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Abstract  

Sustainable natural resource management requires inputs from both the natural and the 

social sciences. Since natural and social systems are inter-related and inter-dependent, it is 

essential that these data can be integrated within a given analysis, which requires that they 

are spatially compatible. However, existing environmental and socio-economic monitoring 

networks tend to observe, collect and report socio-economic and biophysical data 

separately; with the result that much of these data are spatially incompatible, adding to the 

complexity of objective and consistent resource management. We present an approach for 

overcoming spatial incompatibilities between socio-economic and biophysical data; based 

on a meta-modelling approach using Geographical Information Systems and an application 

of a water-use simulation model. The method is developed and applied to the irrigation 

agriculture sector in the Inkomati Water Management Area in South Africa. Agricultural 
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census data, which is measured on a magisterial district scale, is integrated with geo-

referenced land cover data, which is independent of political boundaries. This allows us to 

increase the resolution at which data on the economic value derived from irrigation water is 

presented, from coarse magisterial district scale to a finer (49km2) ‘meso-zone’ scale, 

enabling more efficient allocations of irrigation water within magisterial districts. 

 

Keywords: water allocation decision making; Geographical Information Systems; meta-

modelling; data integration; spatial analysis; river basins; Inkomati Water Management 

Area 
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1 Introduction 

 

Interactions between social and natural systems involve complexities that constrain the 

ability of society to keep development and growth within the natural limits of ecosystems  

(Goodstein, 1999; 2000). Three of the more obvious of these complexities include: a) 

understanding and accounting for the natural limits of ecosystems and the constraints to 

development and growth that these imply (Costanza and Daly, 1992); b) valuing and 

internalising the unaccounted for impacts of environmental degradation (Heal, 2000); and 

c) recognising and dealing with the spatial heterogeneity of landscapes (Eade and Moran, 

1996; Bruggeman et al., 2005). While the disciplines of ecological economics and 

environmental economics have developed and applied theoretical and methodological 

frameworks to address the first two of these challenges1, this study focuses on the third 

challenge, which has thus far received more limited attention.    

 

In the face of rapidly declining stocks of natural capital and flows of ecosystem services 

due to unprecedented rates of land-use change, increasing water scarcity, and changing 

climates; natural-resource managers and environmental-policy makers are in desperate need 

of spatially accurate and relevant policy and management advice (Curtis et al., 2003; Ruth, 

2006). This information should be in the form of quantified tradeoffs between social, 

ecological and economic objectives across a landscape. This advice is needed to inform and 

support initiatives that: 1) increase the equity, effectiveness and/or efficiency of resource 

use by revealing information on the sources and drivers of change, and the economic and 

                                                      
1 The ‘sustainomics’ framework developed by Munasinghe (2002), for example, attempts to address the first 
complexity by tempering the traditional, narrow, utility-maximisation approaches of economics with social 
and ecological sustainability criteria, in order to account for the overall resilience and robustness of natural 
and social systems. The second complexity is continually being addressed through the development and 
application of economic-valuation techniques (discussed and evaluated by, among others, Sinden and Griffith 
(2007) and Turner et al. (2003)); and more recently using discourse-based approaches (Wilson and Howarth, 
2002). 
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social values generated (e.g., Jakeman and Letcher (2003)); 2) improve the management 

and protection of existing conservation areas and expand existing protected area networks 

to increase resilience to climate change (Reyers et al., under review); and 3) aim to 

introduce incentive-based mechanisms (such as payments for ecosystem services) for 

ecosystem conservation and management (Blignaut et al., 2008).  For policy and 

management advice to effectively promote sustainability, it needs to account for the effects 

of varied topography and biophysical processes driving socio-economic patterns across 

large heterogeneous areas. Such advice can only be provided if the socio-economic and 

biophysical data can be integrated and analysed together.  

 

The need to understand and address heterogeneity in the distribution of, and relationships 

between, human and ecological variables across landscapes is well recognised in the natural 

sciences (e.g. geography and ecology), which are concerned with understanding and 

modelling the causes and consequences of land-use changes over space and time (Irwin and 

Geoghegan, 2001; Van Delden et al., 2007). The importance of space in influencing human 

behaviour is also acknowledged and accounted for in economic-related disciplines. For 

example, the travel-cost method accounts for the effect of distance on recreational demand 

(Tobias and Mendelsohn, 1991), while hedonic models reveal the effect of location on 

property prices (Freeman, 1979). In fact, the first ‘spatial economics’ was driven in the late 

1970’s by researchers working on urban and regional econometric models to understand 

variations in income and expenditure and to determine optimal solutions for associated 

investment activities (Bateman et al., 2002). The techniques that were developed spread to 

mainstream economics during the 1980s and early 1990s (e.g., Anselin, 1988).  

 

Advances in remote sensing and other spatial technologies have increased the ability of 

researchers to conceptualise and analyse the geographical and environmental processes 
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associated with different land-use patterns (Irwin and Geoghegan, 2001). This has led to a 

rise in the use of GIS applications within the applied environmental economics literature 

(Bateman et al., 2002). Applications of GIS in environmental economics include analysing 

the conversion of land parcels from agricultural to residential uses (Irwin and Geoghegan, 

2001); analysing deforestation (Geoghegan et al., 2001; Irwin and Geoghegan, 2001); and 

understanding the spatial contexts (habitat, land cover) that drive natural processes like 

nutrient cycling (Bockstael, 1996; Wadsworth and Treweek, 1999). These early efforts, 

however, have received considerable criticism regarding their unrealistic spatial 

assumptions (Lovett and Bateman, 2001; Bateman et al., 2002). More complex, spatially 

explicit studies at the landscape scale, in which biophysical and socio-economic data are 

integrated and analysed using computer simulation models, have been undertaken more 

recently (Jakeman and Letcher, 2003; Hean et al., 2006). However, these analyses, and the 

data used, are simulated rather than spatially referenced. Consequently, they are not 

impeded by the practical problems of integrating and mapping socio-economic and 

biophysical data types, as described in this paper. 

 

Spatially-explicit social-ecological analyses are difficult because of the different scales at 

which socio-economic and biophysical data are collected and reported, the different units of 

measurement used for social and biophysical data, and the fact that the boundaries of 

biophysical and socio-economic variables do not coincide (Herr, 2007). Socio-economic 

data are generally reported at a coarse (administrative boundary) scale (even if data are 

collected at household level, these are normally aggregated) and tend not to be spatially 

referenced at finer scales. Consequently, the exact locations of socio-economic variables 

within an administrative area are often not readily available, if at all, and the entire area 

tends to be allocated a single value for these variables, irrespective of the heterogeneity 

within that area. The aggregation of data in this way often limits its usefulness and 
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reliability (depending on the problem at hand), and precludes opportunities for more 

detailed analysis within the area. It also makes comparison with bio-physical variables, 

which are reported at higher resolutions, challenging. Biophysical variables, on the other 

hand, are almost always spatially referenced, because this is an essential characteristic of 

these variables and because the techniques for collecting these data (e.g., remote sensing) 

allow for this. Further, the boundaries delimiting biophysical phenomena (natural 

boundaries) are invariably different from those delimiting socio-economic areas (artificial 

boundaries), which makes overlaying these data within a GIS environment challenging.  

 

In this paper we present a methodological approach for overcoming spatial 

incompatibilities between socio-economic and biophysical data (temporal incompatibilities 

are not addressed). The method is developed using agricultural-economic census data (not 

spatially referenced) and geo-referenced biophysical data (land cover) for the Inkomati 

Water Management Area in South Africa. This is an administrative area that covers the 

South African portion of the Inkomati River Basin (Figure 1). More particularly, the 

methodology involves the transformation of gross economic values of water (as derived 

from its productive use in commercial irrigation agriculture), which vary across the 

landscape but are not spatially referenced, into a spatially-referenced GIS data layer 

compatible with existing biophysical data layers. The methodology is based on a meta-

modelling approach using a Geo-spatial Analysis Platform (GAP) (Council for Scientific 

and Industrial Research et al., 2007), described in Box 1, and an application of the ’South 

African Procedure for estimating irrigation WAter requiremenTs’ (SAPWAT) simulation 

model (Crosby, 1996). The development of the modelling approach is described, and the 

results generated from its application are presented and discussed. The usefulness and 

relevance of such an approach to natural-resource managers and policy makers in South 

Africa and elsewhere are discussed, along with recommendations for future research. 
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2 Study area – the Inkomati Water Management Area 

 

The Inkomati River Basin covers an area of 45 779 km2, largely within the Mpumalanga 

Province of South Africa, and extending into Swaziland and Mozambique. The topography 

of the area consists of the flat Mozambican coastal plains in the east; flat to undulating 

terrain immediately west of this (‘lowveld’), much of which falls within the Kruger 

National Park (the Lebombo Mountains separate the lowveld from the coastal plains); and 

BOX 1: The South Africa Geo-spatial Analysis Platform (GAP) 
 

GAP was developed specifically to address the problem of spatially incompatible 
’large area statistics‘ and other limitations associated with indicators and related  maps 
that portray the geography of need, development and sustainability in terms of an 
absolute, container view of space (Couclelis, 1991). The underlying mesoframe 
methodology – developed by the Council for Scientific and Industrial Research 
(CSIR) Built Environment unit (Naudé et al., 2007)  – overcomes the problem of 
spatially incompatible ’large area statistics‘ by re-scaling and assembling a variety of 
census, satellite imagery and other data sources in terms of a common set of meso-
scale analysis units. This consists of 25 000 irregularly shaped meso-zones 
(approximately 49km2 or 7 km by 7 km in size). The demarcation of meso-zones was 
determined using various types of boundaries (political, economic and biophysical). In 
particular, they were demarcated so as to nest within important administrative and 
physiographic boundaries, and to be connected to a digital road network for South 
Africa. A primary consideration was that these boundaries should correspond with 
travel barriers such as rivers and ’breaklines‘ between sparsely and densely populated 
areas.  
 
The data rescaling methodology is similar to the method that was used to derive the 
1km resolution Global Landscan population database (developed by the USA’s Oak 
Ridge National Laboratory), where large area census information was disaggregated 
on the basis of fine-grained remote sensing information (Bhaduri et al., 2007). The 
main difference is that a much coarser, irregular, meso-scale grid is used, thereby 
reducing high data transfer and computation requirements, as well as improving the 
capability to model inter-zonal linkages and spatial interactions. Linking back to the 
early distinction between absolute and relative conceptions of space, this enhances the 
capability to build models representing the relative or relational characteristics of 
space (Harvey, 1996). 
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an escarpment (the Mpumalanga Drakensberg) rising to an inland plateau (‘highveld’) 

further to the west. 

 

Almost the entire Basin falls within a summer rainfall area, with cold but dry winters. Only 

the western mountainous areas experience year-round precipitation, in the form of 

orographic rain and mist. The main rivers draining the Basin are the Komati, Lomati, 

Crocodile, Elands, Kaap, Sabie, and Sand (Figure 1). These rise in the mountainous areas to 

the west and south of the Basin, and generally drain eastwards into the Inkomati River, 

which enters the sea at Maputo Bay in Mozambique. The vegetation in the South African 

portion of the Basin is dominated by mesic highveld grasslands in the western high-lying 

areas (annual precipitation varies between 650 and 1490 mm) and savanna/woodlands in 

the lowveld bioregion (between 350 and 1200 mm yr-1) (Mucina and Rutherford, 2006).  

 

The main income-generating activities within the South African portion of the Basin (the 

Inkomati Water Management Area) include tourism, commercial irrigation, forestry and 

mining. The sectoral water-use profile of the management area is summarised in Table 1. 

Note that the commercial irrigation sector covers only 3% of the Inkomati Water 

Management Area (WMA), but accounts for 51% of the total water use. The intensity with 

which water and land resources are exploited has led to the natural capital of the region 

being substantially depleted and degraded. For example, the Inkomati WMA currently 

experiences a water deficit of about 12% of its total requirements (Department of Water 

Affairs and Forestry, 2004), due to excessive water extraction for irrigation, as well as 

water pollution from chemicals (fertilizers and herbicides) being washed into rivers. Rates 

of land degradation and land use change are also on the increase (Van der Zaag and Vaz, 

2003; Department of Water Affairs and Forestry, 2004; Sengo et al., 2005; LeMarie et al., 

2006; Soppe et al., 2006). 
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3 A method for overcoming spatial data incompatibilities 

 

We illustrate our methodology using agricultural-economic census data as an example of a 

socio-economic data set, and land cover data as an example of a biophysical data set. The 

2002 Census of Agricultural Provincial Statistics (Statistics South Africa, 2002) is the most 

recent and comprehensive national agricultural production data set available in South 

Africa. It presents agricultural production data at the relatively coarse magisterial district 

scale, and as a result the exact spatial locations of agricultural commodities within the 

magisterial districts are not geo-referenced.  By contrast, the South African National Land 

Cover Database, as described by Fairbanks et al. (2000) and revised for the 2000 version 

(Agricultural Research Council and Council for Scientific and Industrial Research, 2000; 

Standards South Africa, 2004), represents South Africa in 49 land cover categories based 

on satellite imagery at a 900m2 resolution. The resolution is therefore significantly higher 

than the agricultural census data. 

 

Furthermore, we use the allocation of bulk water supplies between commercial irrigators as 

an example of a resource management problem. This example illustrates data 

incompatibility problems, the need for a flexible approach to overcome these issues, and the 

potential benefits that can realised from overcoming these problems. The allocation of bulk 

water supplies is based on both socio-economic and biophysical data that varies across 

space and time.  Since the spatially relevant forms of these data are subject to the problems 

described in Section 1, it is difficult for decision makers to determine the spatial trade-offs 

involved when allocating water between spatially disparate agricultural water users.  

 

A three-staged approach for integrating socio-economic and biophysical data is presented 

below. The first stage involves aligning coarse-scale agricultural-economic census data to 
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fine-scale geo-referenced land cover data.  The second stage involves estimating the gross 

economic values of water used in commercial crop production, and integrating these with 

existing land cover categories.  The third and final step involves manipulating and 

presenting the estimated economic values spatially within a GIS environment. Each of 

these steps is described in detail below, while the entire process of converting the highly 

aggregated, spatially inexplicit agricultural census data into a spatially explicit GIS data 

layer is depicted graphically in Figure 2.   

 

3.1 Step 1: Aligning agricultural-economic census data with land cover categories 

 

This step involves disaggregating data from the 2002 Census of Agricultural Provincial 

Statistics (Statistics South Africa, 2002) from the coarse magisterial district scale to the 

much finer scale for which land cover data are available (900m2). This step is represented 

by the arrow labelled ‘1’ in Figure 2. 

 

The approach to disaggregate and geo-reference the agricultural-economic census data 

involved: 

1) Determining the magisterial districts2 that fall wholly or partly within the Inkomati 

Water Management Area (WMA), and their associated areas (Table 2). For those 

magisterial districts only partly within the WMA, it was necessary to estimate area-

weighted averages of all relevant variables based on the proportion of the area of 

these magisterial districts that fall within the study area. 

                                                      
2 The names of the magisterial districts are as per the 2002 Agricultural Census.  
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2) Identifying the land cover categories that most closely represent the crop types that 

occur in each magisterial district3. For illustration purposes and to ensure clarity, we 

limited this to the commercial agricultural crops, which are adequately represented 

by five of the 49 land cover categories. However, these do not differentiate between 

crops. For example, the category ‘cultivated, permanent, commercial, irrigated’ 

includes orchards of various fruit (see Table 4).  

3) Estimating the area of each of the selected land cover categories within the 

magisterial districts (Table 3). Since the ’cultivated, permanent, commercial, 

dryland’ land cover category is represented by only 67 ha in the study area, this 

category is excluded from further analysis. 

 

3.2 Step 2: Economic value derived from water per land cover category  

 

The SAPWAT simulation model (Crosby, 1996) was used to estimate water requirements 

for different commercial crops. SAPWAT is designed to simulate crop water requirements 

(accounting for rainfall) under different climatic scenarios. The procedure that SAPWAT 

employs uses long-term (at least 50 years) weather station data and Food and Agriculture 

Organisation (FAO) guidelines on crop water requirements (Allen et al., 1998) to estimate 

water requirements for different irrigation systems that maintains field capacity in a 

selected target area (Van Heerden et al., 2001). The SAPWAT model can be calibrated to 

an area by selecting the closest weather station data set provided in the model (SAPWAT 

includes long term weather data for 5126 weather stations worldwide and can therefore be 

calibrated for any area in the world). Once calibrated to the climatic conditions in the area, 

                                                      
3 For example, mangoes are best described by the “cultivated permanent commercial irrigated” land cover 
category whereas tomatoes fall best within the “cultivated temporary commercial irrigated” land cover 
category. 
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a crop is selected and simulations run to estimate the crop’s ‘typical’ water use profile 

(given a suitable irrigation system) over an irrigation season.  

 

Since each of the four selected land cover categories consists of numerous commercial 

crops, and because SAPWAT can only simulate water requirements for a single crop at a 

time, it was necessary to select representative crops (we decided on a maximum of three) 

based on the size of the cultivated areas of each crop within each land cover category, per 

magisterial district (Table 4). Within the ‘cultivated, temporary, commercial, irrigated’ 

category, a distinction is made between ’field crops’ and ’vegetables’ because they have 

significantly different water-use profiles. In such cases, SAPWAT was run for each crop, 

and the outputs were combined for further analysis. The estimated total annual water use 

per land cover category as listed in Table 5 are area-weighted sums of the SAPWAT 

generated values for the representative crops (Table 4) of each land cover category per 

magisterial district. For example, the data indicate that the land cover category ’cultivated, 

permanent, commercial, irrigated’ in the Barberton Magisterial District has bananas, citrus 

and mangoes as representative crops, which use an area-weighted average of 1704 mm ha-1 

yr-1 of water.  

 

The average gross economic value per ha per land cover category was then estimated by 

dividing the total gross farm income per land cover category (aggregation of the crops 

within that category) by the total hectares of that land cover category per magisterial district 

(as presented in Table 3). The economic values derived from agricultural water use (South 

African Rands4 per m3) per land cover category were estimated by dividing the total gross 

farm income per land cover category by the water use per category. Both estimates are 

presented in Table 6 for each land cover category and magisterial district.   

                                                      
4 1 USD = approximately 10 ZAR (South African Rands). 
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We are aware that these are not fully inclusive estimates of the value of water. Water is not 

the only input in agricultural production processes, and the value of water changes 

depending on its scarcity relative to that of other inputs, while the costs of supplying the 

water have also not been accounted for. It was not the aim of this paper, however, to 

provide a fully inclusive estimate of the value of water, and the estimates are adequate as 

relative values to inform water allocation decisions. 

 

3.3 Step 3: Geo-spatial representation of the economic value derived from water 

used in irrigation agriculture 

 

The South African Geo-spatial Analysis Platform (GAP) (Council for Scientific and 

Industrial Research et al., 2007), described in Box 1, was used to spatially present the 

economic values estimated in Step 2 (Section 3.2). The GAP can be used as a generic, 

standardised unit to spatially represent socio-economic data in South Africa, as it includes a 

zonal database of key socio-economic, demographic and land cover variables. Although the 

data with which the database is populated is specific to South Africa, the GAP 

methodology could similarly be applied elsewhere.  

 

To spatially represent the newly created data layer comprising of economic value estimates 

of Table 6, it had to be aggregated to the meso-zone scale (49km2, the spatial unit used by 

the GAP). This aggregation step involved overlaying the land cover data with the meso-

zones (already a GIS data layer) (see arrow ‘2’ in Figure 2). The economic value estimates 

could then be represented spatially at a meso-zone scale. We present only one example (the 

Barberton Magisterial District, which is the darker shaded area seen in Figure 1) in Figure 
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3, which shows the economic values of water, derived from its productive use in sugarcane5 

(Figure 3A) and other irrigated commercial crops (Figure 3B). 

 

4 Discussion 

 

The significance of the methodology developed in this study lies in its ability to increase 

the resolution at which data on the economic value generated by the use of natural 

resources (in this case irrigation water) is presented, in this case from coarse magisterial 

district scale to the relatively fine (49km2) meso-zone scale.  This enables more efficient 

allocations of irrigation water within magisterial districts (although we acknowledge that 

allocation decisions are driven by various criteria apart from economic values). Water 

allocation decision-makers are therefore in a stronger position to justify both intra- and 

inter-district re-allocations. The method also facilitates the identification of specific areas 

within magisterial districts (on a meso-zone scale) to serve as focal points for intervention 

on key issues, such as rural to urban re-allocations (Gutman, 2007; Kroeger and Casey, 

2007).  

 

The method also has potential to overcome problems related to the different boundaries for 

which socio-economic and biophysical data are reported. For example, the spatial 

representations of the economic values of water as used in the irrigation sector could be 

overlaid with other biophysical data layers, including runoff, rainfall, land degradation, 

temperature, and soil and vegetation types. This would improve the information available 

for water allocation decision making, which would enable more efficient and equitable 

water allocations amongst users. For example, the inequitable (and possibly inefficient) 

                                                      
5 Sugar cane is presented as a separate land cover category. 
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allocation of water resources away from rural areas (where they are generated) towards 

urban/developed areas could potentially be further interrogated and communicated using 

this methodology (Gutman, 2007; Kroeger and Casey, 2007).  

 

We therefore believe that this meta-modelling approach can add value to resource 

allocation decision-making processes in overcoming spatially-dependent socio-economic 

and regional planning challenges, because the overlaying of socio-economic and 

biophysical data layers can assist in the prioritisation of interventions for resource-stressed 

areas. It can also be used to communicate the environmental implications of existing 

distributions of social and economic activities (Bockstael, 1996; Eade and Moran, 1996; 

Deacon et al., 1998; Irwin and Geoghegan, 2001; Bateman et al., 2002; Lant et al., 2005; 

Sanchirico and Wilen, 2005; Hein et al., 2006). The proposed method could be applied in 

any region or country where the required data is available.  

 

It is recognised, however, that numerous limitations still exist, warranting further research.  

Some suggestions for further research include: improving socio-economic data collection 

so as to be more compatible with biophysical data; developing statistical methods for 

interrogating spatial correlations between socio-economic and biophysical variables found 

using this method; and developing techniques for appraising links between ecosystem 

integrity and economic values under a range of socio-economic scenarios. 

 



 16 

5 Acknowledgements 

 

We thank our colleague Andries Naudé for providing the description of the South African Geo-

spatial Analysis Platform and the anonymous reviewers who provided valuable comments on an 

earlier version of the paper.  

 

6 References    

 

Agricultural Research Council, Council for Scientific and Industrial Research, 2000. National Land 
Cover database and spatial data for 2000. Agricultural Research Council and Council for Scientific 
and Industrial Research, Pretoria. 

Allen, R., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspiration: Guidelines for 
computing crop water requirements., Rome, FAO Irrigation and Drainage Paper No: 56. 

Anselin, L., 1988. Spatial Econometrics:Methods and Models. Dordrecht, The Netherlands: Kluwer 
Academic Publishers. 

Bateman, I.J., Jones, A.P., Lovett, A.A., Lake, I.R., Day, B.H., 2002. Applying Geographical 
Information Systems (GIS) to environmental and resource economics. Environmental and Resource 
Economics 22: 219–269, 2202. 22, 219-269. 

Bhaduri, B., Bright, E., Coleman, P., 2007. LandScan USA: A high-resolution geospatial and 
temporal modeling approach for population distribution and dynamics. . GeoJournal 69, 103-117. 

Blignaut, J., Marais, C., Rouget, M., Mander, M., Turpie, J., Preston, G., Philip, K., Du Plessis, L., 
Klassen, T., Tregurtha, N., 2008. Making markets work for people and the environment: Combating 
poverty and environmetal degredation on a single budget while delivering real services to real 
people. Research paper commissioned by: The Second Economy Strategy Project, en initiative of 
the Presidency, Pretoria, unpublished. 

Bockstael, N.E., 1996. Modelling Economics and Ecology: The Importance of a Spatial 
Perspective. American Journal of Agricultural Economics 78, 1168–1180. 

Bruggeman, D.J., Jones, M.L., Lupi, F., Scribner, K.T., 2005. Landscape equivalency analysis: 
Methodology for estimating spatially explicit biodiversity credits. Environmental Management 36 
(4), 518-534. 

Costanza, R., 2000. Social goals and the valuation of ecosystem services. Ecosystems 3, 3-10. 

Costanza, R., Daly, H.E., 1992. Natural capital and sustainable developement. Conservation 
Biology 6 (1), 37-46. 

Couclelis, H., 1991. Requirements for planning-relevant GIS: A spatial perspective. Papers in 
Regional Science 70, 9-19. 



 17 

Council for Scientific and Industrial Research, The Presidency, Department of Science and 
Technology, 2007. Geospatial analysis platform: Incorporating South African mesoframe (Version 
2). CSIR, Pretoria. 

Crosby, C.T., 1996. SAPWAT - A computer program for estimating irrigation requirements in 
Southern Africa. Water Research Commission, Pretoria, 379/1/96. 

Curtis, A., Byron, I., McDonald, S., 2003. Integrating spatially referenced social and biophysical 
data to explore landholder responses to dryland salinity in Australia. Journal of Environmental 
Management 68, 397 - 407. 

Deacon, R.T., Brookshire, D.S., Fisher, A.C., Kneese, A.V., Kolstad, C.D., Scrogin, D., Smith, 
V.K., Ward, M., J., W., 1998. Research trends and opportunities in environmental and natural 
resource economics. Environmental and Resource Economics 11 (3-4), 383-397. 

Department of Water Affairs and Forestry, 2004. Inkomati Water Management Area: Internal 
strategic perspective. Tlou & Matji Engineering and Management Services (Pty) Ltd, Pretoria, 
PWMA 05/000/00/0303. 

Eade, J., Moran, D., 1996. Spatial economic valuation: Benefits transfer using geographical 
information systems. Journal of Environmental Management 48, 97-110. 

Fairbanks, H.H.K., Thompson, M.W., Vink, D.E., Newby, T.S., Van den Berg, H.M., Everard, 
D.A., 2000. The South African land cover characteristics database: A synopsis of the landscape. 
South African Journal of Science 96, 69-82. 

Freeman, A.M., 1979. The Benefits of Environmental Improvements: Theory and Practice. 
Baltimore: Johns Hopkins University Press. 

Geoghegan, J., Cortina-Villar, S., Klepeis, P., Macario-Mendoza, P., Ogneva-Himmelberger, Y., 
Chowdhury, R.R., Turner, B.L., Vance, C., 2001. Modelling Tropical Deforestation in the Southern 
Yucatan Peninsular Region: Comparing Survey and Satellite Data. Agriculture, Ecosystems and 
Environment 85, 25–46. 

Goodstein, E.S., 1999. Economics and the environment. Prentice Hall Publishers: New Jersey. 

Gutman, P., 2007. Ecosystem services: Foundations for a new rural-urban compact. Ecological 
Economics 62 (3-4), 383-387. 

Harvey, D., 1996. Justice, Nature and the Geography of Difference. Blakewell: Oxford. 

Heal, G., 2000. Valuing Ecosystem Services. Ecosystems 3, 24 - 30. 

Hean, R., Cacho, O.J., Nordblom, T., Hume, I., 2006. Spatially-explicit modelling for salinity 
management at the catchment level. 50th Conference of the Australian Agricultural and Resource 
Economics Society. Sydney, Feb 2006. 

Hein, L., Van Koppen, K., De Groot, R.S., Van Ierland, E.C., 2006. Spatial scales, stakeholders and 
the valuation of ecosystem services. Ecological Economics 57, 209-228. 

Herr, A., 2007. Data Integration Issues in Research Supporting Sustainable Natural Resource 
Management. Geographical Research 45 (4), 376 - 386. 

Irwin, E.G., Geoghegan, J., 2001. Theory, data, methods: Developing spatially explicit economic 
models of land use change. Agriculture, Ecosystems & Environment 85 (1-3), 7-24. 



 18 

Jakeman, A.J., Letcher, R.A., 2003. Integrated assessment and modelling: features, principles and 
examples for catchment management. Environmental Modelling & Software 18, 491-501. 

Kroeger, T., Casey, F., 2007. An assessment of market-based approaches to providing ecosystem 
services on agricultural lands. Ecological Economics 64, 321-332. 

Lant, C., Kraft, S., Beaulieu, J., Bennett, D., Loftus, T., Nicklow, N., 2005. Using GIS-based 
ecological-economic modeling to evaluate policies affecting agricultural watersheds. Ecological 
Economics 55, 467-484. 

LeMarie, M., Van der Zaag, P., Menting, G., Baquete, E., Schotanus, D., 2006. The use of remote 
sensing for monitoring environmental indicators: The case of the Inkomati estuary, Mozambique. 
Physics and Chemistry of the Earth 31, 857-863. 

Lovett, A.A., Bateman, I.J., 2001. Economic analysis of environmental preferences: Progress and 
prospects. Computers, Environment and Urban Systems 25, 131-139. 

Mucina, L., Rutherford, M.C., 2006. The vegetation of South Africa, Lesotho and Swaziland., 
Strelitzia, South African National Biodiversity Institute, Pretoria. 

Munasinghe, M., 2002. The sustainomics trans-disciplinary meta-framework for making 
development more sustainable: Applications to energy issues. International Journal of Sustainable 
Development 5 (1), 125-182. 

Naudé, A.H., Badenhorst, W., Zietsman, H.L., Van Huyssteen, E., Maritz, J., 2007. Technical 
overview of the mesoframe methodology and South African Geospatial Analysis Platform. CSIR, 
Pretoria. 

Reyers, B., Wise, R.M., Guo, C., Midgley, G.F., under review. Determining the costs of 
conservation responses to climate change: a case study from a global biodiversity hotspot. Frontiers 
in Ecology and Evolution. 

Ruth, M., 2006. A quest for the economics of sustainability and the sustainability of economics. 
Ecological Economics 56, 332-342. 

Sanchirico, J.N., Wilen, J.N., 2005. Optimal spatial management of renewable resources: Matching 
policy scope to ecosystem scale. Journal of Environmental Economics and Management 50, 23-46. 

Sengo, D.J., Kachapila, A., van der Zaag, P., Mul, M., Nkomo, S., 2005. Valuing environmental 
water pulses into the Incomati estuary: Key to achieving equitable and sustainable utilisation of 
transboundary waters. Physics and Chemistry of the Earth 30, 646 - 657. 

Sinden, J.A., Griffith, G., 2007. Combining economic and ecological arguments to value the 
environmental gains from control of 35 weeds in Australia. Ecological Economics 61, 396-408. 

Soppe, R., Hellegers, P., Perry, C., Boon, D., Bastiaanssen, W., De Wit, M., 2006. Combining 
Remote Sensing and Economic Analysis to Assess Water Productivity: A demonstration project in 
the Inkomati Basin. Water Watch and LEI, Wageningin and Den Haag, Netherlands, unknown. 

Standards South Africa, 2004. South African National Standard (SANS) 1877:2004 - A standard 
land-cover classification scheme for remote-sensing applications in South Africa. Edition 1. . 
Standards South Africa, Pretoria. 

Statistics South Africa, 2002. Census of agriculture provincial statistics 2002: Mpumalanga 
financial and production statistics. Statistics South Africa, Pretoria, 11-02-09 (2002). 



 19 

Tobias, D., Mendelsohn, R., 1991. Valuing ecotourism in tropical forest reserve. Ambio 20, 91–93. 

Turner, R.K., Paavola, J., Cooper, P., Farber, S., 2003. Valuing nature: Lessons learned and future 
research directions. Ecological Economics 46, 496-510. 

Van Delden, H., Luja, P., Engelen, G., 2007. Integration of multi-scale dynamic spatial models of 
socio-economic and physical processes for river basin management. Environmental modelling and 
Software 22, 223-238. 

Van der Zaag, P., Vaz, A.C., 2003. Sharing the Incomati waters: Cooperation and competition in the 
balance. Water Policy 5, 349-368. 

Van Heerden, P.S., Crosby, C.T., Crosby, C.P., 2001. Using Sapwat to estimate water requirements 
of crops in selected irrigation areas managed by the Orange - Vaal and Orange Riet water users 
association. Water Research Commission, Pretoria, TT 163/01. 

Wadsworth, R., Treweek, J., 1999. Geographical Information Systems for Ecology. An 
Introduction. Harlow: Longman. 

Wilson, M.A., Howarth, R.B., 2002. Discourse-based valuation of ecosystem servcies: establishing 
fair outcomes through group deliberation. Ecological Economics 41, 431-443. 
 
  
 

 



 20 

%

%

%

%
%

#

Maputo

#

Durban

#

Johannesburg

#

Cape Town

#

Nelspuit

South Africa

Namibia

Botswana

Lesotho

Swaziland

Indian 
Ocean

Zimbabwe

Mozambique

Incomati Catchment
Kruger National Park
Magisterial Districts
International Borders
Rivers

#Y Towns

N

%

%

%

%

%

%

Mozambique

Swaziland

South Africa

Indian
Ocean

Sand

Kaap

Lo

mati

Crocodile

Sabie

Eland s

Incomati

Sabie

Barberton

Carolina
MAPUTO

Nelspruit

Komatipoort

Komati

0 40 80 120 160 Kilometers

Incomati Catchment
Barberton Magisterial District
International Borders
Rivers

% Towns

Kilometres

 

Figure 1: The Inkomati River Basin in southern Africa. The portion of the Basin 

occurring within South Africa is known as the Inkomati Water Management Area. 

The extent of the Barberton Magisterial District (which includes the towns of 

Barberton and Komatipoort) is shown by the darker shaded area.      
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Figure 2:  Graphical representation of the conversion of agricultural census data for 

the Barberton Magisterial District (3,693km2), a part of the Inkomati Water 

Management Area, into a spatially explicit GIS layer. Agricultural census data (A), 

although collected on a farm-by-farm basis, are only published at the rather coarse 

magisterial district scale. Land cover data (B) are collected at a resolution of 900m2 

and presented in 49 categories. Socio-economic data (C), such as population, economic 

activity and poverty levels, are available in South Africa at a meso-scale (49km2, see 

Box 1). The agricultural census data were reclassified and joined to the corresponding 

land cover category making it spatially explicit (arrow 1, representing step 1, 

described in Section 3.1). The result can now be combined with the socio-economic 

data (arrow 2, representing step 3 described in Section 3.3). 
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Figure 3:  The economic value derived from irrigation water used in growing (A) 

sugarcane and (B) other irrigated commercial crops (including both permanent and 

temporary), showing the relevant meso-zones within the Barberton Magisterial 
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District (part of the Inkomati Water Management Area). The main towns of 

Barberton and Komatipoort are also shown. 

 

 

 

Table 1:  Water requirements per economic sector within the Inkomati Water 

Management Area as a proportion of total demand 

 

Source: (Department of Water Affairs and Forestry, 2004) 

a Expressed as impact on the 1:50 year yield. Mm3 yr-1 refers to million cubic metres per 

year. 

 

Sector Water requireda (Mm3 yr-1) Proportion (%) Water availability (Mm3 yr-1) 

Irrigation 600 51.0% 947 Surface water 

Urban 63 5.4% 22 Ground water 

Natural 

resource 

Rural 27 2.3% 53 Irrigation 

Mining 24 2.0% 7 Urban 

Forestry 139 11.8% 11 Mining and bulk 

Usable return 

flow 

International 109 9.3% 0 

Transfer out 214 18.2% 0 

Total  1176 100.0% 

 

1040 
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Table 2: Magisterial districts wholly or partly wit hin the Inkomati Water 

Management Area1  

 

Magisterial district Total area (ha-1) Proportion of magisterial 

district area within the 

study area (%) 

Barberton 369 329 100% 

Belfast 172 062 57% 

Carolina 379 963 98% 

Ermelo 36 437 5% 

Lydenburg 66 309 13% 

Nelspruit 218 330 100% 

Nkomazi 131 216 97% 

Pilgrim's Rest 586 321 67% 

Waterval-Boven 98 273 100% 

White River 407 173 100% 
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Table 3:  Estimated extent of agricultural land cover categories per magisterial 

district within the Inkomati Water Management Area1  

 

 Land cover category 

Magisterial 

district 

Cultivated, 

permanent, 

commercial, 

irrigated (ha) 

Cultivated, 

permanent, 

commercial, 

dryland (ha) 

Cultivated, 

permanent, 

commercial, 

sugarcane (ha) 

Cultivated, 

temporary, 

commercial, 

irrigated (ha) 

Cultivated, 

temporary, 

commercial, 

dryland (ha) 

Barberton 13767 - 39087 2129 4001 

Belfast - - - 765 11992 

Carolina - - - 2709 34436 

Ermelo - - - - 6523 

Lydenburg - 67 - 2738 1911 

Nelspruit 3143 - 2206 6495 2174 

Nkomazi 938 - 7196 64 - 

Pilgrim's Rest 1922 - - 558 1108 

Waterval-

Boven 

- - - 205 64 

White River 6078 - 48 4991 1734 
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Table 4:  Crops used to represent the agricultural land cover categories occurring in 

the magisterial districts within the Inkomati Water Management Area 

 

 Land cover category 

Magisterial 

district 

Cultivated, 

permanent, 

commercial, 

irrigated 

Cultivated, 

permanent, 

commercial, 

sugarcane 

Cultivated, 

temporary, 

commercial, 

irrigated 

(field crops) 

Cultivated, 

temporary, 

commercial, 

irrigated 

(vegetables) 

Cultivated, 

temporary, 

commercial, 

dryland 

Barberton banana/ citrus/ 

mango 

sugarcane tobacco tomato maize 

Belfast - - maize N/A maize 

Carolina - - maize/ soy potato maize 

Ermelo - - - - maize 

Lydenburg - - maize potato maize 

Nelspruit citrus/ avocado sugarcane tobacco sweet potato maize 

Nkomazi citrus sugarcane maize N/A - 

Pilgrim's Rest banana - maize beans maize 

Waterval-

Boven 

- - maize beans maize 

White River banana/ avocado sugarcane tobacco sweet potato maize 
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Table 5:  Estimated total annual water use per land cover category in each of the 

magisterial districts within the Inkomati Water Man agement Area 

 

 Land cover category 

Magisterial 

district 

Cultivated, 

permanent, 

commercial, 

irrigated (mm ha-1) 

Cultivated, 

permanent, 

commercial, 

sugarcane (mm ha-1) 

Cultivated, 

temporary, 

commercial, 

irrigated (mm ha-1) 

Cultivated, 

temporary, 

commercial, dryland 

(mm ha-1) 

Barberton 1704 2338 1010 472 

Belfast - - 844 559 

Carolina - - 857 494 

Ermelo - - - 494 

Lydenburg - - 584 439 

Nelspruit 1693 2447 891 413 

Nkomazi 1834 2217 962 - 

Pilgrim's 

Rest 

1533 - 583 366 

Waterval-

Boven 

- - 540 439 

White River 1740 2325 831 447 
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Table 6:  Economic value generated from using water in crop production in each of 

the magisterial districts within the Inkomati Water Management Area1 

 

 Land cover category 

Cultivated, permanent, 

commercial, irrigated 

Cultivated, permanent, 

commercial, sugarcane 

Cultivated, temporary, 

commercial, irrigated / dryland 

Magisterial 

district 

Economic 

value (ZAR 

ha-1) 

Economic 

value  

(ZAR m-3) 

Economic 

value (ZAR 

ha-1) 

Economic 

value 

(ZAR m-3) 

Economic 

value  (ZAR 

ha-1) 

Economic value   

(ZAR m-3) 

Barberton  36 419 2.14 7 511 0.32 10 402 1.58 

Belfast   -  -  - -  935 0.16 

Carolina   - -   - -  1 171 0.23 

Ermelo  - -   - -  1 504 0.30 

Lydenburg  - -   - -  1 260 0.24 

Nelspruit 36 726 2.17 9 942 0.41 9 423 1.22 

Nkomazi 27 734 1.51 2 133 0.10  - a - a 

Pilgrim's Rest 2 175 0.14  - -  3 829 0.87 

Waterval-Boven  - -  - -  1 727 0.33 

White River  38 944 2.24 9 206 0.40 3 810 0.52 

ZAR = South African Rands. 1 USD = approximately 10 ZAR 

a Economic value generated in Nkomazi for the cultivated, temporary, commercial, 

irrigated/dryland category was too low to be registered by the Agricultural Census  

 

 

 

 

 

 


