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Markov Chain Simulation with Fewer
Random Samples

Dimitrios Milios 1 Stephen Gilmore 2

School of Informatics
University of Edinburgh

Edinburgh, UK

Abstract

We propose an accelerated CTMC simulation method that is exact in the sense that it produces all of the
transitions involved. We call our method Trajectory Sampling Simulation as it samples from the distribution
of state sequences and the distribution of time given some particular sequence. Sampling from the trajectory
space rather than the transition space means that we need to generate fewer random numbers, which is
an operation that is typically computationally expensive. Sampling from the time distribution involves
approximating the exponential distributions that govern the sojourn times with a geometric distribution.
A proper selection for the approximation parameters can ensure that the stochastic process simulated is
almost identical to the simulation of the original Markov chain. Our approach does not depend on the
properties of the system and it can be used as an alternative to more efficient approaches when those are
not applicable.

Keywords: Markov chain, simulation, trajectory, random variable

1 Introduction

Continuous Time Markov Chains (CTMCs) have been used for many years for

describing systems that exhibit stochastic behaviour. Stochastic simulation is a

traditional approach for exploring the transient and steady-state properties of mas-

sive CTMCs, since it does not require an explicit representation of the state-space.

There are models however, such as bio-chemical reaction networks, whose state-

space is too large even for this kind of approach. The standard CTMC simulation

approach is known as the direct method (DM) [9]. In the case of very large models,

it has a high computational cost because it simulates every possible transition hap-

pening. Several accelerated methods have been proposed that are either exact or

approximate. Exact methods typically involve optimisations over the standard al-

gorithm, such as the next reaction method [8], the optimised DM [5], the logarithmic

1 Email: D.Milios@sms.ed.ac.uk
2 Email: Stephen.Gilmore@ed.ac.uk

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 296 (2013) 183–197

1571-0661/$ – see front matter © 2013 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2013.07.012

mailto:D.Milios@sms.ed.ac.uk
mailto:Stephen.Gilmore@ed.ac.uk
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2013.07.012
http://dx.doi.org/10.1016/j.entcs.2013.07.012
http://www.sciencedirect.com


DM [17] and ER-leap [19]. Most of these approaches involve the use of appropriate

data structures in order to generate the simulation events efficiently. For example,

the optimised DM makes use of a dependency graph to avoid recalculating rates

that remain unchanged.

An approximate simulation method tries to skip some of the simulation events,

resulting in a significantly faster process when compared to exact methods. For

example, τ -leaping [10] advances time by a pre-selected τ , during which many tran-

sitions may occur. Similarly in R-leaping [1], stochastic simulation was accelerated

by advancing by a predefined number of transition firings. K-leap [3] is an approach

that also advances time by a specified number of events. All these methods assume

that a single transition causes only small changes to the state of the system. Other

approaches such as [20] and [4] make use of the notion of time-scale separation. It is

assumed that the model can be partitioned to two sub-systems: slow and fast. The

behaviour of the fast sub-system is approximated, while only the slow sub-system

is simulated. Such assumptions may not always hold for arbitrary models, mean-

ing that either significant error is introduced or the approximate method fails to

accelerate the simulation process.

The Trajectory Sampling Simulation (TSS) algorithm that we propose is a mod-

ification of the DM that can be characterised as almost exact, in the sense that it

can be arbitrarily precise. In the case of the DM, each step requires sampling from

two distributions: the state distribution and the time distribution, both conditioned

on the current state. In a similar way, TSS involves sampling from the distribution

of state sequences. This reduces the number of random samples generated, a fact

that implies a faster simulation algorithm. The algorithm is still exact, since no

transitions are skipped. The same approach is extended to sample from the time

distribution given some particular sequence. That is achieved by approximating

the exponentially distributed sojourn times with a discrete random variable. Time

discretisation allows us to consider the time distribution as a discrete state Markov

chain, and therefore employ the TSS technique. This modification essentially ren-

ders our approach approximate, as part of the stochastic behaviour of the CTMC is

suppressed. However, we have proved that our method in the limit converges to the

solution of the original process, a fact that explains the term ‘almost exact’ used

earlier in the paragraph. We show that an appropriate selection of the approxima-

tion parameters can result in a behaviour very close to the original CTMC, and in a

reasonable speedup at the same time. Our implementation is based on the optimised

DM (ODM), hence the ODM is used as a baseline for efficiency comparisons.

Our approach is related to K-skip method I in [2], or simply K-skip. While their

strategy for sampling from the state sequence distribution is similar, their approach

for sampling from the time distribution is different. In order to reduce the random

samples that determine the sojourn times, they approximate the sum of k exponen-

tial random variables with a Gamma distribution, assuming that the exit rates are

similar for subsequent states. This assumption is reasonable for many bio-chemical

systems, however it may introduce errors for some models as we demonstrate in the

experiments’ section, while our approach can be generalised for arbitrary models.
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We have implemented K-skip following its description in the original paper, in or-

der to produce some comparative results. The error parameter that we have used

for K-skip is 0.01, which is the smallest value used in the original work. We also

highlight some computational issues not considered in [2] that arise from the fact

that one random number is used to produce an entire trajectory.

In Section 2, we introduce some concepts used throughout the paper. Sections

3 and 4 contain the theoretical details of our work. Some implementation issues are

discussed in Section 5. Experimental results are presented in Section 6. Finally, we

summarise the conclusions in Section 7.

2 Preliminaries

A CTMC can be represented as a triple (S,Q,π0), where S is a finite set of states,

Q ∈ R
|S|×|S| is a generator matrix, and π0 is the initial probability distribution

over S. Each s ∈ S is associated with an exponentially distributed random variable

Ls ∼ Exp(λs), where λs =
∑

s′ �=sQss′ is the rate of exiting state s. The jump chain

of a CTMC is discrete-time Markov with probability matrix P where:

Pss′ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Qss′/Qs, s �= s′ and Qs �= 0

0, s �= s′ and Qs = 0

0, s = s′ and Qs �= 0

1, s = s′ and Qs = 0

, where Qs =
∑
s′ �=s

Qss′ (1)

A transition in a CTMC is associated with two random variables that depend

on the current state s: Xs that determines the next state and Ls that determines

the amount of time spent in s. The DM involves sampling from Xs and Ls to

generate the next event. The distribution of Xs is categorical conditional on s, and

its probability mass function is given by the s-th row of the jump matrix P . We

assume an ordering of states such as s < s′, if s corresponds to a row of the transition

matrix with a smaller index than s′. If sk−1 is the state of the system after k − 1

transitions, sampling from Xsk−1
involves using a uniform sample U ∼ U(0, 1) and

selecting the next state sk with probability:

Pr(Xsk−1
= sk) = Pr(ask < U ≤ bsk) (2)

where bsk is the cumulative probability of state sk given sk−1, while ask is the

cumulative probability of the state that precedes sk in the ordering:

ask =
∑

sk′<sk

Psk−1sk′ and bsk =
∑

sk′≤sk
Psk−1sk′ (3)

In order to sample from Lsk−1
, we have to draw a new uniform sample U ∼ U(0, 1)

and calculate the time tsk−1
spent in sk−1 as follows:

tsk−1
= − ln(1− U)

λsk−1

(4)
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From a trajectory point of view, the random variables are different. A CTMC

trajectory involves a sequence of states and a sequence of positive numbers that

represent the amount of time spent in each state. Let Sk be a collection that stands

for the family of state sequences of length k. Therefore, we defineXSk as the variable

that represents the k-length sequence distribution. Given some particular sequence

of states, namely s0:k, its duration is represented by the Ls0:k random variable.

Ideally, we would like to directly sample from XSk and Ls0:k to determine the state

history and the time of the system after k transitions. Exact stochastic simulation

algorithms actually sample from those distributions implicitly by advancing by one

state at each event. In the sections that follow, we discuss how we can directly

sample from the trajectory-related distributions, XSk and Ls0:k .

3 Sampling from the State Sequence Distribution

The sampling from the state sequence distribution discussed in this section can be

applied to both discrete and continuous time processes. Without loss of generality,

we can assume that there is one initial state in some Markov chain. This will be the

root of a tree whose paths represent all the possible state sequences. Each path of

a tree with k levels corresponds to a sequence of k+1 states or k transitions. Then,

the probability of a path can be defined as the product of the transitions involved:

Pr(XSk = s0:k) =
k∏

n=1

Psn−1sn (5)

In fact, XSk follows a categorical distribution with |Sk| parameters. Sampling from

the sequence distribution requires us to compute its cumulative distribution func-

tion, which means that we have to define an ordering of the possible sequences.

Definition 3.1 [Lexicographical Ordering of Sequences] Given an ordering of

states, we define an ordering of sequences such as s0:k < s0:k
′ if one of the fol-

lowing holds:

i. s0:k−1 < s0:k−1′ or

ii. s0:k−1 = s0:k−1′ and sk < sk
′

Therefore, we can calculate the cumulative probabilities for the sequences. Given

a uniform random variable U ∼ U(0, 1), we can choose directly a sample from the

sequence space. The relationship between U and XSk is shown in the following

equation:

Pr(XSk = s0:k) = Pr(as0:k < U ≤ bs0:k) (6)

The term bs0:k is defined as the cumulative probability of the s0:k sequence. In the

same way, as0:k will be the cumulative probability of the sequence that precedes s0:k
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according to the ordering. More formally:

as0:k =
∑

s0:k′<s0:k

Pr(s0:k
′)

bs0:k =
∑

s0:k′≤s0:k
Pr(s0:k

′) = as0:k + Pr(s0:k)
(7)

Although sampling from the sequence distribution is well-defined, it cannot be

practically applied in its current form. The number of possible sequences grows

exponentially as k increases, a fact that renders Equations (5) and (7) computa-

tionally expensive. What we can do instead, is to draw a sample from U ∼ U(0, 1)
that determines the sequence, and recursively generate the transitions involved. A

recursive definition for the cumulative sequence probabilities would be useful for

this task. Using Definition 3.1, the cumulative probability of the sequence that

precedes s0:k can also be written recursively as follows:

as0:k = Pr(s0:k−1)
∑

sk′<sk

Psk−1sk′ + as0:k−1
(8)

Since the uniformly distributed sample U determines the entire k-length se-

quence, it follows that it also determines all of the k transitions involved. In the

DM however, the sequence of the transitions would have been determined by a se-

quence of uniform samples Un ∼ U(0, 1), with 0 ≤ n ≤ k. Thus, the sequence Un is

equivalent to the sample U for the state sequence. We shall next try to define the

last sample Uk in terms of U , which gives rise to the following theorem:

Theorem 3.2 If U ∼ U(0, 1) is used to draw a state sequence sample s0:k, then sk
is determined by:

Uk =
U − as0:k−1

bs0:k−1
− as0:k−1

(9)

Proof. We have to show that ask < Uk ≤ bsk , which means that Uk will select the

state sk, according to Equation (2). Since s0:k was selected, Equation (6) implies:

as0:k < U ≤ bs0:k ⇔
U > Pr(s0:k−1)

∑
sk′<sk

Psk−1sk′ + as0:k−1

and U ≤ Pr(s0:k−1)
∑

sk′<sk

Psk−1sk′ + as0:k−1
+ Pr(s0:k)

We subtract as0:k−1
from all terms, and divide everything by Pr(s0:k−1):

Pr(s0:k−1)
∑

sk′<sk

Psk−1sk′ < U − as0:k−1
≤ Pr(s0:k−1)

∑
sk′<sk

Psk−1sk′ + Pr(s0:k)

∑
sk′<sk

Psk−1sk′ <
U − as0:k−1

Pr(s0:k−1)
≤

∑
sk′<sk

Psk−1sk′ +
Pr(s0:k)

Pr(s0:k−1)
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We substitute Pr(s0:k)
Pr(s0:k−1)

with Psk−1sk and Pr(s0:k−1) with bs0:k−1
− as0:k−1

:

∑
sk′<sk

Psk−1sk′ <
U − as0:k−1

bs0:k−1
− as0:k−1

≤
∑

sk′<sk

Psk−1sk′ + Psk−1sk

∑
sk′<sk

Psk−1sk′ <
U − as0:k−1

bs0:k−1
− as0:k−1

≤
∑

sk′≤sk
Psk−1sk′

which eventually yields:

ask < Uk ≤ bsk

�

Theorem 3.2 can be used to calculate any of the Un samples that determine the

transitions by simply considering k = n, with n > 1. For the special case where

k = 1, the sequence probabilities will be equal to the transition probabilities of the

first step. We could then calculate the uniform sample Uk+1 needed for the next

step and recursively update as0:k+1
and bs0:k+1

to get the new cumulative sequence

probabilities using Equation (8). This strategy might not be optimal though, as it

requires keeping track of two cumulative probabilities. A cleaner and more efficient

solution would be to write Uk in terms of the previous uniform sample Uk−1.

Theorem 3.3 If Uk−1 ∼ U(0, 1) is used to draw a state sample sk−1, then sk is

determined by

Uk =
Uk−1 − ask−1

bsk−1
− ask−1

(10)

Proof. Given a uniform sample U that determines the sequence, the samples Uk

and Uk−1 can be written as specified in (9). If we solve w.r.t. U in both cases, we

obtain the following equality:

UkPr(s0:k−1) + as0:k−1
= Uk−1Pr(s0:k−2) + as0:k−2

which yields:

Uk =
Uk−1Pr(s0:k−2)

Pr(s0:k−1)
− as0:k−1

− as0:k−2

Pr(s0:k−1)
(11)

Using (8), the numerator of the second fraction above can be written as:

as0:k−1
− as0:k−2

= Pr(s0:k−2)ask−1
+ as0:k−2

− Pr(s0:k−3)ask−2
− as0:k−3

We also know that as0:k−2
= Pr(s0:k−3)ask−2

+ as0:k−3
because of (8), so we can

rewrite (11) as:

Uk =
Uk−1Pr(s0:k−2)

Pr(s0:k−1)
− ask−1

Pr(s0:k−2)
Pr(s0:k−1)
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According to the definition of sequence probabilities in (5), we have Pr(s0:k−1) =
Pr(s0:k−2)Psk−2sk−1

, which implies:

Uk =
Uk−1 − ask−1

Psk−2sk−1

Finally, we can write Psk−2sk−1
as a difference of cumulative probabilities to obtain

Equation (10). �

Starting from some initial transition, we can recursively generate an entire se-

quence of random samples that are uniformly distributed between 0 and 1. If the

previous step utilised a sample Uk−1 ∼ U(0, 1), we know that ak−1 < Uk−1 ≤ bk−1.
If we define Uk according to (10), it is easy to show that 0 < Uk ≤ 1, which

means that Uk ∼ U(0, 1). Although this sequence is produced deterministically, we

have shown that it corresponds to the uniform sample needed to sample from the

sequence distribution.

Thus, assuming that the quantities ask−1
and bsk−1

− ask−1
have to be calcu-

lated anyway, generating a sample at each step requires a subtraction followed by

a division, as Equation (10) implies. This procedure is more efficient than most of

the random generator algorithms, in particular the ones that produce high quality

random numbers.

4 Sampling from the Time Distribution

4.1 Time Discretisation

If we select some particular sequence s0:k, the duration of the total of the transitions

involved is represented by a Ls0:k random variable. In the case of CTMCs this will be

the sum of k exponentially distributed independent random variables that determine

the duration of each transition, or more formally:

Ls0:k =
k∑

i=0

Lsi (12)

where Lsi ∼ Exp(λsi). Therefore, Ls0:k will follow hypo-exponential distribution

with k parameters, or equivalently Ls0:k ∼ Hypo(λs0 , . . . , λsk). To sample directly

from Ls0:k is only feasible for special cases such as the Erlang distribution, which

is a hypo-exponential with k similar parameters. It is possible to transform Ls0:k

to an Erlang distributed variable by applying uniformisation [13]. This approach is

problematic though, as the probability matrix of the embedded DTMC will contain

self-loops, in contrast to the original jump chain as defined in (1). This means that

the uniformised CTMC will involve a larger number of events, a fact that could

actually slow the simulation down.

Our attempt of sampling from the hypo-exponential Ls0:k efficiently will focus

on approximating the exponentially distributed sojourn times with a discrete ran-

dom variable. The use of a discrete distribution implies that we divide time into
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intervals, since it involves discrete time-steps rather than continuous. Thus, while

a continuous distribution indicates the probability of a transition happening up to

a time t, a discrete one indicates the transition probability up to the n-th interval.

The geometric distribution seems to be a reasonable choice for the task, since it

is the discrete analogue of the exponential. Given some exponential random variable

L ∼ Exp(λ), this can be approximated by a geometrically distributed Y ∼ G(p) that

denotes the number of Bernoulli trials needed to fire a transition with probability

p. The geometric distribution is supported in N excluding zero. Given the length

of intervals l, we can map a geometric random variable to R
+ by considering that

it is supported in {1l, 2l, . . . }. Since Y is geometric, its expected value will be 1/p

intervals, or l/p in terms of time units. If we make L and Y correspond to the same

expected value, that is 1/λ = l/p, it is easy to show that the interval length will be:

l =
p

λ
(13)

Therefore, to determine the amount of time spent in state sk will involve two steps:

(i) Sample from Ysk ∼ G(p). Using a uniform sample U ∼ U(0, 1), we choose a

n ∈ N
∗ with probability:

Pr(Ysk = n) = Pr(aYsk
< U ≤ bYsk

) (14)

where bYsk
= Pr(Ysk ≤ n) and aYsk

= Pr(Ysk ≤ n− 1).

(ii) Calculate the time spent in state sk:

tsk = nlsk = n
p

λsk

(15)

The advantage of time discretisation is that we can use the sequence sampling

technique presented in Section 3, and therefore reduce the random samples gener-

ated. To illustrate how this is possible, let us consider the stochastic process {Ysk}t
that denotes the collection of geometrically distributed random variables used to

approximate the sojourn times in some CTMC. If we set the same parameter p for

these random variables, then they will be independent and identically distributed.

We can easily verify that {Ysk}t is essentially a Markov process, which means that

it is possible to generate an entire state sequence using a single uniform sample,

as demonstrated in the previous section. The time discretisation was necessary,

otherwise it would not be possible to define the discrete state Markov chain {Ysk}t,
and therefore employ the trajectory sampling technique.

One desirable property of our approach is that it gives an estimation for the

duration of all of the transitions involved in a trajectory. On the contrary, the

Gamma sampling used in K-skip only produces the total duration of k transitions.

While both approaches use a single random number to determine the duration of

trajectories, K-skip is expected to be superior from a performance point of view.

However, our method produces trajectories that are as detailed as the ones of the

original Markov chain.
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One other strength of our approach is that its applicability does not rely on

particular model properties. The Gamma sampling used in K-skip assumes that

exit rates do not change much during the k steps. This assumption, which is similar

to the leap condition in τ -leaping methods, may not hold for some models meaning

that it could be an extra source of error. Our method is not exact however, due to

the time discretisation employed. The quality of this approximation is discussed in

the rest of this section.

4.2 Quality of Approximation

Since the interval length l is dependent on the parameter p of the Geometric distri-

bution, it is rather intuitive that smaller values for p result in better approximation,

as l also tends to get smaller. We are going to characterise the quality of this ap-

proximation in a rigorous manner.

Theorem 4.1 Let us consider some stochastic process that approximates some

CTMC featuring the same state-space S, the same transition probability matrix P ,

and the same initial distribution π0. The approximate process is only different in

the sense that the sojourn times are determined by Ysk ∼ G(p), as described in (14)

and (15). Then, the approximate process converges to the corresponding CTMC, as

p→ 0.

Proof. Let us define P (t) as the transition probability matrix of a CTMC at time

t. Given an initial state distribution vector π0, the distribution vector of the CTMC

at time t will be:

πt = π0P (t) (16)

P (t) can be calculated as a weighted sum of different powers of the probability

matrix P of the underlying jump chain. The state distribution at t can then be

rewritten as follows:

πt = π0

∞∑
k=0

P k × Pr(k steps until t) (17)

The modified stochastic process that resulted from this geometric approximation

will have the same underlying jump chain as the original CTMC. The only term

in (17) that is different in those two kinds of processes is the probability of k

transitions happening until time t. This probability can be expressed as a sum of

the probabilities of all sequences with duration less than or equal to t, weighted by

the sequence probabilities:

Pr(k steps until t) =
∑

s0:k∈Sk
Pr(Ls0:k ≤ t)Pr(s0:k) (18)

In order to show that the behaviour of some CTMC as given in (17) is well

approximated, it is sufficient (although not necessary) to show that the probability

of k transitions until t is approximately the same for the two kinds of processes.
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The modified process will have same sequence probabilities as its corresponding

CTMC, since the jump process is the same. Thus, two corresponding processes are

only different w.r.t the distribution of Ls0:k . Therefore, it is sufficient (although not

necessary again) to show that the cumulative distribution functions for the sojourn

times are approximately the same:

Pr(Lsk ≤ t) ≈ Pr(Ysk ≤ n)⇔ 1− e−λt ≈ 1− (1− p)n

⇔ e−λt ≈ (1− p)n

We can now plug in the equation the interval length l to our convenience:

e−λt ≈ (1− p)nl/l

Since we are only interested for t such that t = nl, we can discard t and nl:

e−λ ≈ (1− p)1/l

We can also substitute the l on the exponent according to (13).

e−λ ≈ (1− p)λ/p

Finally, we can also discard λ in both sides to obtain:

1/e ≈ (1− p)1/p (19)

The last equation is valid for values of p close to zero, as it can be easily shown by

the limit:

lim
p→0

(1− p)1/p = 1/e (20)

�

The p parameter is a probability, so we have 0 < p ≤ 1. Equations (19) and

(20) imply that smaller values of p result in much better approximation. However,

a value for p that is too small can make the geometric sampling described by (14)

inefficient, as the cumulative probabilities of the form Pr(Ysk ≤ n) will involve

too many terms. Hence, we need a trade-off between approximation quality and

efficiency. In the experiments that follow, we use two different values: p = 1 that

implies deterministic time-steps that depend on the current state only, and p = 0.1

which we think that it is a more appropriate choice, judging by the experimental

results of Section 6.

5 Implementation Issues

Although sampling from the sequence distribution as discussed in Section 3 is the-

oretically correct, it gives rise to some computational issues. In most computer

systems, the mantissa for the double-precision floating-point format contains 53

bits. That is why most random generators produce doubles of the form: m× 2−53,
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where m is a uniformly distributed integer. In other words, a random generator is

capable of producing 253 different values. The TSS algorithm will have 253 different

inputs resulting in 253 different trajectories at most. The number of the possible

trajectories can easily exceed this value even for not so long simulation runs, since it

grows exponentially with the number of simulation events. Therefore, it is inevitable

that we will miss a significant number of possible state sequences.

This effect can be eliminated if we sample trajectories of some particular length

k, such that the number of possible sequences are significantly smaller than the

number of uniformly distributed doubles. A value k = 10 is a reasonable choice

that suits most of the models that we have encountered in practice. Given 53-bits

of precision for the mantissa, we have 253 ≈ 9 × 1015 different possible random

numbers. The largest model that we have tested is LacY [14] involving 21 bio-

chemical reactions, which means that the maximum number of transitions available

is also 21. If we set k = 10, we have 21k ≈ 1.66× 1013 	 253.

Each step in TSS consists of two actions: state sequence sampling as described

in Section 3, and time sampling using geometric approximation. These concepts

are summarised in Algorithm 1, which involves two parameters: p that controls

the granularity of the geometric distribution and the length k of the trajectories to

sample. In our implementation the probabilities of the geometric distribution have

been pre-calculated for efficiency.

Algorithm 1 Trajectory Sampling Simulation
1: Initialise system state and set 0 < p ≤ 1 and k ≥ 1
2: Draw samples UL ∼ U(0, 1) and UX ∼ U(0, 1)
3: while t < tfinal do
4: Given M transitions, calculate the transition rates λm, ∀m ∈ {1, 2, . . . ,M}
5: Calculate λ =

∑M
m=1 λm, which is the rate of leaving the current state

6: Using sample UL, draw n from the geometric distribution G(p)
7: Using sample UX , pick transition m with probability λm/λ
8: Update time: t = t+ np/λ
9: Update state with effect of transition m
10: if iteration mod k �= 0 then
11: Update UL and UX according to Equation (10)
12: else
13: Draw samples UL ∼ U(0, 1) and UX ∼ U(0, 1)
14: end if
15: end while

6 Experiments

The efficiency of our algorithm stems from the fact that it generates fewer random

numbers. One of the most popular random generators in the literature is Mersenne

Twister (MT) [18]. It produces high quality random numbers while it exhibits

performance comparable to the most efficient algorithms of its kind, as can be seen

in [15]. We have developed our algorithm in Java using a number of open-source

libraries that contain implementations of MT, namely Apache Commons, CERN

Colt, JAMES II [12] and SSJ [16]. The implementations used produce doubles

whose mantissa precision is 53 bits.

We have applied our approach to simulate two different models of bio-chemical

reaction networks. The first model is LacY, which involves 21 reactions and 22
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species, as appeared in [14]. The second example is Goldbeter’s oscillatory model

[11] as presented in [7], which involves 7 reactions and 6 species. Both models have

been simulated using the ODM, K-skip, and TSS. The implementation of both K-

skip and TSS is based on the ODM, hence any efficiency comparisons have ODM

as a baseline.

Two different parameters were used for the geometric approximation: p = 1

and p = 0.1. Table 1 contains the running times for different random generators.

The experiments have been performed in an Intel R© XeonTM E5410 @ 2.33GHz PC

running Scientific Linux 6. The results imply that TSS is about 15 ∼ 20% faster

than the ODM. A second observation is that using p = 1 is not significantly faster

than TSS using p = 0.1 for the geometric distribution. This means that there is no

need to use a value for p greater than 0.1, as this would not result in a significant

improvement in efficiency.

Comparing running times for K-skip and TSS, we see that K-skip is clearly the

most efficient of the two. This is because it determines the total duration of k events

by sampling from a Gamma distribution, while we determine the duration of every

single event happening. We note that the speedups observed for K-skip are smaller

than the values reported in [2]. This is due to the MT random number generator,

which is more efficient than the ran2 algorithm used in Cai & Wen paper, as pointed

out in [15]. Because we are using a more efficient random generator there is less

scope to deliver speedups over the ODM. If we consider this difference, the results

we have found for K-skip seem to comply with the ones reported in the original

work.

Table 1
Execution times in seconds for 105 simulation runs

(a) LacY model, tfinal = 1000

TSS
ODM K-skip p = 1 p = 0.1

Apache Commons 8759 5588 6930 6951
CERN Colt 9043 5568 6974 6915
JAMES II 9684 5490 7043 6944

SSJ 10452 5562 7248 7322

(b) Goldbeter’s model, tfinal = 10

TSS
ODM K-skip p = 1 p = 0.1

Apache Commons 12264 9354 10678 10615
CERN Colt 12685 9514 10662 10658
JAMES II 13531 9857 10598 10596

SSJ 14636 9269 10719 10734

A second issue that has to be explored is whether the stochastic process de-

scribed by Algorithm 1 is equivalent to the original Markov chain. The convergence

is ensured as p→ 0 when k = 1. The simulation will be still exact even if k > 1 as

implied by Theorems 3.2 and 3.3. However, the use of the geometric approximation

means that we have a slightly altered process that approximates the original. To

assess the quality of this approximation we construct the histograms for various

rewards (i.e. species populations) in the models used, as it would have been im-
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practical to compare the entire state-space distribution for models of that size. We

then calculate the histogram distance [6], which is the euclidean distance between

the histograms of the true and the approximate distribution.

It is important to note that the histogram distance will always be larger than

zero, even if the simulation is exact, since the empirical distributions which result

from simulation are always going to be different. In order to determine whether

the distance calculated is significant, it has to be compared with the corresponding

self-distance. The histogram self-distance depends on the number of samples drawn

and the number of histogram intervals used. A value for the histogram distance

that is smaller than the self-distance implies that the two distributions are practi-

cally identical for the given number of samples. According to [6], an upper bound

for the average histogram self-distance given N samples is independent from the

distribution and it can be calculated using
√

(4K)/(πN), where K is the number

of intervals in the histogram. For the examples that follow, we have considered

K = 50.

Table 2 summarises the histogram distances for several species populations and

time-points in the models considered. For TSS with p = 1, some of the distances

are slightly larger than the self-distance (the values written in italics). This im-

plies that we have a reasonably good approximation but the error introduced by

using fixed times is observable for the number of samples considered. However, the

approximation quality is better when using TSS with p = 0.1, as it was expected.

The histogram distance from the true distribution is at the same level or smaller

than the self-distance estimated almost in all cases. This means that the error

observed is within the limits of the error inherently introduced by the simulation

process. Those findings support the claim that TSS with parameter p = 0.1 for

the geometric approximation is an accelerated simulation approach that is almost

exact.

While K-skip proved to be more efficient than our approach for the LacY and

Goldbeter models, Table 2 suggests that it is not as accurate in some cases. Most of

the histogram distances for the LacY model are greater than either the self-distance

or the corresponding distances calculated for both versions of TSS. It seems that

the assumption that the rates of subsequent states are similar might introduce some

errors, a fact that renders K-skip less appropriate for some models. Our approach

generalises to systems where this assumption is not valid. Moreover, our use of

the geometric approximation specifies the duration of every single event happening,

which can be important for some systems.

7 Conclusions

Trajectory sampling simulation requires fewer random samples to generate Markov

chain trajectories. This is achieved by using a single random number to determine an

entire sequence of transitions. We have proved that the random number required to

select the next transition can be written in terms of the random number that selected

the previous transition. This leads to a recursive update of a single random number

D. Milios, S. Gilmore / Electronic Notes in Theoretical Computer Science 296 (2013) 183–197 195



Table 2
Histogram distances for 106 simulation runs (self-distance: 0.0080)

(a) LacY model

K-skip TSS (p = 1) TSS (p = 0.1)
Time lactose PLac product lactose PLac product lactose PLac product

250 0.0070 0.0090 0.0064 0.0062 0.0005 0.0071 0.0045 0.0011 0.0054
500 0.0040 0.0074 0.0087 0.0042 0.0011 0.0083 0.0030 0.0004 0.0071
750 0.0041 0.0077 0.0074 0.0034 0.0004 0.0086 0.0050 0.0001 0.0076

1000 0.0044 0.0086 0.0081 0.0040 0.0004 0.0087 0.0032 0.0002 0.0079

(b) Goldbeter’s model

K-skip TSS (p = 1) TSS (p = 0.1)
Time active M active X C active M active X C active M active X C

2.5 0.0065 0.0068 0.0074 0.0071 0.0039 0.0039 0.0048 0.0040 0.0036
5.0 0.0067 0.0059 0.0055 0.0067 0.0066 0.0054 0.0066 0.0053 0.0052
7.5 0.0070 0.0088 0.0037 0.0068 0.0082 0.0054 0.0080 0.0079 0.0060

10.0 0.0071 0.0063 0.0067 0.0055 0.0048 0.0081 0.0041 0.0061 0.0062

that determines an entire state sequence. In the case of CTMCs a second random

number is used to determine the length of this sequence. The same concept has

been used by approximating the exponentially distributed times with a geometric

distribution with parameter p that controls the quality of this approximation.

We have simulated two bio-chemical models of different nature to assess the

efficiency and the accuracy of the our method. The experimental results show that

our approach is about 15 ∼ 20% faster than the ODM, while the errors observed

were found to be negligible. K-skip method I, which is a similar approach, was found

to be more efficient but in some cases less accurate. Thus, TSS can be thought of

as an alternative to K-skip in cases where this is possibly inappropriate.

There are also some practical considerations with respect to the length k for

the trajectories to be sampled. A too large value for k might result in missing

possible state sequences, while a value too small will degenerate trajectory sampling

simulation to the ODM. We have used k = 10 for the experiments produced, but in

the case of larger models we would have to set a smaller value for k. We think that

k = 5 is appropriate even for very large models. For example, given a model with

500 reactions we have: 500k ≈ 3.125× 1013 	 253.
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