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Abstract

Metric maps, like occupancy grids, are one of the most common ways to rep-

resent indoor environments in autonomous mobile robotics. Although they are

effective for navigation and localization, metric maps contain little knowledge

about the structure of the buildings they represent. In this paper, we propose

a method that identifies the structure of indoor environments from 2D metric

maps by retrieving their layout, namely an abstract geometrical representation

that models walls as line segments and rooms as polygons. The method works

by finding regularities within a building, abstracting from the possibly noisy in-

formation of the metric map, and uses such knowledge to reconstruct the layout

of the observed part and to predict a possible layout of the partially observed

portion of the building. Thus, differently of other methods from the state of the

art, our method can be applied both to fully observed environments and, most

significantly, to partially observed ones. Experimental results show that our ap-

proach performs effectively and robustly on different types of input metric maps

and that the predicted layout is increasingly more accurate when the input met-

ric map is increasingly more complete. The layout returned by our method can

be exploited in several tasks, such as semantic mapping, place categorization,

path planning, human-robot communication, and task allocation.
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1. Introduction

Understanding the environments in which they operate is an important ca-

pability for autonomous mobile robots. Buildings are strongly structured envi-

ronments that are often organized in regular patterns. The identification of the5

building structure is useful for several tasks, such as semantic mapping, place

categorization, path planning, human-robot communication, and task alloca-

tion [1]. For instance, knowledge about the building structure can be useful to

efficiently spread the robots to incrementally build a map of an initially unknown

environment, in the context of coordinated multirobot exploration [2].10

Metric maps, like grid maps [3], which are the usual environment represen-

tation employed in autonomous mobile robotics, do not explicitly contain any

knowledge about the building structure, but only represent the space occupation

for navigation and localization purposes. In addition, metric maps may contain

several inaccuracies and missing data, since portions of the environment may15

not be observed by the robot, as in case of occlusions or during exploration.

The layout of a building is a geometrical representation of its walls and

rooms that provides a “clean” and stable knowledge about the structure of the

building, disregarding information about furniture and regularizing noisy and

missing data, which often affect metric maps. Each room is represented either20

by a polygon (in 2D) or by a box model or a set of planes (in 3D). Walls are

accordingly represented as line segments or planes. Layout reconstruction is the

task of retrieving the layout from a metric representation of a building and can

be performed at room or at floor level, starting from 2D grid maps [4] or from

3D point clouds [5, 6].25

2D metric maps are easily available in most robotic applications, thanks to

cheap and reliable 2D sensors, like laser range scanners, and to widely used and

efficient 2D mapping algorithms [3]. Moreover, indoor robots usually rely on 2D

metric maps as they are more robust than 3D point clouds for several tasks [7]
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Figure 1: An example of a layout returned by our method. Figure 1a shows a metric map of

a simulated large-scale building, where some rooms have been only partially observed by the

robot. Figure 1b displays the retrieved layout we obtained from that map, where shapes of

fully-observed rooms are shown with solid colors and predicted shapes of partially-observed

rooms are shown with dashed-color patterns (bottom-left and top-right).

and can deal better both with large-scale buildings and with some types of30

maps, like maps of partially observed environments incrementally built during

exploration. Such partial maps are particularly critical, as they are often the

only type of knowledge available online to a robot during exploration. However,

the knowledge about the structure of buildings that could be extracted from

2D metric maps is more limited than that obtainable from 3D point clouds,35

where walls, ceilings, and doors are usually easier to identify. Therefore layout

reconstruction is usually performed starting from 3D point clouds and this re-

duces the applicability of layout reconstruction methods. The use of 2D metric

maps could potentially smooth such limitation, but it requires to adapt layout

reconstruction techniques to the more challenging input of 2D metric maps.40

In this paper, we address the above issue by presenting a method that re-

trieves the layout of indoor environments starting from their 2D metric maps,

in order to extend the applicability of layout reconstruction methods. Specifi-

cally, our method reconstructs the layout of the parts of the environment that

have been fully observed by the robot and, most significantly, predicts a possible45
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layout for the parts of the environments that have been only partially observed

by the robot. An example of a layout returned by our method starting from a

partially observed metric map is shown in Figure 1.

Our method does not need some of the requirements needed by most methods

that deal with 3D point clouds for layout reconstruction, like perfect alignment50

between scans and precise knowledge of their poses [6]. These requirements are

hard to satisfy for metric maps built by mobile robots using 2D laser range

scanners and SLAM algorithms [3]. These maps usually present several inac-

curacies that our method can address, such as partial, missing, unaligned, and

noisy data.55

In a nutshell, our proposed method identifies the representative lines along

which the walls of a building are aligned and uses these lines to segment the

area in smaller parts, called faces, which are finally clustered in rooms. The

representative lines allow to find regularities between different parts of the same

building; for instance, two rooms placed at the opposite sides of the building60

can have aligned walls or a long corridor can connect rooms with the same

shape and sharing the same wall. These regularities, extracted from the known

parts of the environments, are exploited to predict a possible layout for partially

observed rooms.

Our approach is experimentally validated in an extensive range of settings,65

showing that it performs well with different metric maps provided as input and

with metric maps representing environments at different degrees of complete-

ness.

The availability of a layout, like that returned by our method, is useful in

several robot applications. For instance, a vacuum-cleaner or a service robot70

can benefit from planning efficient paths in an abstract representation of the

environment and adjusting them during actual motion. Moreover, the comput-

ing time of our method (few seconds) allows its use in the online process of

exploration of unknown indoor environments [8, 9], in which the robot decision-

making about where to move next is performed at a low frequency, as the robot75

has to physically move around the environment. We explicitly remark that
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applying the proposed method to specific settings is beyond the scope of this

paper.

This paper is organized as follows. The next section surveys the related work.

Section 3 presents the proposed method, which operates in two sequential steps:80

reconstruction of the layout of the fully observed parts of the environment (Sec-

tion 3.1) and prediction of a possible layout of the partially observed parts of

the environment (Section 3.2). Section 4 discusses the results of the experimen-

tal activities performed to evaluate the proposed method. Finally, Section 5

concludes the paper.85

Preliminary versions of the methods of Sections 3.1 and 3.2 appear in [10]

and [11], respectively. This paper originally presents a more coherent view

of the two methods and introduces some enhancements in the algorithms (for

clustering line segments and for determining the candidate faces) that slightly

improve the identification of walls and rooms in partially observed environments.90

Moreover, we re-implemented the methods and reduced computing times by per-

forming code-level optimizations and by parallelizing and embedding our system

into a ROS-based framework. This allowed the online use of our approach in

an exploring mobile robot (Section 4.5). Finally, this paper presents several

further experimental results, including those on maps built by real robots, that95

show the ability of the proposed method to reconstruct and predict the layout

of buildings.

2. Related Work

Automatic analysis of representations of floors of buildings in order to ex-

tract structural information is an interdisciplinary topic addressed in different100

research fields, such as robotics, architecture, computer vision, and image analy-

sis. While an exhaustive survey is out of the scope of this paper, here we discuss

a significant sample of methods, focusing on those developed for mobile robots.

Room segmentation methods typically start from 2D metric maps obtained

from laser range scanners and separate them into parts, each one correspond-105
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ing to a different room. Authors of [1] present a survey of room segmentation

techniques for mobile robots. They identify four main families of approaches,

namely Voronoi-based partitioning [12], graph partitioning [13], feature-based

segmentation [14, 15, 16], and morphological segmentation [17]. Representative

methods of the four families are compared in [1] with no method clearly outper-110

forming the others, although Voronoi-based segmentation techniques appear to

be the most accurate.

A system for room segmentation that shares some similarities with our layout

reconstruction approach can be found in [18]. Similarly to our method, Canny

edge transform and Hough line transform are used to extract lines from a grid115

map. The main difference wrt our method is that, while we extract a relatively

small set of representative lines that are used for identifying walls, in [18] a

larger set of lines are used for obtaining a scalable grid representation of the

environment, similar to an octomap and called A-grid, which is eventually used

to perform segmentation. Moreover, differently from our method, that of [18]120

does not perform layout reconstruction but room segmentation.

In general, our approach differs from room segmentation methods, which

typically partition the metric maps in rooms, because it extracts from the met-

ric map a more abstract representation in which rooms are modeled using ge-

ometrical primitives. In our layout representation, a room is a polygon, while,125

in room segmentation, a room is a set of cells of the grid map. One could

say that layout reconstruction provides a more abstract representation of the

structure of a building that does not have to be metric exact. Although it is

possible to recover the polygon representing a room from the set of cells associ-

ated with that room [6] (i.e., as a post-processing of room segmentation), this is130

largely based on information local to the rooms, hardly capturing global regular

features, like alignment of rooms along a corridor, which our approach is able

to consider. Most of the methods that perform layout reconstruction require

aligned 3D point clouds and usually exploit the knowledge of the poses from

where the scans are taken. Our method is inspired by such approaches, but it135

is adapted to be used on 2D maps obtained by a mobile robot. More precisely,
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we extend and adapt the method presented in [6], as explained extensively in

Section 3.

Authors of [5] segment and reconstruct rooms of an indoor environment from

a 3D point cloud perfectly aligned to a coordinate system. Points are projected140

on the 2D plan, in order to find walls as sets of points whose projections are close

to each other. The entire floor is segmented in areas using these projections of

walls. Areas that are adjacent but not separated by a “peak-gap-peak” pattern

in the projected points distribution are merged in the final segmentation.

In [19], wall lines are retrieved from an analysis of the distribution of points145

of a 3D point cloud projected on a 2D plane along the z axis. The structure

is then decomposed into its horizontal and vertical parts, which are used to

extract a volumetric model through an energy minimization problem solved by

a Graph-Cut method.

Two methods that are based on aligned 3D point clouds are presented in [20]150

and [21]. In [20], 3D point cloud scans (and their poses) are used to recover the

3D model of a building. Walls are detected by projecting on a plane the wall

surfaces perceived in different rooms. Similarly to our approach, walls are used

for dividing the space. In particular, wall lines are used to reconstruct a planar

graph that is later segmented into different rooms by an energy minimization155

approach. A similar, but improved, method is presented in [21]. It projects

a 3D point cloud on a 2D plane to retrieve walls. The 2D map is segmented

into rooms by identifying doors/openings along walls and by selecting a set of

viewpoints from the Voronoi graph built on the 2D projection. Finally, rooms

are found by solving an energy minimization problem on a cell planar graph160

obtained from the lines of the wall segments. Viewpoints are used to initialize

the graph potentials following the intuition that points that can be seen from

the same viewpoint are more likely to be part of the same room.

Similarly to our work, [4] proposes a method that segments a 2D metric

map of an indoor environment built by a robot while reconstructing its layout.165

It uses a framework based on Markov Logic Networks and data-driven Markov

Chain Monte Carlo (MCMC) sampling. Using MCMC, the system samples
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many possible semantic worlds (layouts of the environment) and selects the one

that best fits the sensor data. Differently from our work, which identifies the

building structure by analyzing the entire metric map, each transition from a170

state to another state in the MCMC is based on local edit operations on the

layout of a single room, ignoring other parts of the building.

All the above methods are able to reconstruct the layout of observed parts

of the environments. The goal of obtaining knowledge on unobserved parts of

environments has recently been addressed using heterogeneous approaches. In175

[22], the metric map perceived by the robot is augmented with knowledge of pre-

viously observed environments. The parts of the metric map that correspond

to portions of the environment that have not yet been observed are completed

by superimposing matching maps from a database of previously observed envi-

ronments. The resulting map is used for predicting loop closures. In a similar180

way, the method of [23] first predicts the perimeter of the unobserved space and

then uses a library of map structures to predict the inner unknown parts of a

map while it is built by a team of robots. While the above methods rely on the

presence of libraries of environments observed in the past, our approach can be

applied also when such data are not available.185

A method that shares some similarities with our approach is proposed in [24],

which predicts the structure of an unexplored region of an environment to im-

prove SLAM performance. The method starts from a frontier between known

and unknown regions and tries to reconstruct its neighbourhood by identifying

similar structures in the known map. If a match is found, the matching portion190

of the map is superimposed to the frontier, thus providing an estimate of the

structure of its neighbourhood. There are also mechanisms that avoid the use

of inaccurate predicted knowledge that could compromise the robot behaviour.

The prediction of [24] considers the similarity between different parts of the

same environment (a prediction is made if a part of the map which can consti-195

tute a good match to complete a frontier is found), while in our approach we

consider more abstract features like the fact that rooms aligned along the same

corridor share the same wall.
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Some methods have been recently proposed to predict the presence of specific

elements in the unknown parts of environments. For instance, the method of [25]200

trains, from a set of images representing floor plans of buildings, a convolutional

neural network that is able to predict, given the partial map of an environment,

the location of an emergency exit. In this context, only one structural feature

of the environment is extracted explicitly (the position of the emergency exit).

The system proposed in [26] predicts the existence of a room (and its label) in205

the unexplored space, but it does not provide any information on the geometry

of the room. Similarly, the approach of [27] predicts the topology and the labels

of unvisited rooms by matching the known part of the environment (represented

as a labeled graph) to a database of environments. Also [28] predicts portions

of environments represented as graphs using a method based on graph kernels.210

Finally, an interesting integration between metric maps and natural language is

proposed in [29] in order to infer the existence (in the maps) of spatial elements

that are mentioned in some sentences.

3. Our Method for Retrieving the Layout from Metric Maps

The method we propose in this paper starts from a 2D metric map, like

a grid map, identifies the walls in it, and uses them for finding rooms and for

reconstructing and predicting the 2D layout of the environment. More precisely,

given a metric map M of an indoor environment, our goal is to retrieve its layout

L:

L = {r1, . . . , rn},

where ri is the layout of a room, namely the polygon representing the room.215

Our method is designed to work both with fully observed rooms, whose layout

is reconstructed, and with partially observed rooms, for which our method is

able to predict a possible layout for the entire rooms. Hence, the layout L could

be partitioned in the layout of the set of fully observed rooms LC and in the

layout of the set of partially observed rooms LP . In case of a complete metric220

map M , we have that LP = {}.
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The method is composed of a number of steps executed sequentially. At

first, the method reconstructs the layout LC of fully observed rooms. This part

is described in Section 3.1. After that, our method predicts a possible layout

LP for the partially observed rooms, leveraging the information from LC and225

following the intuition that the structural features identified in LC are also

common to partially observed rooms, as the fact that a wall could be shared

by multiple rooms. This second step is described in Section 3.2. As discussed

in the introduction, preliminary versions of the methods of Sections 3.1 and 3.2

appear in [10] and [11], respectively.230

3.1. Reconstructing the layout of fully observed rooms

In this section we describe our approach for reconstructing the layout LC of

fully observed rooms with the help of a running example (Figure 2). We thus

assume to start from a fully known metric map M .

Some of the steps of our method (Algorithm 1) are inspired by the approach235

of [6]. More precisely, we use the method developed in [6] for dividing the metric

map into smaller parts (which are used to identify rooms) using a set of lines.

However, as already discussed, [6] reconstructs the 3D layout of a building from

point clouds precisely aligned and registered in the same coordinate system,

knowing the number and the poses of scans. Differently from [6], our method240

is intended to be used on 2D metric maps obtained from data acquired by laser

range scanners and processed by SLAM algorithms, which can present misalign-

ments and artefacts. Moreover, our method can be used effectively on different

types of metric maps obtained from different sources, such as incomplete metric

maps, blueprints, and evacuation maps, as described in Section 4.245

The starting point is a metric map M representing an indoor environment,

typically a floor of a building. Without loss of generality, we assume that M is

a 2D grid map, like the one in Figure 2a, namely a two-dimensional matrix of

cells (pixels), each one representing the probability that the corresponding area

is occupied by an obstacle.250

The first operation on M is the detection of significative edges using the
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Input: a grid map M

Output: the reconstructed layout LC

/* Compute features from the map */

M ′ ← CannyEdgeDetection(M)

S ← pHoughLineTransform(M ′)

/* Obtain contour of the map */

M ′′ ← thresholdMap(M, q)

Inner← computeMapContour(M ′′)

/* Create clusters of collinear segments */

C ← meanShiftClustering(S)

W ← spatialClustering(C,wall)

/* Find faces from representative lines */

lines← getsRepresentativeLines(W)

F ← findFaces(lines)

/* Compute spatial affinity between faces */

L← computeAffinityMatrix(F )

D ← diag(
∑n

j=1 Li,j)

A← D−1L

/* Remove external faces outside border */

for f ∈ F do

if area(f ∩ Inner) < δ then

F ← F \ f

end

end

/* Remove partially observed faces */

for f ∈ F do

if containFrontier(f) then

F ← F \ f

end

end

/* Cluster together faces into rooms */

LC ← DBSCAN(F,A, ε,minPoints)

return LC

Algorithm 1: Our method for layout reconstruction of fully observed

rooms.
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(a) Metric map. (b) Canny edge detection.

(c) Hough line detection. (d) Map contour.

(e) Clustering of line segments. (f) Representative lines and faces.

15 11 12 12 13 14 14 6 6

4 4 4 4 4 4 2 2 2 2 2

5 10 7 9 9 1 1 0 3 3 8

(g) Clustering of faces (h) Reconstructed layout.

Figure 2: An example run of our method to reconstruct the layout from a complete metric

map.

Canny edge detection algorithm [30], which partitions the cells of M into free

cells and obstacle cells. The binary metric map resulting from the application

of the Canny edge detection algorithm is called M ′ and an example is shown in

Figure 2b.255

The set of edges (obstacle cells) is then processed by a probabilistic Hough
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line transform algorithm [31] to detect the line segments S that approximate

the edges in M ′. Figure 2c shows such line segments in green. Note that one of

the parameters of the method, minLinPoints, represents the minimum number

of points that are required for having a line. Then, the contour of the map is260

obtained, using the contour detection algorithm of [32], after the application

of a threshold q that divides cells of the original map M into free or occupied.

Figure 2d shows in yellow the area inside the map border.

The line segments S are then clustered together according to the angular

coefficients of their supporting lines using the mean shift clustering algorithm265

[33]. At the end of the angular clustering, we obtain a set of clusters C =

{C1, C2, . . .} such that each Cj ⊆ S and C1 ∪ C2 ∪ . . . = S. Each cluster Cj

represents the set of line segments with similar angular coefficient αj , namely

with similar direction, independent of their spatial proximity.

Next, the line segments belonging to the same angular cluster Cj are further270

clustered in sets of collinear walls by grouping those line segments that are close

to each other. Specifically, line segments of Cj are partitioned in sets Wj,k. This

spatial clustering is performed using DBSCAN [34] with the smallest distance

between any two points of two line segments s and s′ as metric. (We set the

two DBSCAN parameters to ε = 0.75 and minPoints= 2.) Each line segment275

in Cj is thus assigned to a cluster Wj,k, which represents a wall.

Collinear walls are further joined if the line segments composing them are

close enough. The distance between two walls is computed as follows. Given a

wall Wj,k, one of its line segments sj,k is selected as that with the median middle

point (along a direction perpendicular to αj). Now, given two walls Wj,k and280

Wj,k′ , call l and l′ the parallel lines passing through the middle points of sj,k

and sj,k′ , both with angular coefficient αj . If the distance between l and l′ is less

than a threshold wall (intuitively, closer than the width of a doorway), then the

two corresponding walls Wj,k and Wj,k′ are merged together. At the end of this

step, the set of clusters C = {C1, C2, . . .} is thus further partitioned into a set of285

clusters W = {W1,1,W1,2, . . . ,W2,1,W2,2, . . .}, such that C1 = W1,1 ∪W1,2 ∪ . . .

and C2 = W2,1 ∪ W2,2 ∪ . . ., and so on. Figure 2e shows the results of the
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spatial clustering where the line segments belonging to the same cluster in W

are displayed with the same color.

At this point, for each cluster Wj,k, a representative line lj,k that represents290

all the line segments in Wj,k is determined. This representative line is computed

as the line with angular coefficient αj associated to Cj and that passes through

the median of the set of middle points of the line segments in Wj,k. Each

representative line, in red in Figure 2f, indicates the direction of a wall within

the building. The intersections between all lines induce a tessellation of the295

metric map that divides the area of the map M ′ into different polygonal areas,

called faces, as shown in Figure 2f. We call F the set of faces. Note that, as

visible in Figure 2f, our method uses a relatively small number of representative

lines for segmenting the environment, as line segments found in the metric map

are hierarchically clustered together. This allows us to consider a small number300

of primitives in the environment (line segments and faces) in order to capture

regularities in the metric map. For example, in our method, collinear walls which

are slightly distorted and tilted due to map inaccuracies are not represented by

different representative lines close to each other, as in [18, 21], but are considered

as a single representative line. In this way, our method provides a more abstract305

representation of the environment that is used for layout reconstruction. In

order to handle partially observed rooms (see next section) whose frontiers are

not bounded by any representative line, we pad the map M with an additional

set of representative lines that form a bounding box of M slightly larger than

the actual size of the map contour.310

Rooms are determined by grouping faces together. Adjacent faces that are

separated by an edge corresponding to a wall should belong to different rooms,

while adjacent faces that are separated by an edge not corresponding to any wall

should be grouped together in the same room. More precisely, for each pair of

faces f and f ′ that share a common edge ef,f ′ (belonging to the representative

line lj,k of a spatial cluster Wj,k), we compute a weight w(ef,f ′) as follows (as
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in [6]):

w(ef,f ′) =
cov(ef,f ′)

len(ef,f ′)
,

where len(ef,f ′) is the length of ef,f ′ and cov(ef,f ′) is the length of the projec-

tions, on ef,f ′ , of the line segments in Wj,k. The larger the weight w(ef,f ′),

the stronger the hypothesis that there is a wall (obstacle) along ef,f ′ (namely,

between faces f and f ′). If an edge is completely covered by projections of line

segments in Wj,k, then its weight is 1. Following the definition of [6], weighted

edges are used to compute an affinity measure L between all pairs of faces. L

is similar to a Laplacian, and its entries Lf,f ′ are defined as:

Lf,f ′ =


e−w(ef,f′ )/σ if f 6= f ′ and f and f ′ are adjacent

1 if f = f ′

0 otherwise

,

where σ is a regularization factor. From the matrix L, a local affinity matrix

A is defined as A = D−1L, with D = diag(
∑n
j=1 Li,j), where n is the number

of faces in F and i is the row of the matrix. Each element Af,f ′ indicates an

affinity value considering the local connectivity between faces f and f ′. The

matrix A is used as input for DBSCAN, which clusters faces. DBSCAN groups315

together those faces that are close to each other in a dense portion of the feature

space represented by matrix A. (In our experiments, we set the two DBSCAN

parameters to ε = 0.85 and minPoints= 1.) Note that DBSCAN detects rooms

without any additional information, while the method of [6] relies on the avail-

ability of scan poses. In this sense, our approach can flexibly adapt to different320

input sources for metric maps, as shown in the next section.

Before applying DBSCAN, some faces are discarded. Specifically, discarded

faces are those called external and such that the area of their intersection with

the inner area of M (obtained from the contour) is smaller than a threshold δ.

Then, DBSCAN is applied to internal faces to obtain a set of clusters325

R = {F1, F2, . . .} of F . Each cluster Fi corresponds to a room ri, which is

represented as a polygon obtained by merging together all the faces belonging
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Input: M , LC , F , lines

Output: the predicted layout LP

/* Get partial rooms */

P ← FindPartialRoomsFromFrontiers(M,F,Lc)

/* Get candidate faces */

for ri ∈ P do

/* Find initial layout composed of already observed faces */

F̂ ′i ← getObservedFacesInRoom(ri,M, P, F )

r′i ← F̂ ′i

/* Evaluate best layout among all possible sets of faces */

for F̂ ∈ F do

if Φ(F̂ ∪ F ′i ) ≥ Φ(r′i) then

r′i ← F̂ ∪ F ′i
end

end

/* Update map and set of faces after new predicted room */

r̂∗i ← r′i

LP ← LP ∪ r̂∗i
F ← F \ (F̂ ∪ F ′i )

end

return LP

Algorithm 2: Our method for predicting the possible layout of partially

observed rooms.

to Fi. Figure 2g shows the results of DBSCAN for our example. The number i

in each face indicates its cluster Fi. Different clusters have also different colors.

The final reconstructed layout LC = {r1, r2, . . .} is finally displayed in Figure330

2h. Note that it is a “clean” and abstract representation of the original grid

map of Figure 2a, which nevertheless retains the main structural features.

A side effect of our proposed method is that it could happen that gaps

inside buildings are wrongly identified as rooms. However, such rooms are dis-

connected from the rest of the environment and can be easily filtered out. A335

post-processing refinement could be used to remove unconnected rooms when

connectivity between rooms (e.g., doorways) is known, like when the input met-

ric map comes from a blueprint.
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3.2. Predicting the layout of partially observed rooms

In this section, we illustrate our method that predicts a possible layout of340

partial rooms in LP , namely of those rooms that have not been fully observed

by the robot sensors (Algorithm 2).

The input metric map M , in this case, is partial, and does not represent

the entire environment. In a partial metric map, frontiers can be identified as

the boundaries between known and unknown space. For example, in a partial345

grid map in which cells can be either known or unknown and known cells can

be either free or obstacles, a frontier cell is a free cell that is adjacent to an

unknown cell, while a frontier is a chain of adjacent frontier cells.

To account for the fact that the initial grid map M is partial, before faces

are clustered in rooms (last step of Algorithm 1), partial faces are recognized350

as faces that contain a frontier and are excluded from the process that brings

to identify {F1, F2, . . .}. After clustering, if a room ri has faces in Fi that

are adjacent to partial faces (with the common edge not being a wall), it is

considered a partial room. Also partial faces that are not adjacent to any Fi are

clustered to form additional partial rooms. The set of partial rooms is called P .355

The main idea of our method is that the structure of a partial room shares

some features with the structure of the part of the environment that is known.

For example, the external walls of a building are shared by several rooms and

the rooms along a corridor have a similar shape. Our method considers the

partial rooms of P in sequence (a random sequence is fine since each partial360

room is processed independently) and, for each partial room, it completes its

layout by predicting the unknown part of the room still to be observed by the

robot. In practice, given a partial room ri ∈ P , some (unobserved) faces are

added to the (observed) faces in Fi in order to maximize an objective function

that represents how well the new layout r̂i consistently matches with that of the365

known part of the environment.

In detail, given a partial room ri ∈ P with fully observed faces Fi (obtained

as described in the previous section), our method first adds to Fi the partial

faces that contain a frontier and that are adjacent to at least one face in Fi

17



(and with the common edge not corresponding to a wall), obtaining a set of370

faces F ′i ⊇ Fi.

Then, F ′i is further enriched with a set of faces F̂ ∗i , the predicted layout r̂∗i

of partial room ri is obtained from merging faces in F ′i ∪ F̂ ∗i , and r̂∗i is added to

LP . F̂ ∗i is selected from a family F of candidate sets of faces (also including the

empty set). A candidate set of faces F̂ ∈ F satisfies the following conditions:375

(1) F̂ contains faces adjacent to faces of F ′i or adjacent to faces which are in

turn adjacent to faces in F ′i (namely, at most “two hops” away from faces

in F ′i );

(2) F̂ contains faces not adjacent to the external contour of the map;

(3) F̂ contains faces not “behind” any of the walls that have already been380

observed for the room ri.

Condition (1) limits the number of sets in F ; conditions (2) and (3) keep the

prediction of the layout of a room consistent with what has been observed. F̂ ∗i

is chosen from F to maximize an objective function:

F̂ ∗i = arg max
F̂∈F

Φ(F ′i ∪ F̂ ),

where Φ() is a weighted sum of three components:385

Φ(F ′i ∪ F̂ ) = kΥ ·Υ(F ′i ∪ F̂ )− kΨ ·Ψ(F ′i ∪ F̂ )− kΩ · Ω(F ′i ∪ F̂ ).

Note that we evaluate a candidate F̂ by considering the set of faces F ′i ∪ F̂ and

the corresponding layout r̂i. See Figure 3 for an example.

The first term of the objective function, Υ(), embeds the intuition that

the predicted layout r̂i should be consistent with that of known rooms. The

quantitative evaluation of this consistency is done by resorting to the repre-390

sentative lines. For example, if lj,k represents a wall along a long corridor, it

will be common to all the rooms that are connected to that corridor. Thus,

the same wall will delimit the partial rooms connected to the same corridor.

Given a representative line lj,k, we consider in turn all the line segments s of
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(a) (b) (c)

Figure 3: Figure 3b shows an example of prediction of the layout of partial rooms: faces in

the two selected F ′i ∪ F̂ ∗i are in yellow, faces belonging to other candidate sets F̂ are in green,

faces excluded from candidate sets F̂ due to conditions (1)-(3) are in fuchsia. Figure 3a shows

the map M and Figure 3c the reconstructed layout.

the associated cluster Wj,k, we project them on lj,k, and we compute a weight395

w̄(lj,k, s) = cov(s, lj,k)/len(lj,k), where cov(s, lj,k) is the length of the projec-

tion of s on lj,k, and len(lj,k) is the length of the segment of lj,k that is inside

the contour of the map M . We then call L̂ the set of representative lines that

would be the boundaries of room r̂i if F̂ is selected to complete the room, finally

computing:400

Υ(F ′i ∪ F̂ ) =
∑
lj,k∈L̂

∑
s∈Wj,k

w̄(lj,k, s).

The second term of the objective function, Ψ(), is designed in order to prefer

simple (predicted) layouts over complex ones. This is done by computing the

convex hull of the layout r̂i in case F̂ is added to F ′i . Calling area() the operator

that computes the area of a polygon and hull() the operator that computes the

convex hull of a polygon:

Ψ(F ′i ∪ F̂ ) =
area(hull(r̂i))− area(r̂i)

area(r̂i)
.

The third term of the objective function, Ω(), prefers the layouts that are

delimited by a small number of walls. This is done by counting the number

nwr̂i of walls of r̂i, namely the number of external edges of the faces in F ′i ∪ F̂

that lie on different representative lines, thus having Ω(F ′i ∪ F̂ ) = nwr̂i .
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(a) Partial metric

map.

(b) Representative

lines.

(c) Predicted layout. (d) Predicted layout

and real layout.

Figure 4: An example run of our approach starting from a partial grid map with predicted

layout of partially observed rooms (dashed) and an open frontiers (red). Figure 4d shows

the map perceived by the robot (gray), the layout predicted by our method (black), and the

actual layout of the building (red).

Figure 4 shows an example that illustrates the proposed method for the405

prediction of the layout of three partial rooms. The predicted layout of the

partial rooms is dashed in Figure 4c. In our experiments, we set kΥ = 1,

kΨ = 5, and kΩ = 0.1 (these values have been selected after several preliminary

trials).

A particular situation is encountered when a partial room is at the border410

of the map M . In this case, one or more sides of the room are not bounded by

any representative line derived from the known map and the layout of the room

cannot be predicted. When this happens, we label the room as containing an

open frontier and we highlight the corresponding edges in red, as in Figure 4.

Before starting the prediction of the layout of partially observed rooms,415

a pre-processing step is applied to LC in order to reduce under- and over-

segmentation of rooms. These two issues are caused when two (or more) rooms

are wrongly considered as a single entity (under-segmentation) or when a large

room is incorrectly split in several smaller rooms (over-segmentation). (See the

next section for details.) If the portion of a room observed by the robot is very420

small, as when the robot passes in front of a doorway without going inside the

room, under-segmentation is very likely. A Voronoi graph obtained from M is

used to spit (likely under-segmented) rooms divided by a doorway, following the

approach presented in [1]. Over-segmentation is instead addressed by using the
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approach proposed as post-processing in [6] that merges two adjacent rooms425

for which the following function Qsplit returns a value larger than a threshold

τ = 0.2:

Qsplit(B) =

∑n
i=1 w(ei) ∗ len(ei))∑n

i=1 len(ei)
,

where B = {e1, ..., en} is the set of edges common to those two rooms and

w(ei) = cov(ei)/len(ei) as defined in Section 3.1.

4. Experimental Results430

In this section, we evaluate our method for reconstructing and predicting

the layout of buildings from 2D metric maps.

A reconstructed (or predicted) layout is expected to present two main char-

acteristics: (1) all the rooms of the real building (and only them) should be

in the layout; (2) the shape of each room in the layout should match that of435

its real counterpart. Evaluation is performed both visually and quantitatively,

comparing the reconstructed or predicted layout L and the ground truth lay-

out Gt. Following the approach of [1], we introduce two matching functions

between rooms in L and in Gt (after L and Gt have been aligned), namely

forward coverage FC and backward coverage BC:440

FC : r ∈ L 7→ r′ ∈ Gt BC : r′ ∈ Gt 7→ r ∈ L.

For each room r ∈ L, FC finds the room r′ ∈ Gt that maximally overlaps r;

conversely, for each room r′ ∈ Gt, BC finds the room r ∈ L with the maximum

overlap with r′. Recalling that area() is a function that computes a polygon

area, the amount of overlap between a room r ∈ L and a room r′ ∈ Gt is

defined as area(r ∩ r′).445

Matching functions FC and BC are used for computing two measures of

accuracy called forward accuracy AFC and backward accuracy ABC :

AFC =

∑
r∈L area(r ∩ FC(r))∑

r∈L area(r)
ABC =

∑
r′∈Gt area(BC(r′) ∩ r′)∑

r′∈Gt area(r′)
.
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AFC represents how well the reconstructed layout L is described by the ground

truth layout Gt, while ABC represents how well the ground truth layout Gt is

described by the reconstructed layout L. The numbers of rooms in L and Gt450

can be different, due to over- or under-segmentation. Over-segmentation results

in high AFC and low ABC , while under-segmentation results in high ABC and

low AFC .

We evaluate separately the performance of reconstructing the layout LC
of fully observed rooms and of predicting the layout LP of partially observed455

rooms. Recall that our method reconstructs LC and uses it to predict the layout

LP ; hence, the quality of LC affects that of LP .

Our method could be used online for supporting the execution of other tasks

of autonomous mobile robots (Section 4.5). The computation of L takes few

seconds for small metric maps and less than 10 s even for large metric maps460

(to compute both LC and LP ). The method is run in a dedicated ROS node

so that an updated version of L is always available for potential use without

introducing delays.

4.1. Evaluation of layout reconstruction of fully observed environments

We consider 20 2D grid maps obtained running the ROS implementation1
465

of the GMapping algorithm [35] on data collected by a robot equipped with a

laser range scanner and moving autonomously in 20 large-scale buildings simu-

lated in Stage2. Buildings range from 1000 m2 to 3500 m2 in size and represent

real-world school buildings. The same 20 input maps are considered for evalu-

ating our method both for reconstructing the layout of fully observed rooms (in470

this section) and for predicting the layout of partially observed environments

(Section 4.4). In the former case, we consider complete maps at the end of data

collection runs, while, in the latter case, we evaluate our method using partial

maps at different stages of data collection runs. More details are provided in

1http://wiki.ros.org/gmapping
2http://wiki.ros.org/stage
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(a) (b)

(c) (d)

Figure 5: An example of a layout reconstruction. (a) Grid map. (b) Reconstructed layout.

(c) Reconstructed layout (black) and ground truth (red). (d) Grid map and ground truth

(red).

Section 4.4.475

It is important to point out that the evaluation is performed by comparing

the layouts reconstructed from the grid maps built by the robot against the

actual layouts of the simulated buildings fed to Stage. This allows us to evalu-

ate if our layout reconstruction approach is able to cope with noise and errors

introduced in the mapping process as a result of noisy readings from the sen-480

sor, localization errors, or errors due to inaccurate odometry readings. In our

simulations, we assume that the robot has a translational odometry error of up

to 0.05 m/m and a rotational odometry error of up to 2 °/rad, which provide a

reasonable approximation of the odometry accuracy of real wheeled robots. In

this sense, we consider simulated but realistic metric maps obtained by robots.485
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(a) (b)

(c) (d)

Figure 6: Examples of layout reconstruction.

We note that a comparison of our approach against similar methods such as

[6, 20, 21] requires radically different input data (e.g., aligned 3D point scans

vs. 2D grid maps) and is not reported here.

Average layout reconstruction accuracies over the 20 grid maps are the fol-
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(a) (b)

Figure 7: Segmentation by a Voronoi-based approach from [1] (a) and comparison between

our reconstructed layout (black) and the ground truth layout (red) (b) for the metric map of

Figure 2a.

lowing: ABC = 87.8% ± 4.5% and AFC = 87.6% ± 5.7%. On the set of 20490

environments mapped by the simulated robot, our method is able to recon-

struct successfully and with good accuracy the layout of the original buildings.

For example, Figure 5 presents a grid map obtained by the robot (Figure 5a)

and the layout reconstructed using our method (Figure 5b). For this partic-

ular example, we have AFC = 90.1% and ABC = 93.3%. In Figure 5c, the495

reconstructed layout (in black) and the ground truth layout (in red) are super-

imposed. Although the layout is generally accurate, there are small differences

in the geometry of rooms, due to approximations introduced by our method,

which result in slight performance degradation. In Figure 5d the grid map and

the ground truth building layout (in red) are superimposed. While the grid map500

provides a good representation of the environment, some inaccuracies, such as

irregular gaps between walls, are present. Our method tries to filter out those

inaccuracies when reconstructing the layout.

Figure 6 shows four other examples of reconstructed layouts from grid maps.

In all the four cases, our method is able to correctly reconstruct the layout of505

the environment, coping well with alignment and rotation errors and with gaps

between rooms in the metric maps (e.g., see Figure 6c). Few inaccuracies are

introduced, like long corridors split into smaller units, thus producing over-

segmentation. Another error is made sometimes when there is a small gap
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no furniture furniture

recall 90.0%± 4.1% recall 89.5%± 6.2%

precision 90.1%± 6.3% precision 94.0%± 2.2%

Table 1: Layout reconstruction results on datasets from [1].

within the building (e.g., due to a large wall or a pillar), which is misclassified510

as an internal face and subsequently added to an adjacent room or considered

as a small independent room. However, in general, our method can successfully

retrieve the layouts of large-scale buildings, as in Figure 6b, where the rooms

connected to the top corridor (light blue) are the classrooms of a high school.

Since walls are represented by straight lines, round walls are approximated515

by polylines (see Figure 6c). Maps that present (relatively) small misalignments

are adjusted by our method, as shown in Figure 6c and 6d. A trade-off exists

between the accuracy of alignment that can be reached by our method and its

ability to approximate round walls with polylines. This trade-off can be set

by modifying the parameters of the line segment clustering step (Section 3.1),520

like the wall threshold, currently set to the width of a doorway, during which

collinear walls are clustered together and used to identify representative lines.

In all the examples presented in this paper we prefer strong alignment over good

approximation of round walls.

4.2. Evaluation on publicly available datasets525

Here, we present the results of the evaluation of our method for reconstruct-

ing the layout of fully observed buildings on the two datasets (each composed

of 20 metric maps) used in [1] for comparing different methods for room seg-

mentation. The datasets contain fully observed metric maps with and without

furniture, respectively, and, in [1], are evaluated employing precision and recall

metrics, which are defined similarly to AFC and ABC :

Precision =

∑
r∈L area(r ∩ FC(r))/area(r)

|L|
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Recall =

∑
r′∈Gt area(BC(r′) ∩ r′)/area(r′)

|Gt|
.

When the dataset with furniture is used, our method filters out some of the clut-

ter introduced by furniture by automatically clustering and removing isolated

obstacle cells using DBSCAN directly on the original metric map M (this is a

very simple way to handle furniture, which can be definitely improved). Results,

reported in Table 1, are good and confirm those obtained with our dataset.530

A comparison with the results obtained by room segmentation methods of [1]

is unfair, because those methods directly partition the cells of the metric maps,

while our method uses a more abstract representation based on representative

lines and faces, thus introducing some approximations. An example of the

approximations introduced by our layout reconstruction with respect to room535

segmentation is displayed in Figure 7. Figure 7a shows the Voronoi-based seg-

mentation of the metric map of Figure 2a, as reported in [1]. It can be observed

that Voronoi-based methods tend to produce over-segmentation. In Figure 7b,

we compare our reconstructed layout (in black) with the real structure of the

building (in red). Despite being able to correctly capture the building layout,540

for this map we have AFC = 93.6 and ABC = 94.6, due to some visible approxi-

mations. That said, comparing Table 1 with Table II of [1], we can say that our

method produces results comparable (within 1 sigma) with those of the meth-

ods surveyed in [1], further confirming that the reconstructed layout actually

captures the structure of the buildings. Moreover, the availability of the layout545

enables a number of possible tasks, as suggested in the following sections.

Our method does not assume a Manhattan world and can be used in non-

Manhattan environments, such as those with diagonal walls. Datasets from [1]

feature some non-Manhattan buildings, as the two reported in Figure 8. In

Figure 8a-8b, it can be seen how our method approximates round walls with550

a set of diagonal line segments, as already pointed out in the previous section.

An example of reconstruction of the layout of a non-Manhattan building with

several diagonal walls is shown in Figure 8c-8d, where the reconstructed layout

of the building, despite some inaccuracies due to under-segmentation of the
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(a) (b) (c) (d)

Figure 8: Reconstructed layout from metric maps of non-Manhattan buildings from [1].

Figure 9: Reconstructed layout from a blueprint of a highly structured building.

main central corridor (in blue), is basically correct.555

4.3. Evaluation on blueprints and evacuation maps

Our method can be used also for reconstructing the layout of a building from

its blueprint or evacuation map. Blueprints and evacuation maps are usually

images in which the walls of buildings are represented together with symbols

and words that explain the meaning and the locations of some features (e.g., the560

functions of the rooms and the presence of fire extinguishers). As blueprints and

evacuation maps represent entire floors of buildings, we apply here our method

to reconstruct the layout starting from them.

We pre-process these input maps as follows. Words (like the name of the

building or the functions of rooms) are recognized and filtered out using a stan-565

dard OCR method (Tesseract). Doors and other symbols (like fire extinguish-

ers) are easily retrieved and eliminated, since they are represented with standard
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symbols, by using template-matching algorithms. An example of a layout re-

constructed from a blueprint is shown in Figure 9. Other examples are reported

in our repository3. Quantitative results of layout reconstruction starting from570

blueprints (and evacuation maps) are similar to those obtained with datasets

from [1] and are not reported.

The reconstructed layout of a building obtained from a blueprint can be a

useful source of knowledge, especially when the environment in which robots

operate is initially unknown, as in a situation where a team of robots performs575

search and rescue operations and an evacuation map of the environment can be

seen on a wall. One of the possible uses of such knowledge is localization, as done

in [36], where a robot can localize itself using a floor plan instead of a metric

map. A reconstructed layout may introduce some approximations compared to

the real shape of the environment, as explained previously. However, [37, 38]580

show how partially inaccurate hand-drawn sketch maps can be effectively used

for robot localization. In principle, using similar approaches, a reconstructed

layout of a building can be used for robot localization even if it is slightly

inaccurate.

4.4. Evaluation of layout prediction of partially observed environments585

In this section, we present some of the experimental activities we performed

to evaluate our approach for predicting possible layouts of partially observed

environments, by trying to complete partial maps acquired during their explo-

ration.

As before, the predicted layout of a partial room is evaluated according to590

how much it matches the actual layout of the room. Evaluation is performed

both visually and quantitatively, comparing the reconstructed layout L and

the ground truth layout Gt. For a quantitive evaluation, we adopt a metric

different of forward accuracy and backward accuracy used so far, because pre-

dicting the layout of partially observed rooms often results in an increase of595

3https://github.com/goldleaf3i/predicted2Dlayout

29

https://github.com/goldleaf3i/predicted2Dlayout


under-segmented rooms, since partial rooms where only a small part has been

observed are usually under-segmented. Hence, after aligning L and Gt, given

the predicted layout r̂∗ of a room in L, we look for the room r in Gt that maxi-

mizes the overlap with r̂∗ using the forward coverage function and we compute

their Intersection over Union (IoU) as:600

IoU(r̂∗, r) =
area(r̂∗ ∩ r)
area(r̂∗ ∪ r)

.

Intuitively, we consider the area r \ r̂∗ as a false negative, the area r̂∗ \ r as a

false positive, and the area of r̂∗ ∩ r as a true positive.

Also in the case of partially observed environments, we compare the layouts

reconstructed by our method and the actual layouts of the simulated buildings

fed to Stage simulator. This allows us to evaluate if our layout prediction605

approach is able to cope with noise and errors introduced in the mapping process

as a result of the imprecise movements of the simulated robot.

We consider the same 20 large-scale school buildings that we used in Sec-

tion 4.1. For each simulated environment (in Stage), we incrementally map it

(with GMapping) following a closest frontier exploration strategy [39]. Since610

the information we use for prediction comes from the parts of the environment

already observed, we expect the quality of our estimate to increase with the

amount of information in the grid map M . Consequently, partial grid maps ob-

tained at different stages of exploration are considered. We discard maps from

the early stages of exploration (those that covers less than 20% of the area of615

the environment) because they do not contain enough information for prediction

(almost all the frontiers are open frontiers).

A particular case, that happens at final stages of exploration when maps are

almost complete, is that of a partial room for which a very small portion, as a

corner behind a door, has not been observed. The layout of such room can thus620

be trivially reconstructed by considering only faces in F ′i (see Section 3.2). Those

rooms cannot be expanded anymore since they are usually surrounded by other

fully observed rooms and the unobserved portion of their area is usually less

than 1 m2. We do not consider such rooms in our evaluation because their layout
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expl #M |P | IoU

≥ 20% 196 482 0.70 (0.18)

≥ 25% 173 412 0.72 (0.17)

≥ 50% 100 203 0.75 (0.16)

≥ 75% 25 40 0.82 (0.11)

≥ 90% 18 23 0.86 (0.06)

Table 2: Accuracy (IoU) of our predicted layout obtained incrementally exploring 20 large-

scale buildings. expl is the percentage of the area explored by the robot, #M is the number

of maps that cover at least expl area, |P | is the number of partial rooms in such maps. We

indicate the average (standard deviation) IoU of our layout prediction method on partially

observed rooms.

could be retrieved very reliably and their inclusion could cause an overestimate625

of the overall prediction accuracy returned by the IoU. Hence, we evaluate the

IoU only for rooms for which an actual prediction of the layout is made, namely

for those partial rooms where F̂ ∗i 6= {}. Overall, we consider for evaluation 482

partial rooms P obtained in 196 grid maps M .

The results are shown in Table 2. Overall, considering maps obtained at630

different stages of exploration altogether, we obtain an average IoU of 0.70,

over all the partial rooms for which a layout has been predicted. However,

it can be seen how the performance in predicting the layout of partial rooms

increases during exploration. We obtain a performance of 0.75 after half of the

environment has been observed and of 0.86 when the 90% of the environment635

has been observed. It is also interesting to point out that the standard deviation

of the IoU decreases when the explored area increases.

As discussed in Section 2, alternative methods require a library of envi-

ronments, consider fully or almost fully observed rooms, or do not predict the

geometrical structure of the unknown parts of the environment. So, comparing640

them with our approach is not immediate nor fair.

Figure 10 shows four examples of layout prediction starting from grid maps
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expl 30.32 expl 62.16 expl 75.56 expl 84.08

IoU 0.74 IoU 0.84 IoU 0.74 IoU 0.95

Figure 10: Four reconstructed layouts for different environments. First row: partial grid maps

(expl is the percentage of explored area wrt the total area of the environment). Second row:

reconstructed layouts (with average IoU over the partial rooms). Third row: partial grid maps

(gray), reconstructed layouts (black), and ground truth (red).

with partial rooms. The examples are relative to four different environments at

different stages of exploration in order to assess the proposed method in different

settings.645

The first column of Figure 10 shows the case of a very large building of

which several rooms have been already observed, and where the map M covers

only the 30% of the total area. Despite the fact that our method cannot infer

correctly the T-shaped structure of the building from the partial grid map, we

are able to correctly identify the open frontiers (in red) that lead to other parts650

of the building. The average IoU is 0.74.

The second column of Figure 10 shows how our method can infer the shape

of several rooms in a halfway-known building. It can be seen that the predicted
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shape of partial rooms is consistent wrt their real aspect, despite the fact that

not all the walls have been fully observed, as it can be seen by looking at the655

rooms that are on the corridor (in orange) of the top-right of the map, even if

the reconstruction of such corridor is under-segmented.

The third column of Figure 10 shows how our method can correctly estimate

the presence of a long corridor in the left part of the building, similar to the

long corridor that has been observed in the right part of the building that has660

already been explored.

The fourth column of Figure 10 presents an almost fully observed environ-

ment, where the layout of the few partial rooms in the bottom-left part of the

building is correctly predicted using the structural information obtained from

the other rooms. This example shows that our method performs well with par-665

tial grid maps of complex buildings and copes with gaps in the maps (small

frontiers left behind corners) and (relatively small) inaccuracies, like the fact

that the metric map is slightly distorted.

We now discuss layout prediction for two environments at different stages of

exploration. These two examples show what type of knowledge can be inferred670

by using our proposed approach during an exploration run. We evaluate the

results obtained when predicting the layout of partially observed rooms using

the IoU metric and the results obtained when reconstructing the layout from

the complete map at the end of exploration using the forward accuracy and

backward accuracy metrics of Section 4.1.675

The predictions at different exploration stages are independent of each other;

namely, the prediction performed from grid map Mt at time step t is not used to

compute the prediction from Mt+1. While exploration progresses, our method

is able to exploit more knowledge about the structure of the environment. This

results in an increased accuracy (IoU) of the predicted layout of partially ob-680

served rooms. However, the increase of the IoU cannot be strictly monotonic,

because the partial rooms whose layout is predicted change at each stage.

Figure 11 presents a first example of the application of our approach to

an environment at different stages of exploration. Note that, as expected, the
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expl 40.81 expl 63.81 expl 73.85 expl 84.55 expl 95.08

IoU 0.81 IoU 0.80 IoU 0.90 IoU 0.96 IoU 0.95

Figure 11: First example of application of our approach to increasingly complete grid maps

of an environment.

accuracy of the predicted layout improves with the completeness of the grid685

map and, consequently, with the number of structural features discovered in

the environment. The predicted layout of partial rooms is accurate from the

second stage shown in the figure, namely after both the upper and lower walls

that constitute the border of the image are observed. The correctness of the

reconstructed layout of fully observed rooms improves as exploration progresses.690

During the early stages of exploration, walls inside the environment are correctly

reconstructed. However, the segmentation of the space into rooms is often

incorrect, resulting in under-segmentation. This is particularly evident in the

third and fourth stages shown in Figure 11, when exploration is between 70%

and 85%. In both cases, the central corridor (in green) is considered as a part695

of a larger room. However, when exploration is complete, the full layout L is

correctly retrieved with AFC = 86.36 and ABC = 88.74, as shown in Figure 12.

Figure 13 shows the second example. Our method identifies correctly open

frontiers that lead to other portions of the environment at early stages of explo-
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Figure 12: Reconstructed layout of the complete map of Figure 11.

ration (e.g., the central corridor in the first three stages shown in the figure).700

After the largest part of the environment has been observed (fourth and fifth

stages), our method is able to provide an accurate prediction of the layout. In

particular, in the last stage, our method is able to predict the layout of the last

room at the bottom of the right corridor by using the information obtained on

the left corridor of the building. While exploration progresses, the accuracy of705

the layout reconstruction of fully observed rooms improves as well and, at the

end of exploration, we obtain AFC = 89.6 and ABC = 86.5 (Figure 14).

Finally, in Figure 15 it can be seen that our method is able to correctly

identify walls even when a small portion of the environment has been explored.

More precisely, a good prediction can be obtained when the bounding walls of710

the environment or one of the corridors are observed. Using such information,

our method is able to provide meaningful knowledge about the structure of the

environment. Open frontiers, in red, are detected at the end of the two corridors

that led to the rest of the building.

4.5. Computing time and application to an online exploratino process715

Our proposed method retrieves a layout L (both from complete and from

incomplete maps) in less than 10 s on a commercial laptop, meaning that an

updated version of L is available to a robot every 10 s, at most. This computing

time is compatible with the online use of our method in several applications,

where a mobile robot can use L for decision making.720

In this section, we provide an example of such an application, namely the
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expl 21.68 expl 44.65 expl 72.51 expl 89.35 expl 91.72

IoU 0.50 IoU 0.78 IoU 0.88 IoU 0.92 IoU 0.91

Figure 13: Second example of application of our approach to increasingly complete grid maps

of an environment.

Figure 14: Reconstructed layout of the complete map of Figure 13.

online use of our method for the exploration of initially unknown environments

for map building. During this process, a robot iteratively selects the next best

location to visit in order to quickly cover the entirety of an environment, ac-

cording to an exploration strategy. A fully detailed account of what is reported725

here is available in [8].

The exploration process works with the robot that iteratively performs the

following steps:
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expl 14.62 IoU 0.67

Figure 15: Retrieved layout at an early stage of exploration.

(i) it extracts from the map M a list of frontiers and, for each frontier, it

selects a candidate location p as the middle cell of the frontier;730

(ii) it evaluates the candidate locations {p} using an evaluation function f();

(iii) it selects the next best location p∗ as p∗ = arg max
p

f(p);

(iv) it plans and follows a path towards p∗, integrating the perceptions acquired

along the way into the map M ; and

(v) once it reaches p∗, it restarts from (i).735

In this process, we use the layout L in order to inform the evaluation of candidate

locations during step (ii). In particular, L is used to estimate the amount of new

area that is visible from a candidate location p, which is one of the components

of f(). (Please see [8] for full details.) What is important here is that step

(ii) happens at scales of dozens of seconds (considering the time spent by the740

robot in traveling to a new location a large environment). If no updated L is

available when executing step (ii), the robot waits before proceeding to step

(iii). We empirically observed that this never happened in our experiments,

indicating that obtaining an updated L is not a bottleneck for the robot during

exploration. In what follows, we present some results in order to evaluate the745

online use of our method in this exploration context.

We implement our exploration framework in ROS, using the ROS navigation

stack. Explorations are performed in 10 large-scale buildings (from 1000 m2 to

37



3500 m2) simulated in Stage (the same environments of Section 4.4, as that of

Figure 13), using a simulated robot equipped with a laser range scanner with a750

field of view of 180◦ and a range of 6 m and traveling with a speed of 0.8 m/s.

Our method is embedded into a dedicated ROS node. The ROS node receives

the latest metric map M from the SLAM algorithm (in this case the ROS imple-

mentation of GMapping) and a list of frontiers computed from M by an external

node. After computing L, the node publishes it on a dedicated topic. Note that755

outsourcing the computation of the frontiers (which is one of the differences be-

tween our implementation and that of [10] and [11]) allows the introduction of

parallelization within our method, as the process of identifying the frontiers in-

side a grid map can be time consuming [40]. While the computation of frontiers

is not a core part of our method, the availability of a list of frontiers is required760

to compute L (specifically, to predict LP , as discussed in Section 3.2). Frontier

computation amounts on average to about 40% of total computing time, with

a maximum around 60%.

In each of the environments, we perform 10 runs, for a total of 100 runs, in

which the robot fully explores the environments. The total area of the environ-765

ments and the time required to fully explore them (averaged over 10 runs) are

reported in Table 3. The complete exploration system, including our module for

retrieving L, the SLAM module, and the ROS navigation stack (as well as the

robot simulation), is executed on a commercial laptop, without any dedicated

hardware. As said, in none of the runs, the robot has to wait for the computa-770

tion of L to end in step (ii). Thus, we have empirically shown that our method

can be used for supporting the online decision-making of an exploring robot.

In general, the time required to compute L is proportional to the number

of rooms in each map. However, as the rooms are considered sequentially,

computing the layout of a room is independent from computing the layout of775

other rooms. The mere prediction of the layout of a single room (i.e., the body

of the for cycle in Algorithm 2) for the environments considered in Section 4.4

takes on average 0.028 s. Note that although we could parallelize the retrieval

of the layout for different rooms, we do not exploit this opportunity in our
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Environment Area Time

#1 1420 m2 1715 s

#2 1000 m2 1636 s

#3 3410 m2 4187 s

#4 1270 m2 2482 s

#5 1740 m2 2477 s

#6 2820 m2 2842 s

#7 3180 m2 4265 s

#8 2150 m2 3537 s

#9 1950 m2 4275 s

#10 1800 m2 3508 s

Table 3: Area and average time required by a robot to perform a full exploration of environ-

ments where our method is used to retrieve the layout L that informs the selection of the next

location to reach.

experiments.780

4.6. Evaluation with real-world maps

In order to assess the ability of our proposed method to reconstruct and pre-

dict the layout starting from metric maps acquired by real robots, which usu-

ally feature the presence of furniture, clutter, and non-structural elements, we

present two examples of layout reconstruction and prediction performed start-785

ing from such metric maps. In these examples, the layout of the environment

is retrieved without applying significant changes to the proposed method used

for the more “regular” metric maps obtained from simulations and described

in the previous sections. The only change, as we discuss in more detail in the

following section, regards the values of two parameters.790

Metric maps obtained in cluttered environments present a large number of

frontiers (of different sizes) that are due to unexplored parts of the environment

that are behind some obstacles. For this reason, as described in Section 3.2, our
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(a) (b) (c)

Figure 16: Retrieved layout of a cluttered map obtained by a real robot (from [41]).

method considers all the rooms in which the frontiers lie as partially observed

and thus their layout is predicted. Our method, consequently, tries to remove795

clutter and to fill gaps to obtain a clean and abstract representation of each

room, for example approximating as rectangles the rooms with small columns

close to the walls. Despite this fact, and the fact that metric maps obtained

in real-world environments are significantly different from those obtained in

simulation, our method is able to successfully reconstruct and predict their800

layout.

Figure 16 presents the first example, relative to a house environment from

[41]. The map of Figure 16a presents clutter in all of the rooms, with only the

main corridor in the middle being completely observed and mapped by the robot.

The big room in the upper-left part of the map has been almost fully observed805

by the robot, but presents several unseen parts due to the clutter. However,

the representative lines obtained from the observed portion of the environment

(Figure 16b) provide a segmentation of the map into a few meaningful faces. The

reconstructed layout, in Figure 16c, provides a reasonable guess of the structure

of the environment, as shown by the fact that the room in the upper-left part of810

the map is correctly predicted to be a big almost-rectangular room and that the

layout of the three rooms connected to the corridor at the bottom of the map

(in light-blue, pink, and green, respectively) are successfully predicted. Note

that all of the rooms of this example, except the central corridor, are classified

as partial rooms due to the presence of frontiers. However, for better clarity,815
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(a) (b) (c)

Figure 17: Retrieved layout of a cluttered map obtained by a real robot (from [42]).

we adopt here a color scheme different of the one used for the other examples

of Section 4.4, where partially observed rooms are denoted with a dashed gray

pattern.

In the second example, we applied our method to one of the publicly available

maps of [42] (Figure 17). Also in this case, the map of Figure 17a presents clutter820

in most of the rooms. Moreover, some rooms connected to the upper part of

the corridor are only partially observed, as the robot has not entered in them

while mapping. In Figure 17b, it can be seen how our method is able to provide

a valid segmentation of the environment, which is then used in Figure 17c to

reconstruct and predict the layout of the environment in a meaningful way.825

In this example, due to the presence of several partially observed rooms, our

method tends to under-segment the rooms, in particular those connected to the

upper corridor.

This fact suggests that, despite segmentation of the environment using few

representative lines could effectively predict the layout of the environment, the830

clustering method used for grouping faces into rooms could be adapted in order

to cope better with cluttered settings, as in the case of maps obtained with real

robots. For example, it would be interesting to execute the proposed method

online by filtering out clutter using a method similar to that of [43].

4.7. Discussion835

The examples presented above show that our proposed method is able to

reconstruct and predict the layout of environments from metric maps in several
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(a) (b) (c)

Figure 18: Reconstructed layout of the map of Figure 16, where more representative lines are

used.

different settings. At the core of the method there is the fact that it segments

the environment using relatively few representative lines which successfully cap-

ture the underlying structure of buildings and their regularities. Indeed, these840

representative lines are used to retrieve the direction of the main walls, ignoring

clutter and small details that can be found in metric maps (see, for a different

approach, [18]).

For this reason, our method can be easily adapted without changes to differ-

ent settings, provided that representative lines are determined according to the845

main walls of the environment. From our experience, the only modifications re-

quired in order to adapt our method to different input metric maps are relative

to the identification of the line segments S, using the probabilistic Hough line

transform (Figure 2c), and to the clustering of collinear line segments in sets

Wj,k, which are later used for computing the representative lines and the faces.850

In particular, we observed that the outcome of our method is mainly influenced

by two parameters θ = (minLinPoints, wall), namely the minimum number of

points that could be considered as a line and the threshold for merging collinear

line segments. In general, we set θ = (7, 10), but we change them for input

metric maps obtained by real robots. Specifically, we use θ = (40, 20) for the855

map of Figure 16 and θ = (60, 12) for the map of Figure 17. Consider, for

example, Figure 18, which shows the layout reconstruction of the same environ-

ment of Figure 16 when using θ = (30, 10), which results in a larger number
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of representative lines detected within the map and, consequently, in a larger

number of faces. Comparing Figure 16b to Figure 18b and Figure 16c to Figure860

18c, a larger number of representative lines results into a less abstract and less

“clean” representation of the environment. The rooms identified in Figure 18c

represent not only the main structure of the rooms, but also small rooms due to

clutter. With more suitable values θ = (40, 20) our proposed method, as shown

in Figure 16c, produces a cleaner and more abstract representation of rooms’865

shapes, representing each room with a polygon that is retrieved from the main

walls and better capturing the underlying structure of the entire building. As a

consequence, although several parameters are used in the steps composing our

method, only the two parameters θ should be set to identify, within the input

metric map M , only those line segments S that lie along the main walls of the870

building.

In all the examples discussed above, experimental evaluation has been per-

formed considering as metric maps M grid maps whose cells can assume (pos-

sibly after thresholding the maps built by GMapping) only three values: free,

obstacle, and unknown. This allows to apply our method to input metric maps875

coming from different sources, like evacuation maps, blueprints, and partial

maps built by real robots (see Sections 4.3 and 4.6), as we consider as candidate

cells for wall identification only those cells labeled as obstacle. However, more

informative map representations based on fine-grained probability distributions

on the occupancy of cells can be adopted. These maps, as those based on the880

Dempster-Shafer theory [44] and the NDT maps [45], represent the degree of

uncertainty about the occupancy of each portion of the environment and have

been proven to be particular useful when considering long-term and dynamic

settings, in which distinguishing between stable and static map elements (e.g.,

walls, which typically correspond to highly certain occupancy) and dynamic and885

transient ones (e.g., moving obstacles, which typically correspond to uncertain

occupancy) is particularly important. The integration of such knowledge into

our method could be beneficial and information about the occupancy probability

of cells might be useful in order to retrieve good candidates for the representative
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lines of the walls in the environment.890

Our method is based on 2D metric maps, typically grid maps obtained with

2D laser range scanners, that, as we discussed previously, are simpler and less

rich representations than the 3D point clouds used for example in [5, 21]. 3D

maps provide more knowledge about the environment (e.g., they allow to retrieve

the walls of the environment from the detection of the ceilings or from the895

identification of the doors as gaps on planar surfaces) at the expenses of requiring

more complex sensors (e.g., Velodynes or RGBD cameras) and more complex

SLAM processing, implying larger computing efforts. Our approach, requiring

only 2D metric maps, can be applied to input maps obtained by cheap and

simple robots, like domestic robots (e.g., vacuum cleaning and socially assistive900

robots) and research platforms (e.g, TurtleBots). The layout returned by our

method can be used for several tasks, starting from identifying rooms within the

map and regularizing inaccurate portions of the maps. For instance, a map can

have some “gaps” due to the fact that the robot has observed and mapped only

portions of some rooms while passing (without entering) in front of their open905

doors. This lack of knowledge constitutes a limitation to the robot’s operations,

because it cannot plan to perform any task in the unmapped areas. Our method

could be used to smooth such a limitation by predicting portions of the map

that are not fully observed at mapping time. An example of a possible online

use of our method is provided in Section 4.5 and detailed in [8]. Moreover, an910

adaptation of our method to predict the layout of completely unexplored rooms

that are behind closed doors is presented in [46]. Finally, in [47] our method is

embedded in a framework for detecting robust features in indoor maps in order

to evaluate map quality.

While the current performance of our method allows its use in some online915

applications of ground robots, fast-moving robots (e.g., UAVs) may require the

availability of a fresh L at higher frequencies. In this case, our method can be

further improved as follows. Some steps, like the computation of line segments

from walls and the computation of frontiers, that extract rather stable features

about the environment, can be performed at low frequency or on-demand upon920
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major changes in the metric map M . Other steps, like the prediction of the

layout of rooms, can be performed as a separate process at higher frequency

and only for rooms for which the metric map M has significantly changed.

Such high-frequency updates can be obtained up to 5 Hz, according to results

reported at the end of Section 4.5. However, we leave such improvements as925

future work.

5. Conclusions

In this paper, we have presented a method for retrieving the layout of an

indoor environment given its 2D metric map, like the one that could be obtained

from laser range scanners onboard of autonomous mobile robots. Our method930

reconstructs the layout of those rooms which have been completely observed by

the robot and predicts a possible layout of rooms that have been only partially

observed, exploiting structural features extracted from the observed parts of the

environment.

Experimental results show that the proposed method performs well and is935

able to cope with complete and partial metric maps of large-scale buildings,

not only when the input maps are grid maps, but also with blueprints and

evacuation maps. Experiments performed using maps at different degrees of

completion show that our method is able to predict a possible layout, even

when only relatively small portions of the environment have been covered by940

the robot.

Future work, in addition to what has been mentioned along the paper, in-

cludes the combination of our method with room segmentation approaches to

investigate if better performance can be obtained by looking both at the global

structural features and at the local features of the buildings. Our method could945

be extended to input maps that can be transformed in 2D maps composed of

line segments (e.g., 3D point clouds). The use of sketch maps [37, 38] as in-

put is also a promising further development. Improvements of the proposed

method include, for example, enlarging the family F of candidate sets of faces,
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by using a heuristic to efficiently search it, and by exploiting regularities iden-950

tified in other environments in the utility function Φ(). It would be interesting

to integrate our method with prior knowledge of the floor plans and assess its

performance in partial maps with increasingly larger levels of noise and clutter.

Moreover, the proposed method could be improved by detecting and explicitly

exploiting symmetries between different parts of the building, for example using955

the methods from [28, 48]. Finally, we look for other applications of the method

proposed in this paper, beyond those relative to exploration [8, 9].
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