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ABSTRACT

Wind tunnel experiments have been carried out on a small-scale physical model of a municipal waste landfill (MWL) in 

the CRIACIV (Research Centre of Building Aerodynamics and Wind Engineering) “environmental” wind tunnel in 

Prato (Italy). The MWL model simulates a landfill whose surface is higher than the surrounding surface, applying a 

1:200 scaling factor. Modelling an area source such as landfill is a difficult task for numerical models due to turbulence  

phenomena that modifies the flow near the source increasing ground level concentration (GLC). For the specific task a 

new set-up of the wind tunnel has been developed, with respect to previous studies carried out on line and point sources  

physical models. The tracer used in the experiments was ethylene, suitable for non-buoyant plume conditions, typical  

for MWL emissions. A detailed result data base has been obtained in terms of GLC and concentration profiles as well as 

flow turbulence and velocity field characterisation.
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1. INTRODUCTION

Both numerical and physical models can be valid instruments for assessing pollutants dispersion in 

the atmosphere. Models have many advantages with respect to full-scale measurements and can be 

used to support monitoring networks in the evaluation of pollution levels, as established by the 

European legislation (96/92/EC).

A large amount of commercial and research numerical models are currently available for a wide 

range  of  different  applications,  depending  on  the  specific  case  study  characteristics  (terrain 

configuration, meteorological data, source and pollutant typology). Evaluation of numerical code 

result accuracy and definition of the optimal set up are very important tasks.

Small-scale physical models are very useful for developing, improving or testing numerical codes, 

which mainly rely on empirical parameters and on field data sets affected by large uncertainties 

(Schatzmann et al., 1997).
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In this application the dispersion of a tracer from a municipal waste landfill (MWL) was modelled,  

in order to evaluate the diffusional path of emitted pollutants (mainly odours and hydrocarbons). 

Pollutant dispersion from MWL is strongly influenced by fully turbulent, localised flows around the 

plant (specifically referring to a relief one). These conditions represent a challenging problem for 

numerical models in order to have a sufficient accuracy of the results.

Starting from these considerations the aim of this study was to build an experimental data set, useful 

for characterising dispersion phenomena with the aim of numerical codes calibration.

2. EXPERIMENTAL SET-UP

The experiments were undertaken in the environmental boundary layer wind tunnel (BLWT) of 

CRIACIV, located in Prato, Italy. This BLWT is a suck-down open channel wind tunnel placed 

inside a closed shed of the Florence University Institute. The working section size is 2.4 m x 1.6 m 

x 4 m, in terms respectively of width, height and length. The wind tunnel has not any devices for 

temperature stratification simulation, thus only neutral atmosphere can be represented.

Wind flow measurements in the wind tunnel were performed by means of Pitot tubes and single hot 

wire anemometers. Velocity and turbulence characteristics were investigated in details  as useful 

parameters to assess the correct reproduction of the full-scale boundary layer (BL).

Tracer concentration measurement system, with a powered configuration with respect to previous 

applications (see, e.g.,  Contini,  1998; Corti et  al.,  2000; Manfrida et  al.  2001), is based on two 

parallel Flame Ionisation Detectors (FID) devices, and allows up to 24 sample points located inside 

the working section of the wind tunnel.

The small-scale model (scaling factor 1:200) simulates an operating landfill in relief. The full-scale 

height is 15 m and the base width is about 200 m. The model (see figure 1) is truncated-pyramid-

shaped with a square base and a top area size 476 x 476 mm2 at a height of 75 mm.

An artificial boundary layer, 0.7 m depth (Href) corresponding to 140 m at full scale, was developed 

using spires vortex generator (Irwin, 1981) and roughness distribution.



An accurate evaluation of the flow in the wind tunnel, performing different set-ups, was carried out 

in a previous study (Zipoli, 2002). Vertical and longitudinal velocity profiles showed, at distance 

x/Href = 0.81 (x axis representing the flow direction with the origin in the centre of the landfill), the 

effect of the landfill shape on the flow, with an increase of the turbulence and a decrease of the 

wind velocity near the ground. This effect is no more present at a distance x/Href = 2.24.

In this study a new set up was applied, varying the roughness parameter in the test section, in order 

to assess the influence of this parameter with respect to the previous experiments. A well-developed 

and stable turbulent flow was performed, having a sufficient reproduction of the flow and having 

negligible variation in the longitudinal direction. The measured profiles (figure 2 – the values are 

normalised with Uref, i.e. the wind speed measured out of the BL, at a reference height of 1.4 m – 

and  figure  3)  show a  good agreement  with  the  power  law of  the  wind profile  (the  calculated 

exponent varying with the distance around a mean value of 0.155) as well as the logarithmic law, 

with the assumption of u*/Uref equal to 0.050 (u* being the friction velocity) and the roughness 

length z0 equal to 0.25 mm (equal to 0.05 m at full scale), that is to say z0/Href = 3.57⋅10-4.

The biogas composition (CO2, 45%, CH4, 55%) was estimated using the LandGEM (Landfill Gas 

Emission Model) code, developed by US EPA Control Technology Center. Assuming 80% biogas 

capture efficiency, a biogas flow rate of 38.1 g s-1 was calculated. Usually biogas emitted from a 

landfill has quite the same temperature as atmosphere and density is similar too, so that no plume 

rise effects were accounted for. Thus, emission scaling was performed using a standard equation for 

neutrally buoyant releases (Robins, 1977):
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where Q represents volumetric flow rate, Href is a reference normalisation length (in this case Href is 

the  boundary  layer  depth),  C is  the  volumetric  concentration  and Wem is  the  vertical  emission 

velocity.



The wind speed at a reference height of 10 m was set to 2 m s-1, both at full scale and at reduced 

scale.  This  means that  Wem must  be the same at  reduced scale  and at  full  scale.  This  was not 

possible to obtain due to the scarce tracer flow at the source. For this reason the flow rate was 

arbitrarily  increased  setting  no  limitation  for  the  reduced  scale  wind  velocity.  However  this 

approximation is  still  valid  if  the tracer  flow speed is  negligible  with respect  to the wind flow 

(Obasaju and Robins, 1998).

The main characteristics of the scaled model related to full scale properties are reported in table 1.

In  order  to  analyse  the  spatial  distribution  of  the  tracer  downwind  of  the  source,  several 

concentration profiles were carried out: transverse profile measurements at height z/Href = 0.014 

(equivalent to 2 m at full scale) at different distances x/Href downwind of the landfill (0.86, 1.71, 

2.24, 2.57, 2.74 and 3.24); transverse profile measurements at height z/Href = 0.107 (source height) 

at different distances x/Href downwind of the landfill (0.86, 1.71, 2.57 and 3.24); vertical profile 

measurements at different distances x/Href downwind of the landfill (0.86, 1.71, 2.57 and 3.24).

For each measurement set, a standard closed circuit wind tunnel analytical procedure was applied, 

evaluating the background level concentration upwind the source twice, at the beginning and at the 

end of the measurement set, supposing a linear background concentration growing trend (Contini, 

1998). Concentration measurements were carried out with an averaging time of the FID signal of 

about 270 s and a sampling frequency of 500 Hz.

Due  to  the  large  amount  of  variables  affected  by  random error  and  the  non-linear  interaction 

between them, an evaluation of the global accuracy of a single concentration measurement is very 

difficult to be carried out. Thus several repeatability tests of the results were performed in order to 

assess the data accuracy and to monitor the measurement chain performance.

3. RESULTS

Transverse mean concentration profiles, measured at z/Href height of 0.014 (corresponding to 2 m at 

full scale) are reported in figure 4. A rapidly decrease before a stabilisation at a non-dimensional 

distance  x/Href =  2.24  can  be  observed,  as  effect  of  both  source  emission  and  flow instability 



downwind of the source.  The distribution of the mean concentration at height z/Href =  0.014 is 

reported in figure 5, obtained as interpolation of the measurement field results.  Transverse mean 

concentration profiles were also measured at the source height (z/Href = 0.107), as reported in figure 

6. Comparing these results with concentration measured at z/Href = 0.014 (figure 4), a remarkable 

increased  uniformity  of  data  can  be  noticed.  Vertical  mean  concentration  profiles  were  also 

measured, as reported in figure 7. From reported data is possible to foreground that the pollutant 

remains mainly near the ground, with a low vertical dispersion.

In order to validate the obtained results measurement tests were duplicated both for transverse and 

vertical profiles at different distances from the source. Several tests were also performed in order to 

verify twin measurement by the two different FIDs. A good reproducibility was observed, with a 

relative error usually lower than 10%. Highest errors were observed near the source, where the flow 

perturbation due to the landfill is higher, and in correspondence of the lower concentration points.

A detailed analysis of downwind diffusion was performed, basing on the mean height of the plume 

and both vertical and horizontal spread:
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In figure 8 the mean height versus the distance from the source is reported, while in figure 9 both 

vertical and horizontal spread variations with respect to the distance from the source are reported.



A constant growth of the plume (<z>) can be observed from results reported in figure 8, with a 

stabilising trend when the distance increases. A key result obtained is that the mean height of the 

plume (<z>) for the nearest profiles is lower than the source height (z/Href = 0.107), similar to a 

“downwash effect” on the source.

4. CONCLUSIONS

A set of experiments concerning the dispersion of a non-buoyant tracer emitted from a landfill,  

using a small-scale physical model, was carried out in a boundary layer wind tunnel facility.

Results can be useful for characterisation of atmospheric dispersion in similar situations (at full-

scale) and for validation and/or comparison of mathematical models.

Despite the difficulties of measuring low concentrations, and of modelling the complex flow near 

the landfill,  the experiments showed good reproducibility, with relative variation less than 10%, 

confirming the experimental set-up validity.

The results analysis allowed the evaluation of the dispersion parameters, which showed how the 

flow downwind of the landfill, due to induced turbulence, increases the ground level concentration 

(GLC) with a contemporaneous high variability of GLC near the source.

A phenomenon similar to the “downwash effect” was foregrounded too, with the analysis of the 

mean plume height (<z>), together with a high ground reflection effect due to both low emission 

height and the absence of buoyant phenomena.

Higher GLC data obtained in the model scale field appear to be largely influenced by these near-

the-source effects, being located immediately close to the landfill.
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Figure 1 – Small-scale (1:200) model of the landfill Figure 2 – Velocity profiles at different distances 
downwind the source

Figure 3 – Turbulence intensity at different 
distances downwind the source

Figure 4 – Transverse non-dimensional mean 
concentration profiles at z/Href = 0.014.



      

              

Figure 9 – Vertical and horizontal spread versus distance from the source.

PARAMETER FULL SCALE REDUCED SCALE
Source height 15 m 0.075 m
Emission area 8100 m2 0.2025 m2

Roughness length (z0) 0,05 m 2.5∙10-4 m
Tracer flow rate (Q) 0.032 m3 s-1 8.0.10-6 m3 s-1

Vertical emission velocity (Wem) 3.9.10-6 m s-1 3.9.10-5 m s-1

Wind profile exponent αp 0.155 0.155
Wind velocity at height z/Href = 0,07 (U10) --- 2 m s-1

Wind velocity at source height (Uem) --- 2.13 m s-1

Figure 5 – Non-dimensional mean concentration 
map at z/Href = 0.014.

Figure 6 – Transverse non-dimensional mean 
concentration profiles at z/Href = 0.107.

Figure 7 – Vertical non-dimensional mean 
concentration profiles.

Figure 8 – Mean height of the particles versus 
distance from the source



Roughness Reynolds number (u*z0/υ) --- 2.3
Density ratio (ρgas/ρa ) 1 1

Boundary layer depth (Href) 140 m 0.7 m

Table 1 – Main parameters used in the scaled model and full-scale values.


