
Computer Science Technical Report

TR-07-37

Oct 23, 2007

Haiyan Cheng and Adrian Sandu

“ Uncertainty Quantification and Apportionment

in Air Quality Models using the Polynomial

Chaos Method”

Computer Science Department

Virginia Polytechnic Institute and State University
Blacksburg, VA 24060

Phone: (540)-231-2193
Fax: (540)-231-9218

Email: sandu@cs.vt.edu
http://eprints.cs.vt.edu

1



Uncertainty Quantification and Apportionment in Air Quality

Models using the Polynomial Chaos Method

Haiyan Cheng and Adrian Sandu

Virginia Polytechnic Institute and State University,

Computer Science Department,

Blacksburg, Virginia, 24061, USA

hcheng04@vt.edu, sandu@cs.vt.edu

Abstract

Simulations of large-scale physical systems are often affected by the uncertainties in data,

in model parameters, and by incomplete knowledge of the underlying physics. The traditional

deterministic simulations do not account for such uncertainties. It is of interest to extend simu-

lation results with “error bars” that quantify the degree of uncertainty. This added information

provides a confidence level for the simulation result. For example, the air quality forecast with

an associated uncertainty information is very useful for making policy decisions regarding envi-

ronmental protection. Techniques such as Monte Carlo (MC) and response surface are popular

for uncertainty quantification, but accurate results require a large number of runs. This incurs a

high computational cost, which maybe prohibitive for large-scale models. The polynomial chaos

(PC) method was proposed as a practical and efficient approach for uncertainty quantification,

and has been successfully applied in many engineering fields. Polynomial chaos uses a spectral

representation of uncertainty. It has the ability to handle both linear and nonlinear problems

with either Gaussian or non-Gaussian uncertainties.

This work extends the functionality of the polynomial chaos method to Source Uncertainty

Apportionment (SUA), i.e., we use the polynomial chaos approach to attribute the uncertainty

in model results to different sources of uncertainty. The uncertainty quantification and source

apportionment are implemented in the Sulfur Transport Eulerian Model (STEM-III). It allows

us to assess the combined effects of different sources of uncertainty to the ozone forecast. It

also enables to quantify the contribution of each source to the total uncertainty in the predicted

ozone levels.
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1 Introduction

The Chemical Transport Models (CTMs) simulate the chemical reactions and transportation of

trace species in the atmosphere. With a given initial condition, the chemical concentrations in the

air can be computed for later times. The CTMs are driven by meteorological data, such as the

temperature, wind fields, etc, from numerical weather prediction models. The deterministic CTMs

assume the meteorological data, the boundary conditions, the initial conditions and the model itself

are all exact. However, this is not true in reality. The uncertainty in the model and data will lead to

uncertainty in the simulation results. An environmental policy decision based on the results without

considering the uncertainties will not be an optimal policy. Uncertainty quantification is therefore

necessary for air quality simulations. Finding a good approach to represent, quantify, and reduce

those uncertainties has become an important task for model developers.

The uncertainty quantification problem is to assess how incomplete representations of the physics,

and uncertainties in parameters, initial conditions, and boundary conditions, impact the model re-

sults. The uncertainty reduction problem is to use additional information (e.g., from observations)

to lower the uncertainty. Several uncertainty quantification techniques have been explored and ap-

plied successfully in many engineering research fields. The traditional Monte Carlo method [1, 2]

generates an ensemble of random realizations of each parameter drawn from its uncertainty distri-

bution. The deterministic solvers are then applied to each member to obtain an ensemble of results.

The ensemble is post-processed to obtain the relevant statistics of the results, such as the mean

and standard deviation. The probability density function (PDF) can also be estimated from the

ensemble of results. However, Monte Carlo method is computationally expensive due to the slow

convergence rate, which is in the order of the inverse square root of the number of runs (O(1/
√

n)).

For large scale models that require long computational time, it is almost prohibitive. Although

techniques such as Latin hypercube sampling [3], the quasi-Monte Carlo (QMC) method [4], and the

Markov Chain Monte Carlo methods (MCMC) [5] can improve the Monte Carlo convergence rate,

their applications are limited. For a smaller model, the solution obtained by sampling techniques,

such as the Monte Carlo method, can always be used as a reference for other techniques.

The polynomial chaos method represents uncertainties with a spectral approximation that allows

high order representations. The concept of the polynomial chaos originates from the homogeneous

chaos defined by Wiener [6]. Ghanem and co-workers [7] have demonstrated that polynomial chaos

is a feasible computational tool for scientific and engineering studies in the finite element context.

Karniadakis and Xiu [8] generalized and expanded the concept by matching the probability distribu-
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tion of the random input with the polynomial chaos expansion basis to reach the optimal exponential

convergence rate. In recent years, the polynomial chaos method has been successfully applied in

many numerical models, such as transport in porous media [9], solid mechanics [10, 11], struc-

tural mechanics [12], thermo-fluid systems [13], fluid-structure interaction and diffusion problems

[14, 15, 16, 17], computational fluid dynamics [18], chemistry [19], and electrochemical microfluid

system [20]. However, we are not aware of any applications of polynomial chaos method to quantify

uncertainty in air quality models.

In this paper, we explore the polynomial chaos method for uncertainty quantification in CTMs.

We apply the polynomial chaos method to the regional large-scale Sulfur Transport Eulerian Model

(STEM-III) [21]. We model the main sources of uncertainty in air quality models, namely, the emis-

sions, the boundary conditions, and the wind field. We investigate the effect of those uncertainties on

the predicted concentrations of the chemical species of interest, specifically the ozone. We perform

the source apportionment to attribute the uncertainties in the predicted ozone concentrations to

specific sources. The paper is organized as follows: Section 2 presents the polynomial chaos method

and the source uncertainty apportionment approach. Section 3 describes the STEM model and the

experimental setup. Section 4 presents the numerical results and discussions.

2 Polynomial Chaos Method and Source Uncertainty Appor-

tionment

Let (Ω,F , P ) be probability space, where Ω is a sample space, F a σ-algebra of subsets of Ω, and P a

probability measure. A general second-order random process X(θ) ∈ L2(Ω,F , P ) can be represented

as:

X(θ) =

∞
∑

i=0

ci Φi(ξ(θ)),

in which θ is a random event, Φi(ξ(θ)) are polynomial functionals defined in terms of the multi-

dimensional random variable ξ(θ) = (ξ1(θ), . . . , ξd(θ)) with the joint probability density function of

w(ξ). The family {Φi} satisfies the orthogonality relations:

〈Φi, Φj〉 = 0 for i 6= j,
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where the inner product on the Hilbert space of random functionals is the ensemble average 〈·, ·〉:

〈f, g〉 =

∫

f(ξ) g(ξ)w(ξ)dξ.

If the uncertainty sources are modeled as independent random variables ξ = (ξ1, · · · , ξd) with a

joint probability distribution w(ξ) = w(1)(ξ1) · · ·w(d)(ξd) (d is the number of uncertain parameters),

then a multi-dimensional orthogonal basis is constructed from the tensor products of one-dimensional

polynomials {P (k)
m }m≥0 orthogonal with respect to the density w(k) [22]:

Φi(ξ1, · · · ξd) = P
(1)
i1

(ξ1)P
(2)
i2

(ξ2) · · ·P (d)
id

(ξd).

In this case, the evaluation of d-dimensional scalar products is reduced to d independent one-

dimensional scalar products. In practice, we consider a truncated polynomial chaos expansion with

S terms. With the number of random variables denoted by d, and the maximum degree of the

polynomials by p, S can be computed by [7]:

S =
(d + p)!

(d! p!)
. (1)

With the growth of the polynomial order and the number of the random variables, the total number

of terms in the expansion increases rapidly.

To illustrate the use of polynomial chaos method, consider the deterministic model:

y′ = f(y), t0 ≤ t ≤ T, y(t0) = y0, (2)

with each state a vector of length n. Assume, without loss of generality, that the initial state is

uncertain. To express the resulting uncertainty in the state vector y, we expand the state vector

along the polynomial chaos basis Φ1(ξ1, . . . , ξd), . . . , ΦS(ξ1, . . . , ξd):

y =

S
∑

i=1

yiΦi(ξ),
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and insert it into the deterministic system (2) to obtain:

S
∑

i=1

(yi)′Φi(ξ) = f

(

S
∑

i=1

yiΦi(ξ)

)

. (3)

Using the polynomial chaos expansion, the original ODE is replaced by an ODE for the poly-

nomial chaos coefficients, and the uncertainty information is embedded in these coefficients. The

evolution equation for the stochastic coefficients can be obtained by either Galerkin or collocation

approaches as explained below.

In the Galerkin polynomial chaos approach, we project the system (3) on the space spanned by

the orthogonal polynomials, i.e., we take the inner product of (3) with Φi(ξ) and divide
〈

Φi, Φi
〉

at

both sides to obtain:

(

yi
)′

=
1

〈Φi, Φi〉

〈

Φi(ξ), f

(

S
∑

i=1

yiΦi(ξ)

)〉

, 1 ≤ i ≤ S. (4)

This system has n× S components and their evolution is coupled. (Each of the n variables in (2) is

represented by S polynomial chaos coefficients.)

The Galerkin approach requires the modification (expansion) of the deterministic system to a

stochastic system, and the entire stochastic system needs to be evolved in time. Although only

one system integration is needed, the computation time is significantly increased. At the end of

integration, solving the linear system coefficients causes a computational cost increasing from O(n3)

in the deterministic case to O(n3S3) for the stochastic case. The S3-fold increase can make the

computation prohibitive [23], especially for large-scale simulation models.

The collocation approach imposes the system (3) to be satisfied at a given set of points µj

(1 ≤ j ≤ Q):

S
∑

i=1

(yi)′Φi(µj) = f

(

S
∑

i=1

yiΦi(µj)

)

, 1 ≤ j ≤ Q. (5)

With matrix A defined using the basis function values at the collocation points

Aj,i = Φi(µj), 1 ≤ i ≤ S, 1 ≤ j ≤ Q, (6)
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the collocation points in the system state space are:

Y j(t) =

S
∑

i=1

yi(t)Φi(µj) =

S
∑

i=1

Aj,i yi(t), 1 ≤ j ≤ Q. (7)

With this notation, the equation (5) becomes:

(Y j(t))′ = f(Y j(t)), t0 ≤ t ≤ T, 1 ≤ j ≤ Q. (8)

These are Q independent integrations of the deterministic system (2) starting from the initial con-

ditions:

Y j(t0) =
S
∑

i=1

Aj,i yi(t0), 1 ≤ j ≤ Q. (9)

After integration, we recover the stochastic solution coefficients at the final time T by solving the

linear system of equations for yi:

yi(T ) =

Q
∑

j=1

(

A#
)

i,j
Y j(T ), 1 ≤ i ≤ S, (10)

where A# is the pseudo-inverse (A# = A−1 if Q = S and A is invertible).

The criterion for choosing the collocation points is that the system matrix A (6) is not singular

or near singular. Several options have been explored in [23], such as the random data sets, the

Hammersley/Halton data sets [24, 25], and the sparse grid Smolyak data set [26, 27, 28]. In lower

dimensions (small d), Hammersley/Halton and Smolyak data sets generate more accurate results

than a randomly generated data set. However, in higher dimensional stochastic spaces (large d),

both the Hammersley/Halton and Smolyak data sets have their data points aligned, causing the

system matrix A to become singular or near singular. In this case, a randomly generated data set

that leads to a non-singular system matrix should be used.

The comparison of the Galerkin PC approach and the collocation PC approach against the

traditional Monte Carlo method for uncertainty quantification purpose is made in [23]. Obviously,

without the requirement to modify the deterministic model, the non-intrusive collocation approach
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provides an easier implementation with similar accurate result compared with the Galerkin approach.

In general, the implementation of the PC collocation method includes the following steps. (1)

Model the sources of uncertainty by random variables with appropriate PDFs. (2) Build the S

orthogonal polynomials (expansion basis). (3) Generate the polynomial chaos expansion of the

uncertain parameters (or uncertain initial conditions). (4) Select Q ≥ S collocation points and

generate the system matrix A. (5) Run Q deterministic system simulations with the expansion

obtained from (3). (6) Recover the polynomial chaos coefficients of the results by formulating and

solving the linear equation systems. (7) Extract the mean and the standard deviation of the final

solution, and generate the PDFs. In this procedure, the majority of the computation time will be

spent on step (5) for repeated deterministic system runs.

After the coefficients are recovered, the system solution can be represented by a linear combina-

tion of stochastic coefficients times basis functions:

y(t) = y0(t) + y1(t)Φ1(ξ) + y2(t)Φ2(ξ) + . . . + yd(t)Φd(ξ) + H.O.T. (11)

In the above representation, the superscripts for the system coefficients represent the stochastic

modes. Φ1(ξ), . . . , Φd(ξ) are linear polynomials in variables ξ1, . . . , ξd respectively. The H.O.T.

represents the terms of orders 2 and up.

From the PC representation we can derive the statistics of the output uncertainty. The mean

value is given by the 0th order term in the stochastic representation (11):

〈yℓ(t)〉 = y0
ℓ (t), 1 ≤ ℓ ≤ n. (12)

The variance is computed as:

s2
ℓ (t) =

〈

yℓ(t) − 〈yℓ(t)〉, yℓ(t) − 〈yℓ(t)〉
〉

=

S
∑

i=1

yi
ℓ(t)y

i
ℓ(t)〈Φi, Φi〉, 1 ≤ ℓ ≤ n. (13)

The standard deviation is thus sℓ(t).

The covariance matrix of the model state at any time is computed by:
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Rk,ℓ(t) = 〈yk(t), yℓ(t)〉 =

S
∑

i=1

yi
k(t)yi

ℓ(t)〈Φi, Φi〉

Using these measures, the model output can be visualized with an “error bar” representation for

the uncertainty. In order to generate the PDF at any time, random samples with an appropriate

distribution need to be drawn and plugged into the PC representation of the time-dependent state.

With the known coefficients and the random numbers, an ensemble of states can be generated and

represend by a PDF. In PC approach, as long as the PC coefficients and basis are known, a large

state ensemble can easily be generated to form a smooth PDF curve. However, in Monte Carlo

approach, each member of the ensemble states requires a full system run.

With the polynomial chaos representation of the system state, we can perform the Source Uncer-

tainty Apportionment (SUA) by considering only the first order representations in (11) and attribute

the corresponding uncertainty in the source uncertainty towards the total uncertainty. We note that

in the Ozone Source Apportionment Technology (OSAT) [29, 30], the apportionment is performed

on the mean value of the system state, while here, the apportionment is performed on the total un-

certainty of the state vector. The proposed source uncertainty apportionment is carried out based

on the polynomial chaos representation of the stochastic states (11). In the variance formula (13),

we separate the terms corresponding to the linear terms from the higher order terms:

s2
ℓ =

d
∑

i=1

(yi
ℓ)

2〈Φi, Φi〉 +

S
∑

d+1

(yi
ℓ)

2〈Φi, Φi〉. (14)

(yi
ℓ)

2〈Φi, Φi〉 in the linear portion is the part of the total variance s2
l that can be attributed to the

i-th source of uncertainties (modeled by variable ξi). The higher order terms represent the mixed

contribution resulting from the interaction of multiple sources.

Using this feature of the polynomial chaos representation, we not only compute the total variance,

but also assess the percentage of the total variance coming from each individual source.

We implement the uncertainty quantification and the uncertainty source apportionment with a

chemical transport model-the STEM model. The implementation details and the numerical results

are discussed in the following sections.
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3 Application of the Polynomial Chaos to the STEM Model

3.1 STEM Model

STEM [21] is a large-scale state-of-the-art regional CTM. It is used to predict the chemical concen-

trations at future times by solving the following material balance equations:

∂ci

∂t
= −u · ∇ci +

1

ρ
∇ · (ρK∇ci) +

1

ρ
fi(ρc) + Ei, t0 ≤ t ≤ T,

ci(t
0, x) = c0

i (x),

ci(t, x) = cIN
i (t, x) for x ∈ ΓIN ,

K
∂ci

∂n
= 0 for x ∈ ΓOUT ,

K
∂ci

∂n
= V dep

i ci − Q for all 1 ≤ i ≤ n.

The first three parts in the first equation are the advection term (the transportation due to the

wind field), the diffusion term (occurs due to the gas particle motion), and the chemical reaction

term (causes the change of the chemical concentration). The last term, emission Ei, is the source of

the air pollution.

We denote u the wind field vector, K the turbulent diffusive tensor, ρ the air density with the

unit moles/cm3, and ci the mole-fraction concentration of chemical species (1 ≤ i ≤ s). For a

specific chemical species, V dep
i is the deposition velocity, Qi is the surface emissions rate, and Ei is

the elevated emissions rate. The third component fi(ρc) in the above equation is the rate of the

mole-fraction concentration change due to chemical reactions.

The 3-dimensional computational domain Ω covers a region of the atmosphere. Denote the

outward normal vector on each point of the boundary ∂Ω by ~n, the boundary is partitioned into

three parts: the inflow, outflow, and ground level portion: ∂Ω = ΓIN
⋃

ΓOUT
⋃

ΓGR, where ΓIN is

the set of boundary points where ~u · n ≤ 0 and ΓOUT the set of points where ~u · n > 0.

The STEM model is solved using the operator splitting [31] technique to handle the transport

and the chemistry successively. The advection terms are solved using a third order one-dimensional

upwind finite difference scheme. The diffusion terms are discretized using a second order central

difference scheme. The chemical time integrator is implemented using the Kinetic Preprocessor

(KPP) [32]. The gas phase chemical mechanism SAPRC-99 [33] is used to account for the gas-phase

atmospheric reactions of volatile organic (VOCs) and nitrogen oxides (NOx). 93 chemical species
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(88 variables and 5 constants) and 213 chemical reactions are involved. If the initial concentration,

the boundary condition, and the emissions are given, then the solution of the model is uniquely

determined [34].

With the STEM model, we can forecast the chemical concentrations at future times. We are

especially interested in the concentration of the ozone (O3) and its precursors, such as Nitric Oxide

(NO), Nitrogen Dioxide (NO2), and Formaldehyde (HCHO).

The model is deterministic, that is, it uses one emission profile and assumes no errors in the

parameters and inputs, as well as no errors in the representation of physical processes. However,

this is not true in reality. A stochastic version of the STEM is needed to account for the uncertainties

in the parameters and data. Due to the large scale and the complexity of the model, the traditional

full Monte Carlo approach is not possible. Based on our knowledge about the most important

uncertainty sources and the polynomial chaos method, we develop a stochastic version of the STEM

that considers the uncertainties associated with the emissions, the boundary conditions, and the

wind field.

To explicitly model the main sources of uncertainty, we introduce nine independent random

variables, one for each source of uncertainty:

ξ1 → NO ground emissions (NO) ξ2 → NO2 ground emission (NO2)

ξ3 → HCHO ground emissions (HCHO) ξ4 → West Dirichlet B.C. for ozone (WBC)

ξ5 → East Dirichlet B.C. for ozone (EBC) ξ6 → South Dirichlet B.C. for ozone (SBC)

ξ7 → North Dirichlet B.C. for ozone (NBC) ξ8 → Top Dirichlet B.C. for ozone (TBC)

ξ9 → Wind field (Wind)

3.2 Experimental Setup

Following the seven-step procedure described in Section 2, we first select the type of the random

variables, then derive a corresponding orthogonal basis to achieve the optimal convergence rate.

The most common random variables are the Gaussian and uniform distributed random variables.

The Gaussian distribution assumes that the majority of the possibilities occur around the mean

value, but there might be some extreme cases where the occurrence is nowhere close to the mean

value. Since Gaussian PDF has an infinite tail, it does not provide a bound for the uncertainties.

Uniform distribution is a special case of the Beta distribution, it assumes that the uncertainty has

an equal probability between the minimum and the maximum bound. Uniform distribution does not

provide a most likely value. However, uncertainties in air quality models have well defined bounds.

For example, all emissions have positive values and can not exceed a maximum value. We have
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knowledge of the most likely value. To capture this kind of knowledge we model uncertainty sources

in the CTM by Beta distributions with a most likely value information and a finite support. The

Beta PDF is defined as follows:

w(ξ) =
Γ(a + b + 2)

2a+b+1Γ(a + 1)Γ(b + 1)
· (1 − ξ)a(1 + ξ)b, where Γ(x) =

∫ ∞

0

tx−1e−tdt. (15)

In Figure 1(a), we show the PDF of uniform random variables. The PDF of a Beta function with

parameters a = 1, b = 1 is shown in Figure 1(b). The comparison of a Beta PDF with parameters

a = 4, b = 4 (solid) and Gaussian distribution (dashed) is shown in Figure 1(c). In our experiment,

we use Beta distributed random variables with parameters a = 1, b = 1.
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(a) Uniform distribution (b) Beta distribution (c) Gaussian distribution (dashed)
and Beta distribution (solid)

(a=0, b=0) (a=1, b=1) (a=4, b=4)

Figure 1: Probability densities for uniform, Gaussian and Beta distributions.

The polynomial family orthogonal with respect to Beta PDF (15) are Jacobi polynomials. For

optimal convergence, we use them as basis of the PC expansion. The normalized Jacobi polynomial

basis on [−1, 1] with a = 1, b = 1, up to order 2 for one variable are:

J0(x) =

√
3

2
;

J1(x) =

√
15

2
x; (16)

J2(x) =
3
√

7

4
√

6
(−1 + 5x2).

The 9-dimensional basis set is formed from tensor products of these one-dimensional Jacobi polyno-

mials.

We consider uncertainties in a certain range of the base value, with base value being the most

likely. In our experiment, we introduce 30% uncertainty for emissions, 10% for boundary conditions
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and 3% for wind field. With the added uncertainties, the deterministic state vectors become the

stochastic state vectors (17):

EMNO = EMNO + 0.3 × ξ1 × EMNO

EMNO2
= EMNO2

+ 0.3 × ξ2 × EMNO2

EMHCHO = EMHCHO + 0.3 × ξ3 × EMHCHO

WBC = WBC + 0.1 × ξ4 × WBC

EBC = EBC + 0.1 × ξ5 × EBC (17)

NBC = NBC + 0.1 × ξ6 × NBC

SBC = SBC + 0.1 × ξ7 × SBC

TBC = TBC + 0.1 × ξ8 × TBC

Wind = Wind + 0.03 × ξ9 × Wind.

As ξ1 takes values in [-1,1], the uncertain NO emissions take values in the range of ±30% from the

base value.

The stochastic state vector is expanded using the order 2 Jacobi polynomial chaos expansion.

Applying (1) with p = 2 and d = 9, there are S = 55 uncertain parameters (expansion coefficients)

for each uncertainty state. In order to recover the 55 parameters, we need to run the deterministic

system for at least 55 times, each on a different collocation point. The collocation points are

randomly generated such that the system matrix A is non-singular.

4 Numerical Results

We implement the polynomial chaos method on STEM for real life simulation. The computational

region used in this study covers the northeastern part of the United States, as shown in Figure 2,

with a total size of 1500km × 1320km × 20km. Using the horizontal resolution of 60km × 60km

and a variable vertical resolution, a 3-dimensional grid with 25× 22× 21 points is used. The initial

conditions, meteorological field data, boundary conditions, and emissions are obtained from the

ICARTT (International Consortium for Atmospheric Research on Transport and Transformation)

campaign. The data corresponds to the time window from July 20-22, 2004. We run a 48-hour

forecast starting at 12 noon GMT (8am EDT) on July 20, 2004. We are interested in the modeled
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ozone concentration and the associated uncertainty at ground level in the following four major cities:

1. Columbus, Ohio; 2. Washington D.C.; 3. Boston, Massachusetts, and 4. New York City. We

compute the total uncertainty associated with the predicted ozone concentration and attribute the

total uncertainty to different sources.
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Figure 2: Simulation region and the location of four major cities where uncertainty in ozone predic-
tions will be assessed.

We plot the ozone concentrations at different time. Figure 3(a) shows the predicted mean ozone

concentration after 33 hours, at 5pm (EDT) on July 21, 2004; the associated standard deviation

is shown in Figure 3(b). Predicted mean ozone concentration after 48 hours (at 8am (EDT) on

July 22, 2004) and the standard deviations are shown in Figure 3(c) and Figure 3(d) respectively.

From the figures, we can see that due to the wind from the west boundary, the ozone is formed

and transported towards the east. After 48 hours, the majority of the ozone is located above the

Atlantic ocean. The figures also show that major cities have significant emissions that contribute to

the ozone formation. From Figure 3(b) and 3(d), we observe that the uncertainties propagate from

the west to the east. Comparing 3(a) and 3(c), we see that ozone concentration is much higher in

the afternoon than in the early morning due to the diurnal concentration of the NOx emissions.

Using the uncertainty apportionment technique discussed in Section 2, the contribution percent-

age of each source to the total uncertainty is represented in Table 1 for 33 hours and Table 2 for 48

hours. The “-” in the tables represents contributions that are less than 1%. From the table, we ob-

serve that the major uncertainty contributors are NO emissions, NO2 emissions, the west boundary

condition, and the wind field. The Columbus’s uncertainty is most affected by the uncertainty in the

west boundary condition. Boston is most affected by the uncertainty in NO emissions. Comparing

the “WBC” (west boundary condition) column for Washington, D.C. between the two tables, the
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(a) Ozone mean value after 33 hours [ppbv] (b) Ozone standard deviation after 33 hours [ppbv]
(5pm EDT on July 21, 2004)
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(c) Ozone mean value after 48 hours [ppbv] (d) Ozone standard deviation after 48 hours [ppbv]
(8am EDT on July 22, 2004)

Figure 3: Ozone concentration mean, and standard deviation at 5pm EDT July 21, 2004 and 8am
EDT July 22, 2004. Standard deviation is a measure of the uncertainty magnitude.

Cities NO NO2 HCHO WBC EBC SBC NBC TBC Wind H.O.T
CB 5.3% - - 94% - - - - - -
DC 67% - - 30% - - - - 2.8% -
NY 97% - - - - - - - 1.1% -
BT 99% - - - - - - - - -

Table 1: Source uncertainty apportionment. Percentage contributions of different sources for the 4
cities at 5 pm EDT on July 21, 2004 (“-” indicates < 1%).

uncertainty contribution from the west boundary conditions has increased from 30% to 84% due to

the wind blowing from the west to the east. After 48 hours the west boundary condition uncertainty

is being felt on the Atlantic coast.

The 48-hour ozone concentration time series and source uncertainty apportionment are plotted

in Figure 4 for four cities. The upper panels display the time series with the “error bars” indicating

the uncertainty magnitude. The size of the “error bars” in the figure is two times the standard

deviation. The prominent two-peak shape indicates that the ozone concentration is low at night and

high during the day, reaching the maximum concentration around 5pm in the afternoon. The lower
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Cities NO NO2 HCHO WBC EBC SBC NBC TBC Wind H.O.T
CB - - - 99.7% - - - - - -
DC 13% - - 84% - - - - 2.5% -
NY 55% - - 12% - - - - 32% -
BT 91% 8.3% - - - - - - - -

Table 2: Source uncertainty apportionment. Percentage contributions of different sources for the 4
cities at 8 am EDT on July 22, 2004 (“-” indicates < 1%).

panels of Figure 4 display the source uncertainty apportionment results. Since there are mainly

four sources that contribute to the total uncertainty, we only plot those sources. Contributions

from other sources are all added up and represented by “Others”. From Figure 4, we see that

the uncertainty in the predicted Columbus ozone concentration is dominated by the west boundary

condition uncertainty, while for the other three cities, most of their uncertainty comes from the NO

emissions. In Figure 4(b), we observe that it takes about 24 hours for the uncertainties in the west

boundary condition to have an effect on the Washington, D.C. area.

Figure 5 provides a snapshot of the source uncertainty apportionment for 4 cities after 33 and 48

hours. Figure 5(a) corresponds to the second peak in Figure 4. We can see from the plot that the

major contributor to uncertainty in Boston, New York and Washington, D.C. are the NO emission.

However, the Columbus uncertainty are mainly due to the west boundary condition uncertainty.

We generate the PDF plot at the second peak time with 50,000 sample draws, shown in Figure 6.

The PDF plot has a similar shape to the original uncertainty Beta distribution we introduced into

the model. This indicates that for this particular case, the uncertainty in the ozone concentration

prediction responds nearly linearly to the uncertainties in the parameters. However, the proposed

technique can account for fully nonlinear responses which are to be expected for other scenarios.

Using the polynomial chaos method for both uncertainty quantification and apportionment can

provide “confidence level” information for air quality forecast. This information is especially useful

for making policy decisions regarding environmental protection. We expect the proposed approach

will have a positive impact on the environmental policy making, because qualified policy decision

based on models can be made only when one knows the level of confidence to be attributed to the

model results.
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in NO emissions. The level of uncertainty changes with the diurnal cycle.
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