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ABSTRACT

With the rapid development of smart manufacturing, data-driven machinery health management has
received a growing attention. As one of the most popular methods in machinery health management,
deep learning (DL) has achieved remarkable successes. However, due to the issues of limited samples
and poor separability of different cavitation states of acoustic signals, which greatly hinder the
eventual performance of DL modes for cavitation intensity recognition and cavitation detection. Also
different tasks were performed separately conventionally. In this work, a novel multi-task learning
framework for simultaneous cavitation detection and cavitation intensity recognition framework using
1-D double hierarchical residual networks (1-D DHRN) is proposed for analyzing valves acoustic
signals. Firstly, a data augmentation method based on sliding window with fast Fourier transform
(Swin-FFT) is developed to alleviate the small-sample issue confronted in this study. Secondly, a
1-D double hierarchical residual block (1-D DHRB) is constructed to capture sensitive features from
the frequency domain acoustic signals of valve. Then, a new structure of 1-D DHRN is proposed.
Finally, the devised 1-D DHRN is evaluated on two datasets of valve acoustic signals without noise
(Dataset 1 and Dataset 2) and one dataset of valve acoustic signals with realistic surrounding noise
(Dataset 3) provided by SAMSON AG (Frankfurt). Our method has achieved state-of-the-art results.
The prediction accurcies of 1-D DHRN for cavitation intensitys recognition are as high as 93.75%,
94.31% and 100%, which indicates that 1-D DHRN outperforms other DL models and conventional
methods. At the same time, the testing accuracies of 1-D DHRN for cavitation detection are as
high as 97.02%, 97.64% and 100%. In addition, 1-D DHRN has also been tested for different
frequencies of samples and shows excellent results for frequency of samples that mobile phones can
accommodate.
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1 Introduction

Cavitation is a dynamical phenomenon occurs in fluid dynamics, during which bubbles, also called cavities, form (and
later collapse) inside the liquid when the local pressure (e.g. at the contact point of a liquid and some solid surface) is
lower than the liquid’s vapor pressure [1, 2]. When the bubble flows to places where the liquid pressure exceeds the
vapor pressure, the bubble collapses and the implosion instantaneously produces a great impact (shock waves) and high
temperature [3, 4]. Furthermore, severe pitting and wear can be induced on the solid surface [5].

Generally, cavitation can potentially bring dangers to process plants, especially for valves, pumps, pipes or propellers.
These potential dangers might quickly cause damage to components of the plants and loss of efficiency [6]. On one
hand, corrosion and destruction to valves, pumps or pipes can be induced by the cavitation occurrence [7], vibration of
the internal structure and noise loudness levels might also increase [8] due to the bubble collapse and rupture [9]. On
the other hand, the fluid bulk properties and flow rate inside the plants can be altered by the cavitation [10, 11] which
further can lead to standstill of the process. Consequently, plants such as valves, pipes, pumps and related components
are at the largest risk confronting cavitation. Many industries are fighting against cavitation, such as SAMSON AG
for valves and other manufacturing plants [12]. In the worst case, cavitation can lead to the closure of the factory, e.g.
for situations with test rack system including control valve. Therefore, it is vital to detect the cavitation of process
plants (e.g. valves, pumps or pipes) at its early stages for intervention so as to ensure security and reduce any possible
economic loss. Conventionally cavitation is detected by comparing the fault and healthy conditions of specific devices
under the monitored signals. According to the type of monitoring sensors, it can be divided into vibration signals based
cavitation detection and acoustic signals based detection. Recently, some researchers have explored machine learning
application for cavitation detection, based on features handcrafted from the vibration or acoustic signals [13].

Sakthivel et al. [14] extracted 11 statistical features from the vibration time domain signals. These features are then
fed into the C4.5 decision tree [15] to classify the bearing fault, seal fault, impeller fault, bearing and impeller fault
together with cavitation. Muralidharan et al.[16] used the Continuous Wavelet Transform (CWT) [17] to replace the
statistical feature extraction from vibration signals. Then the CWT achieved features are taken as input of the decision
tree algorithm for similar classification task as in [14]. In addition, Muralidharan et al. [18] also studied the influence
of different families and levels of the CWT on fault diagnosis of single-piece centrifugal oils using Support Vector
Machine (SVM). Samanta et al. [19] extracted features from the original and pre-processed signals as the input of two
different classifiers, the SVM and the artificial neural network (ANN), to identify normal and defective bearings. The
parameters of the SVM and ANN are optimized by genetic algorithms [20], and the results explained the importance of
feature selection to the classifier. Yang et al. [21] extracted 4 statistical features from the vibration time domain signals
as the input of the SVM to detect cavitation and no cavitation of the butterfly valve. Bordoloi et al. [22] proposed a
SVM method using directly the vibration signal data of bearing block and pump casing to diagnose blockage level and
cavitation intensity. Panda et al. [23] extracted statistical features from the vibration time domain signals of the pump
as the input of SVM to distinguish cavitation and flow block. Rapur et al. [24] proposed an intelligent detection method
based on SVM to identify mechanical fault and flow rate using combination of motor line current and pump vibration
signal as input. Shervani-abar. [25] proposed a multi-class cavitation detection method based on the vibration signal of
the axial flow pump using SVM.

Zouari et al. [26] proposed a vibration signal fault detection method for centrifugal pumps using neural network and
neuro-fuzzy technology. Rajakarunakaran et al. [27] proposed a centrifugal pump fault detection using a feedforward
neural network and a binary adaptive resonance network (ART1). Siano et al. [28] proposed a method combining ANN
and nonlinear regression to diagnose cavitation of time domain vibration signals. Nasiri et al. [29] extracted features
from the vibration signal of the centrifugal pump as the input of the neural network to identify cavitation. Jia et al.
[30] proposed a deep neural network (DNN) to directly extract features from the original rolling element bearings and
planetary gearboxes data set for fault diagnosis. Zhao et al. [31] proposed a deep learning method to extract features
from non-stationary vibration signals and diagnose centrifugal pump faults. Tiwari et al. [32] extracted 6 statistical
features from the time domain pressure data, and then fed these features as input into the neural network to classify
blockage and cavitation. Potocnik et al. [33] extracted spectral and psychoacoustic features from the valve acoustic data
and then took these features to be input of a variety of machine learning algorithms to classify the cavitation, flow noise,
whistling and rattling. Muralidharan et al. [34] presented the use of Naïve Bayes algorithm and Bayes net algorithm
for fault diagnosis through discrete wavelet features extracted from vibration signals of good and faulty conditions
of the components of centrifugal pump. Liu et al. [35] proposed a fault diagnosis method for gear pumps based on
the ensemble empirical mode decomposition (EEMD) and Bayesian networks. It decomposes the vibration signal by
the EEMD method and calculates the energy of the intrinsic mode functions (IMFs) as fault features and adds these
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Figure 1: The framework of multi-task learning for cavitation detection and cavitation intensity recognition of valves
acoustic signals using 1-D double hierarchical residual network. Task A is cavitation detection ("cavitation" and "non

cavitation"). Task B is cavitation intensity recognition ("cavitation choked flow", "constant cavitation", "incipient
cavitation" and "non cavitation").

features to the Bayesian network. Tang et al. [36] studied intelligent fault diagnosis of hydraulic piston pumps based on
deep learning and Bayesian optimization, where the Bayesian Optimization (BO) algorithm helps the neural network to
automatically select hyperparameters.

It can be found from the literature review that many traditional machine learning methods (like, decision tree, SVM or
ANN with shallow architectures) have been explored for cavitation or fault detection. However, the above methods
suffer from two main weaknesses. First, the shallow network architecture can not capture sensitive features, especially
when the acoustic signals are contaminated by background noise. Second, manual feature extraction and selection are
time-consuming and require domain specific knowledge [37] which also might introduce bias. Fortunately, state-of-
the-art deep learning methods have strong ability in automatically extracting relevant features from original data. This
advantage enable the application of deep learning to be transferred and inspired from speech recognition and computer
vision to cavitation detection and diagnosis.

Deep convolutional neural networks (DCNN) have been successfully applied in image classification and also natural
language processing (NLP) [38]. DCNN integrate the extraction of low, medium and high level features and classifiers
in an end-to-end hierarchical fashion. The “level" of features can be achieved by the number of layers (depth) in the
stack. The depth of convolutional neural networks (CNN) has gradually increased with architecture evolved from
AlexNet [39], VGG [40], Inception [41] to Residual networks (ResNet) [42]. Recently, CNNs with 1-D convolutional
layers have been widely applied on time series data, such as, electrocardiogram detection [43], electroencephalogram
diagnosis [44], bearing fault diagnosis [45, 46, 47] and so on. The used 1-D convolution can acquire sensitive features
from local segments of the entire time series data which are uncorrelated with each other [45, 46, 47, 48, 43, 44].
Therefore, time series data analysis can take 1-D CNN for efficient feature representation.

In the literature, 1-D convolution has been successfully applied to do fault diagnosis. However, it’s not yet clear how it
works in cavitation detection and cavitation intensity recognition of valves, and under a combined task-demanding,
which in practice is more required. Also, the modern residual structure was not discussed in before within this area. In
this study, targeted at a simultaneous multi-task learning, we introduce a special 1-D CNN based model that exploits
1-D double hierarchical residual blocks (1-D DHRB) as feature extractors. This novel method is termed as 1-D double
hierarchical residual network (1-D DHRN). The architecture of our multi-task learning for cavitation detection and
cavitation intensity recognition using 1-D DHRN is shown in Figure 1. Our 1-D DHRN is inspired by the ideas that,
respective filed [49] and residual structure [42] with large enough perspective areas enable acquisition on more detailed
information, and, the skip connection can increase the network non-linearity capability. Compared to our previous
research [50], 1-D DHRN is a multi-task and end-to-end approach for cavitation detection and cavitation intensity
recognition based upon the modern deep learning. In contrast to manual feature extraction that has to be performed in
our previous research, the proposed 1-D DHRN here is able to capture sensitive features by itself and does not require
specific knowledge, it thus allows the simultaneous cavitation detection and cavitation intensity recognition. Moreover,
our proposed approach is more compatible with the requirements of the real-world industry. The main contributions of
this work are summarized in follows:

• In order to tackle the small-sample problem, the sliding window (Swin-FFT) data augmentation method is
introduced in the study.
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• The 1-D Double Hierarchical Residual Blocks (1-D DHRB) with large kernel are proposed as an automatic
feature extractor to capture sensitive features of valve acoustic signals.

• The 1-D Double Hierarchical Residual Network (1-D DHRN) is developed for valve cavitation detection and
cavitation intensity recognition using directly the emitted acoustic signal.

• Multi-task learning for simultaneous cavitation detection and cavitation intensity recognition is presented.

• The proposed method is tested on three different datasets of acoustic signals measured by SAMSON AG and
compared with the state-of-the-art methods.

• The impact of different sampling rate of the acoustic signals on our proposed method for cavitation detection
and cavitation intensity recognition is investigated.

The remainder of this paper is organized as follows. Section 2 introduces the acquisition of datasets for valve cavitation
acoustic signals. Section 3 describes the details of the proposed 1-D DHRN model. Section 4 introduces different case
studies for each specific task. Section 5 discusses the effect of different experimental conditions on 1-D DHRN. The
conclusion and future research outlook are given in Section 6.

2 Experimental Setup

SAMSON AG devised a test rack with control valve (SAMSON AG type 3241, DN 80, PN40, Kvs 25 with positioner
type 3730-6) and running water as the flowing medium inside to generate different flow status by gauging operation
conditions accordingly: upstream pressure, downstream pressure and the valve stroke. The test bench is equipped with
a set of sensors to measure the temperature of the test medium T , the pressures upstream p1 and downstream p2 of
the test valve and the volumetric flow rate Q. Additionally, for the test valve mounted inside the bench, the absolute
valve stroke h and the sound intensity Lp with a special sensor directly mounted on the valve body are measured.
Furthermore, the test bench includes two additional control valves upstream and downstream of the test valve. A control
system controls the pumps as well as these two valves to modify the total volumetric flow through the test bench. The
two additional valves are used to vary the upstream and downstream pressure around the test valve. All sensors and the
test valve are mounted between these two external control valves (more details see Table 1). The pipes between the
external valves and the test valve are long enough to ensure an undisturbed flow for proper measurements. Water, which
can also be heated, was used as the test medium for all tests. The water temperature was maintained at 25 – 40◦C in
order to hold the vapor pressure nearly constant and to eliminate the influence of temperature on the cavitation.

Two piezo elements were introduced to record directly the structure-borne noise of the valve: one placed on the body of
the control valve and the other to the NAMUR at the bonnet. Furthermore, two microphones were placed in a distance
of 1m to the control valve to record the airborne noise in a frequency range between 40 Hz to 20 kHz: one high-end
microphone as well as a low cost microphone which typically is used for smartphones. The test section in figure 2 of is
in a separate room and all other noise sources from the plant like the pump and the upstream and downstream throttling
valves are in another room (below the best section room, in the cellar). Therefore, there is a spatial separation of the
test section to all possible noise sources. Also bellow expansion joints are integrated in the pipe system in order to the
transport of vibrations into the test section. All these measures ensure that a surrounding noise of maximum 55 dB were
present during the tests. The preparation of the different states is very simple. The principle procedure is described in
the standard IEC 60534-8-2. The considered states depend on the differential pressure ratio ((p1 − p2)/(p1 − pv)) of
the valve. Therefore, the valve opening will be held constant during the test. The temperature of the medium is during
the test constant, which means the vapor pressure will be held constant. Furthermore, the upstream pressure of the valve
will also be held constant (e.g. 10 bar (a)) with the process control system of the plant. Therefore, in the consequence
the different states will be adjusted by varying the downstream pressure in steps of 0.1,. . . ,0.4 bar starting at 1bar (a).
For each step the downstream pressure will be adjusted with the process control system of the plant and based on the
steady state of the flow the noise measurement concerning the adjusted step will be started. As a result, there is for a
constant valve opening and a constant valve upstream pressure a noise emission characteristic (noise emission versus
differential pressure ratio). And based on the noise emission characteristic the different states will be determined. This
extensive procedure for determination of cavitation states cannot be realized in customers plants.

The cavitation we are identifying here takes place at control valves and the fluid inside is water. Cavitation takes
place local at the narrowest throttling area, where the pressure falls to its minimum in the system, below the vapor
pressure. Then, vapor bubbles are formed up in the liquid. These vapor bubbles implode when subjected to higher
pressures with intensive sound pressure level. Depending on cavitation intensity erosion effects in the valve itself
can occur additionally. Within SAMSON AG experimental setup in the laboratory, differential pressure at various
constant upstream pressures of the control valve is varied, also different operation conditions (e.g. valve opening ratio,
temperature) were adjusted, by which, five flow status are induced with corresponding acoustic signal measured for
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Figure 2: Schematic view of the test rack at SAMSON AG (Figure provided by SAMSON AG).

Table 1: The detailed information of various measurement sensors

Physical parameters Sensor types Measuring ranges Tolerances

Upstream pressure SAMSON Type 6054 0-16 bar ± 0.09 bar
Downstream pressure SAMSON Type 6054 0-16 bar ± 0.09 bar
Flow rate Krohne Type M950 0-180 m³/h ± 0.9 m³/h
Valve stroke Sylvac Type s229 0-50 mm ± 0.001 mm
Medium temperature SAMSON Type 5204 -20-150 ◦C ± 0.45 ◦C
Structure-borne noise
(at valve body) Vallen Type VS45-H 20-450 kHz Sensitivity -63 dB re 1V/µbar

(Accuracy according to individual calibration)
Structure-borne noise
(at valve body) PCB Type M353 B17 0-30000 Hz Sensitivity 10 mV/g, Accuracy ± 3 dB

Structure-borne noise
(at NAMUR at bonnet) PCB Type M353 B17 0-30000 Hz Sensitivity 10 mV/g, Accuracy ± 3 dB

many events: cavitation choked flow, constant cavitation, incipient cavitation, turbulent flow and background no-flow.
The turbulent flow is a flow through the control valve without any cavitation noise. Starting at a certain differential
pressure ratio within a certain range only a few vapor bubbles will be generated and the implosion of these bubbles is
causing an increase of the noise emission, which is defined as incipient cavitation. By increasing the concentration
of vapor bubbles, the noise emission is increasing up to a maximum noise which is defined as constant cavitation.
Achieving the noise maximum also the concentration of the vapor bubbles is maximum which leads to a choked flow
condition with cavitation and a decreasing noise behavior.

Figure 3 shows an exemplary comparison of time waveformsw of the acoustic signals for cavitation choked flow,
constant cavitation incipient and non cavitation. It is difficult to distinguish the sensitive features directly in Figure 3.
Therefore, in this study an intelligent 1-D DHRN method is used to extract the sensitive features from the raw acoustic
signals and to recognize the levels of cavitation intensity.

3 Methods

This section presents the multi-task learning framework of cavitation detection and cavitation intensity recognition
using 1-D DHRN, including data augmentation method Swin-FFT, 1-D DHRB construction, and the final 1-D DHRN
structures.

3.1 Architecture Overview

The overview architecture of our multi-task learning framework of cavitation detection and cavitation intensity
recognition using 1-D double hierarchical residual networks (1-D DHRN) is illustrated in Figure 1. First, the Swin-FFT
(introduced in subsection 3.2) method is used for data augmentation to handle the small-sample issue in the data
pre-processing module. Before data augmentation, the total data is split into a training set and testing set (with a ratio
of 80% : 20%). Performing the train/test splitting in advance can ensure that a piece of signal data after any data
augmentation would only exit in the training set or the testing set. Then, the pieces of the frequency domain acoustic
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Figure 3: Waveforms of acoustic signals for cavitation choked flow (a), constant cavitation (b), incipient cavitation (c)
and non-cavitation (d), respectively.

signals after Swin-FFT are fed as the input of the 1-D DHRN (introduced in subsection 3.3). Finally, the results of
cavitation detection and cavitation intensity recognition on the valve are achieved simultaneously. And the Swin-FFT,
1-D pooling layers (max pooling and adaptive average pooling) do not introduce additional parameters. Only our
convolutional and fully concatenated layers introduce additional parameters.

In our method, cavitation detection is taken as Task A and cavitation intensity recognition as Task B. Cavitation intensity
recognition and cavitation detection correspond to different practical industrial applications. The cavitation detection
and cavitation intensity recognition apply the mechanism of hard parameter sharing in multi-task learning [51]. The
two tasks share features extracted from the hidden layer. Then, the two tasks can be performed through different
output layers. The essence of our proposed method is to minimize the cavitation detection error and the cavitation
intensity recognition error, respectively. In other words, we transform data-driven multi-task supervised learning into an
optimization problem, to achieve the minima of the two objective functions of cavitation detection L′ and cavitation
intensity recognition L′′ by choosing appropriate hyperparameters, as follows.

L′ = CE(f(Xtrain; θ
′), Y ′train) (1)

L′′ = CE(f(Xtrain; θ
′′), Y ′′train) (2)

where, CE(·) is the cross-entropy function. The basic process of different optimization methods is similar, and
we choose the Adam optimization method. First, the output of f ′ = f(Xtrain; θ

′), f ′′ = f(Xtrain; θ
′′) and the

optimization objectives L′, L′′ of the model are computed using the initial parameters. The network parameters θ′ and
θ′′ are then tuned to decrease the objective functions from the final layer to the first layer. This process is repeated
until the proper model and a small fit error, i.e. loss function value. And the proposed 1-D DHRN is summarized in
Algorithm 1.

3.2 Data Augmentation

In general, machine learning is driven by big data[52]. However, our Dataset 1, Dataset 2 and Dataset 3 only have 356,
806 and 160 measured acoustic signals, respectively. So data augmentation is essential in handling this kind of problem
with small-sample issue. Data augmentation can improve the performance of the model and prevent over-fitting, it can
also bring into the model the desired invariance for the task and robustness for the extracted features[53, 54].

Considering the purposed maintaining for steady flow status (i.e. for each individual measurement it is the same fluid
status class within 3 s or 25 s record duration) in each recorded data sample and the fine resolution for the sensor, one can
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Algorithm 1 Pseudocode of 1-D DHRN

Require: Sub-sequences (Xtrain, (Y
′
train, Y

′′
train)) of the training set, Sub-sequences (Xval, (Y

′
val, Y

′′
val)) of

the validation set, learining rate: 0.0001, batch size: 4
Ensure: results of cavitation detection and cavitation intensity recognition

repeat
Random sorting of sub-sequences in training set (Xtrain, Y

′
train, Y

′′
train).

Random initialization of 1D DHRN weights θ.
for epoch = 0, 1, . . . , N do

Select sub-sequences of specified batch size from training set (Xtrain, (Y
′
train, Y

′′
train)).

The forward propagation algorithm calculates the net input z(l) and activation value σ(l) for each layer of
the 1D DHRN.

Calculating the loss function:
L′ = CE(f(Xtrain; θ

′), Y ′train) B cavitation detection loss
L′′ = CE(f(Xtrain; θ

′′), Y ′′train) B cavitation intensity recognition loss
Update parameters of cavitation detection and cavitation intensity recognition:
min CE(f(Xtrain; θ), Y

′
train)⇒ ∂L′/∂θ′

min CE(f(Xtrain; θ), Y
′′
train)⇒ ∂L′′/∂θ′′

Save parameters of cavitation detection and cavitation intensity recognition in current epoch.
end for

until
1D DHRN model on validation set for L′(Xtrain, Y

′
train) and L′′(Xtrain, Y

′′
train) not falling.

for i = 0, 1, . . . , len((Xtest, (Y
′
test, Y

′′
test))) do

The output of cavitation detection and cavitation intensity recognition:
f ′(Xtest) B cavitation detection
f ′′(Xtest) B cavitation intensity recognition
Calculate the accuracy of cavitation detection and cavitation intensity recognition:
Acc(f ′(Xtest), Y

′
test) and Acc(f ′′(Xtest), Y

′′
test)

end for

actually split every sample into several pieces with each still holding enough essential information to decipher the flow
status, but also with independent characteristics per piece due to the intrinsic randomness of the noise emission-given
the piece is not so short. Therefore, we propose here a data augmentation method based on sliding window with fast
Fourier transform (Swin-FFT), see Figure 4. The method is divided into two steps:

Step 1: The signal data is split by a sliding window.

Step 2: The time-domain data is transformed into frequency-domain by fast Fourier transform (FFT).

Raw Acoustic Signal

⋯
Signal Piece Sequence

Time-domain Signal

Fast Fourier 
Transform

Frequency-domain Signal

Figure 4: Data augmentation based on sliding window with fast fourier transform (SWin-FFT).

The Swin-FFT contains only one parameter, which is the size of window Wsize. In our following study, the value
of Wsize will be analyzed and determined by experiments, which can reduce the effect of experts’ bias on cavitation
intensity recognition and cavitation detection (see section 4) as much as possible.
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Figure 5: Comparison of working principle between 1-D and 2-D convolution. Figure (a) and Figure (b) show the
working principle of 1-D and 2-D convolution, respectively.

(a) Small convolution on image

(b) Small convolution on 1-D signal

(c) Large convolution on 1-D signal

Figure 6: Comparison of small convolution kernel and large convolution kernel in catching information on signals and
images. Figure (a) shows that a small convolution kernel can obtain neighbourhood information from eight directions

for one pixel on images. Figures (b) and (c) show the ability of the small and large convolution kernels to capture
neighbourhood information for one data point on the signal, respectively.

3.3 1-D Double Hierarchical Residual Networks

3.3.1 Comparison Between 1-D and 2-D Convolution

1-D convolution and 2-D convolution are very similar in structure, except that the filters are slid in a different way. For
1-D convolution operation, the convolution kernel slides towards only one direction, i.e. weighted summation in the
width or height direction. In 2-D convolution, the convolution kernel slides into both horizontal and vertical directions,
i.e. weighting and summing in both the width and height directions. Figure 5 compares the different sliding manners of
the filters for 1-D and 2-D convolution operations.

In the case of 1-D time series data as shown in Figure 5(a), each element represents the original acoustic signal point
measured by the sensor at each moment in time, and the column represents the original signal from one sensor or one
channel with time directed downwards in the sketch. In general, the 1-D convolution kernel only slides vertically along
the time axis (height) to extract features. The size of the 1-D convolution kernel determines the size of the receptive
field for the filter, i.e. the number of samples (moments) to be calculated by the convolution operation. The stride of
the 1-D convolution kernel is defined as the distance moved at each step on the time series signal, and it presents the
accuracy of the extraction. In the case of 2-D array image-like data, the pixels of an image consist of a number of small
blocks, the positions of which are presented by x and y direction (Figure 5(b)). The width and height of the image is the
sum of all x and y, respectively. The size of the 2-D convolution kernel, i.e. its width and height, determines the scope
of the convolution operation at each step. Similarly, the stride of the 2-D convolution kernel is defined as the distance
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Figure 7: Comparison of structure the RB and 1-D DHRB. Figure (a) shows traditional residual block. Figure (b) is the
proposed the 1-D double hierarchical residual block (1-D DHRB).

moved in each step over the width or height of the 2-D array (gray scale image). In general, the 2-D convolution is
applied to the 2-D array or gray scale image in the order of left to right and top to bottom.

Regardless of whether it is a 1-D or 2-D convolution kernel, they all have the same and significant hyperparameters,
such as the convolution kernel size and stride size, etc. They share weights when sliding to extract local features.
However, the convolution with different kernel sizes have different roles on time series signals and images (see Figure
6). In general, a small convolution kernel (3× 3) can obtain information on eight neighbourhood directions for one
pixel on an image, but it can obtain information on only two neighbourhood directions for one data point on a signal.
To solve this problem, we use 1-D DHRB (introduced in 3.3.2) with a large kernel on one-dimensional signals to obtain
more neighbourhood information, although the information still comes from only the two neighbourhood directions.

3.3.2 1-D Double Hierarchical Residual Block

Residual block (RB) is an important module of the residual networks (ResNet). RB is based on the idea of connecting
blocks of convolutional layers by using skip connection, as shown in Figure 7(a). The output of the RB is H(x) =
F (x) + x. RB changes the network learning objective from H(x) to H(x)− x. This structure can help optimizing the
trainable parameters in error backpropagation to avoid the problem of vanishing and exploding gradients. Practically it
can also enable the building of deeper network structures.

Motivated by above, we developed a one dimensional convolution-based double hierarchical residual block (1-D DHRB)
to improve valve cavitation detection and intensity recognition. The 1-D DHRB consists of several convolutional layers
of different filter size (Conv), batch normalization layers (BN), rectified linear unit (ReLU) activation function and two
shortcuts, as shown in Figure 7(b). Both RB and 1-D DHRB have two Conv and BN layers. However, the size of two
Conv layers of 1-D-DHRB are different and hierarchical compared to the traditional RB. The filter size of the first Conv
layer is 32× 32, and the second Conv layer has a filter size of 16× 16 (The filter size has been determined through
several experiments). 1-D DHRB uses large convolution kernels compared to RB, which can capture sensitive features
of the acoustic signal with fewer layers of the network. The size of the first Conv layer is twice the size of the second
Conv layer, which helps the network to focus more on the sensitive features of the feature map from the first Conv layer.

The 1-D DHRB adds one more shortcut compared to the traditional RB. One shortcut for 1-D DHRB is the identity
x, the other shortcut for 1-D DHRB is a non-linear function F(x) of identity x through one Conv and BN layer. The
output of 1-D DHRB is given by concatenation as

H(x) = F (x) + F(x) + x (3)

Several 1-D DHRBs of different kernel number are stacked after the first convolutional layer in 1-D DHRN. The 1-D
DHRN has a depth of 18 and it consists of one 1-D convolutional layer, one maximum pooling layer, several 1-D
DHRBs with different numbers of kernels, one global average pooling layer and fully connected layer. Table 2 shows
the relevant parameters of the 1-D DHRN architecture. These layers enable 1-D DHRN to automatically extract features
and classify cavitation and the levels of cavitation intensity.

• 1-D convolutional layer. The essence of the convolutional layer is a set of convolutional kernels. In this research,
each convolutional layer has 64, 128, 256 and 512 convolutional kernels of sizes 32 and 16, respectively. In
the one-dimensional forward propagation process, each filter convolves with the input vector to generate a
corresponding output featured vector. For the k-th filter, the j-th of its output feature vector at layer l is defined

9
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Table 2: Parameters of the proposed 1-D DHRN architecture
No. Layer type Kernel size/Stride Kernel number

1 1-D Convolution 32/1 64
2 Layer 1 [32, 16]/1 64
3 Layer 2 [32, 16]/2 128
4 Layer 3 [32, 16]/2 256
5 Layer 4 [32, 16]/2 512
6 Fully-connected 512 1
7 Softmax_4 4 1
8 Softmax_2 2 1

as follows.
ylj,k = σ(W l

k ∗X l−1
i + blj,k) (4)

where, σ is the activation function and the Rectified Linear Units (ReLU) is applied in this research,X l−1
i denotes the

i-th local region at layer l − 1,W l
k and blj,k denote the weight vector and bias of the k-th filter kernel at layer l.

• 1-D pooling layer. The pooling function uses the overall statistical features of the neighbouring outputs
at a location to replace the network’s output at the location. The pooling layer is usually added after the
convolutional layer to perform the down-sampling operation. This operation can compress the feature vector
and removes redundant information, and thus reducing the complexity of the network, decreasing computation
and reducing memory consumption, etc. In this study, max pooling and adaptive average pooling are applied
to different positions of the 1-D DHRN. The adaptive average pooling is a special pooling of average pooling
and its output size is always H . The max pooling and average pooling are shown in Equation (5) and Equation
(6), respectively.

yli,k = max
(i−1)H+1≤j≤iH

{yl−1j,k } (5)

yli,k =
1

S

S−1∑
m=0

{yl−1j,k } (6)

where, yl−1j,k is the j-th element of the output feature vector of the k-th filter in layer l− 1 and H is its height, yli,k is the
i-th element of the new feature vector after the down-sampling operation in layer l, S is the filter size.

• Fully connected layer. Each node of the fully connected layer is connected to all nodes of the previous layer
and it can combine class-distinctive local information on convolutional or pooling layers. These information
can be flattened into a vector and fed to the fully connected layer. The output yl of the l-th fully connected
layer is defined as follows.

yl = (W l)T yl−1 + bl (7)

where, yl−1, W l and bl are the input vector, weight matrix and bias vector of the fully connected layer at layer l,
respectively.

• Softmax layer. The softmax layer is also called the output layer. It is usually used to predict the multi-class
classification. The softmax function is defined as follows.

p(n)c =
exp(θTc y

(n),L−1)∑C
c=1 exp(θ

T
c y

(n),L−1)
(8)

where L is the maximum of layer number, the superscript n denotes that n-th sample, the subscript c denotes the c-th
class of total classification number C, y(n),L−1 is the output vector of the previous layer, and θc is the weight vector
for the c-th class.

For deep neural networks, the loss function is generally used to evaluate the degree of inconsistency between the
predicted value of the model and the true value. It is a non-negative real-valued function, and the smaller the loss
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Figure 8: The Confusion Matrix.

function, the better the robustness of the model. The cross-entropy loss function is the most popular loss function and is
defined as follows.

L = − 1

N

N∑
n=1

C∑
c=1

sign(pred(n) = c) log(p(n)c ) (9)

where, N is the total number of samples, sign(·) denotes the sign function returning 1 for real and 0 for fake. And
pred(n) represents the prediction result for the n-th sample.

Neural networks are trained to determine the weights and biases of the network. In this research, Adam optimisation
algorithm is used to update the weights and biases of the network during back propagation. The Adam optimisation
algorithm [55] is an extension of the stochastic gradient descent (SGD) [56, 57] method and has been introduced in the
literature [58, 59, 60].

4 Experiments

4.1 Overview

In our experiments, first evaluation metrics are introduced. Then, Dataset 1, Dataset 2 and Dataset 3 of the cavitation
detection and cavitation intensity recognition are described. And we analyze the effect of the window size Wsize

of Swin-FFT on the performance of 1-D DHRN. Finally, we compare the performance of 1-D DHRN and other
state-of-the-art deep learning and machine learning models on Dataset 1, Dataset 2 and Dataset 3.

In all experiments, we use adaptive moment estimation (Adam) [55] as our optimizer with learning rate set to be
1 × 10−4. Both our model and the model of the comparison state-of-the-art method are trained on NVIDIA GPU
and the number of training epochs is set to 100 on all datasets, upon which by monitoring the loss of validation in
learning curve we observe saturation which gives convergence indication (see Appendix). These setting ensures that all
trained models are more fairly analyzed for performance comparisons. In addition, both our method and the baseline
methods are trained with the same data augmentation (Swin-FFT) in our implementation. Our comparison methods
include five different approaches from both conventional machine learning and deep learning. Where, the SVM [21],
Decision Tree [14] and 1-D CNN [25] are methods by other researchers for cavitation. The XGBoost + ASFE [50] and
1-D ResNet-18 are our previous research and our benchmark, respectively. Our source code and data are released at
https://github.com/CavitationDetection/1-D-DHRN.

4.2 Evaluation Metric

In order to evaluate the model after training, four metrics are chosen to comprehensively assess the model performance:
Accuracy, Precision, Recall and F1-score. We first calculate the confusion matrix [61] to more conveniently define the
evaluation metrics and visualize model performance. In the confusion matrix shown in Figure 8, each column represents
the predicted class, and each row represents the actual class. TP (True Positive) is the fraction of positive samples those
got correctly predicted by the model, and TN (True Negative) is for the correctly predicted negative samples. FP (False
Positive) means the incorrectly classified positive samples those should be negative actually, and FN (False Negative) is
for the incorrectly predicted negative samples.

Accuracy, Precision, Recall and F1-score are common evaluation metrics for classification problems, defined as:
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Accuracy =
TP + TN

TP + TN + FP + FN
(10)

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

F1− score = 2× Precision× Recall

Precision+Recall
(13)

4.3 Cavitation Intensity Recognition: Dataset 1

4.3.1 Data Description

In this subsection, the proposed 1-D DHRN is evaluated on the condition monitoring of cavitation dataset (Dataset 1)
provided by SAMSON AG in Frankfurt. The hardware of this experiment is shown in Figure 2, and five flow status are
induced in the acoustic signal data by varying the differential pressure at various constant upstream pressures of the
control valve different operation conditions: cavitation choked flow, constant cavitation, incipient cavitation, turbulent
flow and background no-flow, as shown in Table 4. The turbulent flow and background no-flow are non-cavitation
conditions. The experiments have been conducted using seven different valve strokes at four different upstream
pressures and the operating parameters are shown in Table 5. Dataset 1 has a total of 356 acoustic signal samples and
the frequency of samples is 1562.5 kHz within time duration of 3 s. It should be noted that the Dataset 1 has been
measured by SAMSON AG in a professional environment. The details of the training set, validation set and test set for
Dataset 1 without Swin-FFT is shown in Table 3.

Table 3: The details of the training set, validation set and test set for Dataset 1, Dataset 2 and Dataset 3 without
Swin-FFT.

Training set Validation set Test set

choked flow constant incipient non choked flow constant incipient non choked flow constant incipient non

Dataset 1 53 68 29 109 5 7 3 12 14 18 8 30
Dataset 2 107 286 47 143 11 31 5 15 30 79 12 40
Dataset 3 29 29 29 29 3 3 3 3 8 8 8 8

4.3.2 Results

The effect of Wsize on the accuracy of cavitation intensity recognition is studied (other metrics see Appendix). The
Wsize is set to be 2234720, 1167360, 778240, 583680, 466944, 389120, 333531, 291840, 259413 and 233472. The
results of cavitation intensity recognition of Dataset 1 are shown in Table 6 and Figure 9.

From Table 6 and Figure 9, it can be seen that the accuracy of 1-D DHRN gradually increases along with reducing
window size when 2334720 ≥ Wsize ≥ 466944. And 1-D DHRN achieves the best cavitation intensity recognition
accuracy of 93.75% when Wsize is 466944. When 466944 ≥Wsize ≥ 233472, the accuracy of 1-D DHRN progres-
sively decreases but remains above 90%. Compared to other methods in the literature, the accuracy of 1-D DHRN is

Table 4: Details of the flow status condition of Dataset 1.

Flow status Number of
samples

Cavitation
Cavitation choked flow 72

Constant cavitation 93
Incipient cavitation 40

Non cavitation Turbulent flow 118
No flow 33
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Table 5: Operation parameters of Dataset 1.

No. Valve stroke
(mm)

Upstream pressure
(bar(a))

Temperature
(◦C)

1 15 [10,9,6,4] 25-50
2 13.5 [10,9,6,4] 25-50
3 11.25 [10,9,6,4] 25-50
4 7.50 [10,9,6,4] 25-50
5 3.75 [10,9,6,4] 25-50
6 1.50 [10,9,6,4] 25-50
7 0.75 [10,9,6,4] 25-50

Table 6: Accuracy results of different Wsize of cavitation intensity recognition in Dataset 1 (%).

Method
Window Size (Wsize)

2334720 1167360 778240 583680 466944 389120 333531 291840 259413 233472

SVM [21] 65.71 65.00 65.42 64.11 68.71 63.33 64.29 64.02 64.37 64.64
Decision Tree [14] 47.86 42.86 50.71 53.57 53.86 49.44 53.16 50.89 54.84 50.07
1-D CNN [25] 75.71 79.64 80.71 81.61 87.14 86.43 84.18 85.80 82.62 83.64
XGBoost + ASFE [50] 89.58 83.33 85.19 85.59 87.22 81.83 85.62 84.20 85.49 85.42
1-D Resnet-18∗ 77.14 78.21 80.71 73.04 85.86 80.36 85.31 82.23 81.59 75.86
1-D DHRN (our method) 79.29 82.86 90.71 91.25 93.75 90.00 90.00 90.27 91.11 90.64
∗ our baseline: 1-D Resnet-18
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Figure 9: The effect of Wsize on cavitation intensity recognition accuracy for 1-D DHRN and comparison methods in
Dataset 1.
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Figure 10: The confusion matrix for the best cavitation intensity recognition accuracy of the 1-D DHRN in Dataset 1.

improved by 25.04%, 39.89%, 6.53%, 6.61% and 7.89% compared to SVM, Decision Tree, XGBoost (ASFE), 1-D
CNN and 1-D ResNet-18, respectively.

In general, the performances of 1-D DHRN are obviously better than SVM, Decision Tree, XGBoost (ASFE), 1-D
CNN and also 1-D ResNet-18 at each particular value of Wsize. The best cavitation intensity recogniton accuracies
for the SVM, Decision Tree, XGBoost (ASFE), 1-D CNN and 1-D ResNet-18 methods are 68.71%, 54.84%, 89.58%,
87.14% and 85.86%, respectively.

When Wsize is large such as 2334720 and 1167360, the 1-D DHRN has poorer performance compared to XGBoost
(ASFE), which is mainly because of the small amount of data obtained from data augmentation. However, even for this
setup, the advantage of our approach compared to conventional XGBoost (ASFE) is the end-to-end implementation of
cavitation intensity identification using only the valve acoustic signal, instead of feature extraction separately.

To demonstrate the cavitation intensity recognition results in more detail, the confusion matrix of the testing accuracy
is evaluated in Figure 10. It can be seen that the constant cavitation and the non cavitation are most easily to be
distinguished with the highest accuracy compared to other levels of cavitation intensity. This can be explained by the
fact that the constant cavitation and the non cavitation have special features that distinguish them from other states of
cavitation. It can also be indicated that our 1-D DHRB structure can capture more sensitive cavitation features. However,
the incipient cavitation is challenging to be recognized, which has the lowest identification accuracy compared to
choked flow and constant cavitation. This is understandable because in physics it is the critical state between cavitation
and non cavitation. Technically another reason is that the amount of incipient cavitation data is very small. In the
study of Lehmann and Young [62] it also shows that the end stages of cavitation can be more easily detected than
incipient cavitation. From a practical perspective, it’s acceptable that the incipient cavitation is recognized as the
constant cavitation to still give rise alarm to the process/plant. With this consideration, the accuracy of the incipient
cavitation in our method reaches 75% for Dataset 1.

4.4 Cavitation Intensity Recognition: Dataset 2

4.4.1 Data Description

In this case study, the proposed 1-D DHRN is tested on condition monitoring of cavitation dataset (Dataset 2) provided
by SAMSON AG in Frankfurt. The principle of the experimental setup is shown in Figure 2. Dataset 2 uses different
valves and sensors compared to Dataset 1. The five flow states are shown in Table 7. The experiments have been
conducted using seven different valve strokes at three different upstream pressures and the operating parameters are
shown in Table 8. The amount of Dataset 2 is 806 and the frequency of samples is 1562.5 kHz within time duration of
25 s. It should be noticed that the Dataset 2 has been collected by SAMSON AG in a professional environment. The
details of the training set, validation set and test set for Dataset 2 without Swin-FFT is shown in Table 3.
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Table 7: Details of the flow status condition of Dataset 2.

Flow status Number of
samples

Cavitation
Cavitation choked flow 148

Constant cavitation 396
Incipient cavitation 64

Non cavitation Turbulent flow 183
No flow 15

Table 8: Operation parameters of Dataset 2.

No. Valve stroke
(mm)

Upstream pressure
(bar(a))

Temperature
(◦C)

1 60 [10,6,4] 23-52
2 55 [10,6,4] 23-52
3 45 [10,6,4] 23-52
4 30 [10,6,4] 23-52
5 25 [10,6,4] 23-52
6 15 [10,6,4] 23-52
7 6 [10,6,4] 23-52

4.4.2 Results

The effect of Wsize on the accuracy of cavitation intensity recognition is studied (see Appendix of other metrics). The
Wsize is set to be 2234720, 1167360, 778240, 583680 and 466944. The comparsion results of cavitation intensity
recognition of Dataset 2 are shown in Table 9 and Figure 11.

From Table 9, it can be found that 1-D DHRN gets the best cavitation intensity recognition accuracy of 94.31%
when Wsize is 778240. The accuracy of 1-D DHRN gradually increases when 2334720 ≥ Wsize ≥ 778240. When
778240 > Wsize ≥ 466944, the accuracy of 1-D DHRN progressively decreases and remains above 92%. The best
cavitation intensity recognition of results from the SVM, Decision Tree, XGBoost (ASFE), 1-D CNN and 1-D Resnet-18
are 50.49%, 65.07%, 89.22%, 86.13% and 91.71%, respectively, which were surpassed by 40.82%, 29.24%, 5.09%,
8.18% and 2.6% compared to 1-D DHRN. As can be seen from Figure 11, 1-D DHRN has achieved with higher
accuracy than all other approaches at each value of Wsize.

The confusion matrix for testing accuracy is evaluated and shown in Figure 12. It can be noted that choked flow, constant
cavitation and non-cavitation are most easily identified with the highest accuracy compared to the incipient cavitation.
And the recognition accuracy of the constant cavitation and the non cavitation reaches 100%. Take a practical point of
view (i.e., can cause alarm) as mentioned earlier, the recognition accuracy of initial cavitation can reach 80%. It can
also be seen that our method achieves excellent performance on datasets with different types of valves and sensors,
which demonstrates the generalisation capability of the methodology.

Table 9: Accuracy results of different Wsize of cavitation intensity recognition in Dataset 2 (%).

Method
Window Size (Wsize)

2334720 1167360 778240 583680 466944

SVM [21] 50.49 49.73 47.88 48.56 50.27
Decision Tree [14] 65.07 62.86 62.27 62.39 60.29
1-D CNN [25] 85.05 85.09 86.13 85.12 85.11
XGBoost + ASFE [50] 84.93 88.00 89.22 88.71 87.01
1-D Resnet-18∗ 87.34 89.58 91.71 90.57 90.00
1-D DHRN (our method) 89.39 91.25 94.31 92.71 92.29
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Figure 11: The effect of Wsize on cavitation intensity recognition accuracy for 1-D DHRN and comparison methods in
Dataset 2.
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Figure 12: The confusion matrix for the best cavitation intensity recognition accuracy of the 1-D DHRN in Dataset 2.

4.5 Cavitation Intensity Recognition: Dataset 3

4.5.1 Data Description

As the third case study, the proposed 1-D DHRN is evaluated on the condition monitoring of cavitation dataset (Dataset
3) provided by SAMSON AG in Frankfurt. Dataset 3 is different from Dataset 1 and Dataset 2 by carrying the noise
of the real working environment. The five flows states about Dataset 3 are shown in Table 10. The experimental
operational parameters about Dataset 3 are shown in Table 11. The quantity of Dataset 3 is 160 for each flow states
and the frequency of samples is 1562.5 kHz within time duration of 25 s. It should be noted out that the Dataset 3 has
been collected by SAMSON AG inside a professional environment. The details of the training set, validation set and
test set for Dataset 3 without Swin-FFT is shown in Table 3.

4.5.2 Results

The influence of Wsize on the accuracy of cavitation intensity recognition is investigated (see Appendix of other
metrics). The Wsize is the same as the Wsize of Dataset 2. The accuracy of cavitation intensity recognition of Dataset
3 is shown in Table 12 and Figure 13.

From Table 12 and Figure 13, it can be observed that the best accuracy of our method is 100%. And the accuracy of
our method is above 99% for every value of Wsize. Our method has achieved 100% accuracy of recognition of all
cavitation states (see Figure 14).
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Table 10: Details of the flow status condition of Dataset 3.

Flow status Number of
samples

Cavitation
Cavitation choked flow 40

Constant cavitation 40
Incipient cavitation 40

Non cavitation Turbulent flow 40

Table 11: Operation parameters of Dataset 3.

No. Valve stroke
(mm)

Upstream pressure
(bar(a))

Temperature
(◦C)

1 15 10 32-39

Table 12: Accuracy results of different Wsize of cavitation intensity recognition in Dataset 3 (%).

Method
Window Size (Wsize)

2334720 1167360 778240 583680 466944

SVM [21] 51.76 50.57 50.38 51.37 56.70
Decision Tree [14] 63.28 60.98 60.00 59.90 57.91
1-D CNN [25] 94.37 98.06 99.81 99.75 99.94
XGBoost + ASFE [50] 83.79 83.71 81.63 80.92 80.80
1-D Resnet-18∗ 99.72 99.88 98.77 99.85 99.96
1-D DHRN (our method) 99.81 100.00 100.00 100.00 100.00
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Figure 13: The effect of Wsize on cavitation intensity recognition accuracy for 1-D DHRN and comparison methods in
Dataset 3.
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Figure 14: The confusion matrix for the best cavitation intensity recognition accuracy of the 1-D DHRN in Dataset 3.

Table 13: Accuracy results of different Wsize of cavitation detection in Dataset 1 (%).

Method
Window Size (Wsize)

2334720 1167360 778240 583680 466944 389120 333531 291840 259413 233472

SVM [21] 81.43 82.86 80.24 79.82 83.29 79.29 79.29 80.00 80.56 79.14
Decision Tree [14] 73.57 76.07 74.29 76.96 77.00 76.55 77.86 76.07 79.44 81.86
1-D CNN [25] 94.29 94.29 94.05 94.46 94.14 95.24 94.90 95.09 95.71 95.21
XGBoost + ASFE [50] 93.56 92.36 92.36 91.32 91.25 91.08 88.99 89.93 89.51 90.00
1-D Resnet-18∗ 95.00 95.71 95.71 95.54 95.43 96.19 96.12 95.89 95.48 95.64
1-D DHRN (our method) 96.43 96.71 96.67 96.43 96.43 97.02 96.82 96.07 96.03 96.23

The reasons why our method and compared methods have achieved excellent results on Dataset 3 compared to Dataset
1 and Dataset 2 are as follows. First, although Dataset 3 are with real background noise compared to Dataset 1 and
Dataset 2, our data augmentation of the Swin-FFT operation can filter most of the noise (see subsection 5.1) in frequency
domain. Second, Dataset 3 are obtained with only one setup for the valve stroke and upstream pressure (see Table
11 and subsection 5.2). Third, Dataset 3 is balanced for each flow state especially for cavitation state (see Table 10
and subsection 5.2). From the above, we can infer that different valve openings and upstream pressures can affect the
accuracy of the cavitation intensity recognition.

4.6 Cavitation Detection

In this subsection, the proposed 1-D DHRN is evaluated on condition monitoring of cavitation dataset (Dataset 1,
Dataset 2 and Dataset 3) for the binary classification task, cavitation detection. The comparison of accuracies on
Dataset 1, Dataset 2 and Dataset 3 are shown in Tables 13, 14 and 15 (see Appendix of other metrics).

Table 14: Accuracy results of different Wsize of cavitation detection in Dataset 2 (%).

Method
Window Size (Wsize)

2334720 1167360 778240 583680 466944

SVM [21] 89.83 89.36 89.06 89.92 89.30
Decision Tree [14] 89.58 88.59 89.96 89.84 88.97
1-D CNN [25] 94.29 95.24 94.05 94.46 94.14
XGBoost + ASFE [50] 90.56 90.73 91.33 91.02 90.43
1-D Resnet-18∗ 95.48 96.19 95.71 95.54 95.43
1-D DHRN (our method) 96.67 97.02 97.64 96.43 96.43
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Table 15: Accuracy results of different Wsize of cavitation detection in Dataset 3 (%).

Method
Window Size (Wsize)

2334720 1167360 778240 583680 466944

SVM [21] 100.00 100.00 100.00 100.00 100.00
Decision Tree [14] 100.00 100.00 100.00 100.00 100.00
1-D CNN [25] 100.00 100.00 100.00 100.00 100.00
XGBoost + ASFE [50] 100.00 100.00 100.00 100.00 100.00
1-D Resnet-18∗ 100.00 100.00 100.00 100.00 100.00
1-D DHRN (our method) 100.00 100.00 100.00 100.00 100.00

Dataset 1 From Table 13, it can be found that 1-D DHRN achieves the best accuracy, 97.02%, when Wsize is 389120.
1-D DHRN is always better than other methods under the same value of Wsize. And the accuracy of the 1-D DHRN is
above 96% at each value of Wsize.

Dataset 2 From Table 14, it can be noted that 1-D DHRN achieves the best accuracy of 97.64% when Wsize is 778240.
1-D DHRN has better accuracy compared to other methods under the same value of Wsize. And the accuracy of the
1-D DHRN is above 96% for each value of Wsize.

Dataset 3 As can be seen from Table 15, both the 1-D DHRN and comparative methods have achieved 100% accuracy
for each Wsize values. It can be concluded that the cavitation and non-cavitation features of Dataset 3 are more easily
distinguished compared to Dataset 1 and Dataset 2.

5 Discussions

5.1 Analysis of Swin-FFT

In order to verify that the Swin-FFT can filter out most of the noise, we select the data from Dataset 2 which was
obtained under the same operation as Dataset 3. Then, the data are processed using the Swin-FFT. Finally, we compare
the shape of each cavitation state from Dataset 2 without noise and Dataset 3 with noise, as shown in Figure 15. From
Figure 15, it can be seen that the spectral structures of Dataset 2 without noise and Dataset 3 with noise are basically
similar when transformed into the frequency domain by Swin-FFT. This indicates that Swin-FFT can filter most of the
noise.

5.2 Analysis of Data Acquisition Operations

In order to determine whether the data obtained by the mixed operation and the single operation have an impact on the
results, a total of 46 data are selected from Dataset 2 for valve stroke equals to 15 mm and upstream pressure equals to
10 bar(a), where the numbers of cavitation choked flow, constant cavitation, incipient cavitation and non cavitation are
15, 24, 3 and 4, respectively. Then, the selected data are processed by Swin-FFT and fed into the 1-D DHRN. Finally,
the results of cavitation detection and cavitation intensity recognition are obtained and shown in Figure 16.

As can be seen from Figure 16, the accuracies of cavitation intensity recognition and cavitation detection are higher
with single operation data compared to mixed operation data. Therefore, we conclude that for data obtained from a
single valve stroke and upstream pressure, the performance of cavitation intensity recognition and cavitation detection
is better. We noted that the accuracy of cavitation intensity recognition is not 100% in this test, it can be thus inferred
that the balance of data for each cavitation state is important.

5.3 Analysis of Downsampling

In practical applications, the resolution of sensors represent the quality of the data obtained. The ability to recognize
different levels of cavitation intensity with the data obtained from low level sensors becomes very significant and
challenging. In this research, 1-D DHRN is evaluated for cavitation intensity recognition and cavitation detection under
the original frequency of samples (Fs = 1562500 Hz), one-half, one-quarter, one-sixth, one-eighth of the original
frequency (sampling rate) of samples (781250 Hz, 390625 Hz, 260416 Hz and 195312 Hz) and that of the mobile
phone can mostly accommodate (48000 Hz ≈ Fs/32), respectively. The cavitation intensity recognition and cavitation
detection accuracy of the 1-D DHRN model has been compared again in Dataset 1, Dataset 2 and Dataset 3 with
different frequencies of samples, as shown in Figure 17.
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Figure 15: Examples of cavitation choked flow (a), constant cavitation (b), incipient cavitation (c) and non-cavitation
(d) for Dataset 2 and Dataset 3 converted by Swin-FFT.

• Dataset 1 and Dataset 2. For cavitation intensity recognition, although the 1-D DHRN model begins to suffer
from gradual reduction in accuracy as the frequency of samples decreases, the accuracy always remains above 84%
when 1562500 Hz ≥ Fs ≥ 195312 Hz. And even for mobile phone setup with the frequency of samples equals to
48000 Hz (one-32nd of the original signal frequency of samples), our 1-D DHRN has achieved 72.83% and 77.65%
accuracy on the two datasets. For cavitation detection, the accuracy of the 1-D DHRN model progressively decreases
as the frequency of samples decreases, but the accuracy of cavitation detection remains above 93% at each all values
of sampling frequency. When the frequency of samples equals to 48000 Hz, our method gives 93.29% and 93.57%
accuracies, respectively. And when the frequency of samples is reduced to one-32nd of the original signal frequency of
samples, the accuracy of 1-D DHRN is only decreased by 3.73% and 4.07%.

• Dataset 3. For cavitation intensity recognition, the accuracy of our method begins to reduce when the frequency of
sample is 260416 Hz (260416 Hz ≈ Fs/6). The accuracy of our method always remains above 98% when 260416
Hz ≥ Fs ≥ 195312 Hz. And our method has achieved 90.17% accuracy when the frequency of sample is equal to
48000Hz. For cavitation detection, the accuracy of our method always remains above 99% at each particular value
of Fs. When the frequency of samples is equal to 48000 Hz, our method obtains 99.28%, which is reduced by only
0.72% of the accuracy when compared to the original frequency of samples.
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Figure 16: The effect of data diversity, with data obtained from single valve stroke and upstream pressure and mixed
valve strokes and upstream pressures, on the results.
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Figure 17: The results of cavitation intensity recognition and cavitation detection on different frequencies of samples
for Dataset 1, Dataset 2 and Dataset 3.
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5.4 Learning and Optimization

In our paper, cavitation detection and cavitation intensity recognition are multi-class classification problem in data-
driven supervised learning. The essence of supervised learning is to minimize the cumulative classification error,
i.e. argminθ

∑
i e(f(xi; θ), y

∗
i ), where y∗ denotes reference or "ground truth" and f(x; θ) is the output of the neural

network. We typically optimize, i.e. train, with a stochastic gradient descent (SGD) optimizer. And we rely on auto-diff
to compute the gradient w.r.t. weights θ, ∂f/∂θ. In recent years, there has been a lot of research on optimizers
[59, 60, 63, 64], and the Adam optimizer is used in our research to optimize errors. In addition, the choice of error
function is important for learning and optimization of supervised learning. For classification problems, the cross-entropy
function is usually employed as the error function, since it can avoid the problem of learning rate decreasing due to
gradient dispersion.

5.5 Extending Applications

Our proposed 1-D DHRB is motivated by the residual block, and the residual block is the core idea of the ResNet [42].
As ResNet has been proven to be a very effective convolutional neural network structure, which is widely employed
in fields such as image classification [65], medical image recognition [66] and object recognition. In addition, 1D
CNN have been successfully applied to vibration signals [67]. In addition, 1D CNN have been successfully applied to
vibration signals [46], ECG [68, 69] and EEG [70, 71]. Therefore, our proposed 1D DHRN can also be employed for
vibration signals, ECG, EEG and other signals.

6 Conclusion and Outlook

In this work we present a novel multi-task learning framework for cavitation intensity recognition ("cavitation choked
flow", "constant cavitation", "incipient cavitation" and "non cavitation") and cavitation detection ("cavitation" and "non
cavitation") using 1-D double hierarchical residual networks (1-D DHRN). To the best of our knowledge, besides to be
the first application of 1-D convolutional neural networks based on 1-D residual blocks to perform cavitation intensity
recognition and cavitation detection, other main contributions to this paper are summarized as the following four points.
Firstly, a sliding window with fast fourier transform (Swin-FFT) data augmentation method is introduced to mitigate
the few-short learning problem. Secondly, the 1-D double hierarchical residual blocks (1-D DHRB) with large kernels
is proposed as a feature extractor to capture sensitive features of valves acoustic signals. Thirdly, a new structure of
1-D DHRN has been constructed through stacking 1-D DHRB for cavitation intensity recognition, which has in total
18 layers for the whole structure. With deeper network and better feature extraction layers, the proposed 1-D DHRN
could improve the final prediction performance on cavitation intensity recognition and cavitation detection. Finally,
1-D DHRN has been tested on three dataset of valve acoustic signals and achieved significant results for the two tasks
simultaneously. Moreover, the structure of 1-D DHRN has also been evaluated on different frequencies of samples
and showed excellent results for even the frequency of samples which the mobile phones can hold. These results have
validated the good performance of our proposed 1-D DHRN both in the field of cavitation intensity recognition and
cavitation detection.

Although the proposed method has improved recognition of the incipient cavitation recognition, which is still relatively
low. In future work, convolutional neural networks (CNN) have achieved remarkable results in mechanical device
health management due to their stronger capability of representation learning. Therefore, we directly extract deeper and
more expressive valve cavitation features using the 1D CNN to enhance the performance of valve cavitation detection
and cavitation intensity recognition.
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Figure A1: Examples of (a)-(d) for cavitation choked flow, constant cavitation, incipient cavitation and non-cavitation
in Dataset 1.

Examples of cavitation states

Figures A1, A2 and A3 show examples of different cavitation states for Dataset 1, Dataset 2 and Dataset 3, respectively.

Training and validation sets loss curves

In order to quantitatively show that our good results are not due to overfitting of our model. We show the loss curves
of our method on three different real-world cavitation datasets (Dataset 1, Dataset 2 and Dataset 3), as shown in
Figures A4 and A5. As can be seen in Figures A4 and A5, our method does not overfitting on three different real-world
cavitation datasets (Dataset 1, Dataset 2 and Dataset 3). By monitoring the loss of validationin in learning curve, we
observe saturation which indicates that our model has converged.

Cavitation Intensity Recognition

The precision, recall and F1-score of 1-D DHRN (our method) and the compared methods in Dataset 1, Dataset 2 and
Dataset 3 are shown in Table A1, Table A2 and A3.

Cavitation Detection

The precision, recall and F1-score of 1-D DHRN (our method) and the compared methods in Dataset 1, Dataset 2 and
Dataset 3 are shown in Table A4, Table A5 and A6.

The accuracy of the 1-D DHRN (our method) and comparison methods during different Wsize in Dataset 1, Dataset 2
and Dataset 3 are shown in Figures A6, A7 and A8. The confusion probability matrix of our method for best accuracy
in Dataset 1, Dataset 2 and Dataset 3 are shown in Figures A9, A10 and A11.

Downsampling analysis

The accuracy, precision, recall and F1-scores of 1-D DHRN for cavitation detection during different frequencies of
samples in Dataset 1, Dataset 2 and Dataset 3 are shown in Table A7.

27



Running Title for Header

0 5 10 15 20 25
Time (sec)

-0.15

-0.1

-0.05

0.0

0.05

0.1

0.15
Am

pl
itu

de
 in

 V

(a) Cavitation Choked Flow

0 5 10 15 20 25
Time (sec)

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Am
pl

itu
de

 in
 V

(b) Constant Cavitation

0 5 10 15 20 25
Time (sec)

-0.15

-0.1

-0.05

0.0

0.05

0.1

0.15

Am
pl

itu
de

 in
 V

(c) Incipient Cavitation

0 5 10 15 20 25
Time (sec)

-0.1

-0.05

0.0

0.05

0.1

Am
pl

itu
de

 in
 V

(d) Non cavitation

Figure A2: Examples of (a)-(d) for cavitation choked flow, constant cavitation, incipient cavitation and non-cavitation
in Dataset 2.
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Figure A3: Examples of (a)-(d) for cavitation choked flow, constant cavitation, incipient cavitation and non-cavitation
in Dataset 3.
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Figure A4: The loss curves of our method for cavitation intensity recognition in three different real-world cavitation
datasets (Dataset 1, Dataset 2 and Dataset 3).
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Figure A5: The loss curves of our method for cavitation detection in three different real-world cavitation datasets
(Dataset 1, Dataset 2 and Dataset 3).

Table A1: Precision, Recall and F1-score results of different Wsize of the 1-D DHRN and comparison methods for
cavitation intensity recognition in Dataset 1 (%).

Metric Method Window Size (Wsize)

2334720 1167360 778240 583680 466944 389120 333531 291840 259413 233472

Precision

SVM [21] 40.93 31.90 31.77 31.59 49.15 31.09 31.78 31.71 31.71 31.84
Decision Tree [14] 46.51 43.84 58.12 44.47 48.81 48.33 48.25 44.79 52.32 45.78
1-D CNN [25] 64.90 61.34 73.86 84.33 90.42 88.13 81.41 86.22 84.03 82.55
XGBoost + ASFE [50] 89.21 83.28 85.07 85.59 86.99 80.29 84.03 78.46 83.33 83.38
1-D Resnet-18∗ 59.02 56.41 78.24 56.05 74.43 58.93 87.82 77.60 88.27 69.89
1-D DHRN 59.20 80.96 91.28 91.61 95.72 90.93 92.60 91.09 91.18 93.08

Recall

SVM [21] 48.65 46.81 46.53 45.99 50.38 45.28 46.15 45.92 46.16 46.71
Decision Tree [14] 43.86 38.78 46.32 47.10 51.38 45.53 47.66 45.66 49.26 44.31
1-D CNN [25] 65.98 67.83 72.71 72.77 74.20 75.72 77.60 75.55 73.81 73.94
XGBoost + ASFE [50] 89.58 83.33 85.19 85.59 87.22 81.83 85.62 84.20 85.49 85.42
1-D Resnet-18∗ 62.70 65.49 70.16 59.77 73.84 68.09 80.43 75.33 72.85 67.45
1-D DHRN 65.38 72.40 83.27 84.24 88.00 84.12 79.74 82.30 84.56 83.09

F1-score

SVM [21] 41.01 37.93 37.75 37.39 42.35 36.87 37.64 37.51 37.59 37.28
Decision Tree [14] 40.96 37.19 43.66 42.03 43.25 41.60 42.86 41.87 47.34 41.47
1-D CNN [25] 63.52 64.23 71.69 72.81 71.61 74.64 77.37 75.18 73.82 73.28
XGBoost + ASFE [50] 89.46 82.57 85.06 85.39 87.09 80.52 84.32 81.20 83.72 83.41
1-D Resnet-18∗ 60.37 60.06 72.16 56.58 70.92 62.98 83.14 75.70 77.36 66.81
1-D DHRN 62.05 74.05 85.40 86.32 90.53 85.70 80.25 83.87 86.24 85.46
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Table A2: Precision, Recall and F1-score results of different Wsize of the 1-D DHRN and comparison methods for
cavitation intensity recognition in Dataset 2 (%).

Metric Method Window Size (Wsize)

2334720 1167360 778240 583680 466944

Precision

SVM [21] 52.37 51.78 49.50 49.76 51.62
Decision Tree [14] 66.52 63.48 63.20 63.20 60.94
1-D CNN [25] 85.54 86.51 87.25 86.76 86.56
XGBoost + ASFE [50] 85.44 88.82 89.65 89.21 87.66
1-D Resnet-18∗ 88.26 89.93 91.93 93.53 89.43
1-D DHRN 89.41 91.19 95.14 92.17 92.03

Recall

SVM [21] 50.66 49.89 48.07 49.06 50.40
Decision Tree [14] 64.84 62.63 62.06 62.17 60.04
1-D CNN [25] 85.10 85.13 86.31 85.42 85.31
XGBoost + ASFE [50] 84.89 88.04 89.18 88.67 87.01
1-D Resnet-18∗ 87.38 89.47 86.87 84.06 84.57
1-D DHRN 89.38 82.83 94.02 89.20 87.43

F1-score

SVM [21] 51.02 50.28 48.24 49.41 50.63
Decision Tree [14] 64.96 62.47 62.31 62.40 60.28
1-D CNN [25] 84.84 85.14 86.78 86.08 85.93
XGBoost + ASFE [50] 84.75 87.82 88.87 88.38 86.82
1-D Resnet-18∗ 87.22 89.70 88.85 86.94 86.11
1-D DHRN 89.39 86.81 94.58 90.18 89.24

Table A3: Precision, Recall and F1-score results of different Wsize of the 1-D DHRN and comparison methods for
cavitation intensity recognition in Dataset 3 (%).

Metric Method Window Size (Wsize)

2334720 1167360 778240 583680 466944

Precision

SVM [21] 52.37 51.78 49.50 49.76 51.62
Decision Tree [14] 66.52 63.48 63.20 63.20 60.94
1-D CNN [25] 85.54 86.51 87.25 86.76 86.56
XGBoost + ASFE [50] 85.44 88.82 89.65 89.21 87.66
1-D Resnet-18∗ 88.26 89.93 91.93 93.53 89.43
1-D DHRN 89.41 91.19 95.14 92.17 92.03

Recall

SVM [21] 50.66 49.89 48.07 49.06 50.40
Decision Tree [14] 64.84 62.63 62.06 62.17 60.04
1-D CNN [25] 85.10 85.13 86.31 85.42 85.31
XGBoost + ASFE [50] 84.89 88.04 89.18 88.67 87.01
1-D Resnet-18∗ 87.38 89.47 86.87 84.06 84.57
1-D DHRN 89.38 82.83 94.02 89.20 87.43

F1-score

SVM [21] 51.02 50.28 48.24 49.41 50.63
Decision Tree [14] 64.96 62.47 62.31 62.40 60.28
1-D CNN [25] 84.84 85.14 86.78 86.08 85.93
XGBoost + ASFE [50] 84.75 87.82 88.87 88.38 86.82
1-D Resnet-18∗ 87.22 89.70 88.85 86.94 86.11
1-D DHRN 89.39 86.81 94.58 90.18 89.24
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Figure A6: The effect of Wsize on cavitation detection accuracy under different methods in Dataset 1.
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Table A4: Precision, Recall and F1-score results of different Wsize of the 1-D DHRN and comparison methods for
cavitation detection in Dataset 1 (%).

Metric Method Window Size (Wsize)

2334720 1167360 778240 583680 466944 389120 333531 291840 259413 233472

Precision

SVM [21] 73.61 73.37 71.95 70,82 73.40 69.87 69.62 70.85 72.38 79.15
Decision Tree [14] 92.59 88.41 88.30 90.51 99.29 89.00 98.56 84.42 97.31 92.61
1-D CNN [25] 94.64 94.17 93.95 95.14 94.66 95.35 94.96 95.63 95.53 95.84
XGBoost + ASFE [50] 93.14 92.61 92.48 91.63 91.57 91.83 89.26 90.28 89.83 90.29
1-D Resnet-18∗ 94.72 95.63 95.45 95.26 95.59 95.91 95.85 95.63 95.29 95.37
1-D DHRN 96.15 96.55 96.45 96.16 96.19 96.75 96.58 96.02 96.05 96.09

Recall

SVM [21] 88.33 94.17 88.33 90.00 95.67 90.83 91.67 90.63 88.33 85.83
Decision Tree [14] 41.67 50.83 46.11 51.67 46.67 51.67 49.05 54.17 53.52 62.67
1-D CNN [25] 93.75 94.17 93.89 93.75 93.50 94.93 94.61 94.48 95.76 62.67
XGBoost + ASFE [50] 93.56 92.36 92.36 91.32 91.25 91.09 88.99 89.93 89.51 90.00
1-D Resnet-18∗ 95.42 95.63 96.25 95.99 95.08 96.63 96.58 96.12 95.51 95.90
1-D DHRN 96.88 96.25 97.08 96.77 96.46 97.40 96.07 96.30 96.25 95.90

F1-score

SVM [21] 80.30 82.48 79.30 79.27 83.06 78.99 79.14 79.52 79.57 77.91
Decision Tree [14] 57.47 64.55 60.58 65.78 63.49 65.38 65.51 65.99 69.06 74.75
1-D CNN [25] 94.11 94.17 93.92 94.27 93.95 95.12 94.77 94.93 95.64 95.05
XGBoost + ASFE [50] 93.08 92.39 92.39 91.38 91.31 91.19 89.06 90.00 89.58 90.07
1-D Resnet-18∗ 94.94 95.63 95.67 95.49 95.31 96.15 96.08 95.83 95.39 95.56
1-D DHRN 96.51 96.40 96.76 96.46 96.32 97.07 96.32 96.16 96.15 95.99

Table A5: Precision, Recall and F1-score results of different Wsize of the 1-D DHRN and comparison methods for
cavitation detection in Dataset 2 (%).

Metric Method Window Size (Wsize)

2334720 1167360 778240 583680 466944

Precision

SVM [21] 87.88 86.98 85.60 86.19 84.70
Decision Tree [14] 88.20 82.64 86.21 86.14 82.42
1-D CNN [25] 94.64 95.35 93.95 95.14 94.66
XGBoost + ASFE [50] 90.54 90.75 91.53 91.24 90.37
1-D Resnet-18∗ 95.85 95.91 95.45 95.26 95.59
1-D DHRN 96.45 98.32 98.47 96.16 96.19

Recall

SVM [21] 69.71 76.66 68.62 72.00 70.81
Decision Tree [14] 68.27 69.93 72.15 71.69 72.10
1-D CNN [25] 93.75 94.93 93.89 93.75 93.50
XGBoost + ASFE [50] 90.56 90.73 91.33 91.02 90.43
1-D Resnet-18∗ 95.48 96.63 96.25 95.99 95.08
1-D DHRN 94.08 95.40 95.38 96.77 96.46

F1-score

SVM [21] 77.75 89.04 76.17 78.46 77.13
Decision Tree [14] 76.96 75.76 78.56 78.25 76.92
1-D CNN [25] 94.11 95.12 93.92 94.27 93.95
XGBoost + ASFE [50] 90.16 90.32 90.90 90.54 90.04
1-D Resnet-18∗ 95.47 96.15 95.67 95.49 95.31
1-D DHRN 96.76 96.83 96.90 96.46 96.32
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Table A6: Precision, Recall and F1-score results of different Wsize of the 1-D DHRN and comparison methods for
cavitation detection in Dataset 3 (%).

Metric Method Window Size (Wsize)

2334720 1167360 778240 583680 466944

Precision

SVM [21] 100.00 100.00 100.00 100.00 100.00
Decision Tree [14] 100.00 100.00 100.00 100.00 100.00
1-D CNN [25] 100.00 100.00 100.00 100.00 100.00
XGBoost + ASFE [50] 100.00 100.00 100.00 100.00 100.00
1-D Resnet-18∗ 100.00 100.00 100.00 100.00 100.00
1-D DHRN 100.00 100.00 100.00 100.00 100.00

Recall

SVM [21] 100.00 100.00 100.00 100.00 100.00
Decision Tree [14] 100.00 100.00 100.00 100.00 100.00
1-D CNN [25] 100.00 100.00 100.00 100.00 100.00
XGBoost + ASFE [50] 100.00 100.00 100.00 100.00 100.00
1-D Resnet-18∗ 100.00 100.00 100.00 100.00 100.00
1-D DHRN 100.00 100.00 100.00 100.00 100.00

F1-score

SVM [21] 100.00 100.00 100.00 100.00 100.00
Decision Tree [14] 100.00 100.00 100.00 100.00 100.00
1-D CNN [25] 100.00 100.00 100.00 100.00 100.00
XGBoost + ASFE [50] 100.00 100.00 100.00 100.00 100.00
1-D Resnet-18∗ 100.00 100.00 100.00 100.00 100.00
1-D DHRN 100.00 100.00 100.00 100.00 100.00
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Figure A7: The effect of Wsize on cavitation detection accuracy under different methods in Dataset 2.
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Figure A8: The effect of Wsize on cavitation detection accuracy under different methods in Dataset 3.
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Figure A9: The confusion matrix for the best cavitation detection accuracy of the 1-D DHRN in Dataset 1.
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Figure A10: The confusion matrix for the best cavitation detection accuracy of the 1-D DHRN in Dataset 2.
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Figure A11: The confusion matrix for the best cavitation detection accuracy of the 1-D DHRN in Dataset 3.
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Table A7: Accuracy, Precision, Recall and F1-score results of different frequencies of samples FS of the 1-D DHRN
for cavitation detection in Dataset 1, Dataset 2 and Dataset 3 (%).

Data FS Metrics

Accuracy Precision Recall F1-score

Dataset1

1562500 97.02 96.75. 97.40 97.07
781250 94.43 94.25 95.12 94.39
390625 93.97 93.71 94.49 93.91
260416 93.81 93.52 94.12 93.73
195312 93.65 93.55 94.44 93.61
48000 93.39 93.29 94.18 93.35

Dataset2

1562500 97.64 98.47 95.38 96.90
781250 97.14 98.36 95.29 96.80
390625 94.57 94.40 94.54 94.47
260416 94.00 93.78 94.63 93.95
195312 93.71 93.45 94.21 93.65
48000 93.57 93.45 94.33 93.53

Dataset3

1562500 100.00 100.00 100.00 100.00
781250 100.00 100.00 100.00 100.00
390625 100.00 100.00 100.00 100.00
260416 99.80 99.61 99.87 99.74
195312 99.62 99.26 99.75 99.50
48000 99.28 98.61 99.52 99.06

The accuracy, precision, recall and F1-scores of 1-D DHRN for cavitation intensity recognition during different
frequencies of samples in Dataset 1, Dataset 2 and Dataset 3 are shown in Table A8.
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Table A8: Accuracy, Precision, Recall and F1-score results of different frequencies of samples FS of the 1-D DHRN
for cavitation intensity recognition in Dataset 1, Dataset 2 and Dataset 3 (%).

Data FS Metrics

Accuracy Precision Recall F1-score

Dataset1

1562500 93.75 95.72 88.00 90.53
781250 90.57 91.49 84.10 86.18
390625 88.26 89.47 81.63 83.03
260416 86.03 89.38 78.25 81.19
195312 84.76 88.04 77.43 80.76
48000 72.83 73.26 69.92 65.59

Dataset2

1562500 94.31 95.14 94.02 94.58
781250 92.02 92.17 91.03 91.60
390625 86.53 87.25 86.56 86.39
260416 84.53 85.57 84.52 84.50
195312 84.60 85.35 84.52 84.43
48000 77.65 80.37 77.66 78.09

Dataset3

1562500 100.00 100.00 100.00 100.00
781250 100.00 100.00 100.00 100.00
390625 100.00 100.00 100.00 100.00
260416 99.62 99.26 99.75 99.50
195312 98.28 98.39 98.28 98.28
48000 90.17 92.95 90.17 89.78
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