
Overcoming Model Bias for Robust Offline Deep Reinforcement Learning

Phillip Swazinna1,2, Steffen Udluft1, Thomas Runkler1,2

1Siemens Corporate Technology, Munich, Bavaria, Germany
2Department of Informatics, Technical University of Munich, Munich, Bavaria, Germany

swazinna@in.tum.de

Abstract

State-of-the-art reinforcement learning algorithms mostly rely
on being allowed to directly interact with their environment to
collect millions of observations. This makes it hard to transfer
their success to industrial control problems, where simulations
are often very costly or do not exist, and exploring in the
real environment can potentially lead to catastrophic events.
Recently developed, model-free, offline RL algorithms, can
learn from a single dataset (containing limited exploration)
by mitigating extrapolation error in value functions. However,
the robustness of the training process is still comparatively
low, a problem known from methods using value functions. To
improve robustness and stability of the learning process, we
use dynamics models to assess policy performance instead of
value functions, resulting in MOOSE (MOdel-based Offline
policy Search with Ensembles), an algorithm which ensures
low model bias by keeping the policy within the support of
the data. We compare MOOSE with state-of-the-art model-
free, offline RL algorithms BRAC, BEAR and BCQ on the
Industrial Benchmark and MuJoCo continuous control tasks
in terms of robust performance, and find that MOOSE out-
performs its model-free counterparts in almost all considered
cases, often even by far.

Introduction
In reinforcement learning (RL), the goal is to train an agent,
which will through interactions with its environment max-
imize a utility value referred to as reward. Algorithms that
train such an agent must usually carefully balance between
exploring their environment in order to increase their knowl-
edge about it, or exploiting their knowledge to achieve the
highest rewards possible (Sutton and Barto 1998). The abil-
ity to explore is fundamental to the idea of reinforcement
learning, and questions such as when and how to explore
efficiently and effectively play a big role in reinforcement
learning research today (Schmidhuber 2006; Bellemare et al.
2016; Osband et al. 2019). However, in this paper we consider
the case where no exploration is possible at all, as that is a
widespread constraint in practice, which is often overlooked
in literature.

By combining classic reinforcement learning techniques
with modern function approximation, recent RL algorithms

Copyright © 2021, by the authors

Figure 1: Difference between commonly assumed online
RL, where the learning agent directly interacts with its envi-
ronment, versus offline RL, where interaction is impossible
since we only have access to data instead of the environment.

have managed to achieve tremendous results in a variety of
domains, such as video games, robot locomotion, and other
continuous control tasks (Mnih et al. 2013; Lillicrap et al.
2015; Schulman et al. 2015, 2017; Haarnoja et al. 2018).
Most of these approaches belong to the family of online,
model-free, actor-critic methods. They alternate between up-
dating the neural agent via policy gradient, and using it to
collect more observations (Williams 1992; Schneegaß, Ud-
luft, and Martinetz 2007; Silver et al. 2014; Haarnoja et al.
2018). Recently, it has been found that they can only learn
from data that has been collected under the current or close
to the current policy, even if they come with the ”off-policy”
attribute (Fujimoto, Meger, and Precup 2018). They can thus
only learn from live interactions with an environment as
opposed to learning from a previously collected dataset, as
they constantly need to collect on-policy data. This makes
it hard to transfer the success that RL methods have had to
settings frequently encountered in real-world applications,
where large datasets have been collected passively via log-
ging (i.e., turbine or factory control, autonomous vehicles,
etc.), and opportunities to collect on-policy data (explore)
are missing, since doing so could be dangerous, or simply
prohibitively expensive.
In this paper we thus consider learning an agent without
being allowed any direct interaction with the environment,
resulting in no possibility for exploration. The agent train-
ing has to be based solely on a single previously collected

ar
X

iv
:2

00
8.

05
53

3v
4

 [
cs

.L
G

]
 2

2
Ju

l 2
02

1

batch of interactions which is provided up front. Since it is
unclear how that batch has been generated, the training needs
to work with datasets containing different levels of (or even
no) exploration. By considering this so-called offline (Lange,
Gabel, and Riedmiller 2012), or batch RL setting, we seek to
move RL closer to real world applications since it is a classic
constraint in industrial machine learning rarely addressed
by RL literature. Figures 1 and 2 visualize the differences
between online RL, where exploration is possible, and offline
RL, where it is not.
Recently, algorithms have been developed that explicitly ad-
dress the issue of extrapolation error due to missing support
in the dataset (Fujimoto, Meger, and Precup 2018; Kumar
et al. 2019), however most other offline algorithms often im-
plicitly assume that the data in the batch contains sufficient
exploration to solve the problem (Ernst et al. 2005; Depeweg
et al. 2016; Hein et al. 2016; Hein, Udluft, and Runkler 2018).
In reality this assumption is likely violated, since datasets
are usually collected without being explicitly designated to
be used in a reinforcement learning setting. It may even be
unclear how the data was collected (human interactions, clas-
sic controllers, policies derived by current RL algorithms,
mixtures). Hence, we look for algorithms which perform as
well as possible, given the amount and quality of exploration
contained in the batch.
The robustness with which policies are produced is arguably
the most important factor in offline RL, since without envi-
ronment access, we have no reliable way to perform policy
selection. As model-based RL is often attributed superior
sample efficiency and greater stability compared to model-
free methods, we find it much more suitable in the context
of the innately limited-data scenario that is offline reinforce-
ment learning. Hence, we develop a model-based offline RL
algorithm that is otherwise closely related to state-of-the-art
model-free offline algorithms BRAC, BEAR and BCQ (Fu-
jimoto, Meger, and Precup 2018; Kumar et al. 2019; ?), in
order to investigate whether model-based RL can play to its
strengths in this setting.

Figure 2: Online RL methods generally cannot be used in
offline RL settings, since they have been found to break when
on-policy or close to on-policy observations are unavailable
(Fujimoto, Meger, and Precup 2018). Offline RL methods
on the other hand do not require on-policy data and simply
exploit the knowledge they gained from the initial dataset.

Related Work
Early work in batch reinforcement learning includes least
squares policy iteration (LSPI) (Lagoudakis and Parr

2003), which directly embeds itself in the policy iteration
framework (Sutton and Barto 1998), fitted Q iteration
(FQI) (Ernst, Geurts, and Wehenkel 2005), which augments
the batch with samples where the reward is computed
based on the temporal difference Q target, as well as its
neural network based counterpart, neural fitted Q iteration
(NFQ) (Riedmiller 2005). While all three algorithms are
theoretically able to work in the pure batch mode, also called
offline reinforcement learning, NFQ is usually referred to as
being a semi-batch, or growing batch algorithm, since it is
usually used to collect more data as the Q-function estimate
changes over time (Lange, Gabel, and Riedmiller 2012),
enabling it to solve rather complex problems such as playing
robot soccer (Riedmiller et al. 2009). It is thus more closely
related to current state-of-the-art online RL algorithms,
which employ experience replay as a measure to increase
sample efficiency (Adam, Busoniu, and Babuska 2011; Wang
et al. 2016; Andrychowicz et al. 2017). Early pure batch
algorithms have been mainly used to solve rather simple
MDPs and / or contain the implicit assumption that the batch
contains a balanced set of transition samples spanning the
entire state-action space (Kalyanakrishnan and Stone 2007).

Behavior cloning methods (Ng, Russell et al. 2000;
Ross and Bagnell 2010; Ho and Ermon 2016; Laskey et al.
2017; Nair et al. 2018; Codevilla et al. 2019) constitute a step
towards learning directly from data: They learn to imitate an
expert policy, usually from trajectories that were obtained by
applying the expert policy in an environment. Plain behavior
cloning without further environment interaction can thus
be seen as a special case of offline reinforcement learning,
where we have additional information about the behavior
policy. These methods face difficulties once the trained
policy leaves the known region of the state-action space on
the real system—a problem referred to as covariate shift (Ho
and Ermon 2016; Codevilla et al. 2019). One way to deal
with it, is by injecting noise into the expert policy, thereby
forcing the expert to demonstrate how to recover when
things go wrong (Laskey et al. 2017). Another path is inverse
reinforcement learning, where algorithms first learn to infer
a reward function from expert demonstrations, and then
have an inner reinforcement learning loop to solve it (Ng,
Russell et al. 2000). Behavior cloning can also be simply
used as a way to warm start policies, after which online
reinforcement learning can start (Nair et al. 2018). All these
methods provide an opportunity to significantly reduce the
amount of environment interactions needed, with the crucial
caveat that they all assume the availability of (data generated
by) an expert, which is in practice often unavailable.

Batch constrained Q-learning (BCQ) (Fujimoto, Meger, and
Precup 2018) examines the setting where the agent is only
provided with a single batch of off-policy data, that may
contain sub-optimal exploration or even no exploration at
all, and in contrast to imitation learning techniques also
may or may not contain expert demonstrations. While
traditional Q-learning approaches would fail in this context
due to wrong extrapolation values in areas of the state-action
space which have not been explored, BCQ augments

methods from behavior cloning to constrain its policy to
only select state-action pairs which are close to the ones
encountered in the original batch. Bootstrapping error
accumulation reduction (BEAR) (Kumar et al. 2019), as
well as behavior regularized actor critic (BRAC) (?) pick
up on this idea and embed it in the actor-critic paradigm by
learning a closed form policy which is constrained by the
maximum mean discrepancy (Gretton et al. 2012) or the KL
divergence between likely actions and the recommended
action of the policy, respectively. Siegel et al. (2020) find
adaptive behavioral priors to develop a model-free offline
RL framework which is constrained to stay close only to
actions that have a value higher or equal to those currently
proposed by the policy. Lee et al. (2020) address the issue of
finding the right hyperparameters for offline RL algorithms.
While these methods have been developed for continuous
state and action spaces, even more algorithms have been
developed for the offline setting with discrete actions
(Laroche, Trichelair, and Combes 2017; Dabney et al. 2018;
Agarwal, Schuurmans, and Norouzi 2019; Jaques et al. 2019;
Fujimoto et al. 2019).

Model-based reinforcement learning has shown early
on that it can increase data efficiency over value-function
based RL by explicitly learning a transition model (Sutton
1990). This advantage over model-free reinforcement
learning has been demonstrated many times over (Deisenroth
and Rasmussen 2011; Kurutach et al. 2018; Nagabandi
et al. 2018); however, it usually comes with the downside of
lower asymptotic performance due to model bias (Nagabandi
et al. 2018; Pong et al. 2018). Policies trained on imperfect
models can diverge by accumulating transition errors or
extrapolate falsely and lead policies to favor visiting parts
of the state-action space in which models are incorrect and
overly optimistic. It has been shown however, that this issue
can, even in the offline RL setting, usually be circumvented
by penalizing model uncertainty in the policy training
process, e.g., by employing Bayesian models (Depeweg
et al. 2016, 2017; Kaiser et al. 2020), or by ensembling,
as in MOPO and MOReL (Yu et al. 2020; Kidambi et al.
2020). MOPO facilitates two head architecture models
that predict mean and variance of successor states and
subtracts the maximum variance across a model ensemble
from the predicted mean reward. MOReL on the other hand
uses unknown state detectors based on model ensemble
disagreement to end trajectories when successor states
become too uncertain. Both algorithms then combine the
model ensemble in a dyna fashion with Q-function based
agents, such as PPO or TRPO(Schulman et al. 2015, 2017),
to plan through the newly generated data. These approaches
to offline RL are thus related to ours only in the sense that
they are model-based, however in this work we neither
follow any model-uncertainty based approaches to keep the
policy from visiting unfavorable regions of the state-action
space, nor do we use any value-functions. Instead, we show
that a behavior regularization based approach more similar
to the one employed by BRAC, BEAR, and BCQ, can be
transferred to a purely model-based setting in order to reap
the benefits of both approaches: Being constrained to stay in

the support of the data as well as better sample efficiency
and stability.

MOdel-based Offline policy Search with
Ensembles (MOOSE)

We are interested in applying reinforcement learning in
real-world problems which exhibit complex environment
dynamics, high dimensional continuous state and action
spaces and complicated noise patterns, where we are only
given a single batch of data and are not allowed to collect
any further observations—as a good example we may
consider turbine control. We explicitly make no assumption
on the way in which the data was generated. It may thus be,
that we are dealing with data generated by expert policies,
suboptimal policies, or even human controllers. Furthermore,
we consider practical aspects of the algorithms: Since final
policies need to be deployed in live systems, stochastic
policies (e.g., SAC, BCQ (Haarnoja et al. 2018; Fujimoto,
Meger, and Precup 2018)) require additional provisions for
safe operation and we thus do not consider them. Due to
the data scarcity innate to the problem definition, sample
efficiency is crucial and we thus design a model-based
algorithm. This furthermore facilitates monitoring, as well
as the input of prior domain knowledge by human experts,
which may be of critical interest in real-world reinforcement
learning problems.

In this section, we develop a model-based offline RL
algorithm that works in continuous state-action spaces and
can handle arbitrarily generated batches of data while still
improving upon the behavior policy, by constraining the
trained policy to stay close to state-action pairs in the batch.
Our approach is neither based on sampling actions from a
generative model (like e.g., BEAR & BCQ (Fujimoto, Meger,
and Precup 2018; Kumar et al. 2019)), nor does it constrain
the trained policy directly to be close to the generating
policy (like KL-control, SPIBB-DQN (Jaques et al. 2019;
Laroche, Trichelair, and Combes 2017)). Instead, it penalizes
state-action pairs unlikely under the generative policy. We
show that our method beats state-of-the-art model-free
offline algorithms, especially in terms of robustness, which is
arguably the most important aspect when considering policy
deployments in the real world.

Model Training and Standard Model-Based
Reinforcement Learning
We assume to be given a batch of transition samples
{(st, at, rt, st+1)|t = 0 . . . T − 1}, where T is the number
of steps the behavior policy(ies) was running (possibly over
multiple trajectories). In order to make most effective use of
the information, we train a neural network model f , parame-
terized by φ, to represent the environment’s transition dynam-
ics st+1 = fφ(st, at) and possibly its reward function. We
can also accommodate à priori known reward functions (i.e.,
rt = r(st, at, st+1), where we assume r to be differentiable).
We apply commonly used techniques for model learning,
such as weight normalization (Salimans and Kingma 2016)
and normalizing training data to have zero mean and unit

standard deviation. In some environments it can be beneficial
to model the transition difference ∆s = st+1 − st instead
of directly predicting st+t. The training loss can thus either
be given by the mean squared error between predicted delta
and true delta (1) or between predicted state and true state (2)
and is optimized via Adam (Kingma and Ba 2014).

L(φ) =
∑
t

||fφ(st, at)−
(st+1 − st)− µ∆s

σ∆s
||2 (1)

or

L(φ) =
∑
t

||fφ(
st − µs

σs
, at)−

st+1 − µs

σs
||2 (2)

With slight abuse of notation, we will denote the estimated
next state as ŝt+1 = fφ(st, at). With the differentiable neural
network transition (and reward) model, we then derive a
standard actor-critic training algorithm: We train a neural
network based policy π with parameters θ by assessing its
performance using imagined trajectories generated by rolling
out the model into the future. Since stochastic behavior can
be inappropriate in real-world, safety critical systems, we
assume the policy to be deterministic, i.e., a = πθ(s). The
expected cumulative discounted return of the policy is then
estimated using N rollouts of horizon H . We improve the
quality of the return estimate by using an ensemble of K
transition models. Its negated value can then be minimized
in order to optimize the policy’s parameters θ:

L(θ) =− 1

KN

∑
k

∑
n

∑
t

γtr(st, πθ(st), fφk(st, πθ(st)))

=− Eπ,f1..K [R] (3)

We sample s0 from the start states in the dataset, st =
fφk(st−1, πθ(st−1)) and r(st, at, st+1) is either a learned
or an à priori known reward function.
If we were to assume infinite amounts of perfectly explored
data, or at least continuous collection of further observations
under the trained policy, no further adjustments to our ap-
proach would be necessary. However, since we do not know
which parts of the state-action space have been explored
to a level of confidence, we risk unjustified predictions by
the transition model in unexplored regions. The policy may
intentionally try to exploit the erroneous reward estimates
predicted in those regions, resulting in great imagined policy
performance, but very poor performance once deployed in the
real system. In the following, we thus introduce an approach
to constrain the trained policy to refrain from visiting these
regions, mitigating a shortcoming often attributed to model-
based RL algorithms: Increased bias compared to model-free
methods.

Reducing Model Bias in Model-Based
Reinforcement Learning
We would like to reduce the visitation of state-action pairs by
the trained policy, for which we cannot accurately assess the
transition to the next state (and consequently also the reward),
since it would lead to inaccurate estimates of the policy’s
expected performance in Equation 3. By constraining the

trained policy to stay close to the known region of state-action
pairs, we aim to minimize this error or bias of the transition
models, since it can be assumed their predictions will be
more accurate in regions close to the batch data distribution.
We quantify model bias in transition steps of trajectories, as
being the expected state prediction error, when comparing
real transitions (s, a, r, s′) produced by the true environment
e with virtual transitions (ŝ, â = π(ŝ), r̂, ŝ′) from rollouts
through the learned model f , where trajectories started in the
same state s0 and where the timestep t is equal for both s and
ŝ.

b = Es′∼e(s,a), ŝ′=f(ŝ,â) [||s′ − ŝ′||2] (4)
= E [||e(s, a)− f(ŝ, â)||2]

Note that while the trained dynamics models are determin-
istic, i.e., ŝ′ = f(ŝ, â), this is not necessarily true in the real
environment, so that successor states may follow complex
distributions, which is why we denote s′ ∼ e(s, a).
In order to train a well performing policy, in addition to max-
imizing expected virtual rewards, we would like to minimize
the expected value of the model’s bias throughout trajecto-
ries, since otherwise we will not be able to accurately assess
the policy’s quality. With µeπ(s) being the state visitation
probability of some policy π in the actual environment (and
µfπ(s) being the corresponding estimated probability under
the model), we write the expected value of the bias as

Es∼µeπ,a∼π(s),ŝ∼µfπ,â∼π(ŝ) [B] (5)

where B is the sum of biases accumulated throughout a
trajectory in a model:

B =
∑
t

bt =
∑
t

Est+1∼e(st,at) [||st+1 − f(ŝt, π(ŝt))||2]

(6)
We cannot compute the expectation of B for arbitrary poli-

cies π though, as we have no access to the true environment
e and have no way of estimating µeπ. Since we are only ever
given a single batch of data and are not allowed to try new
policies in the actual environment, the only state visitation
probability distribution that we can estimate under the true
environment is the one for the behavior policy(ies) β that
generated the batch. The expected model bias for a newly
trained policy π is then:

Es∼µeβ ,a∼β(s),ŝ∼µfπ,â∼π(ŝ) [B] (7)

When training a policy π, we would like B to be low (i.e.,
below some threshold close to zero) in order to be able to
accurately assess its performance. It is intuitively clear that
constraining the trained policy to be close to the behavior
policy, i.e., in terms of the KL divergence (like (Laroche,
Trichelair, and Combes 2017; ?)) could be an adequate solu-
tion since minimizing

θ∗ = argmin
θ

KL(β(a|s)||πθ(a|s)) (8)

would move π close to β, and consequently µeπ(s) would
be close to µeβ(s) as well as to µfπ, and thus, B is likely to

be low since the model(s) can well predict outcomes of the
policy’s actions. We would however like to point out, that this
solution is (a) not optimal in terms of bias reduction, since
even low probability behavior of the original policy can be
copied, which is likely not as well predictable by a transition
model as actions that are selected with higher probability, and
(b) possibly too restrictive since it will be hard to outperform
a policy that you are trying to mimic closely. Furthermore,
the above approach is simply not feasible since we aim for
deterministic policies.
However, it is clear that in order to have low bias given some
action â by the policy π while being in the imagined state ŝ,
both:
• the true visitation probability of this state ŝ under the

behavior policy, i.e., µeβ(ŝ)

• as well as the true action selection probability under the
behavior policy, i.e., β(â|ŝ)

should be as large as possible, or at least above a certain
threshold. Otherwise, we either estimated to be in a state
which was rarely visited under the behavior policy (which
likely happened because we took an action unlikely under the
behavior policy) or are taking an action in this state which
was rarely executed, leading to a large probability that the
model predicts an incorrect successor state.
As the only thing we are allowed to change in this setting
are the parameters θ of the policy π that we are training, we
would like to constrain them in order to allow a large proba-
bility µfπ(ŝ)π(â|ŝ) only when µeβ(ŝ)β(â|ŝ) is also high.
To write down our intuition mathematically, we need to make
an assumption about how the behavioral policy’s probability
of generating a state-action pair (s, a) in the real environment
(i.e., having seen (s, a) in our dataset) influences the magni-
tude of the error our trained transition models typically make
in predicting the corresponding successor state.
Assumption 1 The distribution of model errors e(s, a) −
f(s, a) has a variance that is monotonically decreasing with
the probability of having seen the imagined data in reality,
i.e., that the data sample (s, a) was generated under the
original environment dynamics e and the behavior policy β:

(s′ − ŝ′) ∼ N (0,− log pe,β(s, a)) (9)
Minimizing expected bias then nicely corresponds to maxi-
mizing state and action probability under the behavior policy
and real environment, since the expectation of a squared
Gaussian variable is its variance. See Appendix for a more
detailed derivation.

θ∗ = argmin
θ

E[B] (10)

= argmin
θ

E[(s′ − ŝ′)2]

= argmin
θ

E[− log pe,β(ŝ, â)]

= argmax
θ

E[pe,β(ŝ, â)]

= argmax
θ

E[µeβ(ŝ)β(â|ŝ)]

We would like to point out that another difference between
our method and a simple KL regularization of the policy to

be close to the behavioral one is, that we not only reward
closeness in terms of selecting similar actions when being in
the same state, but moreover we also reward state visitation
when the state is close to a state seen in the batch. While
the former implies the latter when policies are regularized
so strongly that they eventually become identical, we find
this detail important, because as previously mentioned,
we would like the policy to not be regularized too strictly,
as long as it does not move outside the region of known states.

A Practical Algorithm
Following the ideas to reduce model bias for a model-based,
offline reinforcement learning algorithm in the previous sec-
tions, we need a way to estimate the state-visitation and
action selection probability of a state-action pair under the
behavioral policy in the original environment. Since we nei-
ther assume the actual environment e, nor the behavior pol-
icy β to be given, we will in the following approximate
µeβ(ŝ)β(â|ŝ) using a variational autoencoder (VAE) (Kingma
and Welling 2013) v, parameterized with weights ω. The
variational autoencoder aims to model the probability of the
data points (s, a) to occur, by minimizing the evidence lower
bound (ELBO), where we place a Gaussian prior on the latent
variables:

L(ω) = Eqω(z|s,a)[− log pω(s, a|z)] +DKL(qω(z|s, a)||p(z))
p(z) ∼ N (0, 1) (11)

To use it in order to constrain the policy towards having lower
model bias, we leverage that the ELBO is under standard as-
sumptions (normally distributed modeling errors in Euclidean
space, which is reasonable for the considered benchmarks)
optimized using reconstruction error as given by the mean
squared error (MSE). We can thus use reconstruction errors
of state-action pairs as a proxy for their probability of oc-
curing. Low reconstruction errors will indicate that the pair
was likely to be visited under the original environment and
behavior policy, while large errors will indicate unlikely state-
action pairs. We accumulate this penalty over the course of
the imagined trajectories through the trained transition model:

E[P] =
∑
t

Eqω(z|s,a),(s,a)∼π,f [− log pω(s, a|z)] (12)

and use it in a convex combination with the return estimate
to penalize the policy, expanding Equation 3:

L(θ) = −λE[R] + (1− λ)E[P] (13)
We furthermore take inspiration from double Q-learning

(Fujimoto, Meger, and Precup 2018) and generalize it for our
model-based approach: In order to further avoid uncertainty
over the reward estimates, we use the trained ensemble of K
reward models to be more conservative and bias the estimate
of the return towards the minimum of the models:

E[R] = ηmin
k

{∑
t

γtr(st, πθ(st), fk(st, πθ(st)))

}
(14)

+(1− η)
1

K

∑
k

[∑
t

γtr(st, πθ(st), fk(st, πθ(st)))

]

This concludes MOOSE, where we combine model-based
policy assessment with a measure of how likely state-action
pairs would have been visited under the data generating pol-
icy. In an effort to mitigate model bias we train a policy to
only visit state-action pairs supported by the batch, result-
ing in the ability to learn in offline RL settings where no
additional data may be collected. Algorithm 1 summarizes
MOOSE in pseudocode.

Algorithm 1 MOOSE

1: procedure MOOSEPOLICY(D = {si, ai, si+1, ri})
2: train dynamics models f1..K with D and Equation 1
3: train VAE v with D and Equation 11
4: init policy network πθ
5: for j in 1..policyupdates do
6: sample start states S0 from D
7: estimate E[R] using f1..K and Equation 14
8: estimate E[P] using v and Equation 12
9: θj ← θj−1 − α∇θj−1

[−λE[R] + (1− λ)E[P]]

10: return πθ;

Experiments
We perform experiments with MOOSE and state-of-the-art
offline RL algorithms BEAR & BCQ in MuJoCo environ-
ments as well as in the Industrial Benchmark to investigate:

1. how the algorithms handle various continuous control en-
vironments with high dimensional state and action spaces,
complicated state transitions, delayed rewards, and com-
plex noise patterns. We aim to design a general algorithm
that can perform well in various environments featuring
continuous state and action spaces.

2. how the algorithms handle varying generating policies and
different degrees of exploration contained in the batch. The
algorithm should not depend on the type of policy or the
circumstances which generated the data. We thus perform
experiments with structurally different policies, determin-
istic and probabilistic policies, and policies resulting in
narrow as well as much wider data distributions.

3. how MOOSE compares to state-of-the-art model-free off-
line algorithms. We deliberately designed our algorithm
to be close to BRAC, BEAR and BCQ with the main
difference being that it is model-based instead of model-
free, since we hypothesize that due to the superior sample
efficiency usually attributed to model-based RL, it is much
better suited for the data-scarce nature of offline RL.

4. the stability of the learning process. This is arguably the
most important aspect of the algorithms. In supervised
learning, we can do model selection via a validation set
(i.e., early stopping). Since there is no equivalent technique
for policy selection in offline reinforcement learning, it is
crucially important that learning is robust, so that policy
selection is insensitive to initializations or policy updates.

We furthermore include a comparison to commonly known
DDPG (Lillicrap et al. 2015), to include an algorithm which
is off-policy, but not designed for the offline setting.

MuJoCo
MuJoCo continuous control tasks (Todorov, Erez, and Tassa
2012; Brockman et al. 2016) are a standard benchmark for
state-of-the-art reinforcement learning algorithms and are
difficult especially due to their high dimensional state and
action spaces even though the physical systems they simulate
are deterministic. We use code from (Fujimoto, Meger, and
Precup 2018) to recreate their “imperfect demonstrations”
experiment set up, to see how the algorithms perform in these
environments when faced with data generated by an expert
RL policy that has been buried under lots of noise.

Figure 3: training curves in MuJoCo experiments—for each
iteration we plot mean ± one standard deviation. MOOSE
exhibits lower variance in the training process and leads to
better policies than the other algorithms on Hopper and
Walker. In the Swimmer environment, it is outperformed by
both BCQ and BRAC. Dashed line represents original batch
performance (about 89 for Hopper).

To this end, we train a DDPG agent through live interac-
tions against the MuJoCo environments for 1,000,000 time
steps and then have it act as an expert policy by collecting
batches with 1,000,000 state-action-reward-next-state tuples
through policy evaluation in the environment. We add Gaus-
sian noise with a standard deviation of 0.3 to the action
performed in 70% of cases, and choose an action uniformly
at random in the other 30%. In order to investigate how
MOOSE behaves when faced with various state and action di-
mensionalities, we perform experiments in the Swimmer-v3,
Hopper-v3, and Walker2d-v3 environments, corresponding
to state-action dimensionalities of 8 & 2, 11 & 3, and 17 & 6.

Swimmer Hopper Walker2D

DDPG -10.2± 1.8 0.4± 4.5 -12.7± 3.9
BRAC 25.9± 0.1 134.0± 0.2 17.1± 0.9
BEAR 22.9± 0.1 117.4± 1.3 -7.0± 3.8
BCQ 24.8± 0.1 132.0± 0.2 91.9± 1.0

MOOSE 24.2± 0.1 147.2± 0.2 113.7± 0.6

Table 1: Robust performance of the algorithms in the Mu-
JoCo experiments. To assess robustness, 10th percentile per-
formance is shown together with its standard error. Final 10%
of performance values across ten seeds taken into account.
MOOSE outperforms its model-free counter parts on Hopper
and Walker, while BRAC performs better on the Swimmer
task.

Industrial Benchmark

The Industrial Benchmark (Hein et al. 2017) is a reinforce-
ment learning benchmark environment motivated by indus-
trial control problems, such as wind or gas turbines. Even
though there is no single problem the benchmark tries to
replicate, it exhibits problems commonly encountered in real-
world industrial settings, such as high dimensional and con-
tinuous state and action spaces, delayed rewards, complex
noise patterns, and multiple counteracting objectives.
We generate batches of 100,000 data samples using the In-
dustrial Benchmark with three different baseline policies:

• The optimized policy is an RL policy with very few pa-
rameters, taken from (Hein, Udluft, and Runkler 2018).
It was designed for interpretability, and found using a ge-
netic algorithm (where policy assessment was performed
via rollouts through models that received heavily explored
data during training)

• The mediocre policy is a simple, formula-based policy
which could stem from a human operator who has advised
an automatic controller to keep the observable state vari-
ables at a fixed point. Its performance is worse than the
optimized one, however still decent

• The bad policy is also guiding the steerings to a fixed point,
however it was designed to be prohibitively bad in order to
examine whether our algorithm can learn even from this
kind of data.

Figure 4: Mean performance ± one standard deviation
over training time in the Industrial Benchmark experiments.
MOOSE finds better performing policies while at the same
time exhibiting lower variance over the course of training,
which is important since no reliable policy selection tech-
niques exist. Dashed line represents original batch perfor-
mance. BRAC is omitted in the third plot due to too high
variance - see Fig. 5 for complete graphs.

Each of the three baseline policies is then used for dataset
generation in six exploration settings, in which we set the
probability of performing a random action instead of the one
recommended by the policy to be ε = {0.0, 0.2, 0.4, 0.6, 0.8,
1.0}. Altogether, these settings allow us to inspect the per-
formance of our algorithm in the face of various issues en-
countered in real-world offline RL problems, i.e., optimized,
human(-like), or undirected control strategies combined with
various degrees of (possibly even no) exploration contained
in the batch.

Results & Discussion
We assess the performance of the algorithms by evaluating
the trained policies in the original benchmark environment.
As previously mentioned, robustness of the found solutions is
critical, because we cannot hope to do policy selection much
better than randomly (as opposed to supervised learning,
where we can use the validation error to perform model
selection). We thus examine the 10th percentile performance
instead of average performance. We find this to be a much
more useful metric for practical applications, as we need to
know what to expect from a worst-case perspective. In order
to calculate it, we take all policies generated in the final 10%
of iterations across all random seeds into account. Results
for the MuJoCo tasks are presented in Table 1, and for the
Industrial Benchmark experiments in Table 2.

MOOSE outperforms BRAC, BEAR and BCQ in every
experiment in terms of robust performance, except for one
of the MuJoCo and two IB datasets. Often, the margin by
which MOOSE performs better is quite large. This highlights
MOOSE’s capability to produce better performing policies
robustly over the course of training and across different initial-
izations. Since reliable policy selection techniques (i.e., early
stopping) are missing in offline RL (Hans, Duell, and Udluft
2011), this is an extremely important aspect. Compared to
the model-free algorithms’ high variance (see Fig. 4 and 3),
MOOSE’s training curves are much smoother, producing well
performing policies more robustly. It thus better facilitates
application in true offline RL settings. As expected, DDPG
performs worst in all experiments, except for one, where it
(randomly) manages to improve upon the prohibitively bad
baseline in the absence of any exploratory moves (ε = 0.0).
Note that we exclude DDPG’s results in Figures 3, 4, and 5
and only show them in Tables 1 and 2 for better comparability
of the other algorithms.
Given the experimental results, we find that MOOSE can
learn purely from batch data in various continuous control
environments, even when faced with high dimensional state
and action spaces, delayed rewards, or complex noise. Since
throughout all policy and exploration settings in our experi-
ments, MOOSE proves to be an effective learning algorithm,
we find it can be trusted when faced with various kinds of
policies, both narrow and wide data distributions, as well as
undirected or suboptimal data generating agents.
Noteworthy is the performance of BRAC: While it does bet-
ter than most other algorithms on Swimmer and Hopper, it
severely underperforms on the industrial benchmark. We hy-
pothesize, that both the representation of the behavior policy
(a transformed Gaussian - which does not fit to the ε-greedy
approach of data generation), as well as the sample based es-
timation of the KL divergence contribute to its large variance
and thus its lower robustness.
A further advantage of MOOSE over BCQ is that it finds a
closed form policy: The algorithm thus scales better with its
hyperparameters than BCQ, since it does not rely on sam-
pling from a generative model. If we would like to decrease
the penalty on the policy because we observe that it is keep-
ing too strictly to the original policy, we can simply decrease
the corresponding weight in Equation 13.

ε = 0.0 0.2 0.4 0.6 0.8 1.0
B

eh
av

io
rB

as
el

in
e B
ad

DDPG -326.3 ± 25.4 -383.4 ± 4.6 -383.2 ± 7.0 -382.8 ± 6.8 -383.2 ± 7.1
BRAC -266.4 ± 7.7 -247.6 ± 7.9 -264.6 ± 8.1 -190.2 ± 5.3 -131.5 ± 3.6
BEAR -322.4 ± 3.1 -180.3 ± 3.5 -129.4 ± 2.7 -98.3 ± 1.29 -88.73 ± 0.92
BCQ -313.2 ± 0.6 -285.8 ± 2.5 -233.7 ± 4.7 -137.5 ± 3.6 -87.08 ± 1.24

MOOSE -322.4 ± 4.9 -125.9 ± 2.2 -108.6 ± 1.1 -90.26 ± 0.26 -73.29 ± 0.27

M
ed

io
cr

e DDPG -959.9 ± 33.8 -960.3 ± 35.8 -960.3 ± 37.4 -960.6 ± 24.4 -960.1 ± 48.5 -178.0 ± 3.3
BRAC -114.3 ± 1.9 -103.0 ± 1.5 -112.1 ± 1.8 -98.97 ± 2.63 -101.1 ± 2.7 -106.8 ± 2.1
BEAR -111.7 ± 1.2 -103.0 ± 4.6 -123.7 ± 3.2 -104.6 ± 3.2 -99.75 ± 1.6 -66.31 ± 0.22
BCQ -103.3 ± 1.1 -77.14 ± 0.11 -72.71 ± 0.35 -75.86 ± 0.74 -106.7 ± 2.4 -69.16 ± 0.39

MOOSE -82.95 ± 0.28 -77.07 ± 0.06 -75.1 ± 0.08 -70.53 ± 0.18 -68.66 ± 0.27 -64.27 ± 0.03

O
pt

im
iz

ed

DDPG -416.3 ± 24.1 -381.6 ± 11.5 -256.6 ± 21.3 -311.6 ± 29.6 -167.7 ± 3.3
BRAC -113.4 ± 2.6 -77.32 ± 0.75 -158.2 ± 6.0 -89.21 ± 1.74 -115.6 ± 2.6
BEAR -60.47 ± 0.33 -62.47 ± 0.1 -64.39 ± 0.16 -66.03 ± 0.26 -62.99 ± 0.14
BCQ -60.12 ± 0.04 -60.86 ± 0.07 -62.71 ± 0.11 -63.56 ± 0.21 -72.38 ± 0.49

MOOSE -59.72 ± 0.05 -60.35 ± 0.02 -60.81 ± 0.03 -62.07 ± 0.01 -62.74 ± 0.02

Table 2: Performance of the algorithms on the Industrial Benchmark. In order to assess the algorithms’ robustness, the 10th

percentile performance is shown together with its standard error. Since no reliable offline policy selection techniques exist, the
included policies stem from the final 10% of training steps in experiments with ten random seeds. MOOSE is outperformed
only on 2 out of 16 datasets.

Finally, MOOSE produces deterministic policies, which can
be a requirement in real-world applications due to safety
concerns. BEAR’s and BCQ’s approaches are dependent on
stochastic policies, so MOOSE constitutes a step towards
better applicability also in this dimension.

Conclusion
In this paper, we introduced MOOSE, a novel model-based
reinforcement learning algorithm, designed specifically for
the offline RL setting, that constrains its policy directly to be
close to the previously collected batch data, without detours
through model uncertainty. We also do not strictly constrain
towards replication of the behavior policy, but rather for the
trained policy to have support in the original dataset for the
states visited and actions chosen in (imagined) trajectories.
We compared our algorithm with state-of-the-art model-free
algorithms for the offline RL setting: BRAC, BEAR and
BCQ. We find that model-based RL can play to its strengths
in the offline setting, since it makes more effective use of the
limited amount of data available. Furthermore, MOOSE pro-
duces much more stable results than the compared model-free
methods, which is a key requirement in offline reinforcement
learning due to the lack of a reliable offline policy selection
technique. We find that MOOSE outperforms its model-free
counterparts in almost all considered cases, often even by far.

Acknowledgements
The project this paper is based on was supported with funds
from the German Federal Ministry of Education and Research
under project number 01 IS 18049 A.

References
Adam, S.; Busoniu, L.; and Babuska, R. 2011. Experience
replay for real-time reinforcement learning control. IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Ap-
plications and Reviews) 42(2): 201–212.
Agarwal, R.; Schuurmans, D.; and Norouzi, M. 2019. Striv-
ing for simplicity in off-policy deep reinforcement learning.
arXiv preprint arXiv:1907.04543 .
Andrychowicz, M.; Wolski, F.; Ray, A.; Schneider, J.; Fong,
R.; Welinder, P.; McGrew, B.; Tobin, J.; Abbeel, O. P.; and
Zaremba, W. 2017. Hindsight experience replay. In Advances
in neural information processing systems, 5048–5058.
Bellemare, M.; Srinivasan, S.; Ostrovski, G.; Schaul, T.; Sax-
ton, D.; and Munos, R. 2016. Unifying count-based ex-
ploration and intrinsic motivation. In Advances in neural
information processing systems, 1471–1479.
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. Openai GYM.
arXiv preprint arXiv:1606.01540 .
Codevilla, F.; Santana, E.; López, A. M.; and Gaidon, A.
2019. Exploring the limitations of behavior cloning for au-
tonomous driving. In Proceedings of the IEEE International
Conference on Computer Vision, 9329–9338.
Dabney, W.; Ostrovski, G.; Silver, D.; and Munos, R. 2018.
Implicit quantile networks for distributional reinforcement
learning. arXiv preprint arXiv:1806.06923 .
Deisenroth, M.; and Rasmussen, C. E. 2011. PILCO: A
model-based and data-efficient approach to policy search. In
Proceedings of the 28th International Conference on machine
learning (ICML-11), 465–472.
Depeweg, S.; Hernández-Lobato, J. M.; Doshi-Velez, F.; and
Udluft, S. 2016. Learning and policy search in stochastic

dynamical systems with Bayesian neural networks. arXiv
preprint arXiv:1605.07127 .

Depeweg, S.; Hernández-Lobato, J. M.; Doshi-Velez, F.; and
Udluft, S. 2017. Decomposition of uncertainty in Bayesian
deep learning for efficient and risk-sensitive learning. arXiv
preprint arXiv:1710.07283 .

Ernst, D.; Geurts, P.; and Wehenkel, L. 2005. Tree-Based
Batch Mode Reinforcement Learning. J. Mach. Learn. Res.
6: 503–556. ISSN 1532-4435.

Ernst, D.; Glavic, M.; Geurts, P.; and Wehenkel, L. 2005.
Approximate Value Iteration in the Reinforcement Learning
Context. Application to Electrical Power System Control.
International Journal of Emerging Electric Power Systems
3(1).

Fujimoto, S.; Conti, E.; Ghavamzadeh, M.; and Pineau, J.
2019. Benchmarking Batch Deep Reinforcement Learning
Algorithms. arXiv preprint arXiv:1910.01708 .

Fujimoto, S.; Meger, D.; and Precup, D. 2018. Off-policy
deep reinforcement learning without exploration. arXiv
preprint arXiv:1812.02900 .

Gretton, A.; Borgwardt, K. M.; Rasch, M. J.; Schölkopf, B.;
and Smola, A. 2012. A kernel two-sample test. Journal of
Machine Learning Research 13(Mar): 723–773.

Haarnoja, T.; Zhou, A.; Abbeel, P.; and Levine, S. 2018.
Soft actor-critic: Off-policy maximum entropy deep rein-
forcement learning with a stochastic actor. arXiv preprint
arXiv:1801.01290 .

Hans, A.; Duell, S.; and Udluft, S. 2011. Agent self-
assessment: Determining policy quality without execution. In
2011 IEEE Symposium on Adaptive Dynamic Programming
and Reinforcement Learning (ADPRL), 84–90. IEEE.

Hein, D.; Depeweg, S.; Tokic, M.; Udluft, S.; Hentschel,
A.; Runkler, T. A.; and Sterzing, V. 2017. A benchmark
environment motivated by industrial control problems. In
2017 IEEE Symposium Series on Computational Intelligence
(SSCI), 1–8. IEEE.

Hein, D.; Hentschel, A.; Runkler, T. A.; and Udluft, S. 2016.
Reinforcement learning with particle swarm optimization
policy (PSO-P) in continuous state and action spaces. In-
ternational Journal of Swarm Intelligence Research (IJSIR)
7(3): 23–42.

Hein, D.; Udluft, S.; and Runkler, T. A. 2018. Interpretable
policies for reinforcement learning by genetic programming.
Engineering Applications of Artificial Intelligence 76: 158–
169.

Ho, J.; and Ermon, S. 2016. Generative adversarial imita-
tion learning. In Advances in neural information processing
systems, 4565–4573.

Jaques, N.; Ghandeharioun, A.; Shen, J. H.; Ferguson, C.;
Lapedriza, A.; Jones, N.; Gu, S.; and Picard, R. 2019. Way
off-policy batch deep reinforcement learning of implicit hu-
man preferences in dialog. arXiv preprint arXiv:1907.00456
.

Kaiser, M.; Otte, C.; Runkler, T. A.; and Ek, C. H. 2020.
Bayesian decomposition of multi-modal dynamical systems
for reinforcement learning. Neurocomputing .
Kalyanakrishnan, S.; and Stone, P. 2007. Batch reinforcement
learning in a complex domain. In Proceedings of the 6th
international joint conference on Autonomous agents and
multiagent systems, 1–8.
Kidambi, R.; Rajeswaran, A.; Netrapalli, P.; and Joachims, T.
2020. MOReL: Model-Based Offline Reinforcement Learn-
ing. arXiv preprint arXiv:2005.05951 .
Kingma, D. P.; and Ba, J. 2014. Adam: A method for stochas-
tic optimization. arXiv preprint arXiv:1412.6980 .
Kingma, D. P.; and Welling, M. 2013. Auto-encoding varia-
tional Bayes. arXiv preprint arXiv:1312.6114 .
Kumar, A.; Fu, J.; Soh, M.; Tucker, G.; and Levine, S. 2019.
Stabilizing off-policy Q-learning via bootstrapping error re-
duction. In Advances in Neural Information Processing Sys-
tems, 11761–11771.
Kurutach, T.; Clavera, I.; Duan, Y.; Tamar, A.; and Abbeel,
P. 2018. Model-ensemble trust-region policy optimization.
arXiv preprint arXiv:1802.10592 .
Lagoudakis, M. G.; and Parr, R. 2003. Least-squares policy
iteration. Journal of machine learning research 4(Dec): 1107–
1149.
Lange, S.; Gabel, T.; and Riedmiller, M. 2012. Batch re-
inforcement learning. In Reinforcement learning, 45–73.
Springer.
Laroche, R.; Trichelair, P.; and Combes, R. T. d. 2017. Safe
policy improvement with baseline bootstrapping. arXiv
preprint arXiv:1712.06924 .
Laskey, M.; Lee, J.; Fox, R.; Dragan, A.; and Goldberg, K.
2017. Dart: Noise injection for robust imitation learning.
arXiv preprint arXiv:1703.09327 .
Lee, B.-J.; Lee, J.; Vrancx, P.; Kim, D.; and Kim, K.-E. 2020.
Batch Reinforcement Learning with Hyperparameter Gradi-
ents .
Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T.;
Tassa, Y.; Silver, D.; and Wierstra, D. 2015. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971 .
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013. Play-
ing Atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602 .
Nagabandi, A.; Kahn, G.; Fearing, R. S.; and Levine, S. 2018.
Neural network dynamics for model-based deep reinforce-
ment learning with model-free fine-tuning. In 2018 IEEE In-
ternational Conference on Robotics and Automation (ICRA),
7559–7566. IEEE.
Nair, A.; McGrew, B.; Andrychowicz, M.; Zaremba, W.; and
Abbeel, P. 2018. Overcoming exploration in reinforcement
learning with demonstrations. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), 6292–6299.
IEEE.

Ng, A. Y.; Russell, S. J.; et al. 2000. Algorithms for inverse
reinforcement learning. In Icml, volume 1, 2.
Osband, I.; Van Roy, B.; Russo, D. J.; and Wen, Z. 2019.
Deep Exploration via Randomized Value Functions. Journal
of Machine Learning Research 20(124): 1–62.
Pong, V.; Gu, S.; Dalal, M.; and Levine, S. 2018. Tempo-
ral difference models: Model-free deep rl for model-based
control. arXiv preprint arXiv:1802.09081 .
Riedmiller, M. 2005. Neural fitted Q iteration–first expe-
riences with a data efficient neural reinforcement learning
method. In European Conference on Machine Learning,
317–328. Springer.
Riedmiller, M.; Gabel, T.; Hafner, R.; and Lange, S. 2009.
Reinforcement learning for robot soccer. Autonomous Robots
27(1): 55–73.
Ross, S.; and Bagnell, D. 2010. Efficient reductions for imi-
tation learning. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics, 661–668.
Salimans, T.; and Kingma, D. P. 2016. Weight normaliza-
tion: A simple reparameterization to accelerate training of
deep neural networks. In Advances in neural information
processing systems, 901–909.
Schmidhuber, J. 2006. Developmental robotics, optimal artifi-
cial curiosity, creativity, music, and the fine arts. Connection
Science 18(2): 173–187.
Schneegaß, D.; Udluft, S.; and Martinetz, T. 2007. Improving
Optimality of Neural Rewards Regression for Data-Efficient
Batch Near-Optimal Policy Identification. In de Sá, J. M.;
Alexandre, L. A.; Duch, W.; and Mandic, D., eds., Artificial
Neural Networks – ICANN 2007, 109–118. Berlin, Heidel-
berg: Springer Berlin Heidelberg. ISBN 978-3-540-74690-4.
Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; and Moritz,
P. 2015. Trust region policy optimization. In International
conference on machine learning, 1889–1897.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347 .
Siegel, N. Y.; Springenberg, J. T.; Berkenkamp, F.; Abdol-
maleki, A.; Neunert, M.; Lampe, T.; Hafner, R.; and Ried-
miller, M. 2020. Keep doing what worked: Behavioral mod-
elling priors for offline reinforcement learning. arXiv preprint
arXiv:2002.08396 .
Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.;
and Riedmiller, M. 2014. Deterministic policy gradient algo-
rithms.
Sutton, R. S. 1990. Integrated architectures for learning,
planning, and reacting based on approximating dynamic pro-
gramming. In Machine learning proceedings 1990, 216–224.
Elsevier.
Sutton, R. S.; and Barto, A. G. 1998. Introduction to rein-
forcement learning, volume 135. MIT press Cambridge.
Todorov, E.; Erez, T.; and Tassa, Y. 2012. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 5026–
5033. IEEE.

Wang, Z.; Bapst, V.; Heess, N.; Mnih, V.; Munos, R.;
Kavukcuoglu, K.; and de Freitas, N. 2016. Sample effi-
cient actor-critic with experience replay. arXiv preprint
arXiv:1611.01224 .
Williams, R. J. 1992. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Machine
learning 8(3-4): 229–256.
Yu, T.; Thomas, G.; Yu, L.; Ermon, S.; Zou, J.; Levine, S.;
Finn, C.; and Ma, T. 2020. MOPO: Model-based Offline
Policy Optimization. arXiv preprint arXiv:2005.13239 .

Experimental Details
Hyperparameters
In this paper, we did not tune or change hyperparameters
throughout experiments. All neural network transition mod-
els or policies have two hidden layers of size 400 and 300
with ReLU activation functions. The transition models have
normalized weights and no nonlinearity in their final layer,
while policies end with a tanh(), since we assume actions
to lie in (−1, 1). Variational Autoencoders also use ReLUs,
have one layer of size 750, two parallel layers (one for the
mean, one for the variance) of size 2 ∗ actiondim for the
parameterization of the latent variables, and then another
two layers of size 750 after the bottleneck. All transition and
autoencoder networks are trained with a batch size of 500,
while policies are trained with 100 start states per gradient
step. For autoencoder and transition (or reward) models we
use the Adam optimizer with a learning rate of 10−4 and
standard hyper parameters. The policy networks for the Mu-
JoCo experiments had a lower learning rate of 10−5. In the
Industrial Benchmark experiments, we observed that the mo-
mentum style components of Adam hurt the optimization and
we resorted to vanilla SGD with a learning rate of 10−4. To
avoid gross extrapolation mistakes, we clip model predictions
to stay inside the range of values that have been observed in
the batch.
During evaluation on the real benchmark environments, we
always averaged performance over 10 trajectories of length
100. Consequently, we also used a horizon of 100 during
policy training. In the offline RL setting, there is no real way
to know when to stop learning, we thus pick a reasonable
number of iterations to train and stick to it. For the MuJoCo
tasks, we train BRAC, BEAR and BCQ for 100,000 steps,
while we train the models and autoencoders in MOOSE sepa-
rately from the policy for 50 epochs, and the policy for 5000
steps. We deviate from this behavior only in the Hopper envi-
ronment, as the transition models start to predict premature
falling over of the Hopper after about 1000 steps. Model-
based algorithms cannot take into account the length of the
trajectories in the same way that model-free approaches can,
since they are unable to differentiate this attribute (at least
not without some additional engineering overhead). In the
IB experiments we decrease training steps of the policies in
all three algorithms, since the dataset size also decreased to
100,000 samples. BRAC, BEAR and BCQ are trained for
10,000 and MOOSE for 1,000 steps.
The λ parameter that controls the tradeoff between optimiz-
ing the policy for best possible return and for closeness to
the original data distribution was always left at a conserva-
tive 0.01 (1 − λ = 0.99), meaning that we mostly focused
on staying close to the data (both reward and penalty are
computed in a space normalized to have zero mean and unit
standard deviation). The choice of hyper parameters in offline
RL is an especially hard problem, since we cannot know à
priori how close is close enough to the data. We thus find
being conservative the only viable option in practice. The
η parameter controlling the tradeoff between optimizing for
average performance versus worst case performance was al-
ways kept at 0.5. Throughout experiments, we use K = 4

transition (and reward) models to estimate the rewards across
trajectories. In accordance with previous literature we use
a discount factor γ = 0.99 for the MuJoCo and γ = 0.97
for the Industrial Benchmark. Since the setpoint parameter
in the Industrial Benchmark simulates ambient conditions
out of control of the learner and we do not aim to perform
transfer learning, we do not alter it and instead keep it fixed
at p = 70.

Prior Knowledge
As prior results have shown that learning deltas of the tran-
sitions instead of directly predicting next states can be ben-
eficial for the MuJoCo tasks, we use delta models in those
experiments. In the Industrial Benchmark experiments, we
found that delta models performed worse on the held out
evaluation trajectories than models that directly predicted
successor states. We hypothesize that the delta models in this
case are harder to learn due to the rather noisy transitions.
Hence, we used models that directly predicted successor
states throughout Industrial Benchmark experiments.
The three steerings velocity, gain, and shift in the Industrial
Benchmark are always updated by the chosen control action
times a steering specific constant. We assume that this is low
level domain expert knowledge that could be handily avail-
able in a real world setting and directly integrate this in our
model building process. As a consequence, our models need
to only predict the other parts of the state space. Since the
model-free methods do not predict transitions, they cannot
benefit from this prior knowledge.

Uncertainty Calculation for 10th percentiles
To calculate uncertainties for the 10th percentile perfor-
mances, the naı̈ve way would be to repeat the entire series
of experiments (we performed each experiment ten times)
another J times and calculate the uncertainty based on that.
As that would be wasteful, and since we work with limited
computational resources, we work with the data that we
already have:

• we take all policy performance values that we already took
into account for the percentile calculation (final 10% of
iterations) and make the assumption that they follow a
Gaussian distribution (visualizations show this is justified,
even though strictly they are not independent).

• we calculate the standard error of the mean of the pol-
icy performance values and multiply it by 1.7 as we find
through Monte Carlo experiments that the 10th percentile
value is roughly 1.7 times as uncertain as the mean, when
the underlying data is normally distributed.

Full Figures for Experiments on the Industrial
Benchmark

The complete graphs for the industrial benchmark experi-
ments are shown in Figure 5.

Figure 5: Mean performance ± standard deviation in IB experiments. Dashed line represents original batch performance.

Detailed Derivation of Equation 10
We provide a detailed derivation of Eq. 10, which states that minimizing the expected model bias of a newly derived policy with
parameters θ is equivalent to maximizing the probabilities of the states it visits and the actions it chooses under the original
dataset.

θ∗ = argmin
θ

Es∼µeβ , a∼β(s), ŝ∼µfπθ , â∼πθ(ŝ) [B] (15)

= argmin
θ

Es∼µeβ , a∼β(s), ŝ∼µfπθ , â∼πθ(ŝ)

[∑
t

bt

]
(16)

= argmin
θ

Es∼µeβ , a∼β(s), ŝ∼µfπθ , â∼πθ(ŝ)

[∑
t

Est+1∼e(st,at), ŝt+1=f(ŝt,ât) [||st+1 − ŝt+1||2]

]
(17)

= argmin
θ

Es∼µeβ , a∼β(s), ŝ∼µfπθ , â∼πθ(ŝ), t∈T
[
Est+1∼e(st,at), ŝt+1=f(ŝt,ât)

[
(st+1 − ŝt+1)2

]]
(18)

We make the assumption that the distribution of model errors e(s, a)− f(ŝ, â) has a variance that is monotonically decreasing
with the likelihood of having seen the imagined data in reality, i.e., that the data sample (ŝ, â) was generated under the original
environment dynamics e and the behavior policy β:

(s′ − ŝ′) ∼ N (0,− log pe,β(ŝ, â)) (19)

Since the expectation of a squared Gaussian variable with zero mean is its variance*, plugging the assumption into Eq. 18 yields

θ∗ = argmin
θ

Eŝ∼µfπθ , â∼πθ(ŝ), t∈T [− log pe,β(ŝt, ât)] (20)

Minimizing the negative log likelihood of having observed the imagined data in reality then corresponds to maximizing the
actual likelihood as given by the second part of the original Eq. 10 (expectation subscript omitted for brevity):

θ∗ = argmin
θ

E [− log pe,β(ŝ, â)] (21)

= argmax
θ

E [log pe,β(ŝ, â)] (22)

= argmax
θ

E [pe,β(ŝ, â)] (23)

= argmax
θ

E
[
µeβ(ŝ)β(â|ŝ)

]
(24)

* Expectation of a squared Gaussian variable X ∼ N (0, s2) can easily be derived from the formula for its variance:

V[X] = E[X2]− (E[X])2 (25)

⇔ V[X] = E[X2]− 02 (26)

⇔ E[X2] = s2 (27)

	Introduction
	Related Work
	MOdel-based Offline policy Search with Ensembles (MOOSE)
	Model Training and Standard Model-Based Reinforcement Learning
	Reducing Model Bias in Model-Based Reinforcement Learning
	A Practical Algorithm

	Experiments
	MuJoCo
	Industrial Benchmark

	Results & Discussion
	Conclusion
	Experimental Details
	Hyperparameters
	Prior Knowledge

	Uncertainty Calculation for 10th percentiles
	Full Figures for Experiments on the Industrial Benchmark
	Detailed Derivation of Equation 10

