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Let CONAN tell you a story: Procedural quest
generation

Vincent Breault, Sébastien Ouellet, Jim Davies

Abstract—This work proposes an engine for the Creation Of
Novel Adventure Narrative (CONAN), which is a procedural
quest generator. It uses a planning approach to story generation.
The engine is tested on its ability to create quests, which are
sets of actions that must be performed in order to achieve a
certain goal, usually for a reward. The engine takes in a world
description represented as a set of facts, including characters,
locations, and items, and generates quests according to the state
of the world and the preferences of the characters. We evaluate
quests through the classification of the motivations behind the
quests, based on the sequences of actions required to complete
the quests. We also compare different world descriptions and
analyze the difference in motivations for the quests produced by
the engine. Compared against human structural quest analysis,
the current engine was found to be able to replicate the quest
structures found in commercial video game quests.

Keywords—Procedural generation, video games, narrative, plan-
ning

I. INTRODUCTION

The creation of media content has always been the domain
of humans, be it for movies, music or video games. With
advancement in computer technology and research, the cre-
ation of such content has seen a slight shift from the human
authored to automatic computer generation. Using algorithms
to procedurally create media can effectively alleviate some of
the burden from artists when creating a new piece.

A. Procedural Generation in Games
Procedural Content Generation for Games (PCG-G) is the

use of computers algorithms to generate game content, deter-
mine if it is interesting, and select the best ones on behalf of
the players.[1]

This type of generation becomes quite useful when trying
to produce content for an industry that is more and more
demanding in terms of content [1]. For instance, in the current
market, game development costs are extremely high as the
demand for highly complex games requires the work of many
artists and many hours to be met. For instance, the Massively
Multiplayer Online Role Playing Game (MMORPG) World
of Warcraft has a total of 30,000 items, 5,300 creatures with
which to interact and 7600 quests and has an estimated budget
of twenty to one hundred and fifty million dollars for a
single game [1]. An engine capable of offloading this task by
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automatically generating such content would be invaluable to
the industry, as it would greatly reduce development costs by
reducing the amount of work that has to be done by humans.

Procedural generation (PG) in video games is currently
used in a variety of different subfields to generate content.
Indeed, where artists have previously been used to create
everything, some of the work has been offloaded to automation
for various kinds of design, such as graphics (e.g., textures
in [2]) or vegetation, through such programs as SpeedTree
[3]. The creation of environment and maps has also seen its
share of procedural generation algorithms for the generation of
buildings [4] [5], road networks [6] and maps [7], [8]. PG can
also be observed in the automatic or custom creation of more
abstract elements such as ships or weaponry [9], Non-Player
Character (NPC) behaviour or other such system behaviour
[10].

B. Narrative generation
Another area where PG is used to generate abstract elements

is narrative generation. Characters in games give quests” to the
player character (PC) [11]. A quest is a set of actions that must
be performed in order to achieve a certain goal, usually for a
reward. They are usually provided by non-player characters
within the game and are embedded in a piece of narrative that
makes the sequence of actions make sense given the NPC and
the current world state. Some quests are simple, but some are
complex. For example, the quest “Cure for Lempeck Hargrin”
that Doran uses for comparison has 27 steps, while others
might have only a few [11].

1) Planning: Given the structural similarities between the
outputs of AI planning agents and quests, planning has seen a
lot of use in the PG of stories. People have used planning and
machine learning to modify previously human authored stories
[12], to control NPC behaviour and the overarching story [13]
or to generate fixed, step-by-step quests such as the ones found
in an MMORPG [11].

In standard systems, the story is fully scripted by a human
author and presented to the player as it unfolds. This limits
the capabilities for adaptation to player preferences and has
very low replay value. In order to counteract this limitation,
systems and frameworks have been designed to generate stories
either dynamically, as it unfolds or at the start of a session
[14], [13], by selecting story elements, ordering them and
presenting them to the audience [15], [16], [17]. The two
main aspects of narrative are the logical causal progression
of a plot [18], meaning that the events that occur in the
narrative obey the rules of the world in which it takes place,
and character believability, defined as the perception by the
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player that the characters act in a coherent fashion, without
negatively influencing the suspension of disbelief. This means
that the events in the story must appear logical and the agents
must appear intentional in order for a piece of narrative to
make sense [19].

Plans are similar to stories in that both have ordering and
causality of actions in a plan sequence [18]. Prince has given
a definition of narrative as the recounting of a sequence of
events that have a continuant subject and constitute a whole”
[20]. Therefore for a sequence of events to be considered a
story, it must follow the general direction in which it started,
and keep adding events that are coherent with past events.
The causality of events in a story, the relationship between
the temporally ordered events that change the world state,
is a property of narratives that ensures its coherence and a
continuing subject [21]. Therefore, for a sequence of events
to be considered a story, it must maintain coherent causal
relationships between the events. At the same time, NPC
believability is dependent on the coherent causal relationships
between the character’s attributes known to the player, such
as the character’s personality or desires, and said characters’
actions. This means that when deciding upon sequences of
actions, characters need to make plans according to their own
goals in order to appear intentional [18].

As mentioned previously, plans and narratives have many
things in common. Given Prince’s description of a narrative
[20], one can see that while narratives are sequences of coher-
ent and cohesive events that describe a series of changes in the
world over the course of the story, plans consist of temporally
ordered operations that transform the world state with each
step, making them closely related. A planning system, given
a story world and actions pertaining to said story world in
the form of events, will create an artifact not unlike a story.
Furthermore, partially ordered plans allow freedom in the order
in which events occur if they are not causally related. Planners
require a domain theory containing all the possible events that
can happen, an initial state, which, in the case of narrative
planning, would be the story world and all that it contains,
and a goal situation, which, in the case of narrative planning,
is what the final state of the world has to be like for the goal
to be considered achieved. The task of the planner is thus to
find a sequence of actions that links the initial state to the goal
state. With this, we are provided with an initial situation for
a story, the events that unfold and the finale of the piece of
narrative.

Although advances were made in this field, procedural
generation of game narrative still has flaws. One of them is
the fact that for classical planning algorithms, though they
will successfully find a sequence of actions leading from
the initial state to the goal state, their sequence is in no
way guaranteed to make sense with the characters in the
story. The planning problem itself does not concern itself
with character believability [18]. This means that if the goal
state has a princess locked up, there is nothing preventing
the planning system from having the princess lock herself
up and considering this a valid plan, given that it satisfies
the requirements of the author. Furthermore, many systems,
such as [16], use human authored stories or human authorial

intent to be able to create a coherent and cohesive story.
These systems, called deliberative narrative systems [18], often
use centralized reasoning in order to produce a narrative that
satisfies the constraints and parameters intended by the human
authors, also called authorial intent.

In contrast to those systems are simulation based ap-
proaches, with a multi-agent simulation and distributed plan-
ning by and for each agent that simulate a story world. The
system determines agents’ actions depending on the current
context and world state, solving the problem of making in-
tentional agents [13]. By simulating a world with intentional
characters, believable interactions can emerge from the simu-
lations [22]. Many systems using emergence also use director
agents in order to guide the story [23], satisfy author goals
and ensure interesting and well-structured performance of the
simulation.

C. Quests

In his 2010 paper, Brenner states that plots often depend
on plans failing or being thwarted and then being readjusted.
Often times, in stories, multiple sub-stories or short events
occur, the sum of which amounts to the overarching story.
These sub-stories, in the context of games, are what we define
as quests.

[24] divides quests in three basic categories. The first is
place oriented, where the player has to move their avatar
through the world to reach a target location with puzzles
along the way, such as in Cyan Inc.’s Myst. Slightly less
common are the time-oriented quests, where the task of the
quest might simply be to survive for an interval of time. Last
is the objective oriented quest where the task is to achieve
a certain objective, such as bringing an item somewhere or
taking it by force from an agent in the world. These basic
categories can be combined, nested and serialized to produce
more or less complex quests.

The current work aims to create the proposed engine for
the Creation Of Novel Adventure Narrative (CONAN) im-
plemented in software. We will here implement and test the
CONAN system on the created quests from the NPCs and
the alteration of the world state as the interaction progresses.
According to the theory explained above, the NPCs need to
be able to provide pertinent quests to the player, the sequence
of which, in a persistent world, must be coherent. Assuming
that human authored quests are indeed relevant, the system
must therefore be able to create similarly built quests. This
experiment aims to create the quest generation engine CONAN
in such a way that the quests it creates and offers to the player
are similar to the ones a human author would. Furthermore,
the CONAN engine is to create quests that are not only similar
to the ones written by human authors but that are also relevant
according to the current context of the game and the character
giving out the quest in the world. We hypothesize that the
CONAN system will be capable of creating quests similar to
human authored quests and that these quests will be coherent,
as defined by their relation to the current world state and the
NPCs personalities.
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II. CONAN DESIGN

In this project we have created a quest-generation engine
called CONAN, implemented in software. The CONAN en-
gine’s goal is to produce, given an initial state and domain
files with all possible actions, novel and coherent quests for a
player audience. The quests will be produced and represented
as plans within the CONAN engine. Additionally, throughout
quest resolution, player actions and other world-state altering
events, it is able to produce more context-relevant quests as the
simulation goes on, effectively producing countless different
quests as the world state changes. In order for this to be
possible, it requires as input a world definition composed of
locations, non-player characters with pre-defined preferences,
monsters and items, laws governing the world (such as ”when
trees are cut down, there are fewer trees”), what actions are
possible, as well as the prerequisites and results of said actions.
Each of these items in a specific world simulation will be
objects within lists representing locations, characters, monsters
or items. Each of the objects are defined within the world
state by statements such as location(Castle) pertaining to the
castle object, defining it as a location. These specifications will
determine what is possible within the world and thus which
quests can be created.

Once the input is given, the CONAN engine will accomplish
its goal by having the NPCs make relevant and coherent plans
to solve their goals in accordance with their preferences, which
are provided in their individual domain files. These plans,
which will now be referred to as quests, are to be transferred
to the player character as requests. For instance, a baker NPC
that ran out of bread might want to make more bread to sell,
for which he needs more wheat. That NPC might then ask
the player character to get him some wheat from the field in
exchange for payment.

The following section will describe in detail each element
in the system.

A. Initial State
The initial state contains statements describing all that exists

in the story world. We specifically use the modified Aladdin
world that has seen much use in the literature [13], [25],
[18] for comparison purposes. This means that the following
elements are present:

• King Jafar who lives in a Castle
• Aladdin, a knight who has a cooperative attitude towards

King Jafar
• Jasmine who also lives in The Castle
• A Genie who is in the location ‘Magic Lamp’ and unable

to get out
• A Dragon who lives in the Mountain, is hostile to agents

and guards the ‘magic lamp’
One may notice that locations have also been mentioned

in the above description. These exist in the world and are
interconnected such that one may move to and from the castle
and the mountain. And the Magic Lamp is only accessible
from the cave.

Each of the agents is provided preferences, which are
represented by values weighting the actions, described in the

domain section (see Table I). Examples of this might be ‘being
free’ for the genie, ‘keep King Jafar alive’ for Aladdin or
‘acquire wealth’ for King Jafar. These statements might then all
be goals for the characters for which they need to create plans
to achieve. These preferences are specifically implemented in
the agents as higher or lower costs to each action. Aladdin
might then have a lower cost to the ‘Defend’ action. These will
be used by the planning system to find goals and sequences
of actions for each agent such that they match the agent’s
characteristics. This is our attempt to make their actions appear
intentional.

For further testing, we also use a second initial world state.
The purpose of this is to see the effect of a more complex world
with more characters, locations, monsters and objects on the
scalability of the system and the difference in possible quests
generated by the more complex environment. This second
world is set to have the following:
• Agents

◦ Baker
◦ King
◦ Lumberjack
◦ Blacksmith
◦ Merchant
◦ Guard
◦ Daughter

• Locations:
◦ The Castle, connected to the village
◦ The Village, connected to the castle, the bakery,

the shop, the wheat field and the forest
◦ The Wheat field, connected to the village.
◦ The Cave, connected to the forest.
◦ The Bakery, connected to the village
◦ The Forge, connected to the cave
◦ The Forest, connected to the village and the cave
◦ The Shop, connected to the village

As well as several items such as a hammer, wheat, a sword
and a magic spell book. The monsters (the troll, the wolves and
the slimes) will also be considered as items for implementation
purposes.

B. The domain file
The domain files contain the set of possible actions that

the characters in the story may use to achieve whatever goal
they may have. Following the analysis presented by [15], the
agents will have access to all the atomic actions found in his
structural analysis of quests. This is so that the generated plans
may include all possible actions and therefore offer the greatest
variety of quests and closer resemble human created quests.
The actions are as follows: DoNothing, Capture, Damage,
Defend, Escort, Exchange, Experiment, Explore, Gather, Give,
GoTo, Kill, Listen, Read, Repair, Report, Spy, Stealth, Take
and Use.

This set of actions covers the set of possible actions that
quests require players to perform in human written quests from
commercial video games [15] and will be evaluated as a set
of actions for the current simulation.
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Each action will be implemented in the system the following
way, using PDDL syntax, which is the standard for planning
algorithms [26]:

(:action move
:parameters (?p ?to ?from)
:precondition (and (location ?to)

(location ?from)
(player ?p) (at ?p ?from))

:effect (and (at ?p ?to)
(not (at ?p ?from))
(increase (total-cost) 2)))

Each action thus contains a name, the parameters used (player,
destination and current location in the case of the above exam-
ple), preconditions establishing what conditions must be true
in order for the action to be available (such as the destination
being a location) and what the effect of said action will have on
the world once it has been performed (such as the location of
the player is now the destination). Additionally, actions will be
weighted in accordance with agent preferences, with actions
incompatible with the agent’s preference having higher cost
than those in line with the preferences. This is represented with
the ‘increase (total-cost)’ part of the effect, with the number
representing the agent’s preference for this specific action. All
actions have a base cost of 2. This means that an action such
as Kill will have a path cost higher (raise to a cost of 3) for
agents such as the baker than the knight, for instance. These
mappings of actions to preferences of the agents will guarantee
that the agent’s choice of actions will remain coherent with its
personality and will protect suspension of disbelief. The action
preferences of the agents are described in Table I.

TABLE I. ALADDIN WORLD CHARACTER PREFERENCE.

Character Preference
Aladdin [”+kill”,”-exchange”,”-use”,”+escort”]
Dragon [”-damage”,”-take”,”-report”,”+escort”,”-defend”]
Genie [”-kill”, ”-exchange”, ”-defend”, ”-read”]
Jasmine [’+kill’, ’-spy’, ’-take’, ’-stealth’]
Jafar [”-kill”, ”-spy”, ”-take”, ”-stealth”, move”]

In Table I, actions preceded by a ‘’ have a lower cost
(and are therefore preferred) and those with a + sign have
a higher cost, making them less desirable. Each character has
been given four or five actions with differing costs, though
any number of actions can be modified in this way in order
to change the agent’s preference. One can see that, in doing
so, it is possible to steer an agent’s preference for certain
actions and at the same time for certain types of quests. For
instance, the reader may notice how Jafar has a preference
for the actions ‘kill’, ‘spy’, ‘take’, ‘stealth’, and ‘move’. This
will cause him to prefer plans that involve sneaky actions,
murder and stealing. In the same way, one can change the
preferences of an agent to make them prefer defending, trading,
or any personality wanted. These preferences were arbitrarily
assigned to the character, and the exact preference and value
is not relevant to the actual outcome of the specific quest
generation. Rather, they are used to insure different NPCs
will create different quests by giving them a semblance of

personality. For example, if Aladdin had +stealing, while he
would not be stealing an item himself when giving the PC
the quest, his preferences-defined personality make him more
likely to recommend stealing an item rather than lawfully
buying it or crafting it. In contrast a law-abiding citizen
would recommend a significantly different quest for a similar
objective.

C. Goal Generation
The goals themselves take the form of sets of statements

that must become true in the world state. These statements
are a combination of predicates, such as ‘has’ or ‘defended’,
and an object, such as an agent, an item, or a location. For
example one statement in a set might be (has baker wheat),
meaning that in order for the goal to be accomplished, that
statement has to become true. In the current implementation
of the program the possible predicates are as follows, with ?i
being information, ?l a location, ?o an object, ?c a character,
?p the player, and ?cl a character at a location:

predicates = [
"(has ?cl ?i)",
"(has ?p ?o)",
"(has ?c ?o)",
"(cooperative ?c)",
"(at ?c ?l)",
"(character ?c)",
"(captive ?p ?c)",
"(damaged ?i)",
"(defended ?c)",
"(defended ?i)",
"(sneaky ?p)",
"(dead ?m)",
"(experimented ?i)",
"(explored ?l)",
"(used ?i)"]

These define who or what can have the predicate describing
a certain situation. Therefore, the player can only make herself
‘sneaky’ as the ‘sneaky’ predicate can only be attributed to ?p,
the player.

The engine uses two algorithms to choose goals in order
to compare them. The first one will randomly select goals
for each NPC to use as a baseline comparison against the
preference-based goals. It does so by choosing a number of
random predicates from the above list equal to a user-defined
number. It then cycles through the predicates and assigns a
random legal item in place of the ‘?’ object.

The second proposed algorithm will, for each agent, select
a number of random goals in the same method as was
described above and rank them according to the current agent’s
preferences and only keep the one best fitting of the agent’s
preference, that is, the one with the best score. This is done
by taking the list of goal states for each agent and finding
a plan to reach said goal. The average cost of the actions in
the plan is calculated, giving an idea of how well the plan
fits with the current character’s preferences. Given that the
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Fig. 1. Mean of action cost by number of goal states attempted. It shows a
downward trend of the discrepancy between the generated quest and the NPC’s
preferences based on the number of iterations before settling on a quest.

cost for actions in line with the preference of an agent is 1,
the closer the average is to 1 the more the plan is in line
with the character. This is repeated for each goal state and the
one yielding the plan with the lowest cost is kept. The engine
creates 4 random goal states to be evaluated in this fashion for
each character by default. A higher number means the system
is more likely to find a better goal but also means it is more
taxing in terms of computation as it must create a plan for
each said goal. The spline curve in Figure 1 shows how the
mean of action costs within a plan changes with the number of
goal states attempted. This second method ensures the goals
will more likely be compatible with the agents’ preferences,
thus preserving the illusion of intentionality.

D. Simulation

The simulation itself runs in a turn-based manner. There are
two turns: the NPC turn and the PC turn. This means that the
engine, after taking in the initial state and domain files with the
actions, will solve each agent’s planning problem and present
the player with each plan. This is the NPC turn, where each of
the agents designs their plans and gives it to the player. Before
it is given to the player, a distribution of the quest motivations
for the generated quests will be computed for evaluation
purposes. In future versions, before selecting the quest to be
given to the player, it will be compared with the distribution
and will only be used if it has not been overused. This will use
a player model to determine player preference and flatten the
quest motivation distribution, only letting the ones the current
player prefers be presented in higher frequency. This is in
order to prevent the quests presented to the player from being
repetitive. A translation module then transforms the plans from
the series of action names to a readable form for the player to
be able to understand.

Fig. 2. Flow of operation during the course of a simulation. The operation
cycles from Goal Generation onwards.

Next is the player turn, where the player may perform an
action that impacts the game world. It is the opportunity for
the player to interact with the NPC–that is, to help them with
the quest they have transferred onto him. Once the action is
taken, the world states are updated and the system cycles back
to the NPC turn, checking for new plans in light of the changes
that have occurred in the world.

E. Quests

As mentioned previously, the CONAN engine presents the
player with various quests at each time step. “Quest” is here
defined as a series of steps that must be taken in order to solve
some problem, as presented by the agents to the player as a
request. The quests are formally and structurally defined as
follows.

In their analysis of more than 3000 human authored quests
designed for commercial video games, [11] classified quests
into various categories. They observed that each quest could
be classified into one of 9 different categories according to
its underlying motivation. Motivation is essential for ensuring
that quests appear intentional and appropriate rather than
randomly generated [15]. The nine categories of motivation
are as follows: knowledge, comfort, reputation, serenity, pro-
tection, conquest, wealth, ability, and equipment. The above
example pertaining the baker’s wheat would fall under the
“Wealth” category. Table II describes examples of quests that
the CONAN engine could generate for each of the different
categories. In order to create a system that is able to create a
wide variety of realistic quests, our goal was for the engine to
create quests from each of these categories.

The example quests given below assume an initial world
state as described in the second, more complex state in the
Initial state section.
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TABLE II. CATEGORIES OF QUEST MOTIVATION.

Motivation Example of quest
Knowledge Find the location of the king’s stolen treasure”
Comfort Get rid of the wolves in the forest that are pre-

venting the lumberjack from getting wood.”
Reputation Get granite and build a statue of me in the town

square.”
Serenity Rescue the daughter of the baker that was taken

by a troll.”
Protection Go kill the troll that has been traumatizing the

village”
Conquest Go kill my enemies.”
Wealth Go get some wood for the lumberjack to sell.”
Ability Find me the ancient spell book.”
Equipment Repair the lumberjacks’ axe.”

Furthermore, given the actions that exist within the current
software and its implementation, the quests will fall within the
first and last categories of the tree, as described by [24], ‘place
oriented’ and ‘objective oriented.’ This is because, they are to
be NPC’s plans to attain an objective within the game world,
in different areas. The second category, time-oriented, cannot
exist in the current version as there is no implemented concept
of duration.

Using NPC preferences and a varied action set results in a
variety of possible quests proportional to the variety of charac-
ter motivation, action, and objects in the world implemented
at initiation, spanning possibly the entire range of possible
categories. These are the building elements of the quests and
define the type of quests that will be generated by giving it its
concrete goal. Smaller, simpler initial states will create fewer,
less varied quests while more complex worlds will create
quests spanning all quest structures.

The solution to each NPC’s current problem or objective
will be processed individually by a planning agent. In order to
do that, each NPC is instantiated as a planning problem with
its own set of constraints and goals and its own domain. As
[13] have noted, although authorial intent suffers from such
distributed processing, characters are more realistic, which is
important for character believability, which had been noted as
providing meaningful interaction [22], [13].

The quests, as mentioned previously, will be the plans the
system constructs for each agent. This means that for each
agent, during the NPC phase, the system will take the current
state of the world and the constraints imposed by the specific
agent and find the least expensive path, in terms both of
number of actions and of weight relative to its preference,
to its current goal. For instance, in a world defined as follows:

The planning engine might come up with the following plan:
Once the agent knows the plan is possible, achieves current

goal, and has the lowest cost (therefore meaning it is in line
with its preferences), it is accepted as the current plan and is
translated for the player to be able to read.

F. Planning algorithm
The CONAN engine need not create immensely complex

plans (or quests) as the complexity of the narrative is theorized
to emerge from the variety of interactions the player has
with the world’s agents. Furthermore, given that the planning
is done by each agent for themselves, the intentionality of

Fig. 3. Sample world state and plan for solving the need for wheat from the
baker. Both branches show possible plans solving the goals of the NPC.

the plan can be dealt with directly by the planner during
planning, where the preferences provide differing costs to
different actions. More complex distributed algorithms such as
MAPL [14] is unnecessarily complex for the proposed engine
and the handling of intentionality by the global planner [18],
[13] might not be relevant to the current system, as the use
of weighted actions relative to character preferences might be
more than enough to guarantee intentionality. The CONAN
system uses Fast Downward [27], as distributed under the GNU
General Public License. It is an implementation of classical
planning system based on heuristic search. It is encoded in
PDDL 2.2, which is a standardized format for planning, and
supports features such as ADL conditions and effect. This had
the advantage of allowing numerical values to be used in the
domain file, which we use here for weight of each action
to be added in the plan weight. ADL also provides support
for negative statements in preconditions. The planner supports
many heuristics and we used A* in the current implementation.
It takes in a standard PDDL format problem, translates it into
multi-valued planning task and uses a hierarchical decomposi-
tion of the planning task to compute the heuristic function.
We used this implementation of the planning engine as it
supports negative clauses and numerical values. Furthermore,
it has proven itself a very efficient implementation [27].

III. EVALUATION

We wanted to test to see if CONAN could make the variety
of quest types that have been observed in human-authored
quests. To do this, we had CONAN generate a large number of
quests and classified them. If all of the quest types were well-
represented, then we would consider CONAN to be successful
in this regard.

The created quests are plans, which consist of sequences
of actions leading the current state to the goal state. Each
action sequence is compared against sequences of actions
defined in [11] that belong to strategies underlying each of the
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motivations. For each strategy found in the plan, its associated
motivation will be given a score and the motivation with the
highest score will be determined as the motivation for the
quest. The engine will be determined to be exhaustive in its
breadth of possible quests if it is able to cover all the nine
motivations that were found underlying all the human authored
quests in the analysis by [11].

A. Classifier
In order to determine the motivation category of each of the

created quests, the engine has a built-in classification module.
This module uses the quest structure from the classification of
[11] to compare it against the ones it created. In their work,
based on human written quests from commercial video games,
they have found that all quests can be associated with one of
nine broad categories, the motivations, which are shown in
Table 2. This broadest classification represents different types
of goals the NPC wanted achieved through the quest itself.
In order to achieve the goal of the NPC, the quest employed
different strategies, which are specific to said motivation, each
motivation having between two and seven different strategies
specific to itself, the exhaustive list of which can be found
in [11]. The strategies themselves, being a way to reach
the quests’ goal, are high level representations of a specific
sequence of action that must be performed in order to attain
the goal. For example, the quest motivation Knowledge” has
four associated strategies, which are unique to it. These are
Deliver item for study”, Spy”, Interview NPC”, and Use and
item in the field”. Each of these strategies is described by a
sequence of action, as shown in Table III.

TABLE III. STRATEGIES AND SEQUENCES OF ACTIONS FOR THE
KNOWLEDGE MOTIVATION

Motivation Strategy Sequence of action
Knowledge Deliver item for study <get><goto>give

Spy <spy>
Interview NPC <goto>listen<goto>report
Use an item in the field <get><goto>use<goto>

<give>

The classifier, in order to determine to which broad category,
or motivation, the created quest belongs to, creates a fuzzy
membership based classification where each strategy belongs
(0 to 1) to a quest. To do this, the quests are segmented into
pairs of actions, for which the classifier searches through every
strategy, for each of the motivations. If a pair is found, its
score is augmented. This way, each strategy gets a score and,
in turn, the sum of the scores gives the motivation its own
score. The motivation with the highest score is determined to
be the motivation for the quest. This can be described by the
following:

N∑
i

1

Li ×N

Where N is the number of strategies in that motivation, and
Li is the length of a given strategy, specifically the number
of pairs of actions. This method of classifying quests has
the advantage of allowing the classifier to detect strategies

if they are not complete, as long as the sequence of action
is closer to a given strategy than another. One inherent flaw
to this process comes from the classification itself. Since
some strategies are comprised of only one action, such as the
‘Ability’ motivation with its ‘Use’, and ‘Damage’ strategies,
the classifier will consider a sequence of actions such as
(‘Move’ ‘Damage’) to be both from ability because of the
‘Damage’ and from the ‘Serenity’ motivation, as one of its
strategies is (‘Move’ ‘Damage’). This causes the motivation
with single action strategies to be over represented, such as
‘Ability’. Furthermore, the classifier also does not account for
possible sub quests or imbedded quests. For instance, if the
quest was to destroy something with an axe but the character
first had to get said axe, the classifier would count this as
only one quest with one motivation instead of a quest with an
imbedded sub quest.

In order to test the classifier itself, its output was compared
to motivations assigned to quests by two of the authors.

We took the first 50 quests that were output by the below-
described large world test and classified them by hand into
each of the 9 motivation categories. We then used the same
50 quests and used the classifier to divide them into the 9
motivations. Out of the 50 motivation assignments, 14 were not
identified by the classifier. The inter-rater agreement between
the two humans is 0.44, as measured by Krippendorff’s alpha,
where 1 indicates perfect reliability, 0 indicates no agreement
at all, and a negative number represents systematic disagree-
ment [28]. The agreements for each human paired with the
classifier is 0.40 and 0.38, and the agreement for the three
together is 0.42. While the agreement is generally mild, the
results are close to each other. This may indicate that the
classification task is hard to complete, and that two humans
and the classifier agreed at a similar level.

The difference in classification between the module and
we can be explained in part by the inherent nature of the
quest structure found in [11]. Although the motivations have
specific strategies, some of them are very similar. For in-
stance, the Knowledge motivation has the deliver item for
study” and the Equipment motivation has the deliver supplies”
strategy. Both these strategy have for sequence of action
<get><goto><give>”. Such similarities lead to ambiguity
in decision of which motivation should be assigned to a given
quest.

B. Large World Test
In order to verify the breadth of possible quests, the simu-

lation needed to create many quests. A world, simply called
the Large World, was used to create about a thousand quests
per non-player character. Those quests can be seen as initial
quests, before any input from a player character. This allows
us to investigate the diversity of quests from a single world
state. Also, while a non-player character’s preferences were
still used to create quests (in terms of the choice of preferred
steps to complete it), the choice of goals were not influenced
by them. Those initial random goals allowed the engine to not
be compromised by strong human-authored preferences, which
could have shifted the distributions of quests.
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Fig. 4. Distribution of quest motivations as classified by the automatic
classifier for the Large World Test. While any world with differing sets of facts
will produce varying distributions, all types of quest categories are accounted
for in the Large World Test.

This test can be seen as sampling the quests offered by a
world. Every sampling instance, each agent tried to create a
single quest. The quests were then classified using the classifier
module into the 9 motivations found in [15] depending on
the strategies found in the plans. Figure 4 shows the resulting
motivation distribution.

As one may see from Figure 4, all the motivations were
found in the Large World Test. Using a single initial state, the
agents were able to create quests spanning all of the broad
categories describing all human-writing quests. This confirms
that the engine is indeed capable of creating a wide variety
of quests to present to the player audience. The distribution
in Figure 4 appears to be different from the distribution of
human-generated quests seen in Figure 5, as described in
[15]. One may speculate that a possible explanation for this
difference can be attributed to human author preference and
current popularity in the game market in the case of the human
authored quests, where the engine does not have such bias
towards a specific quest motivation.

Fig. 5. Distribution of motivation in human written quests, as reported by
Doran and Parberry in [15]. While all motivations are found, the distribution
is different from what we have seen in quests generated by the engine in the
Large World Test

Many quests fall under the ‘NotFound’ category. These

Fig. 6. Distribution of quest motivations in Aladdin World, as classified by
the automatic classifier. We observe that a more limited world, with a smaller
set of facts and characters, produces a narrower range of quests in terms of
motivations.

are quests that were either impossible to execute or already
complete within the world. Given that for this test, the
goals were chosen randomly, it was not impossible for the
engine to choose goals that already exist within the world,
such as (alive baker). These goals could not produce quests
and were therefore placed under the ‘NotFound’ category.
Similarly, quests for which a successful plan could not be
found within 5 minutes of searching were also dismissed as
‘NotFound’. Any quest with the ‘NotFound’ category would
not be transferred to the player, being considered an unplayable
quest. The goal generation did not automatically remove goals
statements that already existed in the world state for two
reasons. Firstly, although it would be beneficial for smooth
gameplay, the existence of already resolved quests does not
impact the capability of the engine to create other quests.
Secondly, these already resolved goals could be used, in future
implementation, for quests creation as well. Indeed, although
the current implementation does not have this feature, goals
that are already reached could be considered states that must
not be changed. For instance, if the guard was to choose the
goal (defended village), and such a statement already existed
in the world state, one could interpret this as a quest to keep
the village defended. Future implementation could use this to
create even more different quests, possibly implementing the
time-oriented quests from [24]. As for impossible quests, these
are quests where the engine tried and failed to create a plan
given the goals. This could be for different reasons such as
conflicting goals.

C. Aladdin World Test

The second test used the modified Aladdin world for its
simulation. This world is much simpler, having fewer facts and
objects than the Large World. The same test was performed,
with random goals, no player character input, and about a
thousand quests for each of the 5 agents. The results are seen
in Figure 6. Given its much simpler nature, the world did not
produce the same variety of quests as the Large World.
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IV. CONCLUSION

In conclusion, the CONAN engine is indeed capable of
creating quests that resemble human written quests in a struc-
tural manner. Although the tests showed a different motivation
distribution for the sets of quests found from the human written
quests, the engine can indeed create quests that cover the entire
set of categories. It has also shown that although worlds with
few objects could not produce all possible quest motivation, the
CONAN engine can produce them given enough information,
supporting the claim that the complexity of the produced quests
depends on the complexity of the world given as input. The
more complex the given world, the more complex the quests
presented to the player audience will be.

Since the generative nature depends of the world state at the
time of generation, the set of possible quests at any moment
is constrained only by the current world, which changes as the
simulation goes on, effectively creating a constantly changing
set of possible quests.

Such an engine, effectively capable of autonomously cre-
ating infinity of quests would be valuable to an industry that
is growing in demand for complexity and which uses human
artists and authors to create such content. The possibility
to offload this task, partially or totally onto an autonomous
system would make the creation of such games much cheaper
and create a very high replay value as the gameplay would
be different every time the game is played by its intended
audience.

The current work differs significantly from other similar
systems by its reliance on emergence and player interactions.
State of the art systems such as IMPRACTical [13], seek to
create stories through intentional planning by multiple agents
and a single narrative planner that generates the narrative story.
[14] uses continuous multi-agent planning in order to write
a story with its different agent’s goals and intentions, and
[16] uses a centralized planner to adapt plotlines in order
to create new stories. Lastly, [11] use structural rules to
create quests from their analysis. The CONAN system’s main
difference comes from its simulation based, emergent approach
and its iterative process where story is generated through each
iteration of the player’s actions.

We forgo the use of story planners or director agents in
favor of an interactive approach where the player dictates,
through their decision during the simulation, how the story
ought to evolve. This approach has yet to be investigated in
depth and can provide a different approach to generation of
stories in games, which would be less involved in terms of
human authoring and thus more efficient than the traditional
human written stories.

It could be that a coherent story will emerge from such
an engine given a simulation-based system with believable
characters that provide the human player with believable
interactions in the form of quests. The human player, through
their interactions in the game, might act as their own director
agent, forming a coherent narrative through their own choice
of quests.

In director agent systems [23], [29], the AI entity chooses
interesting plot points and adjusts the story to maximize

its entertainment value. We suggest here that the player’s
choice of which quest to undertake within a large set of
available quests, which sub-story to pursue, and which actions
to perform in the world will ensure that the story elements,
the quests as they unfold, will be interesting to the audience,
the human player.

Future work should investigate the interaction aspect of this
idea. Specifically, one might look at subjective experience of
player reporting on both their interactions with the characters
in the world but also of their experience of any single simula-
tion’s story as they progress through the quest and interact with
the agents in the world, giving information on the believability
of the characters.

Furthermore, studies should investigate the current engine
capabilities for emergence of story. The current study does
not assess believability of the agents nor does it investigate
the effect of the simulation when presented to, and interacting
with a human player. This interaction is theorized to create,
in the mind of the audience, a story that is personal and
different for every player, every time. Furthermore, this study
does not investigate qualitative and subjective assessment of
interestingness or suspension of disbelief. Studies looking to
further this engine should implement it into a proper game and
test it using participants.
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