

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://dx.doi.org/10.1016/j.envsoft.2011.10.009

http://hdl.handle.net/10251/57741

Elsevier

Zaragozi, B. M.; Belda, A.; Linares Pellicer, JJ.; Martínez-Pérez, J. E.; Navarro, J. T.;
Esparza Peidro, J. (2012). A free and open source programming library for landscape
metrics calculations. Environmental Modelling and Software. 31:131-140.
doi:10.1016/j.envsoft.2011.10.009.

A free and open source programming library for landscape metrics

calculations: land-metrics DIY.

Zaragozí, B.

1
; Belda, A.

2
; Linares, J.

3
; Martínez-Pérez, J.E.

2
; Navarro, J.T.

1
; y Esparza,

J.
 3

1 Institute of Geography, University of Alicante

2 Natural Resources Mapping Unit, University of Alicante

3 Department of Informatic Systems and Computation, Polytechnic University of

Valencia

Abstract

Landscape metrics are used in a wide range of environmental studies such as land use

change and land degradation studies, soil erosion and runoff predictions, management

of hunting communities, and strategic planning for environmental management, to name

but a few. Due to their utility for a variety of applications, there are many indices and

software packages that have been designed to provide calculations and analysis of

landscape structure patterns in categorical maps. With the purpose of making a

profound comparison between the most used tools (Fragstats, V-Late, PA4…), we

examined their advantages and disadvantages in order to create a list of common

features that need to be incorporated into this type of software. We believe that an API

without limitations on data input is necessary, capable of calculating vector or raster

metrics and very extensible. This API should make it possible not only to build third

party applications in easily, but would also make it possible to add new metrics and

research into new paradigms related to traditional landscape metrics. We have started to

develop a proposal based on open standards, which is FOSS. We have called this API

Land-metrics DIY (Do It Yourself). It can calculate almost 40 landscape metrics from

geometry provided by an ESRI Shapefile, but we are working to complete its contents

as we explain in this article.

Keywords: FOSS, Fragstats, GIS, C#, Land-metrics and Landscape Ecology.

1. Introduction

1.1. What are landscape metrics?

It is necessary to start by defining the subject under study in this paper. In the

bibliography, we can find two similar terms. The term ―landscape indices‖ is more

frequently used in a broader sense. On the other hand, the term ―landscape metrics‖

appears more frequently, but there are no definite rules or traditions as to when one or

the other term is used (Uuemaa et al., 2009). In this paper we have decided to use the

latter.

Common usage of the term ―landscape metrics‖ refers exclusively to indices developed

for categorical map patterns. Landscape metrics are algorithms that quantify specific

spatial characteristics of patches, classes of patches, or entire landscape mosaics. Thus,

landscape metrics indicate spatial patterns that reflect differences in dominant factors

that configure the landscape (Matthew et al., 2009). A plethora of metrics has been

developed to quantify categorical map patterns. These metrics fall into two general

categories: in the first place, those that quantify the composition of the map without

reference to spatial attributes, and secondly, those that quantify the spatial configuration

of the map, which require spatial information for their calculation (Gustafson, 1998;

McGarigal and Marks, 2002).

Many landscape metrics applications come from the field of Landscape Ecology, which

is the science of studying the relationship between spatial pattern and ecological

processes on a multitude of landscape scales and organizational levels (Wu, 2006).

1.2 Landscape metrics applications

As has already been mentioned, Landscape Ecology provides many methods to study

the composition and configuration of habitats as a compilation of discrete patches.

These methods need to be adapted for wildlife species in different environments (Le

Pichon et al., 2009).

Landscape Ecology provides an extensive set of indicators to evaluate several processes

related to environmental issues. The application of landscape metrics has provided good

results in the context of land degradation studies (Simoniello et al., 2006). The analysis

of spatial heterogeneity in vegetation and soil properties can be used to improve

predictions of runoff and erosion (Lesschen et al., 2008). Also, landscape metrics help

to model watershed hydrological systems and to identify and analyze possible future

impacts on land use pattern and hydrology (Lin et al., 2007). There are studies based on

the relationship of landscape structure with the hunting community (Jimenez-Garcia et

al., 2006), as well as specific studies on the wild boar (Calenge et al., 2004; Hebeisen et

al., 2008; Kaden et al., 2005; Monzón & Bento, 2004; Tsachalidis and Hadjisterkotis,

2008), red-legged partridge (Nadal, 2001; Vargas et al., 2006), ducks (Guillemain et al.,

2008), mouflon (Garel et al., 2005), wild rabbit (Schröpfer et al., 2000) and some

predators (Rico and Torrente, 2000). Landscape metrics enable this information to be

incorporated into a GIS, helping to select potential areas and take appropriate

management measures (Coulson et al., 2001).

Maintaining and restoring landscape connectivity is an increasingly central concern in

ecology and biodiversity conservation, and there is an increasing demand for user-

driven tools for integrating connectivity into landscape planning (Saura and Torné,

2009). A new approach suggests alternatives to the traditional patch mosaic model that

considers situations where spatial heterogeneity is continuous rather than discrete. Thus,

habitat is viewed as a continuous gradient instead of discrete patches within a

homogeneous matrix. Moreover, heterogeneity is viewed as a three-dimensional surface

and can represent any ecological attribute of interest (Hoechestter and Walz, 2009;

McGarigal et al., 2009). This new approach provides greater accuracy than the previous

―2D‖ metrics.

1.3. Several considerations about calculating land-metrics

Landscape is not necessarily defined by its size; rather, it is defined by an interacting

mosaic of patches relevant to the phenomenon under consideration at any scale. On the

other hand, when studying wildlife, multiscale analysis can provide insight into the

spatial scale at which species respond, a topic of intrinsic scientific interest with applied

implications for researchers establishing protocols to assess and monitor wildlife

populations (Brennan and Schnell, 2005).

The accuracy of landscape analysis depends on spatial and temporal scale and these are

characterized by data format. Most landscape structure measurements can be calculated

using either raster or vector data formats and processing methods (Wade et al., 2003).

GIS-based measurements that combine native raster and native vector data are

commonly used in environmental assessments. Evaluations often cover large areas, and

metrics are usually calculated using raster methods. Raster processes are more

commonly used because they can be significantly faster computationally than vectors,

but error is introduced in converting vector data to raster. For assessments based on

rankings or groups, results indicate that any of the methods are sufficient. If highly

accurate individual observations are required, vector methods should be employed when

possible. Assessment needs will determine which processing method is appropriate for a

given metric. When the reporting unit is large relative to the pixel size, the method will

have little or no impact on the assessment and the raster method is preferred for its

greater efficiency. For many assessments, the faster raster or hybrid methods will

provide adequate results, especially when buffer size is large (Wade et al., 2003).

1.4. Available software for calculating landscape metrics

Once the utility of calculating land-metrics in many landscape ecology studies and in

other scientific fields has been accepted, it is necessary to obtain an appropriate tool

adapted to our practical interests.

Several software packages provide methods for analyzing landscape patterns observed

in raster grids and remote sensed images, because it has been found that the quality of

classification of land-uses can be improved considerably by the use of structure

analysis, which may utilize measures of the kind described below or a range of other

forms of surface variability analysis.

There are many tools specifically developed for calculating landscape metrics,

highlighting Fragstats, (McGarigal et al., 2002; McGarigal and Marks, 1995).

Nevertheless, because of the necessity of handling spatial data (Longley et al., 2005;

Steiniger and Weibel, 2009; Turner et al., 2001), many modules integrated in GIS

desktop software exist, for example V-Late and PA4 in ArcGIS, Pattern and Texture

modules in IDRISI, and at least two GRASS packages (r.le and r.li). The use of GIS

provides all of the additional advantages of using this type of software, such as many

available data formats, geoprocessing tools, data editing and many report possibilities.

Despite the advantages of calculating land-metrics with a GIS, obviously, it is necessary

to be familiar with the GIS being used. These desktop applications are for general

purposes, which means that we have to adapt our workflow to the tool. Another

problem is that all of these tools work in different ways, and do not calculate the same

metrics.

Table 1: Comparison of the best known landscape metrics tools.

Program FOSS Platform
Programming

language

Other

requirements

Data

format

Fragstats 3.3
No (yes on
v.2)

Windows, Mac(v.2) C++ Ext. to GIS
Raster

V-Late 1.1 No Windows VB 6 ArcGIS 9.x Vector

Patch Analyst 4
beta

No Windows VB 6 ArcGIS 9.x
Both

r.le + r.li Yes
Windows, Mac
& Linux

C Grass 6.4
Raster

Pattern & Texture No Windows ---------- Idrisi Taiga Raster

IAN Yes Windows* Ruby ---------- Raster

In Table 1, the main differences between the most popular land metrics tools can be

seen. We do not intend to undertake a complete review of all the existing software, but

it is necessary to know some details in order to evaluate various pros and cons, and to

obtain a global picture of the state of the art in these techniques. Of course there are

many specific tools that we are not going to consider because of their specificity.

In the first place, Fragstats is the most popular software for the calculation of landscape

metrics. It was released in the public domain in 1995 (version 2), and was updated in

2002. This software is probably the best project of those considered in this comparison,

it has very complete documentation on its webpage, and calculates more than 100

metrics and, of course, it is the most complete program commented on here. This

software works by always using raster models and formats, and a good point is that it is

freely available. Its latest version is not FOSS and only runs on Windows. Its workflow

requires some pre-processing tasks to import images, rasterize vector files, create a class

file and then it is necessary to configure some menus. These pre-processing tasks are

more time consuming than in other computer applications.

As for implementations on the ESRI platform, there are two ArcMap extensions for

calculating some landscape metrics, V-Late and PA4. The first, V-Late (Lang and

Tiede, 2003) is an extension that calculates some vector formulas. It has many

advantages over other software as it is implemented on a very well known desktop GIS

which allows building on the available formulas using the Arcobjects® programming

potential. In this case, the software is not FOSS, and needs at least an ArcGIS user

licence to run. With regard to its workflow, V-Late reports are not customizable

enough. The patch metrics are written into the related table of the vector file, and the

rest of the results are output in several loosely structured text files that may collect

redundant information. Moreover, it is necessary to build a new vector file to get the

Core-metrics results, and this task does not work with large numbers of polygons.

On the other hand, PA4 (Rempel and Kaufman, 2008) is the most recently developed

tool based on ArcGIS and like V-Late is an extension programmed in VB6. This

language is unsupported by Microsoft since April 8, 2008 (see the Support Statement in

the MSDN, Visual Basic 6.0 Resource Center; http://msdn.microsoft.com/en-

us/default.aspx). This can cause some problems and incompatibilities when working

with newer technologies. These programs will have to adapt a few years after birth, or

die very young. In spite of this, PA4 calculates many landscape metrics using vector

http://msdn.microsoft.com/en-us/default.aspx
http://msdn.microsoft.com/en-us/default.aspx

and raster formulas. The raster formulas are calculated through a Fragstats interface.

PA4 provides many extra tools approaching and giving direct access to many ArcGIS

capabilities. Moreover, the Core-metrics calculations work better than V-Late with large

numbers of polygons.

IDRISI is a well-known and affordable GIS, with considerable raster processing

capabilities. Like ArcGIS, IDRISI makes it possible to develop new modules using

several programming languages, but it is not open source software. It has two modules

that can be used for calculating some land-metrics from rasters. Directly, without

considerable programming effort, it calculates fewer metrics than the other software

considered here (Cartwright, 1991).

Perhaps one of the most interesting GIS based applications is GRASS and its specific

modules r.le (Baker and Cai, 1992; Baker, 2001), and r.li (Porta and Spano, 2008).

Using these modules it is possible to calculate a large list of metrics, but always with

raster data inputs. As in Fragstats, if data is in a vector format it must be rasterized first.

As an OSGeo project, Grass is FOSS, overall programmed in ANSI-C or Python too,

and it can run on Mac, Linux or Windows platforms. The raster format limitation

mentioned for these modules can be overcome thanks to the GRASS vector capabilities,

but at the expense of some programming effort (Wang, 2008).

Finally, there are two projects that have been developed by the Forest Landscape

Ecology Lab at the University of Wisconsin-Madison: APACK and IAN. The latter has

replaced APACK. IAN is a FOSS project developed with Ruby, which is an interpreted

OOP language that is very easy to learn. Being OOP, it has many advantages over all

the other programming languages referred to here before. IAN only works with raster

formats, and reads a few GIS raster formats, although by programming, the available

raster formats accepted could be increased. The main web page of the project

(http://landscape.forest.wisc.edu/projects/IAN/) states that it runs on Windows, but

Ruby has interpreters in many platforms and it could be possible to use IAN with other

different OS. Perhaps the only drawback of this project is that it is completely

independent from other FOSS GIS projects, which makes it more difficult to include

contributions from external projects.

1.5. Considerations about existing tools. Why a new tool is needed.

After this general description of commonly used programs it is possible to sum up the

most important goals that a useful program must accomplish:

(1) A specific tool is required, not a lot of generic ones. An application designed

specifically for calculating landscape metrics will be more productive than using a

general purpose GIS application or creating programs for each metric. This will make

coping with several desktop GIS unnecessary, as none of them integrates all possible

metrics, or integrates different formula implementations for the same metric. In this

sense, Fragstats is the most mature tool, and may be an example of specificity (Wang,

2008).

(2) FOSS – GPL-like licence and multiplatform in order to enjoy continued

development with no restrictions on the scientific community. The main strength of

http://landscape.forest.wisc.edu/projects/IAN/

open source software is that it allows the reuse of knowledge, and it can make it easier,

by reducing programming time, to investigate new metrics or paradigms like

Uncertainty or 3D metrics that are being considered for future research (McGarrigal et

al., 2009). IAN and GRASS make this possible, and are good frameworks to develop

on.

(3) Based on open standards promoting better integration with other existing or future

projects. In the spatial domain, interoperability of software components is endorsed by

the application of standards, with the Open Geospatial Consortium (OGC) being the

main non-profit organization devoted to the elaboration of public and open

specifications for geographic data and services interoperability. This means that we can

use other open source projects to solve our needs, and there will be no significant

problems when those projects make changes or improvements because they are based

on known standards. The most recent projects reviewed here try to comply with this

premise. In order to appreciate the relevance of this point look at

http://www.opengeospatial.org/resource/products/ to check some popular products

working with OGC standards.

(4) Possibility of extending the available data formats. As we have seen, a major

concern in existing land-metrics software is data input, and readable formats. In order to

be able to increase the accessible formats, a scalable application is required. Currently,

many GIS programs use the GDAL/OGR library for this purpose, including different

commercial apps (http://trac.osgeo.org/gdal/wiki/SoftwareUsingGdal).

(5) Extensible to all possible metrics. It is necessary to have a complete toolbox

avoiding the use of more applications in order to reduce program training time.

(6) Usage of vector and raster formats depending only on the study requirements. Only

PA4 gives the possibility of calculating both, vector and raster metrics. This is

necessary to preserve data integrity and to compare results.

(7) Addition of new formulas and integration of future methodologies should be easy.

Landscape metrics can be hundreds but only some of them are highly correlated. Due to

the wide range of possible metrics the implementation of new formulas should be very

easy. This is possible using OOP and provides the possibility of programming with

many languages. As an example, GRASS is mainly programmed in Ansi-C which is a

Low-level language (requires highest programming skills) and not OOP. On the other

hand, IAN, written in Ruby is OOP and easy to use, due to this it can be a good

possibility to develop.

(8) Customizable outputs and reports easily adaptable to our workflows. The outputs

and reports that some programs return are generic and are often unnecessary or not

exactly what is needed. The way to reduce unnecessary files or results is to give the

possibility of calculating each metric directly, without intermediate inputs.

To achieve these goals a decision was taken to create an API which accomplishes these

8 points: It is the Land-metrics DIY (―do it yourself‖).

http://www.opengeospatial.org/resource/products/
http://trac.osgeo.org/gdal/wiki/SoftwareUsingGdal

2. Base technologies of Land-metrics DIY

Land-metrics DIY is a FOSS GPL licensed library which provides precise tools for

creating specific applications for land-metrics calculation easily.

In this section we explain all the relevant decisions that have been taken to design Land-

metrics DIY. Here all the technical details of the components and methodologies are not

explained in depth, but a summary of the main issues we consider of interest for

landscape and other researchers is indispensable. Of course, a further study of the

following concepts is recommended in case of wanting to explore, use or develop the

API.

2.1. Advantages of using the .NET Platform

As stated before, in the development of our project it is especially interesting to achieve

platform and programming language independency. Such a characteristic opens the

project to almost any user and developer community. By allowing the use of any

programming language, developer communities can make the most of our project

minimizing development time and effort.

We have achieved multiplatform and multi-language support by implementing our API

in the .NET development framework. Although it was originally designed by Microsoft

for the Windows OS, the .NET framework was released as an open standard (ECMA-

334-335, ISO/IEC 23271) making it available to third parties. Consequently, .NET can

be implemented over any operating system. Using this standard, the Mono Project

(http://www.mono-project.com/), a Novell initiative, has ported .NET platform to a still

growing set of OS, such as GNU / Linux, FreeBSD, UNIX, Mac OS X, Solaris, and

even Windows (with a different runtime to Microsoft‘s one).

―The .NET Framework is Microsoft's platform for building applications that have

visually stunning user experiences, seamless and secure communication, and the ability

to model a range of business processes. By providing you with a comprehensive and

consistent programming model and a common set of APIs, the .NET Framework helps

you to build applications that work the way you want, in the programming language you

prefer, across software, services, and devices.‖ (http://www.microsoft.com/net/).

The .NET execution model has many particularities that have to be explained (see

Figure 1). When compiling a program, in a very similar way to the Java platform, an

intermediate and platform independent language is generated. This intermediate

language (IL) must be executed by an important piece of the .NET framework: the CLR

(Common Language Runtime). This CLR acts in a similar way to the Java Virtual

Machine allowing the code to be finally executed. This makes programming much

easier thanks to the garbage collector, exception management and debugging features.

Figure 1: Execution model of the .NET platform

http://www.mono-project.com/
http://www.microsoft.com/net/

Nevertheless, an important difference with Java is that .NET is able to accept not only

C# but any programming language as long as they follow the guidelines of the ECMA

335 known as the CLI (Common Language Infrastructure). That means that there

currently exists a wide set of programming languages that can be used in order to create

.NET applications (C++, VB.NET, F#, IronPython, IronRuby, Pascal, to name just a

few). A complete list of currently supported languages can be seen at:

http://en.wikipedia.org/wiki/List_of_CLI_languages. The multi-language nature of

.NET allows mixing different programming languages in the same project.

As an additional part of the framework, .NET comes with a large collection of classes

that allows the development of any type of application. From the basic and general

Framework Class Library (FCL) in order to work with mathematical functions, XML

information and other basic characteristics, to others more specific for database

management (ADO.NET), web development (ASP.NET), outstanding graphic

interfaces (WPF), and a large collection of possibilities.

As a modern Framework, .NET makes the most of computational performance. For

instance, multithreading processing is a key resource for optimizing both vector and

raster metrics calculation, and one that cannot be employed when programmers are tied

to languages such as VB6, as is the case of PA4 and V-Late. In fact, not being able to

implement multithreading can stop programmers from deploying solutions for large

vector sets, which are the most CPU and memory consuming. In a simplified way,

multithreading can be defined as the ability to execute simultaneous tasks making the

most of the hardware configuration. For example, a dual core CPU is able to process

two tasks at the same time, and this can be used to reduce by almost half the time in

some geometric and raster operations. You can see an example in Figure 2. This graph

shows differences in performance of a CPU dual core (T5550) when calculating the

same patch core-metrics for a testing shapefile. Results reveal that by using

multithreading, the processing time is halved and both processors work almost the

same.

http://en.wikipedia.org/wiki/List_of_CLI_languages

Figure 2: Performance graphics showing the benefits of using multithreading.

0

20

40

60

80

100

0 10 20 30 40 50

0

20

40

60

80

100

0 10 20 30 40 50

0

20

40

60

80

100

0 10 20 30 40 50

0

20

40

60

80

100

0 10 20 30 40 50

Time (sec)

CPU %

CPU 1 CPU 2

N
o

 M
u

lt
it

h
re

a
d

in
g

M
u

lt
it

h
re

a
d

in
g

Among the different languages .NET allows to work with, C# has been chosen for our

project as it is the most popular in the development of .NET applications. It is a simple

object-oriented, modern, and general-purpose programming language and is also

defined as standard (ECMA-334).

If the multi-language nature of .NET does not fit developers‘ expectations, the FOSS-

GPL licence of our Land-metrics DIY project makes the conversion and adaptation of

the code to other platforms such as Java, for example, straightforward.

The development of .NET applications is carried out using the Object-Oriented

Programming (OOP) paradigm. Based on the concept of object, this paradigm

resembles the human style of thinking in the programming world. Besides, OOP allows

better code reuse, productivity and scalability. Particularly in our project, the addition of

new metrics or other improvements can be easily carried out without introducing

incompatibilities with previous versions and always allowing new features to be

included for any development based on our API.

2.2. Approaching standards. The OGC Simple Feature Access (SFA)

As has already been mentioned, we have adhered to open and well-known standards for

the development of the Land-metrics DIY API. The most central standard used here is

the OGS OpenGIS Simple Feature Access specification (SFA).

The SFA is an OpenGIS abstract specification that describes a feature model, and

provides a data storing and an information access interface. These are the essential parts

of a data model. Finally, Simple Features are geospatial features described using vector

data elements such as points, lines and polygons.

Using these specifications the GIS software engineers are able to develop spatial

applications that can manage simple geometries using different technologies. As can be

http://www.ecma-international.org/publications/standards/Ecma-334.htm

seen in Figure3, final applications can combine database servers, different frameworks

designed using many programming languages and GIS desktop applications, without

any dependence on software licences. In the OGC Webpage more solutions can be

found that use SFA, but in Figure 3 you can see the most popular.

Figure 3: Interoperability using the SFA

The core of this specification is an Object Oriented Model which defines a neutral

architecture to represent and analyze vector geographic features. SFA uses UML to

explain its characteristics visually and at different scales. We can distinguish a data

model and a functional model. In the next point, we explain more concepts about OO

modelling and UML, but in order to work and to achieve a better understanding of SFA

a deeper study of these concepts is required.

In Figure 4, we show a simplified UML class diagram that sums up many of the SFA

data model details. This schema illustrates the main existing classes using rectangles

and its relationships through arrows. A class is the definition of an object, and the

different relationships are defined in UML using unlike heads to express aggregation

(empty rhombus), dependence (full triangle) or inheritance (empty triangle).

Figure 4: Simplified SFA UML class diagram

In summary, in the SFA data model the main base class is an abstract class called

Geometry. Its main role is to provide a specification of the properties and methods

common to any geometry. Among these properties the spatial reference system of

coordinates is mandatory, and represented in turn by the SpatialReferenceSystem class.

Three classes are derived from the Geometry class and represent the dimensionless

(Point), unidimensional (LineString) and two-dimensional (Polygon) primitive

geometries. Finally, the internal organization of the coordinates of polylines

components (2 or more objects of type Point) and polygons (one or more objects of type

LinearRing) as homogeneous collections of geometries (MultiPoint, MultiLineString ,

MultiPolygon) can be explained by aggregation relationships.

This data model is valuable for representing the landscape as patches using Polygons or

exploring the landscape connectivity considering the nodes and edges of a network as

Points and LineStrings.

Once the SFA data model has been defined, we can explain the functional model which

defines that each Geometry must include some necessary methods, some of them being

immutable property accessors (Figure 5), and other more advanced and oriented to

spatial analysis (Figure 6).

Figure 5: Geometry basic methods

Obviously, the advanced methods defined by the SFA are useful for calculating land-

metrics. For example, the Buffer() method used with a negative depth of edge can be

used to calculate the size of the Core Area of a Polygon.

Figure 6: Some Geometry advanced methods

2.3. Use of existing projects. “Not reinventing the wheel”.

It seems absolutely true that the fastest project developed is that which is already done.

Still using .NET and OOP the task of an API as complete as posed here would be

enormous, or almost impossible due to the specificity of this knowledge area.

Fortunately, nowadays the FOSS community is huge too and there are a lot of projects

we could use to supply our lack of resources.

Table 2: Stats of some usable FOSS projects directly from .NET; Source: www.ohloh.net
Project Types Lines Of Code Est. cost (US $)*
SharpMap Data acces, spatial query, render 413.787 5.942.368
NetTopologySuite 2D spatial analysis 123.200 1.670.203
PostgreSQL +
PostGIS

Spatial database 699.037 10.357.673

GeoAPI.NET OGC/ISO, interoperability ------- -------
GDAL Raster access 640.817 9.691.503
Proj.NET Projection Enghien 11.217 134.502

Because there are completely free FOSS projects for land metric calculations based on

raster formats, we have decided to start the Land-metrics DIY by programming some

vector formulas.

In Table 2, we can get a size approximation of some FOSS projects we could use from

.NET. The methodology used to calculate these metrics is COCOMO II, which has the

problem that in every project programmers try to reuse the code when possible, but it is

evident that there is a lot of work already done. For the moment, only two FOSS

http://www.ohloh.net/

projects have been used to develop the prototype (Alfa 0.1) version of our API:

NetTopologySuite (v. 1.7.3 Build 416) and GeoAPI.NET (1.1.0.0).

NTS is mainly a C#/NET porting of Java Topology Suite (JTS), a Java library for GIS

operations, OpenGIS compliant (SFA). Both provide fundamental geometric functions

with robust 2D spatial algorithms. NTS provides OGC standard geometry model

implementation, read-write capabilities for standard vector GIS formats, some overlay

functions (intersection, difference, union, symmetric difference), buffer, convex hull,

area, perimeter and more. On the other hand, the GeoAPI.NET project provides a

common framework based on standards to improve interoperability among .NET GIS

projects, such as NTS.

3. General understanding of Land-metrics DIY.

In order to get a general understanding of how DIY works, we represent it as an UML

package diagram. This diagram (Figure 7) shows the main namespaces in the land-

metrics DIY project. A namespace is just a folder containing other folders or related

classes. Finally, a class is the necessary code defining how an object of such class is

created, its transitional states (properties) and its behaviour (methods).

Figure 7: UML package diagram of Land-metrics DIY

Following the diagram the raster/vector duality is appreciated, which is important

because many metrics can be calculated in both ways (Wade et al., 2003).

In the centre, namespaces into ―Metrics‖ are the most important because all the metric

calculation classes are defined there. Also, in ―DIY_core‖ there are 4 more namespaces,

which contain the code for accessing the user GIS data files (i.e.: Shapefiles, GeoTiff or

spatial databases). At the moment, only Shapefile format is readable, but more data

formats will be incorporated before long. These classes allow some necessary

information to be obtained like areas, perimeters, patch types, table fieldnames and any

indispensable information to explore data and calculate land-metrics. As the diagram

shows, in this version, when the user creates a ―vector metric object‖ some classes in

Geometry and SchemaDB are activated and use the appropriate tools from NTS and

GeoAPI to get the necessary data.

On the other hand, DIY_reports contains some tools to customize the output metrics list

as needed. The list-objects receive the metrics calculated by the metrics namespace and

list them as desired. There are some listing possibilities: (1) to get a complete list with

all the metrics of the same category; (2) to get this list filtered with only the required

metrics; (3) or combine lists from different categories but always at the same landscape

level.

Of course, it is possible to calculate individual metrics without using the reports

namespace.

Finally, in DIY_enums, there are enumerates, which are lists of terms that stop us from

making typing errors (i.e. Lists with the metric names).

The steps for calculating all the metrics are always the same because all the classes in

―metrics‖ follow the UML class schema in Figure 8. The first section of the schema

defines the class name. By convention, each public class for metrics calculation in

Landscape-metrics DYI is given a name composed of the landscape scale (patch-class-

landscape for groups of metrics, and P, C or L in case of individual metrics), the metric

name or the category metrics name. When possible, these names follow the Fragstats

documentation. Finally, there is a letter that indicates the vector/raster option.

Figure 8: UML class schema for calculating a metrics category.

Landscape_DiversityMetrics_V

-_numLandscapeCategories: int
-_patchRichnessDensity: double
-_shannonsDiversityIndex: double
-_simpsonsDiversityIndex: double
-_modifiedSimpsonsDiversityIndex: double
-_shanonsEvennessIndex: double
-_simpsonsEvennessIndex: double
-_modifiedSimpsonsEvennessIndex: double

<<create>>+Landscape_DiversityMetrics(filename: string, epsg: string, fieldIndex: int)
<<CSharpProperty>>+NumCategorias(): int
<<CSharpProperty>>+PatchRichnessDensity(): double
<<CSharpProperty>>+ShannonsDiversityIndex(): double
<<CSharpProperty>>+SimpsonsDiversityIndex(): double
<<CSharpProperty>>+ModifiedSimpsonsDiversityIndex(): double
<<CSharpProperty>>+ShannonsEvennessIndex(): double
<<CSharpProperty>>+SimpsonsEvennessIndex(): double
<<CSharpProperty>>+ModifiedSimpsonsEvennessIndex(): double
-landscapeMetrics(filename: string, epsg: string, fieldIndex: int): void

To understand the class schema, it is necessary to explain the concept of visibility. The

API users will be able to use some tools from the dll, (the visible tools; +), but other

tools will be invisible (-) to make it easier for the programmer. In the second section of

the class schema there are one or more metric fields or attributes, always with private

visibility (-). Those fields are queried using the public (+) methods in the third section.

There will be a constructor (a public method with the same name as the class) that

creates the landscape-metrics object and assigns values to metric fields (UML notation:

<<create>>), and then it is possible to read the results through the corresponding public

property accessors (<<C#Property>>). In this section there will always be a private

method, which is actually in charge of calculating each metric. This way, the internal

implementation of metrics calculation is encapsulated and isolated from the API‘s user

application logic.

On the other hand, the classes in the reports namespace are well defined too. In Figure

9, you can see the UML schema that we can use to customize in the easiest way a report

based on the metrics calculated following the schema in Figure 8. As we can

appreciate, in any List class we will have only two public methods. The class

constructor requires a Metrics object, and there is a public method called ―filterMetrics‖

that will help us to create a customized ―DataTable‖ just specifying the results we need

to show or store.

Figure 9: UML class schema for customize some reports.

List_Landscape_DiversityMetrics_V

-_landscapeAndMetrics: ArrayList

<<create>>+List_Landscape_DiversityMetrics(metrics: Landscape_DiversityMetrics_V)
<<CSharpProperty>>-LandscapeAndMetrics(): ArrayList
-joinMetrics(metrics: Landscape_DiversityMetrics_V): void
+filterMetrics(filter: Options_Landscape_DiversityMetrics_Vec): DataTable

Also, into the reports namespace we will find some public and generic methods to work

with the class reports (DataTables). Using these methods we could join two reports or

sort the lists.

In this prototype we are only reporting lists or tables containing the results, but it is

already planned to implement, for example, raster or vector graphical outputs. And this

will be as easy to use as the example in Figure 9. Another issue is that thanks to .NET

we can easily serialize our results to a XML file.

4. Results and Discussion

The main result of this research is a functional API for calculating landscape metrics

directly from vector files.

The API prototype is able to calculate almost 40 different vector metrics (see Apendix

C) from ESRI Shapefiles. Nevertheless, there will be a generic application for users that

would not be interested in developing upon the library (Figure 10).

Figure 10: Sample User Interface (UI) distributed with the API that calculates all the available

AreDensEdge at a Class level.

The Land-metrics DIY source code is publicly available for checkout in our own

Subversion repository (http://www.gisandchips.org/svn/landmetrics_diy). The

repository is organized in different folders: the ―trunk‖ directory holds the main

development branch, while the ―tags‖ directory will hold subsequent functional releases

either unstable or stable. There are two projects: the landmetrics_DIY API and

landmetrics_DIY Visual. The second is a Windows Forms project consisting of a

sample application of the API. Figure 10 is a view of the Visual project.

In the ―tags‖ folder you can see that the project actual release is a 0.1 version. In the

near future, we have planned to achieve a beta version with some raster metrics

calculations available and then we will port the complete project to an externally hosted

sources repository (Google Code, SourceForge, etc.).

In the mean time, all those interested in Land-metrics DIY can visit the blog at

http://www.gisandchips.org where short articles will appear explaining some issues

about the use and development of the API, and its documentation too.

4.1. Usability of the API

Once the logic of the classes contained by the Metrics Namespace has been explained,

we can see how easy would be to calculate some metrics. In this section we want to

show how easy it is to use Land-metrics DIY in your own applications.

http://www.gisandchips.org/svn/landmetrics_diy
http://www.gisandchips.org/

Then, we show some code examples. We must take into account some issues to

understand them better:

(1) In C# the code lines end with a semicolon, while the lines starting with ―//‖ are just

comments for the readers.

 (2) Parameter 1, ―GIS filename‖, refers to the complete filename including the folder

tree and extension of the filename. For the moment, the prototype only accepts ESRI

shapefiles.

(3) Parameter 2, EPSG (European Petroleum Survey Group), requires an EPSG Spatial

Reference System Identifier (SRID), which is a value to identify a spatial coordinate

system (http://en.wikipedia.org/wiki/EPSG).

(4) Parameter 3 is the position in a related data table of the field used to identify the

patches.

See the following C# code, there are two possibilities available: (1) calculate just one

metric (Figure 11; A, B) or (2) calculate all the metrics related to the same class and at

the same landscape level (Figure 11; C).

Figure 11: This C# code calculates the area and perimeter metrics at a patch level, and all the

AreaDensEdge metrics at a patch level, using the vector formula.

A)
//We calculate only the area at the patch level

P_Area_V areas = new P_Area_V(GIS filename, EPSG, fieldIndex);

B)
//We calculate only the Perimeter at the patch level

P_Perim_V perims = new P_Perim_V(GIS filename, EPSG, fieldIndex);

C)
//We calculate all the metrics in this class

Patch_AreaDensEdge_V metrics = new Patch_AreaDensEdge_V(GIS filename,

EPSG, fieldIndex);

Once the metrics are calculated, we will want to customize our results by merging some

metrics results into the same table (Figure 12; A), or you will need a subset of the

metrics of the specific metrics class (Figure 12; B).

Figure 12: This C# code merges 2 metrics at a patch level, or creates a personalized output using

the vector formula.

A)
//We merge the areas and perimeters calculated in code example Figure

11.A and 11.B

Join_Datatables.JoinTables(areas.C_Names_Areas_V,

perims.C_Names_Perimeters_V,"ID");

B)
//We create a tailored list from the metrics calculated in Figure 11.C

List_Patch_AreaDensEdge list = new List_Patch_AreaDensEdge(metrics);

list.filterMetrics(Options_Patch_AreaDensEdge_V.PatchName|Options_Patc

h_AreaDensEdge_V.PatchArea);

http://en.wikipedia.org/wiki/EPSG

4.2. Program using other languages.

As we stated before, thanks to the .NET Framework, it is possible to use or program this

API using different programming languages. In order to show a few examples, we have

written the code example in Figure 11-A to calculate the area at the patch level in other

3 other programming languages: IronPython, IronRuby and VB.NET.

Figure 13: This code calculates patch areas, using different programming languages.

//C#

P_Area_vec pA = new P_Area_vec(GIS filename, EPSG, fieldIndex);

//VB.NET

Dim pA As New P_Area_V(GIS filename, EPSG, fieldIndex)

//IronRuby

pA = P_Area_V.new(GIS filename, EPSG, fieldIndex)

//IronPython

pA = P_Area_V.new(GIS filename, EPSG, fieldIndex)

In the code examples in Figure 13, we can compare the different syntax of 4

programming languages that fit .NET. All of them are very similar, but any user could

have preferences or an acquired programming background which make them prefer a

particular language.

4.3. Testing Land-metrics DIY

At this point, we would like to list the main issues that make Land-metrics DIY a good

option for working with landscape metrics. The best way to do this is to see all the tools

working in a test.

First of all, we calculated all the available metrics in our API by hand, only when

possible, and compared the results with those offered by the rest of the best known

programs referred to in this paper. All the results were correct.

The only problem was to compare the results obtained using the vector metrics with

those returned by using raster formulas. The pixel size problem made it possible to

compare only a few metrics. In spite of this problem, we can compare the packages

which perform vector calculations (V-Late and Patch Analyst 4). Nevertheless, we have

taken into account the results obtained with Fragstats and PA4-raster for a rasterized file

of 1x1 meters per pixel. Some of the results were similar.

The calculations of the core-area metrics are the most highly demanding in the case of

the vector metrics implemented in this article. At the moment we tried to calculate the

core-area metrics using V-Late, none of the computers used (Apendix B.1 and B.2)

could perform the task, but PA4 did. In fact, the API prototype still does not apply

multithreading and is not optimized but despite this Land-metrics DIY was faster and

calculated more metrics from this group than PA4.

The Land-metrics DIY calculates many metrics that are not available in the ArcMap

extensions like some diversity or core indexes (see Appendix C). However, the main

question is that it is relatively easy to program new metrics in the API, following the

schemas provided here, but this is not possible in the rest of vector software.

At this moment, the API works very fast, at least when we compare it with the other

solutions. One of the reasons is that the API enables results to be visualized before

saving them to a file, avoiding unnecessary writing tasks.

Since the API has been designed to provide metric calculations the creation of reports

has not been one of the main interests. However, the .Net Framework makes it possible

to export the results to a text file or XML in a very easy way. There are some examples

in the code of the ―Visual‖ project.

5. Conclusions

Nowadays, there are many existing possibilities to facilitate the creation of customized

software. This is also true in the case of spatial software. Using a friendly framework

like .Net, well defined and distributed standards like the OpenGIS and some FOSS

projects oriented to GIS make it easy to create powerful tools with less programming

effort and skills. Knowing the resources we have is basic for scientists. This allows us to

avoid some traditional problems when creating new software.

In this day and age, there are many researchers advancing the needs for new landscape

metrics (McGarigal et al., 2009) or new methodologies (Rempel and Kaufman, 2008;

Saura and Torné, 2009), and this will result in the development of new software. It is

essential to be planners at this moment to design the best possible tools, avoiding the

inconveniences of the past. We conclude that the project set out here fulfils the

requirements indicated in the introduction of this paper, solving those traditional

problems and providing a good framework for further developments.

Due to the interests of the authors, this is a FOSS project that is very alive and further

developments are being worked on now. The project is in its initial stages but during the

following months we will provide access to a wide range of data formats, raster

capabilities, and we will try to complete the list of metrics available as much as

possible, using both raster and vector formulas. On the other hand, we have to improve

the reports namespace making the customization of results easier and providing when

needed the possibility of saving the results in GIS files.

Acknowledgements

This paper is partially supported by the FPU - Doctoral Research Scholarship program

of the ―Ministerio de Educación de España‖. (2007-2011). Moreover we would like to

thank all the FOSS community, and in particular to Diego Guidi (NTS main developer)

for their interesting and important work. Of course, we also thank the OGC and all

FOSS projects related to spatial information because they suppose a strategic support to

the further development of our idea and other possible GIS projects.

Appendix A. - List of acronyms (which are not sufficiently explained in the text):

ANSI ― C ― a standarization of the C programming language

API ― Application Programming Interface

ArcGIS ― a set of GIS programs produced by ESRI

ArcMap ― one of the main ArcGIS components

ArcObjects ― ESRI environment for programming GIS applications

C++ ― low level and multiparadigm programming language

COCOMO II ― COnstructive COst MOdel ― Mathematic model for estimating the costs

of a software development

ECMA ― European Computers Manufacturers Asociation ― Now, ECMA

International; an organization that designs and promotes the correct use of standards,

and publishes them in the public domain

EPSG SRID ― European Petroleum Survey Group Spatial Reference Identifier

ESRI — Environmental Systems Research Institute

FOSS — Free and Open Source Software

GDAL ― Geospatial Data Abstraction Library ― is a library for reading and writing

geospatial data formats

GIS ― Geographical Information System ― is any system that captures, stores,

analyzes, manages, and presents data that is linked to location

GNU — ‗GNU's Not Unix‘, a recursive acronym— a caricature of the wildebeest/gnu is

often used as logo for the GNU project

GPL (GNU GPL) — General Public License

GRASS — Geographic Resources Analysis Support System

OOP ― Object-Oriented Programming

OpenGIS® ― a Registered Trademark of the Open Geospatial Consortium, Inc (OGC).

It is associated with the Standards and documents produced by the OGC

OSGeo ― Open Source Geospatial Foundation ― ―not-for-profit‖ organization whose

mission is to support and promote the collaborative development of open geospatial

technologies and data

Phyton ― high level programming language for general purposes

r.le ― GRASS module which provides many quantitative measures of landscape (2001)

r.li ― another Grass module like r.le, but newer (2008)

RUBY ― a dynamic, reflective, general purpose and object-oriented programming

language

Shapefile ― GIS file-format property of ESRI but today opened and used like a

standard

Source Code — refers to the original text form of a computer program

UML ― Unified Modelling Language ― a standardized general-purpose modelling

language for software engineering. Includes several techniques to create visual models

for a software design

VB 6 ― Visual Basic 6 ― easy event-oriented programming language, previous to the

.NET Framework

XML ― eXtensible Markup Language ― a free and open standard specification that

contains a set of rules for encoding documents electronically

Appendix B. - Materials used to test Land-metrics DIY

Here the characteristics of the materials used for testing the API are explained.

B.1. – Personal computer

Processor: Intel Core2

Memory 1 (RAM): 2 Gb

Memory 2 (Free hard disc): 55 Gb

Operating system: Microsoft Windows XP

B.2. –Laptop

Processor: Intel Core2 – Duo T5550

Memory 1 (RAM): 2 Gb

Memory 2 (Free hard disc):32 Gb

Operating system: Windows XP, Linux Ubuntu 8.10

B.3. – Shapefile with a land use classification

Memory size: 8.81 Mb

Number of polygons: 3675

Number of classes: 22

Spatial Reference (EPSG): 23030

Appendix C. - Land-metrics DIY available metrics list, and smart comparison with

2 vector-based applications:

X Test failure

- Not implemented/Indirect

● Matches

○ Aprox. Matches

 DIY Names Short Names V-Late PA4 DIY

Patch

PatchArea AREA ● ● ●

PatchEdge PERIM ● ● ●

CoreArea CA X ● ●

CoreAreaIndex CAI X - ●

NumCoreAreas NCORE X - ●

PatchFractalDimension PAFRAC ● - ●

PatchPerimeterAreaRatio PARA ● - ●

Class
CategoryArea CA ● ● ●

EdgeDensPerCategory ED - ● ●

LandscapePercentPerCategory PLAND - - ●

LargestPatchIndexPerCategory LPI - - ●

MeanPatchSizePerCategory MPS - ● ●

NumPatchesPerCategory NP ● ● ●

PatchDensPerCategory PD - - ●

TotalEdgesPerCategory TE ● ● ●

CategoryCoreArea TCA X ● ●

CoreAreaPercentOfLandscape CPLAND - - ●

DisjunctCoreAreaDensity DCAD - - ●

NumDisjunctCoreAreas NDCA X - ●

Landscape

LandscapeArea TA ● ● ●

LandscapeEdge TE ● ● ●

LandscapeEdgeDensity ED ● ● ●

LandscapeLargestPatchIndex LPI - - ●

LandscapePatchesDensity PD - - ●

LandscapeShapeIndex LSI - - ●

NumLandscapePatches NP ● ● ●

DisjunctCoreAreaDensity DCAD - - ●

NumberOfDisjunctCoreAreas NDCA - ○ ●

TotalCoreArea TCA X ● ●

ModifiedSimpsonsDiversityIndex MSIDI - - ●

ModifiedSimpsonsEvennessIndex MSIEI - - ●

NumLandscapeCategories PR ● - ●

PatchRichnessDensity PRD - - ●

ShannonsDiversityIndex SDI ● ● ●

ShannonsEvennessIndex SEI ● ● ●

SimpsonsDiversityIndex SIDI - - ●

SimpsonsEvennessIndex SIEI - - ●

References

 Baker, W.L., 2001. The r.le programs: a set of GRASS programs for the

quantitative analysis of landscape structure. Department of Geography.

University of Wyoming.

 Baker, W.L., Cai, Y., 1992. The r.le programs for multiscale analysis of

landscape structure using the GRASS geographical information system.

Landscape Ecology 7, 291–302.

 Brennan, S.P. and Schnell, G.D., 2005. Relationship between bird abundances

and landscape characteristics: the influence of scale. Environmental Monitoring

and Assessment 105, 209–228.

 Calenge, C., Maillard D., Fournier, P. and Fouque, C., 2004. Efficiency of

spreading maize in the gariques to reduce wild boar (Sus scrofa) damage to

Mediterranean vineyards. European Journal of Wildlife Research 50,112–120.

 Cartwright, J. C., 1991. IDRISI-Spatial Analysis at a Modest Price. GIS World,

Vol. 4, No. 9, p. 96-99.

 Coulson, T., Catchpole, E.A., Albon, S.D., Morgan, B.J.T., Pemberton, J.M.,

Clutton-Brock, T.H., Crawley, M.J. and Grenfell, B.T., 2001. Age, sex, density,

winter weather, and population crashes in Soay sheep. Science 292, 1528-1531.

 Garel, M., Cugnasse, J.M., Loison, A., Gaillard, J.M., Vuiton, C. and Maillard,

D., 2005. Monitoring the abundance of mouflon in South France. European

Journal of Wildlife Research 51, 69–76.

 Guillemain, M., Mondain-Monval, J.Y., Weissenbacher, E., Brochet, A.L. and

Olivier, A., 2008. Hunting bag and distance from nearest day-roost in Camargue

ducks. Wildlife Biology 14(3), 379-385.

 Gustafson, E.J., 1998. Quantifying Landscape Spatial Pattern: What Is the State

of the Art? Ecosystems 1, 143–156.

 Hebeisen, C., Fattebert, J., Baubet, E. and Fischer, C., 2008. Estimating wild

boar (Sus scrofa) abundance and density using capture–resights in Canton of

Geneva, Switzerland. European Journal of Wildlife Research 54, 391–401.

 Jiménez-García, D., Martínez-Pérez, J.E. and Peiró, V., 2006. Relationship

between game species and landscape structure in the SE of Spain.Wildlife

Biology in Practise 2(2), 48-62.

 Kaden, V., Hänel, A., Renner, Ch. and Gossger, K., 2005. Oral immunisation of

wild boar against classical swine fever in Baden-Württemberg: development of

the seroprevalences based on the hunting bag. European Journal of Wildlife

Research 51, 101–107.

 Lang, S., Tiede, D., 2003. vLATE Extension für ArcGIS - vektorbasiertes Tool

zur quantitativen Landschaftsstrukturanalyse, ESRI Anwenderkonferenz 2003

Innsbruck. CDROM.

 Le Pichon, C., Gorges, G., Baudry, J., Goreaud, F. and Boët, P., 2009. Spatial

metrics and methods for riverscapes: quantifying variability in riverine fish

habitat patterns. Environmetrics 20, 512–526.

 Lesschen, J.P., Cammeraat, L.H., Kooijman, A.M., Van Wesemael, B., 2008.

Development of spatial heterogeneity in vegetation and soil properties after land

abandonment in a semi-arid ecosystem. Journal of arid environments 72(11),

2082-2092.

 Lin, Y.P., Hong N.M., Wu, P.J., Wu, Ch.F. and Vergurg, P.H., 2007. Impacts of

land use change scenarios on hydrology and land use patterns in the Wu-Tu

watershed in Northern Taiwan. Landscape and Urban Planning 80(1-2), 111-

126.

 Longley, P.A., Goodchild, M.F., Maguire, D.J. and Rhind, D.W., 2005.

Geographic information systems and science, 2
nd

 ed. Wiley, Chichester.

 Matthew F. B., Jess T.C. and Mark. W.J., 2009. Landscape metrics indicate

differences in patterns and dominant controls of ribbon forests in the Rocky

Mountains, USA. Applied Vegetation Science 12 (2), 237-249.

 McGarigal, K. and Marks, B.J., 1995. FRAGSTATS: spatial pattern analysis

program for quantifying landscape structure. Portland (OR): USDA Forest

Service, Pacific Northwest Research Station, General Technical Report PNW-

GTR-351.

 McGarigal, K., Cushman, S.A., Neel, M.C. and Ene, E., 2002. FRAGSTATS:

Spatial Pattern Analysis Program for Categorical Maps. Computer software

program produced by the authors at the University of Massachusetts, Amherst.

Available at the following web site:

www.umass.edu/landeco/research/fragstats/fragstats.html

 McGarigal, K., Tagil, S. and Cushman, S.A., 2009. Surface metrics: an

alternative to patch metrics for the quantification of landscape structure.

Landscape Ecology 24, 433–450.

 Monzón, A. and Bento, P., 2004. An analysis of the hunting pressure on wild

boar (Sus scrofa) in the Trás-Os-Montes Region of Northern Portugal. Galemys,

16, 253-262.

 Nadal, J., 2001. Global sex and age ratios in declining populations of red-legged

partridges (Alectoris rufa) in the Province of Huesca (Spain). Game-and-

Wildlife-Science 18(3-4), 483-494.

 Porta, C., Spano, L.D., 2008. The r.li module of the GRASS geographical

information system. Website:

http://grass.itc.it/grass63/manuals/html63_user/r.li.html

 Rempel, R.S., 2008. Patch analyst 4 - history. Available from:

http://flash.lakeheadu.ca/~rrempel/patch/whats_new.html.

 Rico, M. and Torrente, J. P., 2000. Caza y rarificación del lobo en España:

Investigación histórica y conclusiones biológicas. Galemys 12, 163-179.

 Schropfer, R., Bodenstein, C. and Seebass, C., 2000. A predator-prey-correlation

between the European polecat Mustela putorius L., 1758 and the wild rabbit

Oryctolagus cuniculus L., 1758. Zeitschrift Fur Jagdwissenschaft 46(1), 1-13.

 Hoechstetter, S. and Walz, U., 2009. 3D-metrics in Landscape Ecology –

Methods and examples of use. European IALE Conference 2009, Salzburg

(Austria).

 Simoniello, T., Carone, M.T., Coppola, R., D‘Emilio, M., Grippa, A., Landfredi,

M., Liberti, M. and Macchiato, M., 2006. Preliminary study to monitor land

degradation phenomena though landscape metrics. Proceedings of the second

Workshop of the EARSeL SIG on Land use and Land cover. Center for remote

sensing of Land surfaces. Bonn.

 Steiniger, S. and Hay, G. J., 2009. Free and open source geographic information

tools for Landscape Ecology. Ecological Informatics 4 (4), 183-195.

 Tsachalidis, E.P. and Hadjisterkotis, E., 2008. Wild boar hunting and

socioeconomic trends in Northern Greece, 1993–2002. European Journal of

Wildlife Research 54, 643–649.

 Turner, M.G., Gardner, R.H., O‘Neill, R.V., 2001. Landscape Ecology in theory

and practice: pattern and processes. Springer, New-York.

 Uuemaa, E., Antrop, M., Roosaare, J., Marja, R. and ¨Mander, U., 2009.

Landscape Metrics and Indices: An Overview of Their Use in Landscape

Research. Living Rev. Landscape Research 3 (1). [Online Article]: cited [2-10-

2009]. http://www.livingreviews.org/lrlr-2009-1

 Vargas, J.M., Guerrero, J.C., Farfán, M.A., Barbosa, A.M. and Real, R., 2006.

Land use and environmental factors affecting red-legged partridge (Alectoris

http://www.umass.edu/landeco/research/fragstats/fragstats.html
http://grass.itc.it/grass63/manuals/html63_user/r.li.html
http://www.livingreviews.org/lrlr-2009-1

rufa) hunting yields in southern Spain. European Journal of Wildlife Research

52, 188–195.

 Visconti, P. and Elkin, Ch., 2009. Using connectivity metrics in conservation

planning – when does habitat quality matter? Diversity and Distributions 15,

602–612.

 Visconti, P. and Elkin, Ch., 2009. Using connectivity metrics in conservation

planning – when does habitat quality matter? Diversity and Distributions 15,

602–612.

 Wade, T.G., Wickham, J.D., Nash, M.S., Neale, A.C., Riitters, K.H. and Jones,

K.B., 2003. A Comparison of Vector and Raster GIS Methods for Calculating

Landscape Metrics Used in Environmental Assessments. Photogrammetric

Engineering & Remote Sensing, 69(12),1399-1405.

 Wagner, H.H. and Fortin, M.J., 2005. Spatial analysis of landscapes: concepts

and statistics. Ecology 86(8), 1975-1987.

 Wang, W.C., Yang, .J.L., Lin, Y.Y. and Taichung, T., 2008. Proceedings of the

academic track of the 2008 Free and Open Source Software for Geospatial

(FOSS4G) Conference, incorporating the GISSA 2008 Conference 29. Cape

Town, South Africa. ISBN 978-0-620-42117-1

 Wu, J., 2006. Cross-disciplinarity, Landscape Ecology, and sustainability

science. Landscape Ecology 21,1-4.

