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Abstract

Sustainable natural resource management requipegsirirom both the natural and the

social sciences. Since natural and social systeensger-related and inter-dependent, it is
essential that these data can be integrated watlgiven analysis, which requires that they
are spatially compatible. However, existing envinemtal and socio-economic monitoring

networks tend to observe, collect and report secmmomic and biophysical data

separately; with the result that much of these dataspatially incompatible, adding to the
complexity of objective and consistent resource agament. We present an approach for
overcoming spatial incompatibilities between sastenomic and biophysical data; based
on a meta-modelling approach using Geographicaktmition Systems and an application
of a water-use simulation model. The method is kgexl and applied to the irrigation

agriculture sector in the Inkomati Water Managem@&ma in South Africa. Agricultural



census data, which is measured on a magisteritiictliscale, is integrated with geo-
referenced land cover data, which is independepbbfical boundaries. This allows us to
increase the resolution at which data on the ecanwatue derived from irrigation water is
presented, from coarse magisterial district scale tfiner (49krf) ‘meso-zone’ scale,

enabling more efficient allocations of irrigatiorater within magisterial districts.

Keywords: water allocation decision making; Geographicdbimation Systems; meta-
modelling; data integration; spatial analysis; ril@sins; Inkomati Water Management

Area



1 Introduction

Interactions between social and natural systemselievcomplexities that constrain the
ability of society to keep development and growikthim the natural limits of ecosystems
(Goodstein, 1999; 2000). Three of the more obviolishese complexities include: a)
understanding and accounting for the natural limiteecosystems and the constraints to
development and growth that these imply (Costanmh Raly, 1992); b) valuing and
internalising the unaccounted for impacts of enwinental degradation (Heal, 2000); and
c) recognising and dealing with the spatial hetenaity of landscapes (Eade and Moran,
1996; Bruggemanet al., 2005). While the disciplines of ecological ecomcs and
environmental economics have developed and apghedretical and methodological
frameworks to address the first two of these chglid, this study focuses on the third

challenge, which has thus far received more liméttention.

In the face of rapidly declining stocks of natucapital and flows of ecosystem services
due to unprecedented rates of land-use changesasgiaog water scarcity, and changing
climates; natural-resource managers and envirorahpaticy makers are in desperate need
of spatially accurate and relevant policy and manaent advice (Curtiet al., 2003; Ruth,
2006). This information should be in the form ofaqtified tradeoffs between social,
ecological and economic objectives across a lapascehis advice is needed to inform and
support initiatives that: 1) increase the equitfeaiveness and/or efficiency of resource

use by revealing information on the sources andedsiof change, and the economic and

! The ‘sustainomics’ framework developed by Munak:@002), for example, attempts to address tke fir
complexity by tempering the traditional, narrowilit-maximisation approaches of economics withiabc
and ecological sustainability criteria, in ordertxount for the overall resilience and robustréssatural
and social systems. The second complexity is coaliynbeing addressed through the development and
application of economic-valuation techniques (désed and evaluated by, among others, Sinden affdfGri
(2007) and Turneet al. (2003)); and more recently using discourse-bappdoaches (Wilson and Howarth,
2002).



social values generated (e.g., Jakeman and Le(2068)); 2) improve the management
and protection of existing conservation areas aquared existing protected area networks
to increase resilience to climate change (Rewetral., under review); and 3) aim to

introduce incentive-based mechanisms (such as pagnfer ecosystem services) for
ecosystem conservation and management (Bligmhuél., 2008). For policy and

management advice to effectively promote sustalityghit needs to account for the effects
of varied topography and biophysical processesirdyisocio-economic patterns across
large heterogeneous areas. Such advice can onpydveded if the socio-economic and

biophysical data can be integrated and analysezttieg

The need to understand and address heterogendtg idistribution of, and relationships
between, human and ecological variables acrossdapes is well recognised in the natural
sciences (e.g. geography and ecology), which areeroed with understanding and
modelling the causes and consequences of landhasges over space and time (Irwin and
Geoghegan, 2001; Van Deldetal., 2007). The importance of space in influencinghbo
behaviour is also acknowledged and accounted faecmnomic-related disciplines. For
example, the travel-cost method accounts for tfecebf distance on recreational demand
(Tobias and Mendelsohn, 1991), while hedonic model®al the effect of location on
property prices (Freeman, 1979). In fact, the fgpatial economics’ was driven in the late
1970’s by researchers working on urban and regienahometric models to understand
variations in income and expenditure and to deteenoptimal solutions for associated
investment activities (Batemaah al., 2002). The techniques that were developed spmead

mainstream economics during the 1980s and earl@sl@Qg., Anselin, 1988).

Advances in remote sensing and other spatial téohies have increased the ability of

researchers to conceptualise and analyse the gducmh and environmental processes



associated with different land-use patterns (Iraumdl Geoghegan, 2001). This has led to a
rise in the use of GIS applications within the &blenvironmental economics literature
(Batemaret al., 2002). Applications of GIS in environmental ecomcs include analysing
the conversion of land parcels from agriculturatesidential uses (Irwin and Geoghegan,
2001); analysing deforestation (Geogheghal., 2001; Irwin and Geoghegan, 2001); and
understanding the spatial contexts (habitat, lamek) that drive natural processes like
nutrient cycling (Bockstael, 1996; Wadsworth anéweek, 1999). These early efforts,
however, have received considerable criticism wdggr their unrealistic spatial
assumptions (Lovett and Bateman, 2001; Batestat., 2002). More complex, spatially
explicit studies at the landscape scale, in whidpliysical and socio-economic data are
integrated and analysed using computer simulatiodeats, have been undertaken more
recently (Jakeman and Letcher, 2003; Hetaal., 2006). However, these analyses, and the
data used, are simulated rather than spatiallyreeféed. Consequently, they are not
impeded by the practical problems of integratingd anapping socio-economic and

biophysical data types, as described in this paper.

Spatially-explicit social-ecological analyses arffiallt because of the different scales at
which socio-economic and biophysical data are ctland reported, the different units of
measurement used for social and biophysical datd, the fact that the boundaries of
biophysical and socio-economic variables do nohade (Herr, 2007). Socio-economic
data are generally reported at a coarse (admitins&raoundary) scale (even if data are
collected at household level, these are normallyregated) and tend not to be spatially
referenced at finer scales. Consequently, the draations of socio-economic variables
within an administrative area are often not readwyilable, if at all, and the entire area
tends to be allocated a single value for theseakibas, irrespective of the heterogeneity

within that area. The aggregation of data in thaywoften limits its usefulness and



reliability (depending on the problem at hand), gmécludes opportunities for more
detailed analysis within the area. It also makesgarison with bio-physical variables,
which are reported at higher resolutions, challeggBiophysical variables, on the other
hand, are almost always spatially referenced, Isecthis is an essential characteristic of
these variables and because the techniques factaol) these data (e.g., remote sensing)
allow for this. Further, the boundaries delimitingophysical phenomena (natural
boundaries) are invariably different from thoseirdéing socio-economic areas (artificial

boundaries), which makes overlaying these datan#lGIS environment challenging.

In this paper we present a methodological approdoh overcoming spatial
incompatibilities between socio-economic and bigitgl data (temporal incompatibilities
are not addressed). The method is developed ugimgubural-economic census data (not
spatially referenced) and geo-referenced biophlysleta (land cover) for the Inkomati
Water Management Area in South Africa. This is dmistrative area that covers the
South African portion of the Inkomati River Basifigure 1). More particularly, the
methodology involves the transformation of groseneenic values of water (as derived
from its productive use in commercial irrigationriaglture), which vary across the
landscape but are not spatially referenced, intepatially-referenced GIS data layer
compatible with existing biophysical data layerfieTmethodology is based on a meta-
modelling approach using a Geo-spatial Analysigféa (GAP) (Council for Scientific
and Industrial Researa#t al., 2007), described in Box 1, and an applicatiomhef’South
African Procedure for estimating irrigation WAterquiremenTs’ (SAPWAT) simulation
model (Crosby, 1996). The development of the mouglapproach is described, and the
results generated from its application are presemted discussed. The usefulness and
relevance of such an approach to natural-resouameagers and policy makers in South

Africa and elsewhere are discussed, along withmasendations for future research.



BOX 1: The South Africa Geo-spatial Analysis Platfom (GAP)

GAP was developed specifically to address the prabbf spatially incompatiblg
'large area statistics' and other limitations assted with indicators and related majs
that portray the geography of need, development sustiainability in terms of a
absolute, container view of space (Couclelis, 1991)e underlying mesoframy
methodology — developed by the Council for Scientdnd Industrial Researc
(CSIR) Built Environment unit (Naudé al., 2007) — overcomes the problem (pf
spatially incompatible 'large area statistics' leyscaling and assembling a variety [pf
census, satellite imagery and other data sourcésrims of a common set of mesfp-
scale analysis units. This consists of 25000 ul@Ety shaped meso-zongk
(approximately 49krhor 7 km by 7 km in size). The demarcation of mesnes was
determined using various types of boundaries (paliteconomic and biophysical). |
particular, they were demarcated so as to nestirwithportant administrative an
physiographic boundaries, and to be connected dmital road network for Sout
Africa. A primary consideration was that these htames should correspond wi
travel barriers such as rivers and 'breaklinesiMeein sparsely and densely populafed
areas.

The data rescaling methodology is similar to théhmme that was used to derive the
1km resolution Global Landscan population datalfdseeloped by the USA’s Oak
Ridge National Laboratory), where large area cemgfosmation was disaggregated

on the basis of fine-grained remote sensing inféiongBhaduriet al., 2007). The

main difference is that a much coarser, irregutaso-scale grid is used, thereby
reducing high data transfer and computation requergs, as well as improving the
capability to model inter-zonal linkages and spatigeractions. Linking back to the
early distinction between absolute and relativeceptions of space, this enhances tpe
capability to build models representing the rekatv relational characteristics of
space (Harvey, 1996).

2 Study area — the Inkomati Water Management Area

The Inkomati River Basin covers an area of 45 7i8, kargely within the Mpumalanga
Province of South Africa, and extending into Swazd and Mozambique. The topography
of the area consists of the flat Mozambican cogd@hs in the east; flat to undulating
terrain immediately west of this (‘lowveld’), muabf which falls within the Kruger

National Park (the Lebombo Mountains separate diwéld from the coastal plains); and



an escarpment (the Mpumalanga Drakensberg) risingnt inland plateau (‘highveld’)

further to the west.

Almost the entire Basin falls within a summer ralhfrea, with cold but dry winters. Only
the western mountainous areas experience year-rguadipitation, in the form of
orographic rain and mist. The main rivers drainthg Basin are the Komati, Lomati,
Crocodile, Elands, Kaap, Sabie, and Sand (Figur&tgse rise in the mountainous areas to
the west and south of the Basin, and generallyndeastwards into the Inkomati River,
which enters the sea at Maputo Bay in Mozambiqume Vegetation in the South African
portion of the Basin is dominated by mesic highvgidsslands in the western high-lying
areas (annual precipitation varies between 650180 mm) and savanna/woodlands in

the lowveld bioregion (between 350 and 1200 mif) ¢Mucina and Rutherford, 2006).

The main income-generating activities within theutBoAfrican portion of the Basin (the
Inkomati Water Management Area) include tourismmuotercial irrigation, forestry and
mining. The sectoral water-use profile of the mamagnt area is summarised in Table 1.
Note that the commercial irrigation sector coverdyo3% of the Inkomati Water
Management Area (WMA), but accounts for 51% ofttital water use. The intensity with
which water and land resources are exploited hdigdethe natural capital of the region
being substantially depleted and degraded. For pkanthe Inkomati WMA currently
experiences a water deficit of about 12% of italtoequirements (Department of Water
Affairs and Forestry, 2004), due to excessive watdraction for irrigation, as well as
water pollution from chemicals (fertilizers and hierdes) being washed into rivers. Rates
of land degradation and land use change are algdbheoimcrease (Van der Zaag and Vaz,
2003; Department of Water Affairs and Forestry,£208engoet al., 2005; LeMarieet al.,

2006; Soppet al., 2006).



3 A method for overcoming spatial data incompatibiliies

We illustrate our methodology using agriculturabeomic census data as an example of a
socio-economic data set, and land cover data &xample of a biophysical data set. The
2002 Census of Agricultural Provincial Statisti€&atistics South Africa, 2002) is the most
recent and comprehensive national agricultural pecdn data set available in South
Africa. It presents agricultural production datattz relatively coarse magisterial district
scale, and as a result the exact spatial locatdregricultural commodities within the
magisterial districts are not geo-referenced. Bmti@st, the South African National Land
Cover Database, as described by Fairbaalkat. (2000) and revised for the 2000 version
(Agricultural Research Council and Council for $tigic and Industrial Research, 2000;
Standards South Africa, 2004), represents Soutltahin 49 land cover categories based
on satellite imagery at a 906mesolution. The resolution is therefore signifidgmigher

than the agricultural census data.

Furthermore, we use the allocation of bulk watgpdies between commercial irrigators as
an example of a resource management problem. Tk&mme illustrates data
incompatibility problems, the need for a flexiblgoaoach to overcome these issues, and the
potential benefits that can realised from overcantirese problems. The allocation of bulk
water supplies is based on both socio-economic aophysical data that varies across
space and time. Since the spatially relevant fasfricese data are subject to the problems
described in Section 1, it is difficult for decisionakers to determine the spatial trade-offs

involved when allocating water between spatialpdrate agricultural water users.

A three-staged approach for integrating socio-enoo@nd biophysical data is presented

below. The first stage involves aligning coarsdes@gricultural-economic census data to



fine-scale geo-referenced land cover data. Thenskstage involves estimating the gross
economic values of water used in commercial craypction, and integrating these with
existing land cover categories. The third and Ifiseep involves manipulating and
presenting the estimated economic values spatvalllyin a GIS environment. Each of
these steps is described in detail below, whileahiére process of converting the highly
aggregated, spatially inexplicit agricultural cemgiata into a spatially explicit GIS data

layer is depicted graphically in Figure 2.

3.1 Step 1: Aligning agricultural-economic census datavith land cover categories

This step involves disaggregating data from the22@@nsus of Agricultural Provincial
Statistics (Statistics South Africa, 2002) from tt@arse magisterial district scale to the
much finer scale for which land cover data are lab# (900M). This step is represented

by the arrow labelled ‘1’ in Figure 2.

The approach to disaggregate and geo-referencegheultural-economic census data
involved:

1) Determining the magisterial distriétthat fall wholly or partly within the Inkomati
Water Management Area (WMA), and their associateds (Table 2). For those
magisterial districts only partly within the WMA;, was necessary to estimate area-
weighted averages of all relevant variables basethe proportion of the area of

these magisterial districts that fall within thadt area.

2 The names of the magisterial districts are ashEeR002 Agricultural Census.
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2) ldentifying the land cover categories that mosselp represent the crop types that
occur in each magisterial disticFor illustration purposes and to ensure clarity,
limited this to the commercial agricultural cropgiich are adequately represented
by five of the 49 land cover categories. Howevieese do not differentiate between
crops. For example, the category ‘cultivated, peremd, commercial, irrigated’
includes orchards of various fruit (see Table 4).

3) Estimating the area of each of the selected lankrc@ategories within the
magisterial districts (Table 3). Since the ’culte@, permanent, commercial,
dryland’ land cover category is represented by d@Wyha in the study area, this

category is excluded from further analysis.

3.2 Step 2: Economic value derived from water per landover category

The SAPWAT simulation model (Crosby, 1996) was usedstimate water requirements
for different commercial crops. SAPWAT is designiedsimulate crop water requirements
(accounting for rainfall) under different climatscenarios. The procedure that SAPWAT
employs uses long-term (at least 50 years) weatiadion data and Food and Agriculture
Organisation (FAO) guidelines on crop water requiats (Allenet al., 1998) to estimate
water requirements for different irrigation systeit®t maintains field capacity in a
selected target area (Van Heeraeal., 2001). The SAPWAT model can be calibrated to
an area by selecting the closest weather statitms#d provided in the model (SAPWAT
includes long term weather data for 5126 weatlretrosts worldwide and can therefore be

calibrated for any area in the world). Once caldxdao the climatic conditions in the area,

% For example, mangoes are best described by thévateld permanent commercial irrigated” land cover
category whereas tomatoes fall best within the tiecaled temporary commercial irrigated” land cover
category.

11



a crop is selected and simulations run to estinttadecrop’s ‘typical’ water use profile

(given a suitable irrigation system) over an irtiga season.

Since each of the four selected land cover categaronsists of numerous commercial
crops, and because SAPWAT can only simulate watguirements for a single crop at a
time, it was necessary to select representativescf@e decided on a maximum of three)
based on the size of the cultivated areas of esahwithin each land cover category, per
magisterial district (Table 4). Within the ‘cultitead, temporary, commercial, irrigated’

category, a distinction is made between ’field sfognd 'vegetables’ because they have
significantly different water-use profiles. In suchses, SAPWAT was run for each crop,
and the outputs were combined for further analyBiee estimated total annual water use
per land cover category as listed in Table 5 ama-areighted sums of the SAPWAT

generated values for the representative crops €Tdplof each land cover category per
magisterial district. For example, the data indicidiat the land cover category ’cultivated,
permanent, commercial, irrigated’ in the Barbertagisterial District has bananas, citrus
and mangoes as representative crops, which useawaighted average of 1704 mm ha-1

yr-1 of water.

The average gross economic value per ha per lavel category was then estimated by
dividing the total gross farm income per land coeategory (aggregation of the crops
within that category) by the total hectares of thatl cover category per magisterial district
(as presented in Table 3). The economic valuesetkfrom agricultural water use (South
African Rand$ per n?) per land cover category were estimated by digdfre total gross

farm income per land cover category by the water pesr category. Both estimates are

presented in Table 6 for each land cover categodynaagisterial district.

1 USD = approximately 10 ZAR (South African Rands)
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We are aware that these are not fully inclusiveredes of the value of water. Water is not
the only input in agricultural production processesd the value of water changes
depending on its scarcity relative to that of othmguts, while the costs of supplying the
water have also not been accounted for. It wastm®taim of this paper, however, to
provide a fully inclusive estimate of the valuevediter, and the estimates are adequate as

relative values to inform water allocation decision

3.3 Step 3: Geo-spatial representation of the economialue derived from water

used in irrigation agriculture

The South African Geo-spatial Analysis Platform @&A(Council for Scientific and
Industrial Researclet al., 2007), described in Box 1, was used to spatiatlysent the
economic values estimated in Step 2 (Section 3 B¢ GAP can be used as a generic,
standardised unit to spatially represent socio-esoa data in South Africa, as it includes a
zonal database of key socio-economic, demograptiidand cover variables. Although the
data with which the database is populated is sped¢d South Africa, the GAP

methodology could similarly be applied elsewhere.

To spatially represent the newly created data lagerprising of economic value estimates
of Table 6, it had to be aggregated to the mese-soale (49kf the spatial unit used by

the GAP). This aggregation step involved overlaying land cover data with the meso-
zones (already a GIS data layer) (see arrow ‘Figure 2). The economic value estimates
could then be represented spatially at a meso-gcaie. We present only one example (the

Barberton Magisterial District, which is the darlgiraded area seen in Figure 1) in Figure

13



3, which shows the economic values of water, ddrfvem its productive use in sugarcane

(Figure 3A) and other irrigated commercial cropig(iFe 3B).

4 Discussion

The significance of the methodology developed is #tudy lies in its ability to increase
the resolution at which data on the economic vajeeerated by the use of natural
resources (in this case irrigation water) is présginin this case from coarse magisterial
district scale to the relatively fine (49kmmeso-zone scale. This enables more efficient
allocations of irrigation water within magisteridistricts (although we acknowledge that
allocation decisions are driven by various critesyaart from economic values). Water
allocation decision-makers are therefore in a ggeorposition to justify both intra- and
inter-district re-allocations. The method also litaties the identification of specific areas
within magisterial districts (on a meso-zone scébederve as focal points for intervention
on key issues, such as rural to urban re-allocat{@utman, 2007; Kroeger and Casey,

2007).

The method also has potential to overcome problefased to the different boundaries for
which socio-economic and biophysical data are tegor For example, the spatial
representations of the economic values of wateusasl in the irrigation sector could be
overlaid with other biophysical data layers, inchgd runoff, rainfall, land degradation,
temperature, and soil and vegetation types. Thigldvomprove the information available
for water allocation decision making, which wouldable more efficient and equitable

water allocations amongst users. For example, riequitable (and possibly inefficient)

® Sugar cane is presented as a separate land @iegory.
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allocation of water resources away from rural ar@elsere they are generated) towards
urban/developed areas could potentially be furthtarrogated and communicated using

this methodology (Gutman, 2007; Kroeger and Ca2eg7).

We therefore believe that this meta-modelling appho can add value to resource
allocation decision-making processes in overconspgtially-dependent socio-economic
and regional planning challenges, because the apmed of socio-economic and
biophysical data layers can assist in the pri@itios of interventions for resource-stressed
areas. It can also be used to communicate the cerm@ntal implications of existing
distributions of social and economic activities ¢(Bstael, 1996; Eade and Moran, 1996;
Deaconet al., 1998; Irwin and Geoghegan, 2001; Batergal., 2002; Lantet al., 2005;
Sanchirico and Wilen, 2005; Heet al., 2006). The proposed method could be applied in

any region or country where the required data &lable.

It is recognised, however, that numerous limitaistill exist, warranting further research.
Some suggestions for further research include: anipg socio-economic data collection
so as to be more compatible with biophysical da&eloping statistical methods for
interrogating spatial correlations between socioremic and biophysical variables found
using this method; and developing techniques fgrraping links between ecosystem

integrity and economic values under a range ofosseconomic scenarios.
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Figure 1: The Inkomati River Basin in southern Africa. The portion of the Basin
occurring within South Africa is known as the Inkomati Water Management Area.
The extent of the Barberton Magisterial District (which includes the towns of

Barberton and Komatipoort) is shown by the darker fiaded area.
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Figure 2: Graphical representation of the conversin of agricultural census data for
the Barberton Magisterial District (3,693kn?), a part of the Inkomati Water
Management Area, into a spatially explicit GIS laye Agricultural census data (A),
although collected on a farm-by-farm basis, are ogl published at the rather coarse
magisterial district scale. Land cover data (B) arecollected at a resolution of 900Mm
and presented in 49 categories. Socio-economic d4@), such as population, economic
activity and poverty levels, are available in SouthAfrica at a meso-scale (49kf see
Box 1). The agricultural census data were reclass#d and joined to the corresponding
land cover category making it spatially explicit (arow 1, representing step 1,
described in Section 3.1). The result can now be robined with the socio-economic

data (arrow 2, representing step 3 described in Seon 3.3).
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Figure 3: The economic value derived from irrigaton water used in growing (A)

sugarcane and (B) other irrigated commercial cropgincluding both permanent and

temporary), showing the relevant meso-zones withirthe Barberton Magisterial
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District (part of the Inkomati Water Management Area). The main towns of

Barberton and Komatipoort are also shown.

Table 1: Water requirements per economic sector whin the Inkomati Water

Management Area as a proportion of total demand

Sector Water requirédMm? yr™) Proportion (%) Water availability (Mtryr™)

Irrigation 600 51.0% 947 Surface water Natural
Urban 63 5.4% 22 Ground water resource
Rural 27 2.3% 53 Irrigation  Usable return
Mining 24 2.0% 7 Urban flow

Forestry 139 11.8% 11 Mining and bulk

International 109 9.3% 0

Transfer out 214 18.2% 0

Total 1176 100.0% 1040

Source: (Department of Water Affairs and Fore2004)
2 Expressed as impact on the 1:50 year yield 3 refers to million cubic metres per

year.
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Table 2: Magisterial districts wholly or partly within the

Management Ared

Magisterial district

Barberton
Belfast

Carolina

Ermelo
Lydenburg
Nelspruit
Nkomazi
Pilgrim's Rest
Waterval-Boven

White River

Total area (ha™)

369 329

172 062

379 963

36 437

66 309

218 330

131 216

586 321

98 273

407 173

study area (%)

Proportion of magisterial

district area within the

100%

57%

98%

5%

13%

100%

97%

67%

100%

100%

Water
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Table 3:

district within the Inkomati Water Management Area*

Estimated extent of agricultural land coer categories per magisterial

Magisterial

district

Barberton
Belfast
Carolina
Ermelo
Lydenburg
Nelspruit
Nkomazi
Pilgrim's Rest
Waterval-
Boven

White River

Land cover category

Cultivated, Cultivated, Cultivated, Cultivated,
permanent, permanent, permanent, temporary,
commercial, commercial, commercial, commercial,

irrigated (ha) dryland (ha)  sugarcane (ha) irrigated (ha)

13767 - 39087 2129
- - - 765

- - - 2709

- 67 - 2738
3143 - 2206 6495
938 - 7196 64
1922 - - 558
- - - 205
6078 - 48 4991

Cultivated,
temporary,
commercial,
dryland (ha)

4001
11992
34436

6523

1911

2174

1108

64

1734
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Table 4: Crops used to represent the agriculturaland cover categories occurring in

the magisterial districts within the Inkomati Water Management Area

Magisterial

district

Barberton

Belfast
Carolina
Ermelo
Lydenburg
Nelspruit
Nkomazi
Pilgrim's Rest
Waterval-
Boven

White River

Cultivated,
permanent,
commercial,

irrigated

banana/ citrus/

mango

citrus/ avocado
citrus

banana

banana/ avocado

Land cover category

Cultivated,
permanent,
commercial,

sugarcane

sugarcane

sugarcane

sugarcane

sugarcane

Cultivated,
temporary,
commercial,
irrigated
(field crops)

tobacco

maize

maize/ soy

maize
tobacco
maize
maize

maize

tobacco

Cultivated,
temporary,
commercial,
irrigated
(vegetables)

tomato

N/A

potato

potato

sweet potato
N/A

beans

beans

sweet potato

Cultivated,
temporary,
commercial,

dryland

maize

maize
maize
maize
maize

maize

maize

maize

maize
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Table 5: Estimated total annual water use per landccover category in each of the

magisterial districts within the Inkomati Water Man agement Area

Land cover category

Magisterial Cultivated, Cultivated, Cultivated, Cultivated,
district permanent, permanent, temporary, temporary,
commercial, commercial, commercial, commercial, dryland
irrigated(mm ha?  sugarcanémm ha” irrigated(mm ha® (mm ha"
Barberton 1704 2338 1010 472
Belfast - - 844 559
Carolina - - 857 494
Ermelo - - - 494
Lydenburg - - 584 439
Nelspruit 1693 2447 891 413
Nkomazi 1834 2217 962 -
Pilgrim's 1533 - 583 366
Rest
Waterval- - - 540 439
Boven
White River 1740 2325 831 447

27



Table 6: Economic value generated from using watein crop production in each of

the magisterial districts within the Inkomati Water Management Ared

Magisterial

district

Barberton
Belfast

Carolina

Ermelo
Lydenburg
Nelspruit
Nkomazi
Pilgrim's Rest
Waterval-Boven

White River

Land cover category

Cultivated, permanent,  Cultivated, permanent, Cultivated, temporary,
commercial, irrigated commercial, sugarcane commercial, irrigated / dryland
Economic  Economic  Economic  Economic  Economic = Economic value

value (ZAR value value (ZAR value value (ZAR (ZAR m?®)

ha®) (ZAR m?®) ha®) (ZAR m®) ha®)

36 419 2.14 7 511 0.32 10 402 1.58
) ] ; - 935 0.16

) ] - - 1171 0.23

) ; - - 1504 0.30

- - - - 1260 0.24

36 726 2.17 9942 0.41 9423 1.22
27 734 1.51 2133 0.10 a -2
2175 0.14 - - 3829 0.87
- - - - 1727 0.33

38 944 2.24 9 206 0.40 3810 0.52

ZAR = South African Rands. 1 USD = approximatelyZKR

#Economic value generated in Nkomazi for the culédatemporary, commercial,

irrigated/dryland category was too low to be regyisti by the Agricultural Census
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