

Delft University of Technology

Online robot guidance and navigation in non-stationary environment with hybrid
Hierarchical Reinforcement Learning

Zhou, Ye; Ho, Hann Woei

DOI
10.1016/j.engappai.2022.105152
Publication date
2022
Document Version
Final published version
Published in
Engineering Applications of Artificial Intelligence

Citation (APA)
Zhou, Y., & Ho, H. W. (2022). Online robot guidance and navigation in non-stationary environment with
hybrid Hierarchical Reinforcement Learning. Engineering Applications of Artificial Intelligence, 114, Article
105152. https://doi.org/10.1016/j.engappai.2022.105152

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.engappai.2022.105152
https://doi.org/10.1016/j.engappai.2022.105152

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Engineering Applications of Artificial Intelligence 114 (2022) 105152

O
h
Y
S
F

A

K
H
O
N
F
S

1

l
o
o
m
c
g
2
i
s
t
s
s
e
o
V
r
B
p
2

h
R
A
0

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

nline robot guidance and navigation in non-stationary environment with
ybrid Hierarchical Reinforcement Learning
e Zhou ∗, Hann Woei Ho
chool of Aerospace Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
aculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629HS Delft, Zuid Holland, The Netherlands

R T I C L E I N F O

eywords:
ybrid Hierarchical Reinforcement Learning
nline guidance and navigation
on-stationary environment
unction approximation
tate space decomposition

A B S T R A C T

Hierarchical Reinforcement Learning (HRL) provides an option to solve complex guidance and navigation
problems with high-dimensional spaces, multiple objectives, and a large number of states and actions. The
current HRL methods often use the same or similar reinforcement learning methods within one application so
that multiple objectives can be easily combined. Since there is not a single learning method that can benefit all
targets, hybrid Hierarchical Reinforcement Learning (hHRL) was proposed to use various methods to optimize
the learning with different types of information and objectives in one application. The previous hHRL method,
however, requires manual task-specific designs, which involves engineers’ preferences and may impede its
transfer learning ability. This paper, therefore, proposes a systematic online guidance and navigation method
under the framework of hHRL, which generalizes training samples with a function approximator, decomposes
the state space automatically, and thus does not require task-specific designs. The simulation results indicate
that the proposed method is superior to the previous hHRL method, which requires manual decomposition, in
terms of the convergence rate and the learnt policy. It is also shown that this method is generally applicable
to non-stationary environments changing over episodes and over time without the loss of efficiency even with
noisy state information.
. Introduction

Reinforcement Learning (RL) is a framework of intelligent, self-
earning methods, that can be applied to different levels of autonomous
perations and applications. It has been successfully applied to solve
ptimal decision-making problems in known or small-scaled environ-
ents (Sutton and Barto, 1998; Bellman, 1957). When applied to

omplex environments or multi-objective tasks, such as autonomous
uidance and navigation problems (Parr and Russell, 1998a; Ni et al.,
013; de Oliveira et al., 2021), RL methods are, however, rendered
ntractable by the following challenges: (1) the large state and action
pace, which may lead to the ‘curse of dimensionality’; (2) the mul-
iple, conflicting objectives; and (3) the partial observability of the
ystem state and unknown, non-stationary environments. Numerous
tudies, such as approximate dynamic programming (Si, 2004; Khan
t al., 2012; Zhou et al., 2018, 2020; Zhou, 2022), multi-objective
ptimization strategies (Liu et al., 2015; Van Moffaert and Nowé, 2014;
amplew et al., 2011; Kim and De Weck, 2006; Lin, 2005), deep
einforcement learning (Mnih et al., 2013, 2015; Silver et al., 2016;
ellemare et al., 2020), and the partially observable Markov decision
rocess framework (Brooks et al., 2006; Scott A. Miller and Chong,
009; Ragi and Chong, 2013; He et al., 2011; Hoey et al., 2016; Lieck

∗ Corresponding author at: School of Aerospace Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia.
E-mail addresses: zhouye@usm.my (Y. Zhou), aehannwoei@usm.my (H.W. Ho).

and Toussaint, 2016), have provided successful solutions to part of the
aforementioned challenges.

Hierarchical Reinforcement Learning (HRL) is a natural approach
to dealing with the ‘curse of dimensionality’ and multiple objectives,
with which a complex problem can be solved by decomposing it
into several smaller and simpler problems (Barto and Mahadevan,
2003; Parr and Russell, 1998b; Sutton et al., 1999; Kobayashi and
Sugino, 2020; Ma et al., 2020; Eppe et al., 2022). Instead of achieving
the global optimality, HRL methods, such as Hierarchical Abstract
Machines (HAMs) (Parr and Russell, 1998a,b; Zhou et al., 2016),
options (Sutton et al., 1999), MAXQ (Dietterich, 2000; Ghavamzadeh
et al., 2006), and HEXQ (Hengst, 2002), aim at reducing the computa-
tional cost and can yield a hierarchically optimal policy. Hierarchical
decomposition speeds up learning for multi-objective tasks, by allow-
ing different objectives in different levels, and naturally reduces the
uncertainty and ambiguity induced by partial observability at high
levels (Theocharous and Mahadevan, 2002; Foka and Trahanias, 2007;
Sridharan et al., 2010). These HRL approaches, however, often use
same or similar RL methods within one application, which prevents the
exploitation of various methods. To improve the learning efficiency, a
ttps://doi.org/10.1016/j.engappai.2022.105152
eceived 10 November 2021; Received in revised form 14 June 2022; Accepted 27
vailable online xxxx
952-1976/© 2022 Elsevier Ltd. All rights reserved.
June 2022

https://doi.org/10.1016/j.engappai.2022.105152
http://www.elsevier.com/locate/engappai
http://www.elsevier.com/locate/engappai
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2022.105152&domain=pdf
mailto:zhouye@usm.my
mailto:aehannwoei@usm.my
https://doi.org/10.1016/j.engappai.2022.105152

Y. Zhou and H.W. Ho Engineering Applications of Artificial Intelligence 114 (2022) 105152
Abbreviations

RL Reinforcement Learning
HRL Hierarchical Reinforcement Learning
hHRL hybrid Hierarchical Reinforcement Learn-

ing
MC Monte Carlo
TD Temporal-Difference
GPS Global Positioning System
OLS Ordinary Least Square
RLS Recursive Least Square
MSE Mean Squared Error
HAMs Hierarchical Abstract Machines

recent research proposed to allow for hybrid methods, state informa-
tion, and rewards in multi-objective problems, namely hybrid Hierar-
chical Reinforcement Learning (hHRL) (Zhou et al., 2019). This method
was validated on online guidance and navigation tasks where the
environment is complex, partially observable, and a priori unknown.
The simulation results indicated that the hHRL method, compared to
flat or non-hybrid methods, can help to accelerate learning, to alleviate
the ‘curse of dimensionality’ in complex decision-making tasks, and
to reduce the uncertainty or ambiguity with different levels more
efficiently.

However, the hHRL algorithm, same as most current HRL methods,
also requires certain degree of task-specific manual designs, which
involves engineers’ preferences and impedes the transfer of learning
from one application to another even similar application (Barto and
Mahadevan, 2003). Specifically, in guidance and navigation problems,
the state abstraction or environment decomposition can be decided in
advance based on the a priori information about the environment. For
example, in many indoor navigation tasks, the environment can be
decomposed into several sub-environments based on physical isolation,
such as floors, rooms, corridors, etc. for easier coarse navigation and
high-level instructions (Theocharous and Mahadevan, 2002). For more
general environments, such as in a maze navigation problem, as shown
in Fig. 1, which does not have clear, observable isolation, it can be
decomposed into grids based on physical distances (Zhou et al., 2019;
Theile et al., 2020). Whereas, the size and shape of the grids are often
assigned manually with certain a priori knowledge and may not be
successful when transferred to other environments. Furthermore, the
current hHRL algorithm has to learn a map from the sensor information,
which is not memory-efficient and hard to extend to real-world sce-
narios. In the real world, mobile robots will navigate in environments
with static obstacles, such as walls, and non-stationary obstacles, such
as chairs and tables. To draw the map, the agent needs to detect the
type of obstacles and only include the static obstacles in the map, which
is inefficient in practice.

The aim of this paper is to address the aforementioned knowledge
gaps by developing a more general and data-efficient hHRL method
for online guidance and navigation problems, more specifically, by
exploiting function approximation in high-level decision-making to
automatically and intrinsically decompose the environment. The in-
struction, which is usually a direction in guidance and navigation
problems, will be given based on the absolute state in the high level,
and the estimated value of certain state will be generalized to the
surrounding environment. This generalization process will automati-
cally and dynamically form boundaries between macro states during
the learning process. As suggested by early research (Vezhnevets et al.,
2017; Nachum et al., 2018), the intrinsic reward that encourages the
low-level agent to follow the instruction can be defined as a function
of both the instructions and the resulted states, which will evaluate

both the correctness and efficiency of the low-level policy. Similarly,

2

Fig. 1. A guidance and navigation problem with obstacles and a target in a non-
stationary maze environment. The black color represents stationary obstacles, while
the gray color represents non-stationary obstacles.

when the low-level policy does not follow the high-level instruction,
the intrinsic reward function can be used to relabel the past high-level
instructions for a more efficient learning process.

The main contribution of this paper is the development of a
general, extendable online guidance and navigation algorithm under
the framework of hHRL, which does not require task-specific designs
and can be used in non-stationary environments. In contrast to our prior
work (Zhou et al., 2019) that decomposes the environment manually
into several smaller spaces, this algorithm uses a continuous state space
representation for the generalization and scalability of guidance and
navigation problems. In addition, this algorithm, instead of manually
assigning supplemental penalties, uses on-policy learning for obstacle
avoidance with only collision penalties. Thus, it can be used in on-
line guidance and navigation problems, such as the benchmark Parr’s
maze navigation problem (Parr and Russell, 1998b), but with the
non-stationary environment.

The remainder of this paper is structured as follows. Section 2
starts with an introduction to the hHRL concept and describes the
framework for solving guidance and navigation problems. Section 3
presents the implementation details of the proposed algorithm, includ-
ing each value function and the adaptation rules. Then, Section 4
validates the proposed algorithm in online guidance and navigation
problems with non-stationary environments and measurement noises.
Lastly, Section 5 shows the advantages and disadvantages of using the
proposed algorithm and addresses the challenges and possibilities of
future research.

2. Hybrid hierarchical reinforcement learning for guidance and
navigation

Hybrid Hierarchical Reinforcement Learning (hHRL) was proposed
(Zhou et al., 2019) to allow for different methods and types of state
information in different levels and sub-tasks. By following the hHRL
concept and rules, an online guidance and navigation algorithm has
been established to deal with multiple objectives, partial observabil-
ity, unknown environments, and learning across tasks. This algorithm
has been successfully applied to several maze navigation problems
with localization and mapping. However, this mapping method is not

memory-efficient and hard to extend to real-world scenarios, especially

Y. Zhou and H.W. Ho Engineering Applications of Artificial Intelligence 114 (2022) 105152

a
A
t
c
i
r
t

non-stationary environments. The state space decomposition also re-
quires certain degree of manually task-specific designs, although it is
proved insensitive to the design. This paper proposed a modified online
guidance and navigation algorithm under the framework of hHRL,
which does not require manually defined task-specific designs, and
can be used in non-stationary environments. This section will briefly
introduce the hHRL concept and the modifications to the previous
algorithm.

2.1. Hybrid learning

HRL is a natural approach to solving complex problems that can be
decomposed into several smaller problems with different targets. For
each smaller problem, the agent needs to choose a specific RL method
to evaluate and improve the policy with a value function and/or a
policy function. To ease the assimilation of multiple targets, current
HRL approaches often use the same or similar methods within one
application. However, there is no single method that can benefit all
targets (Wolpert and Macready, 1997; Takamuku and Arkin, 2007;
Tan et al., 2011; Abbaszadeh Shahri and Maghsoudi Moud, 2021),
which is also applicable to HRL. The choice of methods will depend
on the type of tasks and rewards, the attributes of the state and action
spaces, etc. For example, in different hierarchies and sub-tasks, the
environment will often return different types of rewards, such as a
single final reward, immediate rewards, and delayed rewards, where
the Monte Carlo (MC) method, Temporal-Difference (TD) learning, or a
joint method is desirable, respectively. In addition, the state and action
spaces in different levels can be discrete, continuous, or even hybrid,
which may also imply different methods. More specifically, some level
has a complex, continuous state–action space, where the actor–critic
method might be more useful, while another level may have a discrete
action space, where Q-learning or SARSA may be more efficient.

Therefore, hHRL was proposed to better use the acquired informa-
tion and appropriate methods to effectively tackle each sub-task. In
other words, different sub-tasks are allowed to use different learning
methods, state information, learning types, reward assignment sys-
tems, as long as the learned result can be assimilated within each
hierarchy (Zhou et al., 2019).

2.2. Hierarchical structure

For online guidance and navigation in a priori unknown, non-
stationary environments, decomposition of tasks and abstraction of
actions allow agents to solve current sub-problems and to ignore irrele-
vant details at the current level. This paper adopts a general two-layer
guidance and navigation hierarchical structure, as shown in Fig. 2: a
higher-level policy decides the direction of the movement towards the
target area, and a lower-level policy decides each primitive actions in
the non-stationary environment to prevent collision while following
the higher-level instruction. The higher-level policy, in every 𝜏 time
steps, estimates the global or absolute state and produces a coarser-
grained instructional behavior. This behavior 𝒃 ∈ : {[0, −1], [−1, 0],
[0, 1], [1, 0]} represents a direction {go North, go West, go South, go
East}, where the 𝑥 axis is pointing to East and the 𝑦 axis is pointing to
South, as seen in Fig. 1. The direction is represented by a unit vector
in the task domain and can be easily extended to three-dimensional or
continuous guidance and navigation problems. The lower-level policy,
after receiving the higher-level instruction 𝒃𝑡, observes the relative
states in terms of obstacles at each time step and produces primitive
actions 𝑎𝑡, 𝑎𝑡+1,… , 𝑎𝑡+𝜏−1, where 𝑎 ∈ : {turn left, turn right, move
forward}. This can be broken down into two sub-tasks: the first sub-task
(L1) is to follow the higher level instruction, while the second sub-task
(L2) is to prevent collision with the wall or obstacles. These sub-tasks in
the same level are trained separately for the ease of utilizing different
types of rewards and of transferring the learned results to different
scenarios or tasks.
 e

3

Fig. 2. A two-layer guidance and navigation hierarchical structure.

Fig. 3. An illustrative example of the agent with a relative observation, 𝒐 =
[𝑜𝑓 , 𝑜𝑙 , 𝑜𝑟 , 𝑜ℎ], in a discrete environment.

Instead of manual environment decomposition (Zhou et al., 2019),
this paper uses a continuous state-space representation for the sake of
the generalization and the scalability of any guidance and navigation
environments. The adaptation of a single state–action value will be
generalized to surrounding states naturally by using value function
approximators. Therefore, this method can be used in both discrete
domain and continuous domain without preset boundaries or sizes.

2.3. Relative and absolute states

In guidance and navigation problems, the agent often has an ac-
curate relative state from cameras, sonar sensors, infrared systems,
etc., which is a local observation 𝒐 of its surroundings for accurate
operations. To perform global tasks, the agent also needs to know the
absolute state, which is the unique, absolute position of the agent in the
task environment, 𝒑. It can be obtained by using a Global Positioning
System (GPS), calculating from accelerometers, recognizing from fea-
tures, or estimating with several techniques. This information is often
inaccurate but can be very useful for a high-level decision-making.

Same as the previous work (Zhou et al., 2019), the agent represents
a mobile robot and has a relative observation, 𝒐 ∈ : 3-step short-sight
(obstacle in the 1, 2, 3-step away or nothing) in 3 directions (front,
left, and right), represented by 𝑜𝑓 ∈ 𝑓 , 𝑜𝑙 ∈ 𝑙, and 𝑜𝑟 ∈ 𝑟, and
its heading angle 𝑜ℎ ∈ ℎ representing {East, South, West, North},
s shown in Fig. 3. Thus, this relative state has only 256 possibilities.
lthough relative state brings ambiguity into maze problems, it also,

o some extent, limits the growing of the state space and consumes less
omputational and memory resources. In addition, the relative state
nformation can directly meet the objective of preventing collisions and
emains flexible in unknown, non-stationary environments. Therefore,
he relative state will be used in the lower-level.

Absolute position has its own benefit in target approaching tasks,
specially for small-scaled problems. With local information of relative

Y. Zhou and H.W. Ho Engineering Applications of Artificial Intelligence 114 (2022) 105152

s
e
e
t
a

3

h
v
t
a
(
T
t
c
t
t
l
e

𝜚

Algorithm 1 A two-level hHRL algorithm for online guidance and navigation
1: Start the 𝑖th episode.
2: while not reach the target area do
3: Observe absolute position 𝒑𝑡, choose 𝒃𝑡 using behavior policy with 𝑄𝐻 (𝒑𝑡, 𝒃;𝛩𝑖) and 𝜖-greedy.
4: Receive instruction 𝒃𝑡, observe relative state 𝒐𝑙, choose action 𝑎𝑙
5: for 𝑙 ∈ [𝑡, 𝑡 + 𝜏) do
6: Take action 𝑎𝑙, observe immediate reward 𝑟𝑙 and next state 𝒐𝑙+1.
7: Choose action 𝑎𝑙+1 using action policy 𝑄𝐿(𝒐𝑙 , 𝒃𝑡, 𝑎) and 𝜖-greedy.
8: Update 𝑄𝐿2(𝒐𝑙 , 𝑎𝑙) with SARSA.
9: 𝒐𝑙 ← 𝒐𝑙+1, 𝑎𝑙 ← 𝑎𝑙+1

10: end for
11: Determine the intrinsic reward 𝜚𝑡+𝜏 .
12: Update 𝑄𝐿1(𝒐𝑙 , 𝒃𝑡, 𝑎𝑙) for all (𝒐𝑙 , 𝒃𝑡, 𝑎𝑙) in [𝑡, 𝑡 + 𝜏) with batch offline Q-learning
13: Relabel the high-level behavior 𝒃̆𝑡 and save the experience sample (𝒑𝑡, 𝒃̆𝑡,𝒑𝑡+𝜏)
14: end while
15: Update the parameters in 𝑄𝐻 for all visited (𝒑𝑡, 𝒃̆𝑡) with discounted reward MC and obtain 𝛩𝑖+1.
16: 𝛩𝑖 ← 𝛩𝑖+1
f
o
a
d
e
t
i
𝒃

observations, the agent may perform obstacle avoidance, and can es-
timate its location in the discrete maze with features and memorized
maps (Zhou et al., 2019). However, this mapping method is based on a
manual decomposition of the environment and is not memory-efficient.
And it is hard to extend to real-world scenarios, especially continuous
or non-stationary environments. For a possible future extension to
real-world applications, the agent will receive an inaccurate absolute
position 𝒑 ∈  : position in the maze along the 𝑥 and 𝑦 axes, repre-
ented by [𝑝𝑥, 𝑝𝑦]. The accessibility of each state in this non-stationary
nvironment may vary with time, and the amount of absolute states can
ver-increase due to the increasingly expanded environment. Therefore,
he acquired absolute state cannot be the only deciding factor for
ctions but will be used to decide the high-level behavior.

. Implementations

This section presents the detailed implementation of the proposed
HRL algorithm for online guidance and navigation, focusing on the
alue functions and their adaptation in each level. As shown in Fig. 1,
he navigation environment has stationary and non-stationary obstacles
nd a target area. And the agent only has a limited set of actions 
see Zhou et al. (2019) for the detailed description of its mobility).
he agent does not know the map of this maze but will interact with
he environment by receiving an immediate penalty 𝑟 = −2 when it
ollides with obstacles, and a final reward 𝑅 = 100 when it reaches the
arget area. To encourage the low-level agent to follow the instruction,
he higher-level behaviors 𝒃𝑡 will be defined as the goals for the low-
evel agent, and the reward will be given based on the correctness and
fficiency of the low-level policy using an intrinsic reward function 𝜚:

𝑡+𝜏 (𝒑𝑡,𝒑𝑡+𝜏 , 𝒃𝑡) =
(𝒑𝑡+𝜏 − 𝒑𝑡) ⋅ 𝒃𝑇𝑡

𝜏
. (1)

In the lower level, as shown in Fig. 2, the agent will make a decision
in order to (1) follow the higher-level instruction and (2) to prevent
collisions. The evaluations of these two sub-tasks are based on intrinsic
rewards 𝜚 evaluated at every time 𝜏, 𝜏 = 30 in this implementation, and
collision penalties 𝑟 at every time step, respectively. Their associated
state variables are also different, e.g., the heading of the agent may
not relate to collisions but will influence the direction of its trajectory.
To improve the learning efficiency, these two sub-tasks will be trained
separately with different RL methods, state information, and rewards
under the hHRL framework. The trained result should be in the same
structure, i.e., state values or state–action values, so as to be summed
up to decide what actions to take. The learning approaches of the hHRL
method is presented in Algorithm 1.
4

3.1. Higher-level policy learning

The higher-level behavior is trained with discounted reward MC
episode by episode. When an episode ends at time 𝑇 , the agent will
receive a final reward 𝑅 = 100 if it reaches the target, and the value
unction will be updated. The adaptation is based on the trace-back
f the experienced higher-level transition tuples (𝒑𝑡, 𝒃𝑡,𝒑𝑡+𝜏) stored in
replay buffer. However, the transitions obtained in the past episode

o not necessarily reflect the lower-level policy in the next or future
pisodes (Nachum et al., 2018; Fujimoto et al., 2018). This will de-
eriorate the learning efficiency and still remains as an issue in HRL
mplementations. One practice is to convert the experienced behaviors
𝑡 into the ones that agree with the lower-level policy in the future 𝒃̆𝑡.

A recent research (Nachum et al., 2018) calculated the probabilities of
a number of candidate higher-level targets under the current lower-
level policy and chose the maximal goal to relabel the experience.
This method can be used for an infinite number of goals or stochastic
processes but requires high computational resources. Our previous
work (Zhou et al., 2019) drew a memory map and correct the behavior
based on the decomposed state experience. This method assumes that
the lower-level policy will converge to the perfect one ultimately and
needs less computations, but requires manual decomposition of the
environment and is limited to a finite number of behaviors.

This paper uses a new strategy to relabel the behavior based on the
reward. Since the lower-level policy is updated step-wise, the current
policy will only valid for one time step and will vary with time during
the next episode. In addition, the environment is non-stationary, which
will also affect the action selection with the same behavior and lower-
level policy. On the other hand, it is known that the lower-level policy
will be updated to maximize the intrinsic reward ultimately. Therefore,
the behavior which maximizes the reward can be used to relabel the
experienced transition tuples (𝒑𝑡, 𝒃𝑡,𝒑𝑡+𝜏), as follows:

𝒃̆𝑡 = argmax
𝒃∈

𝜚(𝒑𝑡,𝒑𝑡+𝜏 , 𝒃). (2)

This method is computationally efficient and can be used for an infi-
nite number of behaviors without using the current policy or a per-
fect model. And consequently, the training in different levels will be
independent to each other and converge to a sub-optimal solution
intuitively.

The MC offline learning can be used for backwards adaptation
through the list of relabeled transition pairs (𝒑𝑡, 𝒃̆𝑡) with a return
𝐺 (Sutton and Barto, 1998). For a better denotation, the sequence of
the experienced transition pairs (𝒑𝑡, 𝒃̆𝑡) in the list is referred as 𝑘𝑡. Then,
this return is initialized with 𝐺(𝑘𝑇) = 0 and updated backwards through
the transition pairs with 𝐺(𝑘𝑡) = 𝑟+ 𝛾𝐺(𝑘𝑡+1), where 𝑟 is an immediate
reward, and 𝛾 ∈ (0, 1) is the discount factor. Because the high-level

agent may only receive a final reward 𝑅 = 100, the returns for the

Y. Zhou and H.W. Ho Engineering Applications of Artificial Intelligence 114 (2022) 105152

f

e

Fig. 4. The Q network with RBF activation functions, where the output of each square
unit is a vector. This Q network inputs the absolute position 𝒑 and outputs its Q values
or all the valid behaviors 𝒃 ∈ : {𝒃1, 𝒃2, 𝒃3, 𝒃4}.

xperienced transition pairs are 𝐺(𝑘𝑡) = 𝛾𝑘𝑇 −1−𝑘𝑡𝑅 reaching the target,
and 𝐺(𝑘𝑡) = 0 not reaching the target. And the Q value of experienced
transition pairs in this episode 𝑄𝐻 (𝒑𝑡, 𝒃̆𝑡) can be updated towards the
returns 𝐺(𝑘𝑡) with a learning rate 𝛼 ∈ (0, 1), as follows:

𝑄𝐻 (𝒑𝑡, 𝒃̆𝑡) ← (1 − 𝛼)𝑄𝐻 (𝒑𝑡, 𝒃̆𝑡) + 𝛼𝐺(𝑘𝑡). (3)

Therefore, the final reward can be propagated backwards efficiently.

3.2. Higher-level policy generalization

Guidance and navigation problems often have large state spaces,
which can ever-increase due to the increasingly expanded environment
of applications. And the transition pairs experienced and updated in the
high level are very limited, and most absolute states in the state space
have never been experienced exactly before. Our previous work (Zhou
et al., 2019) decomposed the state space into macro states (grids)
and updated the Q value for each of those states. This paper, instead
of manually partitioning the state space, converts the discrete maze
environment into continuous state space and generalizes the Q values
of the discrete experienced samples using a function approximator with
parameters 𝑄𝐻 (𝒑𝑡, 𝒃̆𝑡;𝛩) ≈ 𝑄𝐻 (𝒑𝑡, 𝒃̆𝑡). Because the high-level agent only
receives a final reward and updates the Q values when an episode
terminates, the Q value adaptation in Eq. (3) can be rewritten as

𝑄𝐻 (𝒑𝑡, 𝒃̆𝑡;𝛩𝑖+1) ← (1 − 𝛼)𝑄𝐻 (𝒑𝑡, 𝒃̆𝑡;𝛩𝑖) + 𝛼𝐺(𝑘𝑡), (4)

where 𝑖 denotes that the parameters 𝛩𝑖 are used in the 𝑖th episode.
Since the high-level Q values are updated in batches, it is possible

to use any existing supervised learning methods to approximate the
Q-value function, such as multivariate regression, artificial neural net-
works, and kernel methods. This paper uses a Radial Basis Function
(RBF) network for the generalization, which can be used for both the
large-scale global approximation or local fine-tuning. As illustrated in
Fig. 4, the input of the Q network is the absolute position 𝒑 ∶ [𝑝𝑥, 𝑝𝑦].
The hidden layer has 𝐽 Gaussian radial functions, whose value depends
on the distance between the input to a center point ‖𝒑− 𝒄𝑗‖ as below:

𝜑𝑗 (𝒑) = 𝑒−(‖𝒑−𝒄𝑗‖∕𝑟𝑗)
2
, (5)

where 𝒄𝑗 is the 𝑗th center point, and 𝑟𝑗 denotes its radius. And the
output of the hidden layer can be denoted as 𝝋(𝒑), where 𝝋 ∶ 2 → 𝐽 .
The output layer of this Q network is a fully-connected linear layer for
all the valid behaviors 𝒃 ∈ : {𝒃1 = [0,−1], 𝒃2 = [−1, 0], 𝒃3 = [0, 1],
𝒃4 = [1, 0]}. When 𝒄𝑗 and 𝑟𝑗 are fixed, the network output is linear
to the parameters 𝛩 = [𝜽1 𝜽2 𝜽3 𝜽4] ∈ 𝐽∗4, which are the weights
connecting the output of each radial functions to each single output of
the Q network.

This Q network is nonlinear in the input, but linear in the param-
eters. And there are several ways to update the network parameters.
According to Eq. (4), the direct method is to minimize the error using
Ordinary Least Square (OLS) in batches. And it will find the unique
optimal parameter values. However, the OLS method needs to do a
matrix inversion at each update. If there is not enough effective data,
the matrix might not be invertible, and the parameters cannot be
5

identified. In addition, the adaption with a batch of Q values only in
the current episode will totally forget the previous learned parameters.
Therefore, we can use the Recursive Least Square (RLS) method with
a forgetting factor or the gradient-descent method with a step-size
parameter, so that the training will not only concern the experience
samples in the current episode.

In this paper, we use the gradient-descent method because it is more
computationally efficient and generally applicable for both linear and
nonlinear approximators. It tries to minimize the Mean Squared Error
(MSE) of the current Q values 𝑄𝐻 (𝒑𝑡, 𝒃̆𝑡;𝛩𝑖) and the calculated returns
𝐺(𝑘𝑡) on the experienced samples. Instead of using a learning rate in
Eq. (4), we use a step-size parameter 𝜂 to reduce the MSE for each valid
behavior along the negative gradient:

𝜽𝜄,𝑖+1 = 𝜽𝜄,𝑖 + 𝜂
∑

𝒃̆𝑡=𝒃𝜄

[𝐺(𝑘𝑡) − 𝜽𝑇𝜄,𝑖𝝋(𝒑𝑡)] ⋅ 𝝋(𝒑𝑡), (6)

where 𝜄 denotes the 𝜄th valid behavior.

3.3. Lower-level learning to follow instructions (L1)

After receiving the behavior 𝒃𝑡, the lower-level will execute the
current policy to generate a sequence of tuples (𝒐𝑙 , 𝑎𝑙 ,𝒐𝑙+1) and will
receive an intrinsic reward 𝜚𝑡+𝜏 after the termination of the behavior, as
in Eq. (1). This reward is defined as the projection of the travel distance
within time [𝑡, 𝑡 + 𝜏) to the unit vector 𝒃𝑡 divided by 𝜏, which reflects
the resulted movement of the sequential state–action pairs in a time
step. This intrinsic reward is used to train the action value function
𝑄𝐿1(𝒐, 𝒃, 𝑎) with batch offline Q-learning, as follows:

𝑄𝐿1(𝒐𝑙 , 𝒃𝑡, 𝑎𝑙) ← (1 − 𝛼)𝑄𝐿1(𝒐𝑙 , 𝒃𝑡, 𝑎𝑙)

+ 𝛼
[

𝜚𝑡+𝜏 + 𝛾 max
𝑎∈

𝑄𝐿1(𝒐𝑙+1, 𝒃𝑡, 𝑎)
]

, 𝑙 ∈ [𝑡, 𝑡 + 𝜏).
(7)

3.4. Lower-level learning to prevent collision (L2)

The second sub-task in the lower-level is learning to prevent colli-
sions online. After taking an action, the agent may receive an immedi-
ate penalty 𝑟 = −2 from the environment if there is a collision. The
lower-level policy also keeps exploring with an 𝜖-greedy strategy. If
using one-step off-policy methods, previous actions, such as pushing the
agent towards an obstacle, will not receive any penalty. An option is to
use eligibility traces concerning 𝑛-step backups, such as Q(𝜆), which
will bridge the gap between the action and future penalties. Unfor-
tunately, off-policy Q(𝜆) needs to cut off traces when an exploratory
action is taken and thus will lose much of its advantage (Sutton and
Barto, 1998). Therefore, this paper uses the easy-to-implement SARSA,
an on-policy method, to train the action value function for this sub-task.
The collision penalty, if happens in the future, will also be backtracked
through the Markov chain.

This task does not directly relate to the current behavior 𝒃𝑡 or even
the agent’s heading 𝑜ℎ ∈ ℎ, which can, therefore, reduce the dimen-
sion of the value function to 𝑓 × 𝑙 × 𝑟 × in the implementation.
The action value function can be written as 𝑄𝐿2(𝑜𝑓 , 𝑜𝑙 , 𝑜𝑟, 𝑎), but we
will keep the notation 𝑄𝐿2(𝒐, 𝑎) for simplicity in the rest of this paper.
The value function is updated after each quintuple of experiences
(𝒐𝑡, 𝑎𝑡, 𝑟𝑡+1,𝒐𝑡+1, 𝑎𝑡+1) using SARSA, as follows:

𝑄𝐿2(𝒐𝑡, 𝑎𝑡) ← (1 − 𝛼)𝑄𝐿2(𝒐𝑡, 𝑎𝑡) + 𝛼
[

𝑟𝑡+1 + 𝛾𝑄𝐿2(𝒐𝑡+1, 𝑎𝑡+1)
]

. (8)

3.5. Assimilation of learned results

In this maze navigation problem, a two-layer hierarchical structure
is applied, and different methods are selected according to different
types of sub-tasks, rewards, and state–action spaces. At the high level,
the agent learns to search and get to the target by implementing the
offline MC algorithm with a continuous Q network. This method has

high data efficiency and learning speed in these episodic tasks that

Y. Zhou and H.W. Ho Engineering Applications of Artificial Intelligence 114 (2022) 105152

o
o
t
d
p
o
n
c

Fig. 5. The traces of the agent in non-stationary environments, where the gray color represents non-stationary obstacles and may change over episodes.
nly receive a single final reward. At the low level, the agent applies
ffline, off-policy Q-learning to perform the instruction following sub-
ask. By propagating the reward back, this method will learn from
elayed intrinsic rewards in batches more efficiently. And to tackle the
reventing collision sub-task, the agent train the value function using
nline, on-policy SARSA with immediate penalties. This method will
aturally backtrack the future collision penalty through the Markov
hain.

The high-level policy, at time 𝑡, decides the instructional behavior
𝒃𝑡 and passes it to the low-level sub-task: following the instruction (L1).
And based on this instruction, the agent, at time 𝑙 ∈ [𝑡, 𝑡 + 𝜏) with
observation 𝒐𝑙, will calculate the Q-values for all the possible actions
with 𝑄𝐿1(𝒐𝑡, 𝒃𝑡, 𝑎) in evaluation of this sub-task. Similarly, the Q-values
𝑄𝐿2(𝒐𝑡, 𝑎) can be calculated to evaluate the values for the second sub-
task in the same level: preventing collisions (L2). Following the rules of
hHRL (Zhou et al., 2019), the agent, at time 𝑙 ∈ [𝑡, 𝑡+𝜏) with observation
𝒐𝑙 and instruction 𝒃𝑡, will assimilate the Q-values for possible actions
and find the greedy action, as follows:

𝑎∗ = argmax
𝑎∈

𝑄𝐿(𝒐𝑙 , 𝒃𝑡, 𝑎)

= argmax
𝑎∈

[𝑄𝐿1(𝒐𝑡, 𝒃𝑡, 𝑎) +𝑄𝐿2(𝒐𝑡, 𝑎)], for 𝑎 ∈ .
(9)

The value functions for each sub-task can be evaluated independently
and asynchronously, which eases the training process and the transfer
of learning to other guidance and navigation tasks and other systems.

In addition, this method does not sum up the complete value
functions within the whole state space or state–action space, which
may vary among different methods, but only the values for the current
possible actions within the action sub-space. In other words, the state
spaces in different sub-tasks in the same level does not need to be
the same, which allows the agent to utilize the state information more
efficiently. For instance, the state information used in the first sub-task
6

is the instruction and relative states with heading 𝑓 ×𝑙 ×𝑟×ℎ×.
But the instruction and the agent’s heading will not directly affect the
evaluation of the second sub-task, thus the state space is reduced to
𝑓 × 𝑙 × 𝑟. This trait makes the hHRL method allows for different
methods in sub-tasks within the same level.

4. Numerical experiments

In this section, two different scenarios will be simulated to validate
the proposed algorithm for online guidance and navigation problems in
non-stationary environments. First, this method will be applied to the
maze with non-stationary environments, which varies over episodes,
and the result will be compared to the one using the manual de-
composition (Zhou et al., 2019). Second, this method will be applied
to the maze with non-stationary obstacles, which may change from
time to time. In addition, high-frequency measurement noises will be
superimposed to the measurements of the absolute position to further
validate the robustness of the proposed method. Note that all the
policies will follow an 𝜖-greedy strategy, and the exploration rate used
in this paper is initialized as 𝜖0 = 0.9 and is decayed by 0.9 after each
update until it reaches the minimum exploration rate 𝜖 = 0.1.

4.1. Non-stationary environment over episodes

The maze is a priori unknown to the agent, and the initial position
may vary from episode to episode. These simulations use pseudo-
random initial positions (pre-determined and in the northeast area in
the maze) for 30 episodes. The agent starts its exploration with the
original maze in Fig. 1, denoted as maze a, for 15 episodes, and from
the 16th episode onwards, the non-stationary obstacles may change
their position every 5 episodes. Fig. 5(a) shows the agent’s trace in the
15th episode in maze a. The environment changes to maze b, maze c,

Y. Zhou and H.W. Ho Engineering Applications of Artificial Intelligence 114 (2022) 105152

T

a
A
h
‘

Fig. 6. The greedy behaviors after 30 episodes presented in the original Parr’s maze.
he colored dots represent the greedy behaviors for each absolute position.

Fig. 7. The number of primitive actions taken in each episode in a non-stationary
environment changing over episodes (averaged of 10 runs). The algorithms fQ and hQ
have the same agent and the same initial maze, but the obstacles are all stationary.
The hHRL-M algorithms decompose the environment to macro states manually and uses
a partial map, and hHRL-G is the proposed algorithm without task-specific design or
memorizing the map.

and maze d in the 16, 21, and 26th episodes for the first time, where the
traces of the agent are recorded in Figs. 5 (b), (c), and (d), respectively.
Note that the policy will follow an 𝜖-greedy strategy with a minimum
exploration rate 𝜖 = 0.1. Therefore, random actions or behaviors can
be observed in the traces of the agent from the result. The greedy
behaviors after 30 episodes are presented in the original Parr’s maze
in Fig. 6. The colored dots in the map represent the greedy behaviors
for each absolute position.

The proposed method in this paper, which is Generally applicable
and denoted as hHRL-G, is compared to the previous hHRL algo-
rithm (Zhou et al., 2019) with Manual decomposition of the state
space, denoted as hHRL-M, in this experiment. Note that the hHRL-
M algorithm in the previous study (Zhou et al., 2019) did not know
the absolute position of the agent from the sensor, but memorized
its trajectory and observations and simultaneously drew a partial map
consisting of only stationary obstacles. And in the next episode, the
agent will compare its current trace with the partial map to localize
itself in the map and to estimate its macro state. The non-stationary
obstacles may vary from episode to episode and cannot be used as a
map for the next episode comparison. Therefore, it requires the agent to
use extra sensors or analysis to tell whether the obstacles are stationary,
such as walls, or non-stationary, such as chairs and tables.
7

Fig. 8. The trace of the agent in the non-stationary environment, where the gray
obstacles may appear intermittently within an episode. The pink dotted lines encircle
the traces that go upon the non-stationary obstacles’ states when they are not there.

Fig. 9. The averaged number of primitive actions from the 21st episode onwards
with noisy absolute positions (averaged of 10 runs). The simulated white noise has
a Gaussian distribution  (0, 𝜎) with different standard deviations 𝜎 = 0.5, 1, 1.5, 2.

For a fair comparison, the hHRL-M algorithm will also receive an
bsolute position and use it to directly determine its macro state.
nd in this experiment, the sensor information for both hHRL-G and
HRL-M is accurate. In addition, the results are also compared with

flat’ Q-learning (fQ) and hierarchical Q-learning (hQ), which have a
hierarchical structure but only using Q-learning for all sub-tasks (Zhou
et al., 2019, 2016). These two algorithms will be applied to the same
maze problem with the same agent, but the obstacles will not change
during the whole learning process. Fig. 7 illustrates the number of
primitive actions taken in each episode using fQ, hQ, hHRL-G, and
hHRL-M algorithms. Based on the results, hHRL methods improve the
performance considerably and much faster compared to fQ and hQ
algorithms, which are although trained in stationary environment. The
main reason is that hHRL methods allow for different, appropriate
methods for different sub-tasks. More specifically, the MC off-line learn-
ing is more efficient in the high-level episodic sub-task with a single
final reward. Comparing the results of two hHRL algorithms in Fig. 7, it
was found that although the manual decomposition of the environment
into a small number of macro states will speed up the learning, the
policy trained with hHRL-G without manual decomposition converges
slightly faster than the one trained with hHRL-M. In addition, from the

Y. Zhou and H.W. Ho Engineering Applications of Artificial Intelligence 114 (2022) 105152

r

1
h

i
d
f
t
m
a
r

4

c
m
T
e
o
t
w
a

t
w
f
p
e
i

4

c
l
w

2
t
l
a
a
b
b

Fig. 10. The traces of the agent in the presence of measurement noise, where the blue-colored lines and red-colored lines record the measured positions and the actual positions,
espectively.
n
m
t
h
t
f
n
T
r

t
I
i
t
d
h
p
c
u
t
t
o
c

5

r
r
n
t
t
w
i
r
r
p
I
e
t
r
f

a

6th episode onwards, the averaged number of primitive actions with
HRL-M and hHRL-G are 694 and 459, respectively.

The results indicate that hHRL-G performs better than hHRL-M, and
t is ensured that hHRL-G requires less manual designs, such as the
ecomposition of the environment or assigning supplemental penalties
or approaching obstacles. Thus, hHRL-G is efficient inherently from
he hHRL concept and generally applicable with the before-mentioned
odifications, such as generalizing training samples with function

pproximations, using higher-level behavior as the goal indicator, and
elabeling the experienced transition according to intrinsic rewards.

.2. Non-stationary environment over time

In a real-world environment, some non-stationary obstacles may
hange over a long period, such as desks and chairs, and some others
ay change from time to time, such as doors, human, and other robots.
herefore, the proposed algorithm will be validated in a non-stationary
nvironment in Fig. 1, where the obstacles may change over time. In
ther words, some of the obstacles may appear or disappear intermit-
ently within an episode after every a few time steps, but the obstacles
ill not be placed upon the current agent’s state. Fig. 8 presents the
gent’s trace in the 10th episode, which takes 429 primitive actions.

The above results illustrate that the proposed algorithm is applicable
o non-stationary environments changing over episodes and over time
ithout the loss of efficiency. By using this modified hHRL algorithm

or guidance and navigation, the agent does not need to memorize the
artial map of the environment, manually define the macro state, or
stimate whether the obstacle is stationary or not, but only need the
nformation about its relative observation and absolute position.

.3. Validation in the presence of measurement noise

The real-world agent often observes an accurate relative state from
ameras, sonar sensors, infrared systems, etc., and an inaccurate abso-
ute position by using a GPS or an indoor positioning system. Therefore,
e will validate the proposed method to the maze with noisy 𝒑 mea-

surements, and the simulated white noise has a Gaussian distribution
 (0, 𝜎). The standard deviations of the noise 𝜎 are chosen to be
[0.5, 1, 1.5, 2], and the averaged number of primitive actions from the
1st episode onwards are presented in Fig. 9. The result indicates that
he performance of the proposed hHRL method remains at the same
evel in the presence of the simulated white noise with 𝜎 ≤ 1. If the
mplitude of the noise is further increased, the convergence will take
longer time, and the primitive actions will increase. This is mainly

ecause the high-level decisions and the training adaptations are made
ased on the noisy absolute positions.
 i

8

Fig. 10 shows the traces of the agent in the presence of measurement
oise with 𝜎 = 0.5 and 𝜎 = 1. The blue-colored lines record the
easured positions with noise, and the red-colored lines are the actual

race of the agent in this maze. These results show that the proposed
HRL method is robust to measurement noise. In real applications,
he measurement noise in the absolute positions can be reduced with
iltering methods. In such a way, the tolerance of the measurement
oise can be higher, and the performance can be further improved.
his is beyond the scope of this paper and is recommended for future
esearch.

This paper validated the proposed algorithm in Parr’s maze naviga-
ion problem with non-stationary environment and measurement noise.
t is proposed to use unit vector to represent the instructional behav-
ors, which can be used to calculate the intrinsic reward and relabel
he experienced transitions. It can also be easily extended to three-
imensional or continuous problems without changing the method in
igh-level policy training. For more complex continuous action space
roblems, online actor–critic methods (Zhou et al., 2020; Zhou, 2022)
an be used in the lower level to combine the control of nonlinear,
nknown system to this online guidance and navigation method. Since
his hHRL method allows different methods in the same level, it is open
o being expanded both upwards to tackle more complex, multiple-
bjective tasks and downwards to control more complex, nonlinear, or
ontinuous systems.

. Conclusions

This paper proposed a new online guidance and navigation algo-
ithm under the hHRL framework. Compared to our previous algo-
ithm, the improvements of this algorithm include that (1) it does
ot need manual decomposition of the environment or store maps in
he memory, (2) it uses function approximations for generalization in
he higher-level, (3) it uses on-policy method for collision avoidance
ith environment penalties, and (4) it directly uses the high-level

nstruction as goal indicator and correspondingly define the intrinsic
ewards to evaluate the performance of following instructions and to
elabel the experienced transitions. The results indicate that the newly
roposed algorithm is better in the convergence rate and optimization.
n addition, it is more general and efficient especially for non-stationary
nvironments, and it is robust to measurement noise in absolute posi-
ions. It does not rely on localization with partial maps or extra sensors
ecognizing the stationary or non-stationary obstacles, but only a value
unction approximator.

This paper focuses on the systematic environment decomposition
nd intrinsic reward definition in online guidance and navigation tasks
n non-stationary environments. Although the numerical experiments

Y. Zhou and H.W. Ho Engineering Applications of Artificial Intelligence 114 (2022) 105152
are undertaken in discrete 2-dimensional maze environments, it is
indicated that the proposed method is generally applicable to both
discrete and continuous state spaces and both 2-dimensional and 3-
dimensional guidance and navigation environments. Future research
should therefore concentrate on the implementation to different ap-
plications (1) to validate this algorithm in continuous, non-stationary
environments, (2) to apply this method to a real-world ground robot
by extending a lower level control policy, and (3) to test this method
in 3-dimensional guidance and navigation problems with flying robots.

CRediT authorship contribution statement

Ye Zhou: Conceptualization, Methodology, Validation, Writing –
original draft. Hann Woei Ho: Project administration, Writing – review
& editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The authors would like to thank Malaysian Ministry of Higher Edu-
cation for providing the Fundamental Research Grant Scheme (FRGS),
Malaysia (Grant number: FRGS/1/2020/TK0/USM/03/11).

References

Abbaszadeh Shahri, A., Maghsoudi Moud, F., 2021. Landslide susceptibility mapping
using hybridized block modular intelligence model. Bull. Eng. Geol. Environ. 80
(1), 267–284.

Barto, A.G., Mahadevan, S., 2003. Recent advances in hierarchical reinforcement
learning. Discrete Event Dyn. Syst. 13 (1–2), 41–77.

Bellemare, M.G., Candido, S., Castro, P.S., Gong, J., Machado, M.C., Moitra, S.,
Ponda, S.S., Wang, Z., 2020. Autonomous navigation of stratospheric balloons using
reinforcement learning. Nature 588 (7836), 77–82.

Bellman, R., 1957. Dynamic Programming. Princeton University Press.
Brooks, A., Makarenko, A., Williams, S., Durrant-Whyte, H., 2006. Parametric POMDPs

for planning in continuous state spaces. Robot. Auton. Syst. 54 (11), 887–897.
de Oliveira, T.H.F., de Souza Medeiros, L.P., Neto, A.D.D., Melo, J.D., 2021. Q-Managed:

A new algorithm for a multiobjective reinforcement learning. Expert Syst. Appl.
168, 114228.

Dietterich, T.G., 2000. Hierarchical reinforcement learning with the MAXQ value
function decomposition. J. Artif. Intell. Res. (JAIR) 13, 227–303.

Eppe, M., Gumbsch, C., Kerzel, M., Nguyen, P.D., Butz, M.V., Wermter, S., 2022.
Intelligent problem-solving as integrated hierarchical reinforcement learning. Nat.
Mach. Intell. 1–10.

Foka, A., Trahanias, P., 2007. Real-time hierarchical POMDPs for autonomous robot
navigation. Robot. Auton. Syst. 55 (7), 561–571.

Fujimoto, S., Hoof, H., Meger, D., 2018. Addressing function approximation error in
actor-critic methods. In: International Conference on Machine Learning. PMLR, pp.
1587–1596.

Ghavamzadeh, M., Mahadevan, S., Makar, R., 2006. Hierarchical multi-agent
reinforcement learning. Auton. Agents Multi-Agent Syst. 13 (2), 197–229.

He, R., Brunskill, E., Roy, N., 2011. Efficient planning under uncertainty with
macro-actions. J. Artificial Intelligence Res. 40 (1), 523–570.

Hengst, B., 2002. Discovering hierarchy in reinforcement learning with HEXQ. In:
International Conference on Machine Learning (ICML). 2, pp. 243–250.

Hoey, J., Schröder, T., Alhothali, A., 2016. Affect control processes: Intelligent af-
fective interaction using a partially observable Markov decision process. Artificial
Intelligence 230, 134–172.

Khan, S.G., Herrmann, G., Lewis, F.L., Pipe, T., Melhuish, C., 2012. Reinforcement
learning and optimal adaptive control: An overview and implementation examples.
Annu. Rev. Control 36 (1), 42–59.

Kim, I.Y., De Weck, O., 2006. Adaptive weighted sum method for multiobjective
optimization: a new method for Pareto front generation. Struct. Multidiscip. Optim.
31 (2), 105–116.

Kobayashi, T., Sugino, T., 2020. Reinforcement learning for quadrupedal locomotion
with design of continual–hierarchical curriculum. Eng. Appl. Artif. Intell. 95,
103869.
9

Lieck, R., Toussaint, M., 2016. Temporally extended features in model-based
reinforcement learning with partial observability. Neurocomputing 192,
49–60.

Lin, J.G., 2005. On min-norm and min-max methods of multi-objective optimization.
Math. Program. 103 (1), 1–33.

Liu, C., Xu, X., Hu, D., 2015. Multiobjective reinforcement learning: A comprehensive
overview. IEEE Trans. Syst. Man Cybern.: Syst. 45 (3), 385–398.

Ma, A., Ouimet, M., Cortés, J., 2020. Hierarchical reinforcement learning via dynamic
subspace search for multi-agent planning. Auton. Robots 44 (3), 485–503.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
Riedmiller, M., 2013. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al., 2015. Human-level
control through deep reinforcement learning. Nature 518 (7540), 529–533.

Nachum, O., Gu, S.S., Lee, H., Levine, S., 2018. Data-efficient hierarchical reinforcement
learning. In: Advances in Neural Information Processing Systems. pp. 3303–3313.

Ni, Z., He, H., Wen, J., Xu, X., 2013. Goal representation heuristic dynamic pro-
gramming on maze navigation. IEEE Trans. Neural Netw. Learn. Syst. 24 (12),
2038–2050.

Parr, R.E., Russell, S., 1998a. Hierarchical Control and Learning for Markov Decision
Processes. University of California, Berkeley Berkeley, CA.

Parr, R., Russell, S., 1998b. Reinforcement learning with hierarchies of machines. Adv.
Neural Inf. Process. Syst. 1043–1049.

Ragi, S., Chong, E.K.P., 2013. UAV path planning in a dynamic environment via
partially observable Markov decision process. IEEE Trans. Aerosp. Electron. Syst.
49 (4), 2397–2412.

Scott A. Miller, Z.A.H., Chong, E.K.P., 2009. A POMDP framework for coordinated
guidance of autonomous UAVs for multitarget tracking. EURASIP J. Adv. Signal
Process..

Si, J., 2004. Handbook of Learning and Approximate Dynamic Programming, Vol. 2.
John Wiley & Sons.

Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al., 2016.
Mastering the game of Go with deep neural networks and tree search. Nature 529
(7587), 484–489.

Sridharan, M., Wyatt, J., Dearden, R., 2010. Planning to see: A hierarchical approach
to planning visual actions on a robot using POMDPs. Artificial Intelligence 174
(11), 704–725.

Sutton, R.S., Barto, A.G., 1998. Introduction to Reinforcement Learning. MIT Press.
Sutton, R.S., Precup, D., Singh, S., 1999. Between MDPs and semi-MDPs: A framework

for temporal abstraction in reinforcement learning. Artificial Intelligence 112 (1–2),
181–211.

Takamuku, S., Arkin, R.C., 2007. Multi-method learning and assimilation. Robot. Auton.
Syst. 55 (8), 618–627.

Tan, A.-H., Ong, Y.-S., Tapanuj, A., 2011. A hybrid agent architecture integrating desire,
intention and reinforcement learning. Expert Syst. Appl. 38 (7), 8477–8487.

Theile, M., Bayerlein, H., Nai, R., Gesbert, D., Caccamo, M., 2020. UAV Path planning
using global and local map information with deep reinforcement learning. arXiv
preprint arXiv:2010.06917.

Theocharous, G., Mahadevan, S., 2002. Approximate planning with hierarchical par-
tially observable Markov decision process models for robot navigation. In: IEEE
International Conference on Robotics and Automation, ICRA’02, Vol. 2. IEEE, pp.
1347–1352.

Vamplew, P., Dazeley, R., Berry, A., Issabekov, R., Dekker, E., 2011. Empirical
evaluation methods for multiobjective reinforcement learning algorithms. Mach.
Learn. 84 (1), 51–80.

Van Moffaert, K., Nowé, A., 2014. Multi-objective reinforcement learning using sets of
pareto dominating policies. J. Mach. Learn. Res. 15 (1), 3483–3512.

Vezhnevets, A.S., Osindero, S., Schaul, T., Heess, N., Jaderberg, M., Silver, D.,
Kavukcuoglu, K., 2017. Feudal networks for hierarchical reinforcement learning.
In: International Conference on Machine Learning. PMLR, pp. 3540–3549.

Wolpert, D.H., Macready, W.G., 1997. No free lunch theorems for optimization. IEEE
Trans. Evol. Comput. 1 (1), 67–82.

Zhou, Y., 2022. Efficient online globalized dual heuristic programming with an
associated dual network. IEEE Trans. Neural Netw. Learn. Syst..

Zhou, Y., van Kampen, E., Chu, Q.P., 2016. Autonomous navigation in partially
observable environments using hierarchical Q-learning. In: Proceedings of the
International Micro Air Vehicles Conference and Competition 2016, Beijing, China.

Zhou, Y., van Kampen, E.-J., Chu, Q., 2018. Incremental approximate dynamic
programming for nonlinear adaptive tracking control with partial observability.
J. Guid. Control Dyn. 41 (12), 2554–2567.

Zhou, Y., van Kampen, E.-J., Chu, Q., 2019. Hybrid hierarchical reinforcement learning
for online guidance and navigation with partial observability. Neurocomputing 331,
443–457.

Zhou, Y., van Kampen, E.-J., Chu, Q., 2020. Incremental model based online heuris-
tic dynamic programming for nonlinear adaptive tracking control with partial
observability. Aerosp. Sci. Technol. 105, 106013.

http://refhub.elsevier.com/S0952-1976(22)00267-6/sb1
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb1
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb1
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb1
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb1
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb2
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb2
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb2
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb3
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb3
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb3
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb3
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb3
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb4
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb5
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb5
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb5
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb6
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb6
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb6
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb6
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb6
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb7
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb7
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb7
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb8
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb8
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb8
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb8
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb8
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb9
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb9
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb9
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb10
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb10
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb10
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb10
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb10
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb11
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb11
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb11
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb12
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb12
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb12
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb13
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb13
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb13
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb14
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb14
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb14
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb14
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb14
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb15
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb15
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb15
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb15
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb15
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb16
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb16
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb16
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb16
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb16
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb17
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb17
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb17
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb17
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb17
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb18
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb18
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb18
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb18
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb18
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb19
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb19
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb19
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb20
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb20
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb20
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb21
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb21
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb21
http://arxiv.org/abs/1312.5602
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb23
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb23
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb23
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb23
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb23
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb24
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb24
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb24
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb25
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb25
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb25
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb25
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb25
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb26
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb26
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb26
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb27
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb27
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb27
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb28
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb28
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb28
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb28
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb28
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb29
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb29
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb29
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb29
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb29
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb30
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb30
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb30
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb31
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb31
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb31
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb31
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb31
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb31
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb31
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb32
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb32
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb32
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb32
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb32
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb33
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb34
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb34
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb34
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb34
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb34
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb35
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb35
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb35
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb36
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb36
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb36
http://arxiv.org/abs/2010.06917
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb38
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb38
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb38
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb38
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb38
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb38
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb38
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb39
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb39
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb39
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb39
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb39
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb40
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb40
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb40
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb41
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb41
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb41
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb41
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb41
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb42
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb42
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb42
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb43
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb43
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb43
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb45
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb45
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb45
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb45
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb45
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb46
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb46
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb46
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb46
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb46
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb47
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb47
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb47
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb47
http://refhub.elsevier.com/S0952-1976(22)00267-6/sb47

	Online robot guidance and navigation in non-stationary environment with hybrid Hierarchical Reinforcement Learning
	Introduction
	Hybrid hierarchical reinforcement learning for guidance and navigation
	Hybrid learning
	Hierarchical structure
	Relative and absolute states

	Implementations
	Higher-level policy learning
	Higher-level policy generalization
	Lower-level learning to follow instructions (L1)
	Lower-level learning to prevent collision (L2)
	Assimilation of learned results

	Numerical experiments
	Non-stationary environment over episodes
	Non-stationary environment over time
	Validation in the presence of measurement noise

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

