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A B S T R A C T

Evolutionary Polynomial Regression (EPR) has found widespread application and use for model structure
development in engineering and science. This hybrid evolutionary approach merges real world data and
explanatory variables to generate well-structured models in the form of polynomial equations. The simple and
transparent models produced by this technique enable us to explore, via sensitivity analysis, the robustness
of the derived models. Yet, existing EPR frameworks do not make explicit use of sensitivity analysis in the
selection of robust and high-fidelity model structures. In this paper, we develop a multi-step sensitivity-
driven method which combines the strengths of differential evolution and model selection via Monte Carlo
simulation to explore the input–output relationships of model structures. In the first step, our hybrid approach
automatically determines the optimum number of terms of the polynomial equations. In a subsequent step,
our algorithm explores the mean parametric response of each explanatory variable used in the mathematical
formulation to select a final model structure. Finally, in our selection of the most robust mathematical structure,
we take explicit consideration of the prediction uncertainty of the simulated output. We illustrate and evaluate
our EPR method for different engineering problems involving modeling and prediction of the moisture content
and creep index of soils. Altogether, our results demonstrate that the use of sensitivity analysis as an integral
part of model structure search and selection will lead to robust models with high predictive ability.
. Introduction

Complex engineering systems are commonly derived from first
rinciples or closed-form equations (white-box models), data-driven
echniques (black-box models), or conceptual mathematical structures
gray-box models) (Giustolisi and Savic, 2006). White-box models
ssume algebraic and ordinary (or partial) differential equations to
odel the dynamics of intricate engineering processes at distinct spa-

ial dimensions and temporal scales (Vrugt, 2016). These models can
ccurately characterize the underlying physical meaning of the process
eing investigated. Yet, many white-box models are often unable to
recisely describe complex, real-world engineering systems. Black-box
odels, such as artificial neural networks (ANN), have the advan-

age of dealing with a significant amount of information to produce
omplex model functions. These approaches can mimic engineering
rocesses by learning from numerous examples, that is, by analyzing
nput and output data. While popular, these techniques also have their
wn drawbacks (Giustolisi and Savic, 2006). For instance, parameter
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estimation and overfitting problems are some of the disadvantages
of model development by black-box models (Giustolisi and Laucelli,
2005). What is more, these techniques do not allow us to explicitly
incorporate knowledge obtained from physical processes into the model
search. This makes it very difficult to detect if the model can reproduce
theoretically relevant parts of the system behavior. Consequently,
many resort to gray-box techniques such as Evolutionary Polynomial
Regression (EPR), which provides well-structured, transparent, and
physically based mathematical expressions. Additionally, EPR methods
allow us to explore, through sensitivity analyses (parametric study),
the generalization ability (robustness), and the physical meaning of
each input data in the model (Shahin, 2015). Sensitivity analysis is an
essential process for differentiating (gray) EPR models from black-box
approaches. For these reasons, EPR models have found its way into
engineering practice (Ahangar-Asr et al., 2011b; Alani and Faramarzi,
2014; Balf et al., 2018; Berardi et al., 2008; Bruno et al., 2018;
Costa et al., 2020; Doglioni et al., 2010; Doglioni and Simeone, 2021;
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Faramarzi et al., 2012; Fiore et al., 2012, 2016; Giustolisi et al., 2007,
2008; Gomes et al., 2021a; Jin and Yin, 2020; Laucelli and Giustolisi,
2011; Montes et al., 2020; Rezania et al., 2008, 2010, 2011; Shahin,
2015).

EPR is a useful two-stage hybrid regression technique that performs
(i) model structure identification, and (ii) parameter estimation to fit
simple polynomials in the input–output process. Traditionally, the EPR
framework uses simple genetic algorithm (GA) and linear least-squares
(LS) for model structure identification and parameter estimation, re-
spectively. The model structure search strategy using single-objective
genetic algorithm (SOGA) has been widely applied (Ahangar-Asr et al.,
2010, 2011a,b, 2012; El-Baroudy et al., 2010; Faramarzi et al., 2012;
Shahin, 2015; Shahnazari et al., 2013). In these approaches, the ob-
jective function relies on statistical metrics, such as the minimiza-
tion of the sum of squared errors (SSE). Still, overfitting and lack of
generalization ability are some of the drawbacks involved in SOGA-
based EPR modeling schemes (Giustolisi and Savic, 2009; Savic et al.,
2009; Laucelli and Giustolisi, 2011; Jin et al., 2019b). In contrast,
the multi-objective (MO) strategy enhances the classical SOGA-base
EPR techniques for multiple reasons (Marasco et al., 2021). Most
notably, MO-based EPR enables us to handle multiple objectives within
the search strategy. For instance, several adopted MO-based EPR to
maximize the model fitness to data and to minimize the number of
polynomial terms (Alani and Faramarzi, 2014; Balf et al., 2018; Berardi
et al., 2008; Creaco et al., 2016; Giustolisi and Savic, 2009; Rezania
et al., 2008). The MO procedure thus returns a Pareto-efficient subset
of feasible non-dominated solutions, that is, optimal model structures
based on different criteria (Giustolisi and Savic, 2009). However, a key
task is then to select one representative model from the set of Pareto
optimal solutions. Hence, many researchers worldwide are trying to
improve the different building blocks of EPR to select optimum model
structures for empirical engineering models (Jin et al., 2019b; Jin and
Yin, 2020; Gomes et al., 2021a; Marasco et al., 2021; Marasco and
Cimellaro, 2021). A review of Gomes et al. (2021a) discusses challenges
and research gaps on model selection within the EPR framework.

Recently, different methodologies have been proposed to improve
search strategy and model selection within the EPR framework. These
attempts have successfully developed multi-step automatic model se-
lection schemes. For instance, Jin and Yin (2020) developed an EPR
process that consisted of two steps: (i) model selection using a multi-
objective differential evolution algorithm (MODE) that handles mul-
tiple objectives (model accuracy, complexity and robustness) and (ii)
delicacy identification, in which a set of candidate models are ranked
according to the coefficient of determination (𝑅2), number of EPR
erms, number of input variables, robustness ratio and monotonicity.
heir results highlighted that the MODE-based EPR technique can
fficiently model soil properties. Still, they also reported that inno-
ative optimization algorithms or advanced model selection schemes
hould enhance the EPR performance. In another attempt to create an
ntelligent multi-step automatic model selection, Jin et al. (2019b) pro-
osed a single-objective differential evolution (SODE) EPR procedure.
n their approach, two optimal models were selected to predict the
reep index of clays based on the predictive ability, model complexity,
obustness and monotonicity. However, to select one of the two models
s the optimum, sensitivity analysis was performed on the physical
roperties used as explanatory variables. Despite both formulations
resented excellent predictive ability, the parametric study showed
uite different (one of them unrealistic) physical meaning. In fact,
rom a practical perspective, EPR models must interpret the underlying
hysical meaning of the system (Shahin, 2015). This raises a question
f how uncertain the sensitivity analyzes are if independent simulations
re carried out. Therefore, an EPR method that quantifies such infor-
ation and automatically preserves the theoretical underpinning of the

ystem behavior during the search strategy would hence be desirable
o engineering practice. In a similar line of research, Gomes et al.
2021a) have proposed a new EPR method that differs from previous
2

attempts in three different procedures: dual search-based using GA and
differential evolution (DE) as model structure exploration engine, self-
adaptive evolution of new population and compromise programming as
a model selection tool. The study has demonstrated that it is possible
to nicely predict dependent variables within the EPR framework with
accuracy, physical meaning, and reduced number of parameters and
input data in the model structure.

These previously published works did not resolve, however, other
questions concerning the optimum model selection and uncertainty
quantification within the EPR framework. First, it is unclear if the
robustness of single EPR runs is warranted since distinct models might
be produced using the same input data and algorithmic parameters.
In fact, Oparaji et al. (2017) highlighted that different ANN models
might be obtained utilizing equal training data due to the random
initialization of the (weights and biases) parameters in each network,
which leads to unavoidable uncertainty in the selection of the best
performing model. Accordingly, EPR models with different structures
can produce close predictive capability, but they could also have quite
different generalization and parametric responses (Jin et al., 2019b).
On the one hand, simple models without sufficient explanatory vari-
ables can potentially overlook components of the system. Alternatively,
care should be exercised not to derive complex EPR models with too
many parameters in lieu of overfitting, therefore decreasing substan-
tially generalization ability. As a consequence, EPR models that provide
excellent predictions and generalization abilities, maintain accuracy
and robustness for predicting real-world phenomenon (Jin et al., 2019a;
Marasco et al., 2021; Gomes et al., 2021a). Moreover, robust EPR
models can preserve features of the physical process that are likely to
be revealed in the sensitivity analysis (Shahin, 2015). Second, while
sensitivity analysis could provide several advantages to the model
search strategy, existing publications only adopt such parametric study
subsequently to the definition of the optimum mathematical model
(e.g., among others, (Ahangar-Asr et al., 2011a, 2012; Alzabeebee,
2020; Javadi et al., 2012; Rezania et al., 2010; Shahin, 2015; Jin
et al., 2019b; Gomes et al., 2021a)). Therefore, a natural question
arises whether sensitivity analysis can effectively delineate the space
of feasible solutions, i.e., if and how the parametric study can be used
as an integral part of the model structure search. This paper addresses
these research questions.

This essay introduces and tests a novel multi-step sensitivity-driven
EPR. We build on the hypothesis that sensitivity analysis can drive
our search strategy toward improved model structure selection. We
use our previous multi-objective differential evolution and genetic
algorithm EPR (EPR-MODEGA) to explore the search space in pur-
suit of models that have a trade-off between goodness of fit and
model complexity (Gomes et al., 2021a). By coupling two different
optimization algorithms (DE and GA) in a self-adaptive evolutionary
scheme and a compromise programming tool, the method has shown
benefits in the decision-making of optimal EPR models. Here, we extend
the usefulness and general applicability of EPR-MODEGA with a new
model selection procedure that merges Monte Carlo simulations and a
parametric study to investigate how input data are propagated through
the EPR models. Monte Carlo simulations provide a simple way to
quantify the average trend of model predictions and their correspond-
ing uncertainty ranges (Dao et al., 2020; Naserim et al., 2020; Pham
et al., 2019; Tian et al., 2014; Cunha et al., 2014; Oparaji et al.,
2017). We are particularly interested in the impact of the uncertainty
sources of explanatory data on the simulated output and its associated
95% confidence interval, rather than only looking at its deterministic
results. The framework presented herein is illustrated using real-world
data, involving the prediction of two complex geotechnical engineering
variables, the optimum moisture content and the creep index of clayey
soils.

The remaining of this paper is structured as follows. Section 2
briefly describes the classical EPR approach and the new developments
of this contribution. In Section 3, we discuss our methodology, in-

cluding the database, case studies and details of our computational
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setup for the EPR simulations. Then, Section 4 highlights the results
of the application of our method to real-world data and illustrates
the advantages of our proposed EPR framework. Finally, Section 5
concludes this paper with a summary of our main discoveries.

2. EPR method

2.1. Classical approach

The key feature of evolutionary polynomial regression is to assume
that the mathematical structure of a given physical phenomenon can
be approximately described by:

𝒚 =
𝑚
∑

𝑗=1
𝑓 (𝑿, 𝑔(𝑿), 𝑎𝑗 ) + 𝑎0, (1)

here 𝒚 = {𝑦1, 𝑦2,… , 𝑦𝑛} is a 𝑛-vector of simulated data of the
hysical process, 𝑚 is the number of terms in the polynomial ex-
ression, 𝑓 represents a polynomial function developed by the pro-
ess, 𝑿 = {𝒙1,𝒙2,… ,𝒙𝑘} is the matrix of explanatory data (input
ata) with 𝑘 explanatory variables, 𝑔 denotes an optional function
e.g., exp, log, cos, sin) determined by the user, which extends the poly-
omial search into a pseudo-polynomial search strategy, 𝑎𝑗 is an
djustable parameter for the 𝑗th term and 𝑎0 is an optional bias
arameter. It is mathematically convenient to transform Eq. (1) into
he following vector form (Giustolisi and Savic, 2006):

𝑛×1(𝜽,𝒁) = [𝑰𝑛×1 𝒁
𝑗
𝑛×𝑚][𝑎0 𝑎1 … 𝑎𝑗 ]T

= 𝒁𝑛×𝑑 × 𝜽T𝑑×1,
(2)

where 𝒚𝑛×1 represents the least-squares (LS) estimator vector of 𝑛 target
alues, 𝜽𝑑×1 = {𝑎0, 𝑎1,… , 𝑎𝑗} is a 𝑑 (= 𝑚 + 1) vector of regression
arameters, [ ]T denotes transpose, 𝒁𝑛×𝑑 is a matrix composed by a
nitary vector 𝑰𝑛×1 for an optional bias, 𝑎0, and 𝑚-vectors of explana-
ory variables 𝒁𝑗 . As an example, the 𝑗-term of Eq. (2) can be written
s follows:
𝑗
𝑛×1 = [𝒙𝐄𝐒(𝑗,1)1 ⋅ 𝒙𝐄𝐒(𝑗,2)2 ⋅ 𝒙𝐄𝐒(𝑗,3)3 ⋅ ⋯ ⋅ 𝒙𝐄𝐒(𝑗,𝑘)𝑘 ] (3)

here, 𝒁𝑗 is the 𝑗th column vector whose elements are products of
andidate-independent inputs and 𝐄𝐒 comprises a 𝑘 × 𝑚 user-defined
atrix of candidate exponents. The central question in the EPR prob-

em is to optimize, by evolutionary computing, the matrix 𝐄𝐒𝑘×𝑚 of
xponents for a certain number of terms (𝑚) that will produce the poly-
omial equation. By adopting linear least squares, it is then possible to
une the vector of regression parameters 𝜽 in Eq. (2).

Fig. 1 illustrates the EPR workflow. The classical approach consists
f two main steps: (i) model structure identification using simple
enetic algorithm (GA) and (ii) parameter estimation by the linear
east-squares (LS) method. Initially, the user must provide a matrix with
nput data 𝑿 = {𝒙1,𝒙2,… ,𝒙𝑘}, i.e., explanatory data. Next, a matrix
f exponents (𝐄𝐒𝑘×𝑚) is randomly assigned, from pre-specified power
alues. After that, the EPR framework proceeds with repeated appli-
ation of three main steps. First, the exponents created are assigned
o the columns of input data, generating then a polynomial equation.
econd, the standard least squares method is used to estimate the vector
f regression parameters, 𝜽𝑑×1 in Eq. (2). Then, the method provides
model structure in the form of a polynomial equation, which can

e used to simulate the dependent variable, 𝒚. In the third step, the
ector of simulated data, 𝒚, is compared to the observed (calibration)
ata using standard statistical metrics, such as the sum of squared
rrors (Giustolisi and Savic, 2006). At this point, the first generation
f the proposed equations is thus created and tested. If the stopping
riterion is not satisfied, GA is used in the evolutionary process to create
new matrix of exponent vectors.

In practice, the evolutionary process can be implemented using any
lobal search algorithm (Jin et al., 2019b). The classical method was
idely used in the literature not only because it was the first EPR
3

Fig. 1. Overview of the EPR approach. The top (single run) panel represents the
flowchart of the classical EPR procedure. The filled green boxes indicate the devel-
opments of the EPR-MODEGA, while the final elements of the flowchart illustrate the
main steps involved in the sensitivity-driven model structure search strategy.

method available, but also notably because of its simple implementa-
tion. Examples are SOGA methods, which generally have the maximiza-
tion of the model’s accuracy as their objective function, but can produce
complex model structures, often increasing the chances of overfitting
and lack of generalization ability (e.g., Faramarzi et al., 2012; Shahin,
2016). Other methods have been proposed to improve the building
blocks of the classical approach shown in Fig. 1. A summary of the main
characteristics of the available EPR methods is presented in Table 1.
The fitness functions of multi-objective EPR methods are considerably
more sophisticated in pursuit of more parsimonious models, with fewer
polynomial terms and number of explanatory variables incorporated
into the model structure. In addition to handling multiple objectives,
some available methods can offer automatic model selection, such
as MODE (e.g., Jin and Yin, 2020), while other approaches require
inspection of the Pareto front to select the optimum model (e.g., Balf
et al., 2018). However, sensitivity analysis must be carried out inde-
pendently to confirm the robustness of the parametric response of each
model. In this work, we draw inspiration from the newly developed
MODEGA approach (Gomes et al., 2021a) to develop our gray-box
models. The main features of this last method, detailed below, will be
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Table 1
Main characteristics of available EPR methods: general fitness functions, central advantages and significant challenges.
Method Fitness function Advantages Challenges

SOGA Maximization of model accuracy Simple implementation Overfitting and lack of generalization
ability

MOGA Maximization of model accuracy,
minimization of polynomial terms
and/or minimization of inputs

Handles multiple objectives Non-automated model selection

SODE Maximization of model accuracy with
complexity penalization

Adaptive process for selecting the
combination of involved variables

Requires user inspection of ranked
models

MODE Maximization of model accuracy,
minimization of polynomial terms
and maximization of model
robustness

Handles multiple objectives with
automatic model selection

Generalization ability not guaranteed

MODEGA Maximization of model accuracy,
minimization of polynomial terms
and minimization of input
combinations

Dual search optimization,
self-adaptive offspring creation and
automatic model selection

Generalization ability not guaranteed
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further enhanced to improve model selection using sensitivity analysis,
while quantifying modeling uncertainties, which have been overlooked
in the literature related to EPR (Jin and Yin, 2020).

2.2. MODEGA approach

EPR-MODEGA differs fundamentally in three elements from the
classical approach. First, a multi-objective optimization procedure is
implemented using both DE and GA to enhance the search efficiency. In
fact, its dual search-based method has shown to outperform individual
algorithms such as MOGA and MODE (Gomes et al., 2021a). Second,
the self-adaptive offspring creation was specifically designed to select
the most efficient search method for population evolution. This tech-
nique updates the new population based on the reproductive success
of both DE and GA in the previous generation. The proposition adap-
tively changes the contribution of each algorithm and ensures that the
‘‘best’’ optimization method contributes the most offspring to the next
generation (Vrugt et al., 2009). Third, the compromise programming
method embedded in the EPR procedure facilitates the decision-making
stage, since it enables us to select models preferred statistically from
a set of Pareto optimal models with different polynomial terms. The
selection of an optimal number of terms is particularly important to
avoid overfitting as additional terms introduce unnecessary complexity,
hence producing models more sensitive to the noise of the training set
that do not generalize to other data sets (Giustolisi and Savic, 2006).
During the search procedure and population evolution, two objectives
are minimized: minimization of SSE and minimization of the number
of explanatory variables in the model structure. These improvements of
the EPR-MODEGA method are shown with filled green boxes in Fig. 1.

The EPR-MODEGA approach provides to the user one model struc-
ture with 𝑚-terms. In fact, in this model search strategy, the fittest

odels (with different numbers of polynomial terms, 𝑚) are stored
nd then further evaluated using a compromise programming tool.
hus, model structure selection is conducted according to the modeler’s
iewpoints, who assigns the relative importance to five objectives:
inimization of the number of EPR terms (𝑚) and root mean squared

rror (RMSE), and maximization of the coefficient of determination
𝑅2), coefficient of correlation (𝑟), and relative efficiency (𝐸rel). This
rocess is illustrated in the top panel of Fig. 2, which summarizes
chematically how these statistical metrics vary with 𝑚. The solid red
quares in each plot denote a hypothetical optimum number of terms
𝑚 = 2) provided by a single EPR run with the MODEGA method.
verall, the MODEGA approach can help EPR modelers incorporate
ifferent objectives, in a relatively simple way, to select the optimum
PR model. Consequently, by adopting such multi-criteria technique for
odel selection, the approach selects the best-compromised EPR model
ore efficiently. However, since a single EPR run (see Fig. 1) for a

pecific value of 𝑚 can provide different model structures, it has yet
o be established whether we can develop a broader, uncertainty-based
pproach, for model structure selection within the EPR framework.
4

2.3. New multi-step sensitivity-driven model search

We propose a new EPR framework for model structure selection
consisting of two major blocks: (i) Monte Carlo simulations and (ii)
sensitivity-driven model selection, which benefits from the Monte Carlo
simulations to select one model with the best adjustment to the mean
parametric response. Our sensitivity-driven multi-objective differential
evolution and genetic algorithm (MODEGA-SD) is coded in MATLAB
and integrates the EPR-MODEGA method, Monte Carlo simulations
and sensitivity analysis so that the users do not need to port data
between the different modeling steps, thereby simplifying substantially
sensitivity analyzes and model selection. Furthermore, our code has
post-processing features to help visualization of the results, specially
the prediction uncertainty ranges of the output variables with respect
to each independent variable. The following subsections detail the
different steps involved in our methodology.

2.3.1. Monte Carlo simulations
Now that the number of polynomial terms, 𝑚, of our EPR framework

as been defined, we are left with the final model structure. Thus,
e resort to Monte Carlo simulations to quantify the uncertainty of

he sensitivity analysis. To execute our Monte Carlo method, users
ust supply the number of Monte Carlo runs, 𝑤. We note here that

dditional inputs, such as algorithmic EPR parameters for both DE and
A, training and testing datasets, the number of polynomial terms,
, and the set of exponents, which will compose the matrix 𝐄𝐒𝑘×𝑚,
re also required information. Table 2 provides a brief description
f the different inputs and outputs of our EPR framework. Details of
nput/output information required for the MODEGA-SD framework will
e discussed in Section 3.

Through multiple EPR runs, Monte Carlo simulations provide us
o store much more information than single EPR runs. These include

variety of statistical metrics on model performance and sensitiv-
ty analysis. Such useful information will be used to investigate the
redictive capability and generalization ability of 𝑤 models with 𝑚
olynomial terms, and thus providing a basis for model selection using
he MODEGA-SD method. As schematically illustrated in Fig. 3, the
utput information of Table 2 is stored in several matrices, including
utomatic model parametric responses with respect to each explanatory
ariable. Thus, with the sensitivity analysis concluded, in the next
ubsection, we describe how such information can be used as a formal
omponent of the model structure selection.

.3.2. Model selection
Sensitivity analysis is an important component of the EPR process,

ince it can provide information on the underlying physics of the
erived model (Ahangar-Asr et al., 2011a, 2012; Alzabeebee, 2020;
avadi et al., 2012; Rezania et al., 2010; Shahin, 2015). If we de-
ote 𝒚(𝑥𝑢)𝑖 as a vector that stores the parametric response of the 𝑖th-
odel (𝑖 = {1, 2,… , 𝑤}), with respect to the explanatory variable 𝑢
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f
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Fig. 2. Summary of our sensitivity-based model selection. The top panel illustrates how the EPR-MODEGA method can be used to derive the optimum number of polynomial terms,
𝑚, within a single EPR run. The bottom panel exemplifies the sensitivity analysis of multiple EPR runs with 𝑚-terms using Monte Carlo simulations. Red lines denote the mean
parametric response of 𝑤 simulations, while black lines correspond to the parametric response of each model simulation. The green check indicates a model whose parametric
response is consistently close to the mean.
Table 2
Description of the input and output variables and algorithmic information of the MODEGA-SD approach, including their size (dimension) or
type (scalar or vector).
Inputs Type/ Outputs Type/

Size Size

Training and testing data Model performance
Dependent variable, 𝒚 𝑛 × 1 Simulated dependent variable, 𝒀 𝑛 ×𝑤
Explanatory variables, 𝑿 𝑛 × 𝑘 Root mean squared error (RMSE) 𝑛g ×𝑤

Algorithmic parameters Coefficient of determination, 𝑅2 𝑛g ×𝑤
Number of EPR terms, 𝑚 scalar Coefficient of correlation, 𝑟 𝑛g ×𝑤
Number of Monte Carlo runs, 𝑤 scalar Relative efficiency, 𝐸rel 𝑛g ×𝑤
Set of EPR exponents vector Sum of squared errors (SSE) 𝑛g ×𝑤
Number of generations, 𝑛g scalar Algorithmic information
Population size scalar Number of offspring points, 𝑁o 𝑛g ×𝑤
Offspring diversity (DE) scalar Parametric study
Crossover rate (DE and GA) scalar Model parametric response, 𝒀 (𝑿) 𝑛p × 𝑘 ×𝑤

Mutation rate (GA) scalar Mean model response, 𝒀
(𝑿)

𝑛p × 𝑘
(𝑢 = {1, 2,… , 𝑘}), then we can write the mean parametric response as
ollows:

𝒚(𝑥𝑢) =
∑𝑤

𝑖=1 𝒚
(𝑥𝑢)
𝑖

𝑤
, (4)

where 𝒚(𝑥𝑢) identifies the parametric vector that computes the mean
odel response for the explanatory variable 𝑥 . Since in our sensitivity
𝑢

5

analysis the model is simulated at 𝑛p points of the explanatory variable
(𝑥𝑢), the size of the array 𝒚(𝑥𝑢) is 𝑛p × 1. This process, executed for all
𝑘 explanatory variables, characterizes the first step of our sensitivity-
driven model selection. We can next store the mean model parametric
response in a matrix, as follows:

𝒀
(𝑿)

=
[

(𝑥1) (𝑥2) (𝑥𝑘)
]

, (5)
𝒚 𝒚 ⋯ 𝒚
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Fig. 3. Schematic overview describing the main steps of the Monte Carlo simulations
within the MODEGA-SD approach. By storing a variety of statistical metrics of each
model generated and automatically producing parametric responses for these models,
our new EPR provides an arsenal of data to be further explored in model selection.

where 𝒀
(𝑿)

corresponds to the 𝑛p×𝑘-matrix that stores the mean model
arametric responses of all 𝑘 explanatory variables, 𝒚(𝑥1), 𝒚(𝑥2) and

𝒚(𝑥𝑘) are the mean model parametric values of the first, second and
𝑘th explanatory variable, respectively. When an explanatory variable
is propagated forward through different models, it is possible that
different responses can be produced. In fact, simulation 1 in Fig. 2
depicts that the variables 𝑥1 and 𝑥𝑘 produce quite distant responses
(solid black lines) from the mean (solid red lines). Simulations 2 and
3 reveal that at least one parametric response of each model varies
significantly from the ensemble mean. However, one can see that
simulation 𝑤, for instance, returns excellent match with the mean
model parametric responses. This last model will thus provide a nice
generalization ability, since its responses are close to the mean of 𝑤

odel structures derived using an optimum number of EPR terms.
nce the matrix 𝒀

(𝑿)
has been derived, all the model parametric

responses must be statistically investigated, so that they can be ranked
accordingly.

The next step is to rank the 𝑤 models considering their fit to the
ean, 𝒚(𝑥𝑢). For this purpose, we therefore resort to two standard

statistical metrics, the 𝑅2 and RMSE indicators, whose mathematical
formulations are expressed as follows:

𝑅2
𝑖 = 1 −

(𝒚(𝑥𝑢) − 𝒚(𝑥𝑢)𝑖 )2

(𝒚(𝑥𝑢) − 𝒚(𝑥𝑢)𝑖 )2
, (6)

MSE𝑖 =

√

(𝒚(𝑥𝑢) − 𝒚(𝑥𝑢)𝑖 )2

𝑤
, (7)

where 𝑅2
𝑖 and RMSE𝑖 correspond to the 𝑅2 and RMSE-values of the

th-model, respectively. Of course, other statistical metrics could be
onsidered to evaluate these model parametric responses. These values
re then conveniently stored into reference matrices (Eqs. (8) and (9)),
6

as follows:

𝐃(𝑅2)
𝑤×𝑘 =

⎡

⎢

⎢

⎢

⎣

𝑅2,(𝑥1)
1 ⋯ 𝑅2,(𝑥𝑘)

1
⋮ ⋱ ⋮

𝑅2,(𝑥1)
𝑤 ⋯ 𝑅2,(𝑥𝑘)

𝑤

⎤

⎥

⎥

⎥

⎦

, (8)

𝐃(RMSE)
𝑤×𝑘 =

⎡

⎢

⎢

⎢

⎣

RMSE(𝑥1)
1 ⋯ RMSE(𝑥𝑘)

1
⋮ ⋱ ⋮

RMSE(𝑥1)
𝑤 ⋯ RMSE(𝑥𝑘)

𝑤

⎤

⎥

⎥

⎥

⎦

, (9)

here 𝐃( )
𝑤×𝑘 is a matrix that stores the statistical performance of 𝑤

odels. For example, 𝑅2,(𝑥1)
1 and 𝑅2,(𝑥1)

𝑤 correspond to the 𝑅2 values of
he first and 𝑤th models, respectively, of the first parametric response,
hat is, the sensitivity analysis of the model response with respect to
he variable 𝑥1.

The following procedure consists of sorting the matrices 𝐃(𝑅2)
𝑤×𝑘 and

(RMSE)
𝑤×𝑘 in descending and ascending order, respectively. This ranking
ethod is convenient since it allows us to accommodate the best sta-

istical performances at the first row of the matrix (Eqs. (10) and (11)).
e note here that an ascending or descending ranking depends on the

tatistical indicator being considered. For instance, if we consider the
th explanatory variable, the maximum 𝑅2-value (𝑅2,(𝑥𝑘)

max ), the closest to
ne, would reflect a model parametric response very close to the mean
odel response. Alternatively, low RMSE-values (RMSE2,(𝑥𝑘)

min ) would
hen represent the best performances in terms of deviation from the
ean model parametric response. Again, it is important to stress that

ne model can produce an excellent agreement with the mean model
arametric response for one explanatory variable, but the adjustment
o other variables can deviate considerably from the average (e.g., sim-
lations 2 and 3 in the bottom panel of Fig. 2). These ranked statistical
erformances are then multiplied by a 𝑤×𝑘-matrix, which is filled with
alues from 1 to 𝑤. The resulting award matrices 𝐀(𝑅2)

𝑤×𝑘 and 𝐀(RMSE)
𝑤×𝑘

ill translate into numbers the sensitivity analysis of the Monte Carlo
imulations that are closest to the mean model parametric response. In
act, the smallest values of both matrices will appear in the first row. In
ur sensitivity-driven model selection, these ‘‘best’’ simulations stored
n the matrix 𝐀( )

𝑤×𝑘 can be schematically observed in the bottom panel
f Fig. 2 (simulation 𝑤). To facilitate our next step, at this stage, a sort
ndex is stored to link elements of 𝐃( )

𝑤×𝑘 with those of the sorted award
atrix 𝐀( )

𝑤×𝑘.

(R2)
𝑤×𝑘 =

⎡

⎢

⎢

⎢

⎣

𝑅2,(𝑥1)
max ⋯ 𝑅2,(𝑥𝑘)

max
⋮ ⋱ ⋮

𝑅2,(𝑥1)
min ⋯ 𝑅2,(𝑥𝑘)

min

⎤

⎥

⎥

⎥

⎦

⋅
⎡

⎢

⎢

⎣

1 ⋯ 𝑤
⋮ ⋱ ⋮
1 ⋯ 𝑤

⎤

⎥

⎥

⎦

, (10)

(RMSE)
𝑤×𝑘 =

⎡

⎢

⎢

⎢

⎣

RMSE(𝑥1)
min ⋯ RMSE(𝑥𝑘)

min
⋮ ⋱ ⋮

RMSE(𝑥1)
max ⋯ RMSE(𝑥𝑘)

max

⎤

⎥

⎥

⎥

⎦

⋅
⎡

⎢

⎢

⎣

1 ⋯ 𝑤
⋮ ⋱ ⋮
1 ⋯ 𝑤

⎤

⎥

⎥

⎦

. (11)

The optimum model structure in our approach will be the one with
etter model performance involving all 𝑘 explanatory variables. If we
reate an array with values computed by the award matrix 𝐀( )

𝑤×𝑘 for
ach model of the Monte Carlo simulation, we can thus compare each
odel performance with a single scalar. This relatively simple but

fficient idea is represented mathematically by Eqs. (12) and (13):

(𝑅2)
𝑤×1 =

⎡

⎢

⎢

⎢

⎣

A(𝑅2 ,𝑥1)
1 +⋯ + A(𝑅2 ,𝑥𝑘)

1
⋮

A(𝑅2 ,𝑥1)
𝑤 +⋯ + A(𝑅2 ,𝑥𝑘)

𝑤

⎤

⎥

⎥

⎥

⎦

, (12)

𝐬(RMSE)
𝑤×1 =

⎡

⎢

⎢

⎢

⎣

A(RMSE,𝑥1)
1 +⋯ + A(RMSE,𝑥𝑘)

1
⋮

A(RMSE,𝑥1)
𝑤 +⋯ + A(RMSE,𝑥𝑘)

𝑤

⎤

⎥

⎥

⎥

⎦

, (13)

where 𝐬(𝑅
2)

𝑤×1 and 𝐬(RMSE)
𝑤×1 depict the scoring arrays that compute the

sum of elements of 𝐀( )
𝑤×𝑘 for each model considering the 𝑅2 and

RMSE metrics, respectively. A(𝑅2 ,𝑥1) is, for example, the award value
1
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attributed to the first Monte Carlo model for its position in the matrix
𝐀( )
𝑤×𝑘 when 𝑅2 is used to compare the model response with respect to

the variable 𝑥1. One should note that the sum of elements of 𝐀( )
𝑤×𝑘 for

each model (for model 1, {A(𝑅2 ,𝑥1)
1 +⋯+A(𝑅2 ,𝑥𝑘)

1 }) will lead to a scalar
that will summarize the fit of each model to the mean model parametric
response. Eq. (14) generalizes the procedure above described:

𝐬( )
𝑤×1 =

⎡

⎢

⎢

⎢

⎣

∑

A( ,𝑿)
1
⋮

∑

A( ,𝑿)
𝑤

⎤

⎥

⎥

⎥

⎦

, (14)

where 𝐬( )
𝑤×1 is the scoring vector for a generic ( ) statistical indicator,

∑

A( ,𝑿)
1 sums the awards for the first model considering all explanatory

variables, and the same stands for the 𝑤th model, ∑A( ,𝑿)
𝑤 . To conclude

this step, both statistical indicators are combined by simply adding the
scoring vectors, as demonstrated by Eq. (15):

𝐬(𝑅
2+RMSE)

𝑤×1 =
[

𝐬(𝑅
2)

𝑤×1 + 𝐬(RMSE)
𝑤×1

]

. (15)

The last step relies on the model structure selection, which can
be done by sorting the elements of 𝐬( )

𝑤×1 in ascending order. The first
index that connects the elements of ∑A( ,𝑿) into 𝐬( )

𝑤×1 along the sorted
dimension will be the index of the 𝑖th-optimum model. This process
can also be performed using the index of the minimum value of 𝐬( )

𝑤×1
(s(𝑅

2+RMSE)
min ). Finally, the selected (𝑖th-)model is the used to simulate

the output variable, 𝒚, which will be further confronted with observed
data. Algorithm 1 provides a step-by-step procedure on how to store all
the required information for model structure selection using sensitivity
analysis within the MODEGA-SD method.

Algorithm 1 Sensitivity-driven model structure selection.
Require: input data of Table 2
1: for 𝑖 ← 1 to 𝑤 do
2: Compute 𝒚(𝑥𝑢) using Eq. (4)
3: Evaluate statistically sensitivity analysis using Eqs. (6) and (7)
4: Store 𝑅2 and RMSE values using Eqs. (8) and (9)
5: Compute the award matrices using Eqs. (10) and (11)
6: Evaluate the models’ performances using Eqs. (12) and (13)
7: Merge the models’ performances using Eq. (15)
8: 𝑖 ← index of s(𝑅

2+RMSE)
min

9: return 𝑖 ⊳ 𝑖 is the index of the optimum EPR model

3. Methodology

The MATLAB framework with its different elements and settings
related to the sensitivity-driven model selection was used to develop
new EPR models of two complex engineering problems. We below
detail the dataset and the input information adopted within our EPR
framework. Additionally, we also discuss how the predictive capability
of the models was investigated and our treatment of uncertainty in the
sensitivity analysis.

3.1. Database

Two case studies are used to test our method: the modeling of
optimum moisture content and the modeling of creep index of clays.
The modeling of optimum moisture content is based on measurements
provided by Ahangar-Asr et al. (2011a), consisting of 57 discrete val-
ues. The data predict optimum moisture content (OMC, %), by using
values of fineness modulus (𝐹m), coefficient of uniformity (𝑈) and
lastic limit (PL, %). The modeling of creep index is established on
he data presented by Jin et al. (2019b), comprising a database of
47 measurements. The data predict the creep index (𝐶𝛼) of soils,

by computing the clay content (CI, %), liquid limit (LL, %), plastic
index (I , %), and void ratio (𝑒). The strength and direction of a
P

7

linear relationship between each observed input and the target output
were quantified using the coefficient of correlation (𝑟). The databases
used in this paper are presented as supplementary material (Table S1).
All models (developed and cited) were trained and tested using the
database mentioned above. This enables a direct comparison between
the mathematical structures proposed in this work and those of the two
case studies. A complete description of the databases used here is given
in the cited publications, and interested readers are referred to these
works for further details.

3.2. MODEGA-SD method input information

Table 2 lists the input information required to execute our frame-
work. These include training and testing data of the dependent, 𝒚 and
𝑘-explanatory variables, 𝑿, deemed important to explain the underly-
ing physical process. As previously detailed, the optimum number of
polynomial terms is automatically defined with a single EPR run of
the EPR-MODEGA method. Users also have to provide the number of
Monte Carlo runs, 𝑤, and several algorithmic parameters. In this work,
100 Monte Carlo simulations were considered for each case study. We
follow previous work (Berardi et al., 2008; Creaco et al., 2016) and uti-
lize a vector of exponents with a step of 0.1 (𝐄𝐒 = [−2,−1.9,… , 1.9, 2]).

his step size provides a good compromise between the CPU costs of
ur EPR method and the corresponding accuracy of the optimal model
tructure. In fact, if a smaller step size is adopted, a higher number of
enerations (𝑛g) or population may be necessary to adequately explore
he complete model search space. Conversely, the larger the exponent
tep, the lower the accuracy of the model (Marasco et al., 2021). Here,
default population size of 20𝑚 was used for 300 generations. The

emaining input parameters of both DE and GA optimization algorithms
ere identical to those reported by Gomes et al. (2021a).

.3. Predictive capability and robustness

Monte Carlo simulations provided by the MODEGA-SD code allow
s to store a series of statistical metrics that can be used to investigate
he performance of the models and robustness of our methodology.

hen the EPR process stops, after the desired number of generations
s reached, the simulated outputs, 𝒀 , of 𝑤-EPR runs are stored in a
× 𝑤-matrix. At each generation, the values of different statistical
etrics such as RMSE, 𝑅2, 𝑟, and 𝐸rel are stored in 𝑛g × 𝑤 matrices

or both training and testing data sets (see outputs of Table 2). Despite
ur efforts to address the performance of the models using common
tatistical metrics adopted in the EPR framework (e.g., Ahangar-Asr
t al., 2011a; Shahin, 2015; Alzabeebee, 2020; Gomes et al., 2021a)
ome other metrics can be equally useful. To assess the predictive
bility and robustness of our procedure, these statistical metrics were
valuated over generations using box plots. The evolution of the mean
nd corresponding 95% uncertainty ranges of SSE and the number
f offspring points, 𝑁o were also investigated from one generation to
nother. 𝑁o is a routine of the MODEGA approach that indicates which

optimization algorithm, GA or DE, exhibits the greatest reproductive
process. To evaluate the performance of the optimum model selected
with the sensitivity-driven method, we compared its performance with
other single-objective and multi-objective EPR models for both case
studies analyzed.

To provide a closer inspection of the differences in bias and model
complexity, the Percent bias (PBIAS) (Yapo et al., 1996) and the
corrected Akaike’s Information Criterion (AICc) (Akaike, 1974) applied
for small sample sizes (Hurvich and Tsai, 1989), were used to refine
model evaluation. PBIAS measures the tendency of the predictions to
be larger or smaller than their observed counterparts. PBIAS value of
zero is considered optimum, while positive values express a tendency to
overestimation, and negative values express a tendency to underestima-
tion. The AIC considers model complexity (parameter dimensionality)
and goodness of fit, providing a basis for measuring the quality of each
model relative to other models. Models with lower AIC values should
be statistically preferred. Mathematical formulas for both performance

metrics are found in these cited publications.
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Fig. 4. Case study 1: Evolution of the sum of squared errors (SSE) and its associated 95% uncertainty ranges (a). The bottom plot displays the number of offspring points
(𝑁o) through the generations (b). The mean 𝑁o-value for each individual optimization algorithm is coded with a different color. Light blue and green colors represent the 95%
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.4. Sensitivity-driven model selection and its associated uncertainty

During the sensitivity analysis, one explanatory variable varied
etween the specified minimum and maximum values, while the others
ere kept constant at their mean values (see Table S1). The mean,
inimum, maximum and standard deviation of the values obtained
ith the matrices 𝐀(𝑅2)

𝑤×𝑘 and 𝐀(RMSE)
𝑤×𝑘 were further used to compare the

eneralization ability of our results with those obtained with different
PR models. Finally, we also showed how large can be the uncertainty
n the model simulations obtained using the parametric study provided
y the Monte Carlo simulations.

. Modeling of soil properties

We describe below results obtained with the proposed EPR approach
or two different case studies. Modeling of optimum moisture content
OMC) has important implications for the compaction characteristics
f soils (Omar et al., 2018; Gomes et al., 2021b), while the modeling
f creep index (C𝛼) is fundamental for a variety of constitutive models
sed in engineering (Karim and Lo, 2020; Yin et al., 2011).

.1. Case study 1: Modeling of optimum moisture content (OMC)

Fig. 4(a) illustrates the evolution of the stored SSE (solid red line)
nd its associated 95% confidence intervals (gray area) for case study
. Results show that about 100 generations are required for MODEGA-
D to converge adequately to a stable mean SSE-value. The 95%
onfidence bounds appear quite large during the first generations, but
et progressively narrower with the advance of the evolutionary search.
he results showed in Fig. 4(a) could be conveniently adopted to guide
sers toward a sufficient number of generations during the Monte Carlo
imulations. Fig. 4(b) depicts the evolution of the number of offspring
oints of both DE and GA for modeling of OMC. Initially, the GA
lgorithm demonstrates a highest reproductive success due to the abil-
ty of its standard genetic operators for crossover and mutation along
he optimization process (Vrugt and Robinson, 2007). After about 100
enerations, one can see the adaptive strategy of switching algorithms.
ndeed, both DE and GA algorithms have a similar number of offspring
8

oints. Yet, at the end of the generations, DE then outperforms GA
n terms of reproductive success, a finding that was also previously
upported (Vrugt and Robinson, 2007; Gomes et al., 2021a). The low
ncertainty ranges of SSE in Fig. 4(a) support the robustness of our
ethodology, while the rather high confidence intervals in Fig. 4(b)
ighlight that the combination of global optimization methods appears
o be effective in enhancing the richness of solutions along the genera-
ions, thereby reflecting the benefits of the dual-search based method.

Now we investigate in Fig. 5 the evolution of (a) 𝑅2, (b) RMSE, (c) 𝑟
nd (d) 𝐸rel through generations. The box plots show summary statistics
f both training (black) and testing (red) data sets. The right plots are
oomed insets of the data obtained in the final generation and much
etter exhibit the median values and the corresponding 25th and 75th

percentiles. Our Monte Carlo simulations demonstrate that multiple
different summary statistics improve as evolution is on course of action
and quickly converges to the closest fit to the observed OMC data. In
fact, from a practical perspective, the 𝑅2-value of both training and
testing data are higher than 0.8, which indicates that the performances
of the EPR models are adequate for empirical formulations. The low
mean RMSE of 2.5 and 2.0 for both training and testing data, respec-
tively, and values of 𝑟 and 𝐸rel greater than 0.9 and 0.8, respectively,
further verify the excellent predictive capability of the models derived
with the Monte Carlo simulations. Furthermore, the relatively small
differences between the statistical metrics of the training and testing
data sets reflect the robust nature of our EPR method.

The Monte Carlo simulations thus far have demonstrated excel-
lent agreement between the predicted and observed OMC. We now
show in Table 3 summary metrics of the optimum model selected
using our sensitivity-based approach and compare with other model
structures derived with single runs of the MODEGA algorithm (Gomes
et al., 2021a) and with an EPR model proposed by Ahangar-Asr et al.
(2011a) obtained using a single objective genetic algorithm (SOGA).
MODEGA-SR1 and MODEGA-SR2 are two different (single run) simu-
lations performed with the method presented in Section 2.2. It is clear
from Table 3 that the fine performance statistics of the models derived
with MODEGA are quite similar. While the summary statistics for the
training data of the MODEGA-SD model are slightly lower than those of
the MODEGA-SR1, the statistical performance for the testing data of the
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Fig. 5. Evolution of the performance metrics for modeling the optimum moisture content within the Monte Carlo approach. The summary metrics (a) 𝑅2, (b) RMSE, (c) 𝑟 and (d)
𝐸rel include values for both training (black) and testing (red) data sets.
Table 3
Summary statistics of the optimal EPR models selected using the MODEGA-SD, MODEGA-SR1, MODEGA-SR2 and SOGA-SR algorithms for
modeling of optimum moisture content. The listed values encompass results for training and testing data.
Metrics MODEGA-SD MODEGA-SR1 MODEGA-SR2 SOGA-SR

Train. Test. Train. Test. Train. Test. Train. Test.

𝑅2 0.867 0.929 0.876 0.881 0.865 0.933 0.785 0.842
RMSE (%) 2.501 2.005 2.416 2.588 2.520 1.951 2.920 2.369
𝑟 0.931 0.973 0.936 0.941 0.930 0.976 0.905 0.973
𝐸rel 0.833 0.912 0.867 0.859 0.838 0.918 0.748 0.824
PBIAS (%) <0.001 – −0.078 – 0.011 – −0.388 –
AICc 219.2 – 216.1 – 219.9 – 235.7 –
MODEGA-SD model marginally outperforms MODEGA-SR1. Compari-
son of the summary statistics of the MODEGA-SD and MODEGA-SR2
models gives very similar results. The SOGA-SR EPR model provided
a lower statistical performance. Since PBIAS for MODEGA-SD is zero,
the model is considered unbiased. While MODEGA-SR2 indicates a
slight tendency to overestimation, the remaining models express a small
tendency to underestimation. Thus, MODEGA-SD and MODEGA-SR2
outperform the other models. The AICc also indicates that both models
are less complex. Such results indicate that our approach maintains a
good and unbiased predictive capability, an outcome that is consistent
with the parsimonious nature of the developed models.

For completeness, Fig. 6 plots the observed and simulated OMC
values obtained using the optimal MODEGA-SD model for the training
(a) and testing (b) data. The solid black line is used as a reference
mark to denote perfect fit. These graphs indicate that MODEGA-SD has
a good predictive ability to model the optimum moisture content using
the physical properties adopted as inputs. In fact, the regression plots
illustrate that simulated OMC values track closely the 1:1 line and are
within the 20% error line. The MODEGA models indicate consistency
between their results, yet additional evaluations involving the model’s
parsimony and generalization ability are needed to provide sufficient
support on the choice of the optimum model.

To allow a better understanding of the model structures obtained
with the EPR approach, we next examine Table 4, which lists the
optimum mathematical formulations selected for the optimum mois-
ture content using the MODEGA-SD, MODEGA-SR1, MODEGA-SR2 and

SOGA-SR algorithms. The second, third, and fourth columns indicate

9

the number of 𝑚 terms (obtained by MODEGA and fixed by the SOGA
approach), the number of input variables used in the model, and how
many input (explanatory) variables were assimilated by the models,
respectively. The presence of at least one zero in the matrix 𝐄𝐒𝑘×𝑚
guarantees the ability to exclude some (not relevant) inputs (or input
combinations) from the EPR equation in such a manner that the input
will not be assimilated by the model (Giustolisi and Savic, 2006,
2009). For modeling the optimum moisture content, the 3 inputs were
assimilated by the listed models. The models selected by single runs of
the MODEGA approach were different, since the MODEGA-SR1 model
included 5 variables in the mathematical formulation, which is some-
what higher than 3 of its MODEGA-SR2 counterpart. MODEGA-SD and
MODEGA-SR2 models have very similar mathematical structures and
parameter values. The model MODEGA-SR2 was proposed by Gomes
et al. (2021a), yet, as in most EPR modeling approaches, it is not
guaranteed that such structure will be obtained in the first (single
run) optimization. In contrast, the optimum EPR model obtained using
MODEGA-SD was obtained with a single Monte Carlo run, providing
support for the use of the sensitivity-driven model selection. It is
evident from Table 4 that the SOGA-SR model is more complex because
of its larger structure. Additionally, the summary metrics shown in
Table 3 indicated a reduced predictive ability. This can be explained
in part by the single-objective nature of its search strategy and by the
lack of a robust model structure selection.

The models proposed in Table 4, however, must be used with
caution. EPR is a data-driven technique, strongly dependent on the

amount and range of training data. Consequently, the more data, the
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Fig. 6. Observed versus simulated OMC for the best model obtained with the MODEGA-SD approach. The plots display the results for training (a) and testing (b) data.
Table 4
Number of EPR terms (𝑚), explanatory variables involved (inputs), assimilated inputs and the corresponding optimum EPR equations for the optimum moisture
content using the MODEGA-SD, MODEGA-SR1, MODEGA-SR2 and SOGA-SR algorithms.
Model 𝑚 Inputs Assimilated Optimized equations

inputs

MODEGA-SD 3 3 3 OMC = −1.86𝐹 1.6
𝑚 − 8.32𝑈 0.1 + 0.43PL0.6 + 37.75

MODEGA-SR1 3 3 3 OMC = −4.94𝐹 1.2
𝑚 + 13.43𝑈−0.2 − 3.37𝐹 −3

𝑚 𝑈−0.6PL−0.2 + 27.65
MODEGA-SR2 3 3 3 OMC = −1.84𝐹 1.6

𝑚 − 2.52𝑈 0.2 + 0.42PL0.6 + 31.14
SOGA-SR 5 3 3 OMC = 9.47𝐹 −3

𝑚 𝑈−1 − 3.57 × 10−5𝐹 −2
𝑚 PL3 − 4.55 × 10−3𝐹 −1

𝑚 𝑈 +1.72 × 10−3PL2 − 6.36𝐹𝑚 + 34.09
better the understanding of the physical process and the more realistic
the model structure. In addition, for the purposes of this paper, we have
considered the same training and testing data as those of (Ahangar-
Asr et al., 2011a). However, cross-validation approaches that use split
sampling should be adopted to estimate the model performance when
the EPR is trained on different data.

We can further investigate the generalization ability of the models
listed in Table 4 by visualizing their sensitivity analysis. Fig. 7 depicts a
parametric study of the three explanatory variables used to model OMC.
For this parametric study, each variable analyzed ranged between its
maximum and minimum values, while the remaining variables were
fixed at their mean values (Table S1). The correlation coefficients are
displayed in each plot of Fig. 7. The three plots show the ensemble
mean (solid red line) and the 95% uncertainty bounds (shaded region)
derived with the 𝑤-models of our Monte Carlo simulations after 300
generations. The parametric study of the models previously reported in
Table 4 is also represented with dashed lines. As shown in Fig. 7(a),
the four models predict that OMC is inversely proportional to the
fineness modulus (𝐹𝑚). This finding is in accordance with the observed
data (𝑟 = −0.88), since granular soils have a lower specific surface,
which decreases the optimum moisture content (Ahangar-Asr et al.,
2011a; Gomes et al., 2021a). Such effect has been correctly captured
by all models. The uncertainty ranges envelop a large majority of the
OMC simulations, except model MODEGA-SR1, which for 𝐹m values
greater than 3, presented a larger deviation from the mean model
parametric response. The sensitivity analysis for 𝑈 -values shows a
larger discrepancy of some models with respect to the mean (Fig. 7(b)).
These are the cases of the simulations obtained with MODEGA-SR1
and SOGA. However, MODEGA-SD and MODEGA-SR2 closely mimic
the mean model parametric response. The negative correlation be-
tween OMC and 𝑈 (𝑟 = −0.35) is a strong indicator that the models
represent the underlying signatures of soil properties (Mujtaba et al.,
2013; Ahangar-Asr et al., 2011a). Indeed, the higher the values of
𝑈 , the larger the range of particle sizes in the soil, and hence the
lower the optimum moisture content. Apparently, our findings reveal
small uncertainty ranges, which indicate that the models obtained
using the Monte Carlo simulations are very similar in terms of the
response of OMC to the variations in 𝑈 . Finally, the mean model
parametric response shown in Fig. 7(c) indicates that OMC increases
for larger values of plastic limit, PL (𝑟 = 0.63). Similar results were
obtained by Reddy and Grupta (2008) and Sridharan and Nagaraj
10
(2005), who, through laboratory tests, demonstrated that by increasing
PL, an increase in OMC is expected, which happens due to a raise in
the specific surface of the soil grains. Large deviations of the mean
model parametric response are observed by the SOGA model, which
predicts OMC outside the uncertainty bounds provided by the Monte
Carlo simulations. Furthermore, OMC-values appear insensitive to PL
when this explanatory variable is propagated forward in the MODEGA-
SR1 model. Therefore, MODEGA-SR1 exemplifies the main drawback of
performing a single EPR simulation, that is, the possibility of obtaining
an equation in which one explanatory variable does not explain the
underlying physical process. This condition would then require one
or multiple additional simulations to derive another model with a
consistent parametric response for all candidate explanatory variables.
Note that MODEGA-SD has been specifically designed to overcome this
problem, since one of its functions is to automatically search for a
model that has its explanatory variables with physical meaning.

To provide more insights into the newly developed model structure
selection within the EPR method, consider Table 5, which lists 𝑅2

and RMSE values obtained using Eqs. (6) and (7) for the Monte Carlo
ensemble and for the MODEGA-SD, MODEGA-SR1, MODEGA-SR2 and
SOGA-SR models. The values of both statistical metrics, stored in the
𝐃(𝑅2)
100×3 and 𝐃(RMSE)

100×3 matrices, are now analyzed. For the Monte Carlo
simulations, the maximum, minimum, average, and standard deviation
values of each model with respect to the mean model parametric
response are listed. Here, maximization of 𝑅2 and minimization of
RMSE are proposed as model performance indicators. Bold numbers are
given special attention as they reveal the best performance indicators
(𝑅2 and RMSE) that were achieved for specific models. For example, the
reported maximum and minimum of 𝑅2 for the explanatory variable
𝐹𝑚 are 0.999 and 0.786, respectively. Notice that the average 𝑅2-
values obtained with our Monte Carlo simulations closely matched
the corresponding maximum 𝑅2-values for all explanatory variables.
Similar findings are provided by analyzing the average RMSE val-
ues of these input variables, which exhibited similar results to those
of the minimum RMSE-listed values. The EPR models show distinct
performance metrics. Indeed, MODEGA-SD shows excellent agreement
between the model parametric response and the mean model response,
while the remaining models appear far less adjusted to the mean model
response. This is specially the case of MODEGA-SR1 and SOGA-SR
models, as previously highlighted in Fig. 7. In summary, one can see
that our sensitivity-driven approach leads to a nice predictive capability
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Fig. 7. Sensitivity analysis (parametric study) of the optimum moisture content derived with the best models of MODEGA-SD, MODEGA-SR1, MODEGA-SR2 and SOGA-SR algorithms.
The simulated mean OMC is highlighted with solid red lines and the 95% uncertainty bounds (gray region) represent the variability of the output variable with respect to the
explanatory variables (a) fineness modulus, 𝐹𝑚, (b) uniformity coefficient, 𝑈 , and (c) plastic limit, PL. Correlation coefficients (𝑟) are displayed in each plot.
Table 5
Comparison of the sensitivity analysis of OMC models against the mean model parametric response: 𝑅2 and RMSE values of models generated by the
Monte Carlo simulations and optimal MODEGA-SD, MODEGA-SR1, MODEGA-SR2 and SOGA-SR models.

Inputs Metrics Monte Carlo simulations EPR models

Max. Min. Average Std. Dev. 1a 2b 3c 4d

𝐹𝑚
𝑅2 0.999 0.786 0.989 0.041 0.999 0.838 0.998 0.922
RMSE (%) 2.617 0.066 0.308 0.513 0.088 2.255 0.225 1.563

𝑈
𝑅2 0.999 0.495 0.956 0.115 0.999 0.061 0.911 < 0
RMSE (%) 1.539 0.049 0.241 0.385 0.049 2.075 0.638 2.503

PL 𝑅2 0.999 0.010 0.950 0.137 0.999 < 0 0.974 < 0
RMSE (%) 1.183 0.028 0.154 0.199 0.038 1.233 0.184 1.583

aMODEGA-SD.
bMODEGA-SR1.
cMODEGA-SR2.

dSOGA-SR.
( Table 3) and an excellent generalization ability (Fig. 7 and Table 5).
These results provide support for the claim that our method produces
robust model structure selection that is consistently stable in terms of
sensitivity.

4.2. Case study 2: Modeling of creep index

Fig. 8(a) shows the behavior of SSE (solid red line) stored during
the Monte Carlo simulations and its corresponding 95% confidence in-
tervals (gray region) for case study 2. The average SSE-value decreases
with simulations until it stabilizes after 100 generations. Unexpectedly,
this result is in agreement with the data presented in case study 1
(see Fig. 4(a)). The width of the 95% confidence bounds also drops
substantially during evolutionary search. Fig. 8(b) presents the per-
formance of DE and GA within our multi-step optimization approach.
Similarly to the first case study, it is evident that GA is most efficient at
early generations as the number of offspring points is much larger. The
reproductive success of both optimization algorithms is similar after
11
75 generations, but gets progressively different towards the end of the
optimization process, when then DE acquires greater 𝑁o.

Fig. 9 illustrates the performance of (a) 𝑅2, (b) RMSE, (c) 𝑟 and
(d) 𝐸rel through the Monte Carlo simulations. Similar to the first
case study, the box-plots on the left-hand side demonstrate that the
performance indicators improve as the evolution process occurs for the
training and testing datasets. Overall, the differences between the best
models obtained with the Monte Carlo simulations decrease across the
generations for both data sets. Additionally, the performance indicators
of the training data closely match those of the testing data, further
supporting the robustness of our methodology. The box-plots of the
last generation, displayed on the right-hand side of the plots, also
emphasize similarities between the performance of the models using
training and testing data.

Summary statistics of the optimum model obtained with the pro-
posed MODEGA-SD method are listed in Table 6. Similar to the first
case study, we use three additional models for comparison. Two model
structures were derived with single runs of the MODEGA algorithm
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Fig. 8. Case study 2: Evolution of the sum of squared errors (SSE) and its associated 95% uncertainty ranges (a). The bottom plot displays the number of offspring points (𝑁o)
through generations (b). The mean 𝑁o-value for each individual optimization algorithm is coded with a different color. Light blue and green colors represent the 95% uncertainty
intervals of 𝑁o for DE and GA, respectively.
Fig. 9. Evolution of the performance metrics for modeling the creep index of soils within the Monte Carlo approach. Summary metrics (a) 𝑅2, (b) RMSE, (c) 𝑟 and (d) 𝐸rel include
alues for both training (black) and testing (red) data sets.
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Gomes et al., 2021a) and another EPR model obtained using a SODE
lgorithm (Jin et al., 2019b), here assumed as a single optimization run
SODE-SR). It is remarkable from the summary statistics that MODEGA-
R1 and SODE-SR showed the best performances for the training and
esting data, respectively. However, the statistical metrics of the train-
ng data for SODE-SR were not good as those of the MODEGA models.
nstead, since MODEGA-SD metrics have the smallest performance dis-
ance between training and testing data, the model can be considered
ore consistent. From the point of view of predictive capability, all
PR models can be useful to obtain the creep index from soil physical
roperties. The performance of each model using PBIAS are satisfactory
 p

12
ince PBIAS is very low, less than 10% (Yapo et al., 1996), so that the
odels can be considered unbiased. Although AICc values indicate that
ODEGA models are less complex than SODE-SR for training data, no

ubstantial differences were found between AICc values of the tested
odels. Furthermore, while such performances are very similar as those

f the first case study, sensitivity analysis is still required to investigate
heir parametric response.

We now compare in Fig. 10 the observed and simulated creep
ndex values of the optimal MODEGA-SD model on the training (a)
nd testing (b) sets. Again, the solid black line is used to denote a

erfect fit. Similar to the results reported by Jin et al. (2019b), these
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Table 6
Summary statistics of the optimal EPR models selected using the MODEGA-SD, MODEGA-SR1, MODEGA-SR2 and SODE-SR algorithms for
modeling the creep index of soils. The listed values encompass results for of training and testing data.
Metrics MODEGA-SD MODEGA-SR1 MODEGA-SR2 SODE-SR

Train. Test. Train. Test. Train. Test. Train. Test.

𝑅2 0.785 0.800 0.813 0.830 0.779 0.823 0.698 0.832
RMSE 0.328 0.249 0.305 0.229 0.332 0.235 0.342 0.214
𝑟 0.885 0.928 0.902 0.940 0.883 0.937 0.877 0.932
𝐸rel 0.726 0.817 0.754 0.840 0.717 0.843 0.667 0.832
PBIAS (%) <0.001 – 0.341 – <0.001 – −0.924 –
AICc 78.24 – 65.75 – 81.06 – 90.20 –
Table 7
Number of EPR terms (𝑚), explanatory variables involved (inputs), assimilated inputs, and the corresponding optimum EPR equations for the
creep index of soils using the MODEGA-SD, MODEGA-SR1, MODEGA-SR2 and SODE-SR algorithms.
Model 𝑚 Inputs Assimilated Optimized equations

inputs

MODEGA-SD 2 4 4 ln(C𝛼 ) = 0.25CI−0.4𝑒1.9−0.23LL0.1 I−1.1P −4.04
MODEGA-SR1 4 4 4 ln(C𝛼 ) = 0.06𝑒−2.0−0.28LL1.6I−2.0P −0.65CI2.0LL + 0.65LL I−1.0P 𝑒−4.35
MODEGA-SR2 2 4 3 ln(C𝛼 ) = 0.29CI−0.4𝑒1.8−0.04I−2.0P −4.43
SODE-SR 3 4 3 ln(C𝛼 ) = (0.31CI−1.0 I2.0P −0.12I−2.0P + 0.65I−1.0P )𝑒−5.13
Fig. 10. Observed versus simulated creep index for the best model obtained with the MODEGA-SD approach. The plots display the results for training (a) and testing (b) data.
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raphs indicate that MODEGA-SD predicts the data nicely. Table 7 lists
he optimized equations. The second column indicates that MODEGA-
D and MODEGA-SR2 models have a smaller number of 𝑚 terms. By
nalyzing the third and fourth columns, it is possible to note that not
ll models have assimilated all the number of inputs. Indeed, MODEGA-
R2 and SODE-SR models have excluded LL from the mathematical
tructure during the EPR procedure. We will revisit this question in
ur sensitivity analysis. While single EPR runs eventually exclude an
xplanatory variable, our approach benefits from the overall tendency
f the multiple runs to decide if the input should be included in the
inal model structure. Note, for mathematical convenience, creep index
s modeled using the natural logarithm. As in case study 1, single runs
f the MODEGA approach generated different EPR models. The SODE-
R model fixed the variable 𝑒 during the search strategy. Once the
athematical formulations have been defined, what is left now is to

xplore the effect of each input variable on the values of ln(C𝛼).
Fig. 11 illustrates the main findings of the sensitivity analysis for

he four explanatory variables. The parametric responses are displayed
ith the uncertainty bounds of the Monte Carlo simulations (shaded

egion), the mean model parametric response (solid red line), and the
utput of each model reported in Table 7 (dashed lines). Regardless of
he explanatory variable used in the sensitivity analysis, the MODEGA-
D model (dashed black lines) closely follows the shape of the mean
odel parametric response. The clay content (CI), collected from dif-

erent experimental papers by (Jin et al., 2019b) has a poor correlation
ith the creep index (𝑟 = 0.04), as indicated in Fig. 11(a). The models’

esponses indicate that a higher amount of CI reflects in a slight
ecrease in the creep index response for all models. While MODEGA-
D and MODEGA-SR2 models are similar to the ensemble mean, the
13
emaining two EPR models deviate from the uncertainty ranges envelop
ue to their distinct model structures. As MODEGA-SR1 was not derived
rom a sensitivity-driven approach, its parametric response differs from
he ensemble mean, and provides support for the claim that single EPR
ptimization runs might produce low-fidelity models. In contrast to the
elatively high positive correlation (𝑟 = 0.67) between LL and ln(C𝛼),

the sensitivity analysis shown in Fig. 11(b) indicates small (almost
negligible) correlation between these variables. As MODEGA-SR2 and
SODE-SR did not assimilate LL into their model structures, the creep
index value is insensitive to LL variation. The MODEGA-SR1 model
has shown excellent predictive capability (Table 6), yet the presence
of a more pronounced (negative) correlation between ln(C𝛼) and LL
leaves in doubt the generalization ability of this model. The correlation
between LL and IP was found to be noteworthy (𝑟 = 0.91), indicating
that LL could be excluded from the modeling approach. Since the
objective of this paper is on model structural selection rather than on
the influence of explanatory variables on models’ performance (e.g.,
Creaco et al., 2016), LL was kept in the modeling for purposes of com-
parison with previous work (Jin et al., 2019b). The model’s response
to IP variation, available in Fig. 11(c) indicates that increases in IP
reflect high increases in the creep index response, results that are in
line with the positive correlation between such variables (𝑟 = 0.75).

he uncertainty ranges of ln(C𝛼) are higher for greater values of IP.
The responses captured by MODEGA-SD and MODEGA-SR2 are well
within the uncertainty bounds. The mean parametric response indicates
that ln(C𝛼) first strongly increases, but then when IP reaches about
50%, there is a decrease in the increment of ln(C𝛼). Model MODEGA-
SR1, contrarily, predicts a decrease in ln(C𝛼) for larger IP-values. A

more complex relationship between these variables is found using the
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Fig. 11. Sensitivity analysis (parametric study) of the creep index derived with the optimum models of MODEGA-SD, MODEGA-SR1, MODEGA-SR2 and SODE-SR algorithms.
he simulated mean ln(C𝛼 ) is highlighted with solid red lines and the 95% uncertainty bounds (gray region) represent the variability of the output variable with respect to the
xplanatory variables (a) clay content, CI, (b) liquid limit, LL, (c) plastic index, IP, and (d) void ratio, 𝑒. Correlation coefficients (𝑟) are displayed in each plot.
ODE-SR model. Apparently, for IP-values between 30 and 80%, ln(C𝛼)
ppears insensitive to variations in IP, but assumes a cubic format when
he value of explanatory variable IP is larger. Finally, the void ratio, 𝑒, is
nown to be positively correlated to the creep index (Zhu et al., 2016).
ig. 11(d) shows that the increase in 𝑒 reflects an increase in creep

index. All EPR models adequately capture this response, nevertheless
MODEGA-SD and MODEGA-SR2 were closer to the mean parametric
response.

We conclude this manuscript with Table 8, which provides in-
formation on the summary statistics (𝑅2 and RMSE) of the sensitiv-
ity analysis. Each EPR model of the Monte Carlo ensemble and the
optimum MODEGA-SD, MODEGA-SR1, MODEGA-SR2 and SOGA-SR
models are compared with the mean model parametric response. The
first column displays the explanatory variables used in this case study.
From the second to the fifth column, we list the summary statistics
of the 𝐃(𝑅2)

100×3 and 𝐃(RMSE)
100×3 matrices. The results presented in Table 8

onfirm that the MODEGA-SD model closely tracks the shape of the
ean model parametric response. Indeed, 𝑅2 and RMSE values of the

our explanatory variables are far better than those obtained with the
ther models investigated and are similar to the best (marked in bold)
tatistical metrics of the Monte Carlo simulations. As a consequence,
ur approach enables us to select optimum EPR models with excellent
eneralization ability, while also maintaining predictive capability.

The results presented illustrate that our sensitivity-driven evolution-
ry polynomial regression is a powerful new approach for model struc-
ure selection. The robust model structure selection proposed herein
ignificantly reduces the subjectivity of obtaining the optimal structure
f a model within the EPR context, thus avoiding intensive and time-
onsuming efforts. This study appears to be the first to incorporate
ensitivity analysis in the evolutionary process for model structure
election. As such, manual post-processing of EPR equations and subjec-
ive analysis of the physical meaning of each input data in the model
an be avoided. Overall, the results of our case studies showed that
14
the proposed method overcomes difficulties in the decision-making of
optimal EPR models. Moreover, as many engineering systems lack a
precise analytical theory or model for their solutions, empirical models
are much needed in engineering practice. The present contribution has
broader implications that go beyond the geotechnical problems stud-
ied here. For instance, the MODEGA-SD method should provide new
opportunities and perspectives for model selection of other empirico-
statistical, multivariate methods that predict engineering properties
from covariates.

5. Conclusion

The multi-step sensitivity-driven evolutionary polynomial regres-
sion approach introduced in this work offers a coherent and integrated
framework for consistent selection of model structures of engineer-
ing systems. Based on the dual search-based EPR with self-adaptive
offspring creation and compromise programming model selection, our
approach couples Monte Carlo simulations and sensitivity analysis to
improve model structure selection within this regression-based frame-
work. First, Monte Carlo simulations explores the model search space
using an optimal number of polynomial terms. After that, sensitivity
analysis of each explanatory variable is used to obtain an arsenal of
statistical metrics, which describe relevant parts of the system behavior,
including the mean model parametric response. Two real-world case
studies involving predictions of optimal moisture content and creep
index of soils are used to illustrate our method.

Altogether, results demonstrate that if a model structure produces
similar physical meaning to the mean model parametric response ob-
tained with the Monte Carlo framework, the selected model can main-
tain good predictive and generalization abilities. Statistical (perfor-
mance) metrics were useful for general monitoring of the predictive
ability of the models. Our findings revealed that performance metrics
of the training data match closely those of the testing data, sustaining
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Table 8
Comparison of the sensitivity analysis of creep index models against the mean model parametric response: 𝑅2 and RMSE values of models
generated by the Monte Carlo simulations and optimal MODEGA-SD, MODEGA-SR1, MODEGA-SR2 and SOGA-SR models.

Inputs Metrics Monte Carlo simulations EPR models

Max. Min. Mean. Std. Dev. 1a 2b 3c 4d

CI R2 0.989 0.010 0.681 0.365 0.989 < 0 0.760 < 0
RMSE 0.282 0.006 0.042 0.054 0.006 0.125 0.030 0.148

LL R2 0.973 0.010 0.288 0.358 0.810 < 0 < 0 < 0
RMSE 0.207 0.004 0.043 0.047 0.011 0.128 0.054 0.160

IP
R2 0.999 0.006 0.925 0.189 0.999 0.775 0.917 0.794
RMSE 0.642 0.007 0.057 0.082 0.007 0.142 0.086 0.136

𝑒
R2 0.999 0.586 0.969 0.073 0.999 0.860 0.979 0.753
RMSE 0.241 0.010 0.047 0.047 0.012 0.139 0.054 0.185

aMODEGA-SD.
bMODEGA-SR1.
cMODEGA-SR2.

dSODE-SR.
the robustness of our methodology. Our novel EPR toolbox enabled us
to examine the physical meaning of each explanatory variable in the
model, including the underlying uncertainty involved in the sensitivity
analysis. This provides a relatively simple way to test the generalization
ability of the optimum EPR model structure and inspires confidence in
our findings.

Despite our efforts to address strategies that explicitly account for
sensitivity analysis during model structure selection of the evolutionary
polynomial regression framework, there are indeed several implications
and opportunities that go beyond the case studies of this work. The
framework proposed here, while focused on two engineering problems,
could also be applied to a wide variety of complex systems. More
substantial research may be needed to improve the statistical metrics
used to quantify model adequacy. Moreover, without sufficiently large
calibration data, the application of a model to out-of-sample prediction,
that is, for data outside the domain spanned by the observations, is
particularly challenging. Therefore, additional data collection would
help to develop more realistic models with the proposed sensitivity-
driven approach. To further support the robustness of our methodology,
cross-validation approaches should be used to evaluate the model
performance when the EPR is trained on different data. Finally, the sen-
sitivity of algorithmic parameters to the performance of EPR methods
has been overlooked, and thus more focused studies on how algorithmic
parameters affect model selection may be worthwhile.
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