train-
ing process.

To sum up, the novelties of our work are:
i) we carry out an experimental-based review, consider-

ing recent datasets (including DDoS, Portscan, WebAttacks,
and Android threats), as opposed to the obsolete KDD99
dataset adopted in most literature;

ii) we compare and contrast a representative number
of alternative FS algorithm types, including classic rank-
guided methods (LFS, Ranking), meta-heuristic methods
(Particle Swarm, Tabu, Scatter), nature-inspired methods
(Ant, Cuckoo), and evolutionary methods (Genetic, MO-
EA);

iii) we provide actual experimental results, unveiling
trade-offs between performance (Accuracy/F-Measure) and
computational time, at different scales (training set size).

Ultimately, our analysis shows the benefits linked to em-
bedding the FS process into network analysis, providing a
valuable tool for identifying the most useful features out of
hundreds of possibilities. This will prove invaluable to the
fields of network management, security management, intru-
sion detection and incident response. We should note that,
the purpose of our comparative evaluation was not to claim
the predominance of some FS algorithms over others but,
rather, to suggest a methodical framework to work with FS.

As a byproduct of our investigation, some interesting
open research directions emerge: i) extending the present
analysis to unsupervised FS techniques, whichwould be use-
ful to deal with datasets lacking class labels, or with new
types of (unknown) malicious traffic - this is the case of so
called zero-day attacks that have no prior information; ii)
considering the case of streamed data analysis, which is nec-
essary when dealing with extremely time-variant streams,
whereby the FS process should be repeated across time (e.g.
by using a mobile time window), so as to periodically update
the resulting dataset with the freshest features; iii) designing
routines to automatically manage the best FS strategies to
be applied in accordance to specific criteria (e.g. accuracy
target, latency needs, etc.). Our investigation goes into the
direction of the 6G paradigm that, according to most net-
work scientists, will be characterized by intelligent resource
management, smart adjustments, and automatic service pro-
visioning.
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