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Abstract: 

 

Web-based distributed modelling architectures are gaining increasing recognition as 

potentially useful tools to build holistic environmental models, combining individual 

components in complex workflows. However, existing web-based modelling 

frameworks currently offer no support for managing uncertainty. On the other hand, 

the rich array of modelling frameworks and simulation tools which support 

uncertainty propagation in complex and chained models typically lack the benefits of 

web based solutions such as ready publication, discoverability and easy access. In this 

article we describe the developments within the UncertWeb project which are 

designed to provide uncertainty support in the context of the proposed ‘Model Web’. 

We give an overview of uncertainty in modelling, review uncertainty management in 

existing modelling frameworks and consider the semantic and interoperability issues 

raised by integrated modelling. We describe the scope and architecture required to 

support uncertainty management as developed in UncertWeb. This includes tools 

which support elicitation, aggregation/disaggregation, visualisation and 

uncertainty/sensitivity analysis. We conclude by highlighting areas that require further 

research and development in UncertWeb, such as model calibration and inference 

within complex environmental models.  

 

 

 

  



1 Introduction  
 

The “Model Web” presents a vision of a future where models are exposed as Web 

Services in a flexible distributed architecture (Geller and Turner, 2007, Nativi et al., 

2011). The principle is that models are exposed on the Web and can be discovered, 

combined into complex workflows and executed over a distributed architecture. Such 

a system provides tremendous opportunities to enhance scientific modelling by: 

 improving the integration of different models to address practical questions; 

 increasing the reproducibility and transparency of research by providing clear 

and repeatable provenance information for modelling outputs; 

 allowing more flexible deployment, for example in cloud architectures; 

 facilitating the discovery and reuse of model components and code. 

 

The Model Web is in all important respects a developing realisation of the ‘Web 

Service Modeling Framework’ conceptualised by Fensel and Bussler (2002) and the 

four key elements they identify as essential (ontologies, goal repositories, web 

services descriptions and mediators) map very closely to the tools described later in 

this article. 

 

A practical implementation of the Model Web concept requires interoperability of 

models and information models in an open system setting. This raises several 

important challenges. The first challenge is semantic; for multi-disciplinary models to 

successfully interact in robust systems modelling, there must be unambiguous 

definitions of all model inputs and outputs, and the scales on which these are 

measured, since different science domains may use different terms for the same 

phenomenon, or the same terms for different phenomena. Villa et al. (2009) describe 

the consequent need for some form of ‘declarative modelling’, and review recent 

responses to this problem in the field of environmental modelling. Such vital semantic 

mapping issues have been addressed in the context of distributed geospatial modelling 

by the SWING project
1
 and its follow-up, ENVISION

2
, which is currently developing 

semantic annotation, harvesting and ontology management tools to support the 

adaptive chaining required by the Model Web (Janowicz et al., 2010).  

 

In this paper we focus on another issue that faces all modelling frameworks including 

the Model Web; that of uncertainty management in an era of increasing access to both 

data and models. The data are typically Earth observations taken from both satellite 

and in situ systems, while the models range in complexity from empirical statistical 

models, through box or lumped conceptual models to fully distributed spatio-temporal 

simulators such as global climate models. Whatever their complexity, these models 

have several common features: they all read inputs (for convenience, we consider 

model parameters here also as model input), carry out computations or other 

manipulation on those inputs, and produce outputs. Model inputs may be observed or 

measured values, or they may be outputs from other models. In either case, model 

inputs are subject to errors, and these errors will contribute to the uncertainty of the 

model output. Quantifying this error or uncertainty is called error propagation 

(Heuvelink, 1998), as the error in model input is propagated into the error in model 

output. Additional uncertainty will be contributed by the modelling process itself, and 

                                                 
1
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2
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we refer to this henceforth as model structure uncertainty (Beck, 2005, Refsgaard et 

al. 2006a). The components of uncertainty in model results are more fully addressed 

in later sections – at this stage in the discussion, the important issues are their 

existence and impact. In the following discussion, we will use the word ‘sensor’ in a 

broad sense, to indicate any agent which is capable of recording an observation of the 

real world. 

 

Model outputs and observational data are increasingly being used in policy and 

decision making, where the use of incomplete information is a risky undertaking, 

unless some attempt is made to account for and quantify the impacts of gaps in 

knowledge (Evans, 2008). Some of the most pressing issues facing society, such as 

climate change (Stainforth et al., 2006) and its economic impacts (Roughgarden and 

Schneider, 1999), sustainable development (Levy et al., 2000, DeLara and Marinet, 

2009) and future energy supplies (Jebaraj and Iniyan, 2006) are subject to significant 

uncertainties which seriously affect the development of strategy, as well as causing 

serious scientific debate as to the value and purpose of modelling (e.g., Dessai et al, 

2009). In general where there is a decision with a specific cost on taking some 

remedial action and a loss associated with taking no action (Berger, 1985), and where 

the costs and losses have significant non-linear dependency on model outcomes, often 

with critical thresholds, knowing the uncertainty in the model predictions can change 

the decision taken. .  

 

There is an increasing recognition of the importance of quantifying uncertainty in 

modelling (e.g. Geza et al, 2009; Allen et al, 2007; Clancy et al, 2010; Feyen and 

Caers, 2006; Cheng and Sandu, 2009). However, the treatment of uncertainty within 

modelling frameworks such as the proposed Model Web is not straightforward: 

firstly, many frameworks which can currently handle components published as 

services do not have strong or consistent support for propagating or analysing 

uncertainties, and secondly, the distributed environment introduces a number of new 

challenges. In service, grid- and cloud-computing based modelling frameworks, 

model components may be discovered and composed in flexible and potentially 

complex workflows. However, if this is done without careful description of 

uncertainty and attention to the quality of (intermediate) model outputs, then the final 

model output may be too inaccurate for the intended use; and, more importantly, the 

user may be unaware of this fact. It is therefore essential that the reliability of 

intermediate and final results is quantified and communicated to the end user. 

Extending the Model Web to handle and convey uncertainty information in this way 

is a great challenge. 

 

Complex environmental and geospatial models have specific issues when it comes to 

uncertainty handling. These include: 

1. large amounts of observational and other data do not currently have reliable 

uncertainty information associated with them; 

2. most existing models used across the geosciences and beyond do not have 

reliable information about their model uncertainties, or model structure 

uncertainty, available; 

3. many of the phenomena of interest are spatial, temporal or spatio-temporal in 

nature, are measured and expressed at various spatial and temporal scales and 

often have strong correlations imposed by the physics and dynamics of the 

natural systems, all of which cause difficulties when evaluating uncertainty; 



4. representing spatially and temporally distributed systems typically requires 

large numbers of variables, and capturing the uncertainties and correlations in 

these variables is computationally demanding; 

5. most models have non-linear responses to their inputs, and thus can have 

complex probability distributions over their outputs, even for simple 

parametric input probability distributions; 

6. analytic results will be the exception rather than the rule, and thus Monte 

Carlo methods, with their associated computational expense, will be the 

default uncertainty propagation mechanism, implying limitation of the 

proposed solution to computationally cheap models or situations with large 

computational resources.  

 

The above issues are challenging, but must be addressed in order to make progress 

and ensure that the Model Web, or indeed any modelling framework, is of practical 

use. Additional tools are needed to support the practical usage of uncertainty 

management, for example to address the current lack of uncertainty information, to 

reduce the computational demands, to manage the issue of changes in spatial and 

temporal scale and to communicate the uncertain outputs of the modelling workflows. 

 

In this article we describe a coherent framework for extending the Model Web 

concept of integrated modelling while also taking into account uncertainties. The 

framework described will be realised by the UncertWeb project 

(http://uncertweb.org).  

 

The paper is organised as follows. Section 2 introduces the existing approaches to 

managing uncertainty in modelling, setting the context for the later work. Section 3 

describes the practical issues that arise in quantifying and analysing the propagation 

of uncertainty. Section 4 reviews existing modelling frameworks with a focus on their 

ability to support uncertainty management and to interoperate with the Model Web. 

The solutions proposed within the UncertWeb project are described in Section 5, 

including the key tools that enable users to exploit the “uncertainty enabled Model 

Web” effectively. The article concludes with a discussion of the likely impact of the 

“uncertainty enabled Model Web” on future scientific activities and highlights the 

areas that require further research. 

2 Uncertainty in modelling 
 

“All models are wrong; some are useful.” (Box and Draper, 1987). This statement 

originally referred to statistical models but is equally true of physical-deterministic 

models of complex environmental systems. 

 

Uncertainty is a challenging notion for scientists who have often been trained 

following a mechanistic, deterministic modelling paradigm. Yet all models are 

abstractions and simplifications of the complex reality they aim to represent. In this 

work we do not discuss the various types of, and basis for, uncertainty identified in 

more philosophical research (e.g., Smets, 1991; Dawid, 2004; Sigel et al., 2010), but 

rather focus on an operational / practical approach to uncertainty. Almost all 

uncertainty we seek to address within this work might be characterised as epistemic 

uncertainty arising from a lack of knowledge, rather than intrinsic randomness, or lack 

of precision in semantics. 



2.1 Origins of uncertainty 
 

While several mathematical and computational frameworks exist for working under 

uncertainty or incomplete knowledge, we argue that, practically, a subjective 

Bayesian approach (Jaynes, 2003) is the most natural choice when working with 

models, observations and their relation to reality (see also Dawid (2004) for an 

interesting discussion on this issue). Management of uncertainty is essential when 

working with models of real systems (Brown, 2010). The main uncertainties arise 

from uncertainties on model inputs (which are often either direct observations from 

sensors or data derived from observations using other models), and from model 

structure uncertainty. Uncertainties on observations or derived data can be identified 

with: 

 measurement uncertainty – the intrinsic uncertainty in a given measurement, 

due to noise in the electronics of the sensor system (Desenfant and Priel, 2006); 

 representativity uncertainty – additional uncertainty arising from the difference 

between the spatial and temporal sampling footprint of the sensor and the 

defined spatial and temporal representation of reality (Frehlich, 2011); 

 sensor model uncertainty – incomplete knowledge of the sensor, or of the 

forward observation model which maps the measured quantity to the target 

variable (Agarwal, 1998); 

 transmission uncertainty – possible artefacts and processing errors introduced 

by the computer systems and electronics that carry and process the sensor 

observations (Bullen et al, 2003). 

 

This list is not exhaustive and rarely are all sources of uncertainty known. A more 

complete discussion of observational errors can be found in Hill and Tiedeman (2007; 

Chapter 3). Often, information about the uncertainty of an observation can only be 

determined a posteriori, using validation campaigns. In such a setting the overall 

uncertainty with respect to reality is assessed using carefully quality controlled 

‘reference observations’ which are often assumed to have negligible error, or using 

techniques such as triple collocation (Stoffelen, 1998). Using validation data it is 

possible to estimate the overall uncertainty. If some data are retained for testing only, 

the uncertainty judgements made on the observations can also be validated (Gneiting 

et al., 2007). 

 

Model uncertainty (Allen et al., 2002; Brown and Heuvelink, 2005; Lindenschmidt et 

al., 2007; Refsgaard et al., 2007; Goldstein and Rougier, 2009; Park et al., 2010; 

Smith and Marshall, 2010) is even more complex and can arise from a range of causes 

including: 

 mechanism / structural uncertainty – it is impossible to include all mechanisms 

and physical, chemical, biological or human processes that act on reality in the 

model – they must be simplified and prioritised (Refsgaard et al., 2006a); 

 representation uncertainty – for spatial, temporal and spatio-temporal models it 

is necessary to map the space, time and space-time fields of the real system to 

the model variables, typically by discretisation or projection onto some basis 

such as a grid, set of elements or harmonic expansion. This introduces 

uncertainty due to the finite dimensional nature of the discrete representation 

(Frehlich, 2011); 



 parameter uncertainty – many inputs to a model cannot be directly observed, 

and we tend to think about these as being parameters in the models, whose 

values are often empirically determined but essentially unknown (Aster et al. 

2005; Tarantola, 2005; Gallagher and Doherty, 2007); 

 numerical uncertainty – non-trivial models will require some sort of solver, 

often integrating differential or difference equations forward in time, and these 

together with the finite precision representation on digital computers will 

introduce additional uncertainty (Ataie-Ashtiani and Hosseini, 2005; Clark and 

Kavetski, 2010). 

 

As with observational uncertainty, this list is not exhaustive, and is missing a 

description of the now-notorious ‘unknown unknowns’ (Meyers, 1969, Jaher, 1970, 

Kerwin, 1993). Such issues are very challenging to deal with in a quantitative 

framework, but could be important in some complex models, such as Earth System 

Models, where human activity for example is very challenging to model. 

Specification of model structure uncertainty is an open and challenging research 

problem, and many approaches are being pursued, from the more philosophical 

reification approach (Goldstein and Rougier, 2009), through approaches based on 

statistical modelling and inference (e.g. Kuczera et al, 2006) to generative approaches 

which systematically try to simplify more complex models (Cullen and Frey, 1999). 

 

 
Figure 1. A schematic representation of the relation between people, reality, models and 

observations. 

 

As shown in Figure 1, a unified framework is needed to integrate observations, 

models and reality, with the users (people) constructing both the simulators for the 

systems (reality), and the sensors that observe the system. The users also play a 

critical role in the above scheme by selecting and channelling appropriate 

observations to simulators. As discussed above, the processes of modelling and 

observation are both subject to uncertainties. Typically the observations will be used 

in a process of calibration to improve the simulators, so that those simulators produce 

a better fit to the observations of reality. In this process, it is important to consider the 

representativity of those observations, and to use sensible data splitting techniques for 

model validation, in order to identify and avoid over-fitting. However, despite 

calibration and careful formulation, all simulators of real environmental systems 

retain non-trivial uncertainties, as discussed above. The aims of modelling can be 

manifold, from improving understanding of the system to more practical questions of 

prediction or forecasting. When models (or simulators) are used to inform decisions it 

is critical that any uncertainties in the model predictions on which the decisions are 

based are taken into account, because these decisions will affect reality and this in 

turn will affect people. 

 

Probabilistic uncertainty may be measured or estimated and represented in a number 

of different ways (O’Hagan, 2011), depending on the nature of the phenomenon and 

the instrumentation available. UncertWeb attempts to recognise a range of 

descriptions of probabilistic uncertainty, and to support their practical use. The most 

complete description of a random variable is the probability density function (e.g. 

Gelman et al, 2003). In practice, observed patterns are more commonly fitted to a 

known class of probability distribution functions (e.g., Normal, Poisson) or 



summarised using statistics (e.g., moments such as mean, variance and skewness). In 

other contexts, single or multiple realisations of the variable may be of most value, or 

may be all that are available. This is further discussed in Section 5.1 in the context of 

the UncertWeb encoding for uncertainty information, UncertML.   

 

3 Practical uncertainty management in modelling 
frameworks 

 

To quantify a model’s output uncertainties one can either modify the model to allow it 

to propagate uncertainty itself, or wrap it in an environment that manages uncertainty. 

Modifying the model, i.e., the computer code that does the numerical calculations, 

requires that the model be made to understand input uncertainty characterizations, 

carry out computations taking care of these uncertainties, add uncertainties due to 

parameter estimation, and write output uncertainty characterization in addition to the 

model outputs. Although this approach might be computationally the most efficient, 

especially when all or part of the uncertainty can be propagated analytically, it also 

raises a number of problems: (i) it requires access to the source code and permission 

to modify it; (ii) it requires deep knowledge of the model source code, and testing of 

the modifications, (iii) the modified model may no longer be identified under the 

same name as the original one. 

 

A more practical approach is to keep the model as it is, and wrap it with an 

application (environment) that takes care of the uncertainty characterizations. The 

approach used here a simple Monte Carlo simulation, as follows:  

1. an application wrapped around the model reads the uncertainty distribution on 

an input (and/or model parameter); 

2. if this distribution is not characterized as a sample, the application draws a 

sample of size n from this distribution; 

3. The application runs the model n times with each of the sample elements as 

model input, and collects the n model outputs, or realisations, that characterize 

the output probability distribution;  

4. The application can then convert the model output sample to summary 

statistics such as the mean, variance, or quantiles to approximate confidence 

intervals as required for subsequent processing.  

 

The issue of model error, or structure uncertainty, is less easily handled with such a 

wrapper framework, since this really only allows one to propagate uncertainty on 

inputs such as model parameters and initial conditions. In theory it could be possible 

to include model structure uncertainty in the wrapper framework as an additive or 

multiplicative noise component, which could be simulated and added to the 

realisations generated at step 3. As noted by a reviewer, the UncertWeb framework, 

although not specifically designed with multi-model ensembles in mind, could 

facilitate the creation of such ensembles if a range of competing models for a given 

system were all deployed within the same framework. Such multi-model ensembles 

are often used to assess model structural uncertainty, and this could be an additional 

benefit of exposing models on the web in the manner suggested in this paper. 

 



The Model Web blueprint requires that such a wrapper application, which we could 

call an ‘uncertainty-enabler’, needs to be implemented as an interoperable Web 

Service using open standards. The benefits of this are huge: (i) data sources can 

directly be retrieved from the data source provider, (ii) data sources, models, and the 

model wrapper can all run on different platforms, under different operating systems, 

and may partially run on computer clusters, in the cloud or on mainframes, (iii) Monte 

Carlo samples can be run in parallel, if the available computing infrastructure allows 

this, and (iv) data or model resources can be exchanged, or re-implemented on 

different systems without significant change to the overall setup. 

 

Setting up such a system as a Web Service of course requires that a Web client is 

available to run it. This client can be an interactive tool such as a workflow modeller 

that allows orchestration and execution of the workflow and that runs in a Web 

browser, or it can be another model wrapper that takes the currently modelled 

workflow as a component (i.e, as a “model”) in a larger model composition exercise, 

to realise a further step of model chaining and integration. 

4 Existing frameworks for model-coupling 
 

The Model Web is just one of a number of model-coupling approaches of varying 

maturity. The differences between a number of these approaches have been 

summarised in Jagers (2010), who notes that conflicting priorities (e.g., performance, 

ease of use and generality) have, paradoxically, led to a surprisingly wide variety of 

alternative solutions to the interoperation challenge. It is particularly useful to note 

that when choosing a framework for existing models, there is often a trade-off in 

convenience - for example, the effort required to standardise the interface of legacy 

code can be substantial, but the resulting usability of the model can be greatly 

increased, since it may then be easily wrapped and combined with other models. 

  

Elements in the orchestration and composition of environmental models can be 

broadly classified into: 

 standard  languages and interfaces; 

 workflow and orchestration tools; 

 frameworks and framework generators. 

The following paragraphs set the scene by describing some commonly-used examples 

which illustrate the state of the art. It will be seen that a number of these do not fit 

neatly into the three categories above, and some integrated systems address multiple 

purposes. The interaction between coupling approaches is very important; since the 

ultimate aim is often to ensure re-use of models, deciding on an interface or language 

can be critical for the model developer. For environmental models, spatial data 

models in particular may impose restrictions on the combination of models and the 

mapping of outputs to inputs. These ‘interoperability’ characteristics are further 

investigated in Table 1. We also consider technologies which handle uncertainty in 

integrated models. These include packages for model calibration, parameter 

estimation and sensitivity / uncertainty analysis, and are listed, with application 

examples, in Table 2.   

 



The languages / interfaces category includes BPEL
3
 (Business Process Execution 

Language), a widely-used programming language focussed on message transmission 

between systems via Web Services, mediated using Web Services Description 

Language (WSDL) documents. BPEL includes validation and control flow elements 

which can be interpreted by a variety of engines to execute a process flow. Other 

initiatives such as OpenMI
4
 concentrate less on the framework within which modules 

are arranged, and more on standardising the interface which each model presents to 

the world, so that the requirements and limitations of each are clear. Recent 

adaptations to the OpenMI standard display particular attention to these common 

issues of interoperability: for example, allowing more abstract inputs and outputs, and 

permitting inputs which have no specific time frame, thus opening up the tools for use 

with non-time stepping models. The Common Component Architecture (CCA) 
5
 is 

another component standard which appeals to scientific modellers largely because of 

its support for multi-dimensional data arrays and parallelisation. In the data mining 

community, the XML-based PMML (Predictive Model Markup Language) is 

commonly used to summarise and exchange complete summaries of models complete 

with defined inputs and outputs. CSIRO’s ICMS
6
 (Interactive Component Modelling 

system) is considered under this ‘languages’ heading, since its primary focus is on 

allowing the development of executable model components in a system-specific, C-

like language called MickL.  

 

Workflow tools such as Taverna
7
, Kepler

8
, Vis Trails

9
 and Trident

10
 provide user-

friendly GUIs within which modular processing or data entities can be arranged, 

inputs mapped to outputs and control / break conditions defined. The resulting 

workflow chains can be stored, published
11

, shared and exposed as encapsulated 

models, while the component models themselves must simply expose a WSDL 

document describing each process, and its inputs and outputs. Thus these tools can be 

used as engines for interacting with BPEL workflows, as well as, for example, 

compiled C code or R scripts. Another, more specific, orchestration tool, the Open 

Modelling Engine (Rizzoli et al., 1998) can be used to schedule MickL components 

like those mentioned in the paragraph above.  

 

Finally, there are also a host of more or less discipline-specific frameworks for 

combining models and controlling their execution, such as Delta Shell
12

, FRAMES
13

 

(Framework for Risk Analysis of Multi-media Environmental Systems), SME (Spatial 

Modelling Environment)
14

, Tarsier
15

, ICMS (the Integrated Component Modelling 

System)
16

, Fluid Earth
17

, TIME
18

 (The Invisible Modelling Environment), MCT 
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9
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13
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14
 http://www.uvm.edu/giee/IDEAS/sme/docs/SME_guide.html  last accessed 07/05/2011 

15
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16
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(Model Coupling Toolkit), ESMF
19

 (Earth System Modelling Framework), OASIS
20

 

(Ocean Atmosphere Sea Ice Soil), CESM
21

 (Community Earth System Model) and O-

PALM
22

. Many of these frameworks include standard modules for applications such 

as hydrological or climate modelling. A recent development is the generic Bespoke 

Framework Generator
23

 (Armstrong et al., 2009) which generates wrappers and 

control code wrappers for model sequences based on standardised model metadata 

which is collected in XML schemata. The BFG has been used to generate an updated 

version of the GENIE
24

 framework for Earth System Modelling, and is being used for 

the UK Met Office’s FLUME
25

 (Flexible Unified Model Environment). 

 

4.1 Interoperability in modelling frameworks 
 

Interoperability between the approaches described above is variable, and some aspects 

(often strongly influenced by the discipline from which each approach arose) are 

summarised briefly in Table 1. We give particular attention to the spatial data models 

employed by each approach, since these are of particular importance for many 

environmental models and datasets. To quote Mattot et al. (2009) ‘... the irony in 

design of both model evaluation tools and integrated modeling systems is that 

everyone wants to define the ‘standard’ and be the integrative framework’. However, 

there have been considerable moves within the modelling community towards 

interoperability and agreement on common interfaces at least, and Table 1 illustrates 

how this has expanded the usability of coupling technologies.  

 

In terms of model code, almost all frameworks described here support the use of 

compiled C, but other languages such as Java and Fortran are less universally 

supported and often must be wrapped before use. Jagers (2010) presents an extremely 

useful summary of the capabilities of some of these technologies, particularly with 

regard to their ‘code invasiveness’ (i.e., the requirements that each imposes for 

rewriting legacy code) and their capacity to support high-performance computing. 

Rahman et al., (2005) describe a typical choice between rewriting and wrapping, 

where the decision can depend largely on the complexity and current performance of 

algorithm code. In their example, some elements of the model were rewritten in C#, 

while others were simply recompiled and wrapped as Windows DLLs. The generation 

of interoperable, standardised wrappers is a huge design issue for the ModelWeb, 

where the interfaces to models must be Web Service interfaces. 

 

The welcome move towards standardised model interfaces again raises a paradox: the 

more widely applicable the interfaces become, allowing new models to easily plug 

into frameworks, the more abstract the descriptions of model inputs and outputs 

become, and the more the semantics specific to the discipline from which the model 

originates are hidden from the outside world. Thus a model with an OpenMI-
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conformant interface may accept an ‘object’ which might be a multi-dimensional 

raster grid, a set of point observations or a time series. The nature and appropriateness 

of the object might be determined only when the data is parsed, so that the 

responsibility for finding and linking suitable inputs and outputs falls on the user. 



Table 1: A variety of coupling technologies of varying granularity, with information on 

the specificity of their spatial data models, and their capacity for interoperating with other 

toolkits and technologies. 

 

Approach Language/s and service 

interfaces 

Spatial data model Interoperates with... 

Kepler Java, PMML, WSDL, BPEL, 

wrapped C/Fortran 

None: responsibility for 

assessing the appropriateness 

of inputs devolves to the 

model. 

R and Matlab, ImageJ, 

GRASS
26

 and GDAL
27

 for GIS 

Taverna Java, WSDL, REST, Beanshell, 

Rshell, Soaplab 

R 

Trident C#, Java .NET, WSDL, BPEL  

Vis Trails Python, WSDL  Quantum GIS 

SME STELLA
28

  or SMML
29

 

(translated to C++ for 

execution) 

Frames of Points which may 

also represent grids or 

network graphs 

Python and CCA (through a 

Java-based portal) 

ESMF Fortran, C++ Raster grids CCA 

MCT Fortran Raster grids CCA 

Delta Shell OpenMI As below – internally, multi-

dimensional results can be 

stored as NetCDF. Spatial 

vector data model is closely 

based on OGC features. 

GDAL, Google Earth (through 

KML export) 

OpenMI C# or Java interfaces, wrapped 

C/Fortran 

No explicit description: an 

input/output ‘Object’ may 

represent raster or vector data 

Fluid Earth (see below) and 

Delta Shell (see above) 

FRAMES Native C interface with 

bindings for Java, .NET, 

Fortran, VB6 and Python 

None: responsibility for 

assessing the appropriateness 

of inputs devolves to the 

model 

PEST (as a tightly-coupled 

module) 

Fluid Earth OpenMI-wrapped models As above OpenMI (as a coupling 

mechanism) 

TIME .NET, wrapped C/Fortran Raster grids, vector data, 

networks and time series. 

 

Tarsier C++  Raster grids, networks, points 

and time series 
 

 

 

If information on the nature of model inputs is also published as standardised 

metadata or as an optional part of the model interface, the task of orchestration is far 

easier, and may even be automated. This is where the issue of ontology and semantics 

becomes important to supplement the abstraction enforced by technical 

interoperability, and to help in achieving context independence without losing access 

to vital domain knowledge. Rahman et al. (2004) note the importance of metadata 

which describes the ‘properties and capabilities of ..[executable].. components’, and 

specifically chose .NET introspection as the mechanism by which the TIME 
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framework would derive this information at runtime – a successful approach which 

has supported the development of a number of hydrological decision support systems 

(e.g., Argent et al., 2009), but one which places a language restriction on the 

developer. The ICMS, by contrast, derives this metadata at the point of model 

compilation, and stores it in a system-specific form. The XML metadata supplied to 

the BFG are used in a similar way, and are currently generated by hand, though a GUI 

to help with this task is planned. In all of these approaches, of course, reflection by 

the user as to the nature of their model and its requirements is necessary and indeed 

important; it is simply required at a different stage of the process and the information 

is encoded in a different way. The FRAMES environment tackles the semantic 

challenge by imposing a ‘design by contract’ approach where users subscribe to (or 

create) a domain ontology containing definitions of what models may produce or 

consume. Models conformant to the supplied dictionary may then be linked through a 

‘contract’. A proposal to standardise uncertainty information via similar dictionaries 

is described in Section 5.1. 

 

Of particular interest in the Model Web context are the growing efforts to adapt the 

above model-coupling tools to comply with or use the OGC Web Processing Service 

(WPS) standard. (e.g., Guru et al., 2009, Jones et al., 2010, Pratt et al., 2010), which 

raise many pertinent questions about the abstract nature of OGC service 

specifications. Essentially, the flexibility of a WPS in accepting or producing any 

data, in more or less any format, can be problematic when a user who is querying the 

capabilities and interrogating the processes of that WPS lacks the semantic tools to 

understand the nature of the inputs and outputs. In these instances, profiling or 

restriction of the WPS so that it more clearly describes its limitations is extremely 

helpful in identifying whether that WPS really is a valid candidate for chaining with 

another. This restriction is most usually applied through reference to XML application 

schemata, and is fully anticipated in the WPS specification, which states “WPS can be 

thought of as an abstract model of a Web Service, for which profiles need to be 

developed to support use, and standardized to support interoperability”.  While this 

requirement is logical, it weakens the case for OGC services as ‘interoperable’ by 

imposing a requirement on users to develop specific clients to consume or chain these 

profiled WPS. If a model is to be usable within the Model Web, its interface must 

either conform to an agreed profile, or must be discovered and consumed by a higher-

level ‘broker’ which has the capacity to translate the published model metadata into a 

usable format. A proposed solution (the CaaS) is described in Section 5.2. 

 

Naturally, there is some metadata about models which can never be used in a fully 

automatic way. For example, information on the lineage and previous uses of the 

model, or on the circumstances and contexts to which it is best suited, may in the 

future be encoded in some sort of trust metric, but currently rely on a textual 

description and the judgement of the user. However, much of the necessary 

information on what a model will accept (even complex details such as required data 

granularity and valid geographical range) can be published using schemata and 

dictionaries, providing that these are widely accepted and available. 

 

4.2 Exchanging uncertainty information between models 
 



Interface abstraction and the profiling challenge are especially relevant when a model 

workflow is used to handle and propagate uncertainty. As described in Section 2, 

there are diverse sources of uncertainty which, even within a probabilistic framework, 

can be measured and recorded using different numerical summaries and metrics. 

When working in a multi-disciplinary context, the ‘traditional’ representations of 

uncertainty may also vary: for example, the Root-Mean-Squared Error values 

commonly attached to digital elevation models involve an implicit assumption that the 

error in elevation is symmetric (typically Normal) and identically distributed in space, 

while 95% confidence limits given by a sensor manufacturer for a measuring 

instrument may give no indication of how the expected error is distributed within that 

range, or whether it is biased or bounded. Some statistical summaries can be easily 

combined - for example, different probability density functions may be combined 

hierarchically in models to generate conditional probability density functions, and this 

approach underpins Bayesian analysis. Often, however, one representation of 

uncertainty (e.g., a sample) will require explicit transformation in order to be 

combined with another (e.g., a parameterised probability distribution) in direct 

computation.  

 

A simple example of such a need for transformation in the Model Web would be as 

follows: A climate change scenario model is used to generate predictions of 

temperature for pixels in a geographical area. Each pixel is assigned an expected 

temperature with a statistical range in the form of a parameterised probability 

distribution function – this is assumed to be Normal, and so the outputs of the climate 

model take the form of a mean and variance for each pixel. These two output maps 

are to be fed to a second model, along with other maps to run 1000 agent-based 

simulations of animal dispersal. However, the second model requires a static 

temperature map as the base for each run, so a plausible realisation of temperature, 

with realistic spatial autocorrelation, must be generated from the statistical summary 

values, through some intermediate transformation service. Some of the aspects of the 

first model’s outputs are implicitly described within the data (for example, 

geographical range, projection and resolution are easily extracted from a GML 

document or netCDF file). If the second model clearly advertises geographical / 

resolution requirements, this allows a user to assess or even automatically identify the 

need for resampling, aggregation or reprojection. Other attributes of the outputs, (such 

as lineage information on the climate model or the nature of the estimated 

uncertainty), require similar standard encodings. In particular, it must be clear that the 

type of uncertainty produced by the first model (a probability distribution function) is 

not the same as that required by the second model (a set of single-valued realisations 

for each pixel). 

 

It can be seen from the above example that the requirement for models to fully 

describe themselves is of even more importance when it comes to handling 

uncertainty and propagating it through a workflow. While many models do not 

inherently handle uncertainty information on inputs, they can still be ‘uncertainty-

enabled’ within a framework by repeated calls which effectively allow a Monte Carlo 

simulation or stochastic sensitivity analysis as described in Section 3.  

 

 



4.3 ‘Uncertainty-enabled’ models – current examples 
 

Many simulation software packages exist which may be used to ‘uncertainty-enable’ 

existing models. Mattot et al (2009) present a very useful review of 65 different tools 

for simulation, calibration, optimisation and model evaluation, and a number of the 

most widely used or pertinent, with example applications, are listed in Table 2. A 

further list of freely available software tools for the development of uncertainty 

management applications is given in Table 3. The most successful and widely-used 

‘uncertainty-enablers’ are model-independent, and sometime platform-independent; 

this flexibility is generally achieved by a reliance on ASCII-formatted inputs to and 

outputs from the wrapped models. This tradeoff between flexibility and restriction is 

an equally important theme for the Model Web, as discussed in section 4.1. The 

process of ‘uncertainty-enabling’ can demand significant effort on the part of the user 

(for example, through the generation of template and instruction files to link and feed 

models, or through the conversion of binary model outputs to ASCII formats) but in 

other cases, simulation tools are made easily accessible as modules within existing 

frameworks. If consideration of uncertainty and validation of linked models is to 

become routine, especially among non-expert users, this access to powerful 

simulation tools which can wrap and ‘uncertainty-enable’ models must be 

strengthened and improved. Recent moves in this direction include the integration of 

the PEST parameter estimation toolkit
30

 into FRAMES (Castleton and Meyer, 2009). 

This is an important issue for the Model Web, and a clear opportunity to build on the 

interest and experience within the wider community of integrated modellers. 

Visualisation of the spatio-temporal uncertainty of outputs (more fully discussed in 

Section 5.3.4) is available to varying extents in these solutions, and is also extremely 

important in the presentation and use of propagated uncertainties.  

 

 

In many of the above examples, models designed to accept single input values at each 

observation point are wrapped and run multiple times with stochastically-generated 

input values derived from the uncertainty specification on these inputs. In other 

words, though multiple outputs from these models may be summarised to produce 

uncertainty information such as probability distributions, they do not explicitly accept 

such uncertainty information on the inputs. Other models, in contrast, may accept 

statistical summaries such as standard deviations, ranges or quantiles and use this 

uncertainty information internally in their calculations. In other words, provided that 

they can understand the form in which the input uncertainty is encoded, these models 

are already ‘uncertainty-enabled’. One such example is the INTAMAP interpolation 

Web Service
31

, which can consume point observations whose uncertainty is 

represented as parameter values for well-known distributions, and produce 

interpolated maps of mean and variance using an algorithm most suited to the nature 

of the input uncertainty (Pebesma et al., 2011). In an alternative approach which 

combines numerical and semantic elements of uncertainty, the ‘EcoPath’ model 

commonly used in fishery management planning (Pauly et al, 2000) elicits estimates 

of input uncertainty from users through the assignment of ‘pedigrees’, recording the 

lineage of the data (a guess, a global estimate, a measurement) as well as allowing the 
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user to select confidence intervals. The two elements of the uncertainty are combined 

to perform potentially complex analyses, for example using the Bayesian ‘Ecoranger’ 

module. 

 

Many of the existing frameworks and model implementations tend to address very 

specific application domains and focus largely on model calibration and parameter 

estimation; this makes them highly valuable for handling specialised and complex 

data and algorithms within a research field, but can raise challenges for 

multidisciplinary model chaining. A number of the existing approaches support 

uncertainty propagation through Monte Carlo methods, which have proven value for 

sensitivity and uncertainty analysis. In the following section we develop a generic 

framework for managing uncertainty in the Model Web context, informed by the 

lessons learnt in previous work. 

  



Table 2: A selection of existing simulation software packages (or modules within frameworks) which may be used to uncertainty-enable existing 

models.  

 

Name  Reference(s) or web sites  Comments  Examples of use 

PEST 

(Parameter 

EStimation 

Toolkit) 

Doherty, (2004) 

 

Powerful calibration, regularization and 

optimization toolkit. Implements a variety 

of parameter estimation methods, and null-

space Monte-Carlo approaches for linear 

and non-linear analysis of uncertainty, 

parameter identifiability and error variance.  

1 Castleton and Meyer (2009); integration of PEST into FRAMES. 

Dausman et al.(2010); testing of alternative hypotheses for the wastewater 

plume movement, by highly-parallellised calibration of candidate models and 

generation of a subset of ‘superparameters’. 

1 Doherty & Hunt (2009); describe statistics (calculated using PEST) to 

summarise the extent to which each parameter of a model can be identified, 

and the extent to which the calibration process can improve on the estimate 

based on prior expert knowledge.  

UCODE Poeter et al. (2005) Non-linear parameter estimation code  – 

like OSTRICH and PEST, generates 

confidence intervals and other statistics 

through model inversion,  

1 Kelson et al. (2002); application to a mine hydrological context, resulting in 

a highly simplified model with equivalent predictive power. 

1 Foglia et al., (2009); refinement of parameters from catchment-scale 

estimates for calibration of distributed hydrological models. 

OSTRICH http://www.civil.uwaterloo.ca/ 

lsmatott/Ostrich/OstrichMain.html 

A versatile tool incorporating a diverse set 

of algorithms for calibration, optimization 

and computation of statistics such as 

parameter correlation / sensitivity, and 

observation influence. 

1Rabideau et al. (2005); calibration of multiple AEM groundwater flow 

models, with particular attention to effects of model precision and observation 

location. 

Mattot & Rabideau (2008); describe a method (in OSTRICH 1.8) for 

simultaneous calibration of equally plausible models by adaptive weighting 

and mapping of parameters between reference and surrogate models. 

UNCSAM  Janssen et al., (1994)   Can do model emulation; does not cope 

with spatially and/or temporally correlated 

variables 

1 Bärlund and Tattari (2001); application to the ICECREAM model of field 

phosphorus loss.   

SME  (Spatial 

Modelling 

Environment) 

 http://www.uvm.edu/giee/IDEAS/ 

sme/docs/SME_guide.html 

  Voinov et al., (1999); ecological-economic spatial process modelling.  

Villa and Costanza, (2000); spatial agent-based modeling (enabled by linking 

SME with the SWARM agent-based modeling toolkit 
32)  

Deal and Schunk (2004); scenario modelling of urban sprawl and its effects; 

particular attention to the importance of  model validation. 

GENIE-1  Holden et al., (2010) Emulation based on ensemble modelling. 1 Holden et al (2010); climate prediction  
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FRAMES 

Sensitivity/ 

Uncertainty 

module 

http://mepas.pnl.gov/framesv1/ 

sum3ug.stm 

Monte Carlo analysis and Latin hypercube 

sampling. User supplies parametric 

distributions for input uncertainty (currently 

uniform, log-uniform, Normal, or log-

Normal) 

Babendreier and Castleton (2002); parallelised use in the 3MRA pollutant 

fate model 

1 Castleton et al. (2006); linked FRAMES with R to calculate & visualize 

impacts of input uncertainty 

TIME  User supplies parametric distributions as 

above. Some visualization of uncertainty 

(e.g., confidence limits on outputs). 

Rahman et al. (2005); incorporation of a Stochastic Climate Library (SCL) 

into TIME 

SoftIAM  http://www.tyndall.ac.uk/sites/ 

default/files/tr51.pdf 

Allows Latin hypercube sampling from  

Normal, log-Normal, uniform, triangular 

Beta or Davies* distributions (*specifically 

for risk assessment) 

1 Warren et al. (2008); SoftIAM used as an interface to BFG for climate 

modelling 

WADES http://www.ceh.ac.uk/ 

sci_programmes/Water/ 

Wades_Project/index.html 

Work in progress - aims to assess the 

relative costs and benefits of OpenMI 

wrappers for integrated modelling. 

  

UNCSIM Reichert, 2006 Systems analysis toolbox used to link 

simulators though text input / output files. 

Supports maximum likelihood parameter 

estimation & sampling from a variety of 

multivariate distributions. 

Arnold et al., (1998); Soil and Water AssessmentTool (SWAT), watershed-

scale hydrological /water quality simulation; 

Hutson and Wagenet,(1991); simulation of nitrogen dynamics in soil. 

DUE (Data 

Uncertainty 

Engine) 

Brown and Heuvelink, 2007 Quantification of positional and attribute 

uncertainty in environmental data by 

probability distributions that take spatial 

and temporal correlations into account. Can 

also sample from these distributions for 

Monte Carlo uncertainty propagation 

analyses 

Refsgaard et al. (2006b); hydrologic river basin modelling, handling changes 

of scale  

De Bruin et al. (2008); positional uncertainty in agricultural field boundaries 

for use in precision farming  

Crystal Ball  Oracle, (2011) Spreadsheet based  1 Dubus et al. (2002); pesticide models   

@RISK  Palisade (2011)   1 Dubus et al. (2002); pesticide models 

1 Rank input parameter contribution to overall uncertainty  

 

  



Table 3: Programming tools for development of uncertainty software. 

 

Tool Reference / website Comments Examples of use / case studies 

R   http://www.r-project.org/  Open source application with a wide 

selection of statistical /modelling libraries 

including some spatio-temporal functions. 

Langford et al. (2009); assessment of susceptibilities of conservation planning 

algorithms to input uncertainty. Output uncertainties visualised using R plotting 

functions, as statistical summary plots. 

‘Sensitivity’ (G. Pujol - http://cran.r-project.org/web/packages/sensitivity/) .A 

freely-available R package containing a collection of functions for factor 

screening and global sensitivity analysis of model output. 

python http://www.python.org/ Another library-based language with many 

mathematical and spatial modules. 

ModelBuilder (F. Coelho - http://model-builder.sourceforge.net/) - graphical 

tool for simulating models based on ordinary differential equations 

SimLab  http://simlab.jrc.ec.europa.

eu/docs/html/main.html 

Development framework specifically for 

sensitivity/uncertainty analysis - supports 

global methods only  

Le Maire et al,(2011); One of many studies which employ methods 

implemented in SimLab (in this case, the FAST technique) for Monte Carlo 

estimation of uncertainties and parameter effects. 

DAKOTA  http://dakota.sandia.gov/ 

index.html 

 Toolkit which implements numerous 

algorithms for optimisation, experimental 

design and uncertainty quantification. 

Eldred et al (2011); describes methods (incorporated in DAKOTA) for 

separating and nesting sampling based on epistemic and aleatory uncertainties, 

combining local and global gradient-based optimisations. 

JUPITER API  http://water.usgs.gov/ 

software/JupiterApi/ 

 Platform for developing model analysis 

applications (e.g., UCODE, MMA) with 

many built-in algorithms. 

Banta et al. (2008) Description of how the API can be used as a platform for 

fast testing and prototyping, particularly where weighting of prior information 

and specification of correlated errors are required. 

  



5 A proposal for an Uncertainty-Enabled Model Web 
 

The challenges raised by the transition from isolated data sets and models deployed 

on individual computers, to Web-deployed data sets and models with well defined and 

widely understood interfaces and information models cut across a wide range of 

issues. The management of uncertainty in the Model Web is one of these challenges.  

Within the UncertWeb project a range of tools are being developed to support the 

assessment of uncertainty using expert elicitation (Section 5.3.1), the aggregation and 

disaggregation of spatial and temporal fields (Section 5.3.2), efficient uncertainty and 

sensitivity analysis methods (Section 5.3.3) and the visualisation of uncertain 

variables (Section 5.3.4). These tools are key drivers in promoting uncertainty 

management in the Model Web, and they all use the UncertML standard described 

below for their communication. 

5.1 Representing uncertainty interoperably: UncertML 
 

UncertWeb adopts a probabilistic approach to representing uncertainty. As a 

conceptual information model for representing probabilistic uncertainty, the 

UncertML
33

 language was devised within the INTAMAP project (Pebesma et al., 

2011) to describe random quantities. Version 1.0 of UncertML was a weak- typed 

design (Williams et al., 2009), with strong dependencies on Geography Markup 

Language (GML) and extensive use of the Sensor Web Enablement (SWE) standards 

(OGC 08-094r1, 2004). UncertML 2.0, released in February 2011 and developed 

within the UncertWeb project, is a simpler hard-typed design. This reduces flexibility 

but allows more complete interoperability, since software providers can actually claim 

their software supports UncertML 2.0. Hard-typing also permits the implementation 

of an Application Programming Interface (API) that supports encoding and decoding 

of XML and JSON documents. 

 

The conceptual model for UncertML 2.0 is very simple. A basic abstract uncertainty 

type is specialised to create Distributions (probability distribution functions, including 

mixture models for multi-modal distributions), Statistics (summary statistics, such as 

moments), and Samples (realisations of random variables). These types correspond to 

those described in Section 2.2, and allow UncertML 2.0 to represent uncertainty very 

flexibly. Where possible the more complete description of a probability distribution is 

preferred. UncertML consists of a dictionary to precisely define the semantics of the 

uncertainty elements, and can encode both univariate and multivariate random 

quantities.  

 

Since the inputs and outputs of complex environmental models are usually spatio-

temporal, a standard way to integrate UncertML with spatio-temporal data is required. 

UncertML separates concerns by focussing purely on uncertainty, and  is designed to 

be used with other standards such as Observations and Measurements (O&M - a 

common XML encoding for exchanging observations in the Web) (Cox, 2007), which 

can be used to define the variables being considered, the sampling or model output 

locations etc.  The UncertWeb O&M (O&M-U) profile restricts the O&M 

specification to permit only certain geometries and time units. This tight profiling 
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solves many of the abstraction problems described in Section 4.1. Uncertainty can be 

added to an O&M document in two ways: (1) uncertainty can be added as additional 

quality information to the result, or (2) the result itself can be encoded as an uncertain 

value. In both cases, UncertML is used to model and encode the uncertainties. 

 

While O&M is well-suited to observations with spatial vector geometries, grid-based 

observations are better encoded using the Network Common Data Format (NetCDF), 

an established format for exchanging multi-dimensional gridded environmental data. 

Thus an uncertainty-enabled NetCDF profile (NetCDF-U) has also been developed 

within UncertWeb. As a first step, the UncertML dictionary is used to define the 

variables that contain the uncertainty values. In the longer term, basic data types for 

uncertainty will be defined in the common data model on which NetCDF is based.  

 

UncertML plays a central role in uncertainty-enabling the Model Web. It is the 

primary mechanism for communicating uncertainty between Web Services (which, in 

the Model Web context, act as model interfaces). Existing standards for 

communicating within Web based systems, (for example the Open Geospatial 

Consortium series of standards) already have some support for uncertainty in the 

ISO19139 compliant data quality measures (ISO19139, 2007).  However, most of the 

measures that are defined for such quality indicators (ISO19138, 2006; ISO19157, 

2011) are not very generic and relevant only to very specialised domains; for 

example, there is no method for representing a probability distribution. Another issue 

with existing encodings is that most models follow the “result” and associated “result 

quality” pattern. For models with model structure uncertainty there is no notion of a 

unique result; rather the result itself is uncertain. Thus it would not be very natural to 

always encode uncertainty in the result quality, because this begs the question of what 

to put in the result? One option might be the mean, or expected value, but in some 

situations, (for example where the model predicts the outputs to be in two or more 

plausible states) the mean can be a very misleading, and indeed, improbable result.  

 

UncertML addresses the deficiencies in data quality standards by providing a 

standardized way to encode quantified uncertainty such as probability distributions. 

Using the O&M-U profile, model results with spatial vector geometries can now be 

provided encoded as uncertainties (rather than as values with associated uncertainty) 

or with additional metadata about the model result. Similarly, the NetCDF-U profile 

allows for providing uncertain gridded model results in a standardized and meaningful 

way. 

  

5.2 The UncertWeb architecture 
 

The UncertWeb framework aims to support uncertainty in the discovery, access and 

chaining of data sets and models, while keeping in line with the Model Web 

principles. The design of the UncertWeb framework architecture is based on the 

following principles: 

 

i) Re-use of existing tools: Several initiatives and projects at national, regional, 

European and global level already provide resources and tools that could be useful for 

the development of an UncertWeb framework. The adoption of a Service-Oriented-



Architecture (SOA) style (Erl, 2005) allows us to integrate such heterogeneous 

components. 

   

ii) Extension of the Service-Oriented-Architecture (SOA): During the last decade, the 

SOA style, successfully adopted in different contexts such as e-Business and e-

Government (IDABC, 2004), has also been adopted in the development of Web-based 

geospatial resource sharing systems (OGC, 2002). However, in the development of 

the global System-of-Systems (SoS), SOA has limitations due to the growing 

complexity of the overall system. Solutions based on the introduction of specific 

components (brokers) which act as mediators will help to lower the entry barrier for 

users (Nativi and Bigagli, 2009); 

 

iii) Multiple solutions for uncertainty representation:  From a conceptual perspective 

all data should be treated as uncertain. However, it must be acknowledged that almost 

all existing data resources are not treated in this way. Most data sets come simply as a 

series of values, often without any uncertainty information. Therefore the UncertWeb 

system architecture needs to accommodate both kinds of representation: a) data sets 

with uncertain values (e.g. expressed as a probability distribution); b) data sets with 

certain values and associated uncertainty information (e.g. expressed as accuracy 

metadata). 

 

Figure 2 depicts the UncertWeb architecture in terms of high-level entities, which can 

be categorised as four high-level packages, and a broker component; package 

dependency is reported through directed arrows. Packages are as follows:.  

   

 A GUI package that includes all the components handling user interaction. 

 An Uncertainty Tools package that includes all the components and 

applications for uncertainty management, such as elicitation and visualization. 

 An Available Services package that collects all the services exposed in the 

UncertWeb system. It includes the typical geospatial functionalities: 

o Data View: for presentation and portrayal of data sets; 

o Data Access: for accessing data sets for further evaluation and use; 

o Data Catalog: to register and find data sets based on their metadata; 

o Data Publishing: to provide a persistence layer for data sets and 

results. 

o Data Transformation: to process and manipulate data sets. For the 

UncertWeb purposes, general data transformations are further 

classified as:  

 Data Processing: information extraction and processing, by 

data set aggregation, operation of models on inputs, etc. 

 Data Conversion: transformation without information 

extraction, for example change of format or change of 

coordinate reference system. 

 Uncertainty Transformation: transforming the representation of 

data set uncertainty. 

 A Data Types package that includes all the specification and tools for 

managing uncertainty-enabled data types. These include profiles such as the 

O&M profile described in Section 5.1.   



 A Composition-as-a-Service (CaaS) component which is controlled through 

the GUI and gives access to all the available services, adopting an extended-

SOA approach (broker-based mediation). 
 

Figure 2 Dependency view of the main UncertWeb architectural components. 

Figure 2 shows that the Available Services act upon data sets expressed according to 

the available Data Types. The components in the GUI package may also access the 

Uncertainty Tools. On the other hand the GUI needs to access the services in the 

Available Services package. Due to the heterogeneity of the services in terms of 

interfaces, metadata and data models, a direct link would impose a great complexity 

on the GUI components, limiting their usability and consequently the scalability of 

the overall system. Therefore according to the extended SOA approach, a specific 

service broker component called the CaaS (Composition-as-a-Service) component is 

introduced to mediate the interactions between the user and the services. The two 

main tasks of the CaaS are service composition and the publication of workflows as 

services.  

 

This high-level view helps to highlight some important points: 

 UncertWeb provides different resources: Tools (e.g. the Uncertainty Tools), 

Services (i.e. the Available Services) and Data (i.e. the Data Types). 

 The CaaS plays a central role, being the component that harmonizes the access 

to the Available Services (and indirectly to the Data Types). 

The architecture is being further developed and will be more completely described in 

future publications. 

 

 

5.3 UncertWeb tools 
 

The UncertWeb framework can only work if the tools needed to analyse how 

uncertainty propagates through model workflows and to communicate and visualise 

the resulting uncertainties have been implemented properly. Since UncertWeb 

currently uses a Monte Carlo simulation approach for uncertainty propagation, all that 

is required for the actual uncertainty propagation analysis is a computational loop 

around the models as described in Section 3. The tools described here will support the 

Model Web’s capabilities in the quantification of uncertainties in inputs and models 

within service chains, the spatio-temporal aggregation and disaggregation of uncertain 

variables, the analysis of uncertainty and stochastic sensitivity, and the 

communication of output uncertainty to end users and decision makers. These tools 

will prove to be critical in achieving impact across the environmental and, more 

broadly, the applied science user communities, providing a suite of services and 

applications to make the uncertainty-enabled Model Web easy to use. 

5.3.1 Expert Elicitation 

 

Keeping track of uncertainties in service chains implies that the uncertainties about 

the input data submitted to the chain and the uncertainties associated with the models 

used in the chain are known. In many cases these uncertainties can be derived - for 

example, from the precision of measurement devices, goodness-of-fit of regression 

equations or from statistical sampling error - but sometimes the uncertainty must be 



derived from expert judgement. Expert elicitation is a systematic process of 

formalising and quantifying expert judgements about uncertain quantities, typically in 

probabilistic terms. 

 

Since the first development of structured expert-opinion elicitation by the RAND 

Corporation in the 1940s (Cooke, 1991), formal expert elicitation has gradually 

become a mature research field. Recently, expert elicitation has attracted more 

attention from statisticians and experts in uncertainty analysis (O'Hagan, 1998; Cooke 

and Goossens, 2000; Meyer and Booker, 2001; O’Hagan et al., 2006). Uncertainty 

about quantities elicited from experts is encoded in the form of a probability 

distribution function. The two statistical frameworks commonly used for this purpose 

are parametric fitting and nonparametric fitting. The former fits expert judgments to 

standard parametric families of distributions and is the method used in UncertWeb. In 

this approach, quantiles of the distribution such as the median and first and third 

quartiles are elicited from the expert using a formal procedure, after which the most 

appropriate shape of the probability distribution is selected automatically and the 

associated parameters are estimated. 

 

When multiple experts are involved in the elicitation process, a combination of expert 

judgements is needed to utilize knowledge from all experts. Interaction among experts 

is not needed when using mathematical aggregation (O’Hagan et al. 2006). In contrast, 

behavioural aggregation requires some degree of interaction amongst experts. 

UncertWeb approaches experts through the Web, which complicates interaction 

between experts. Hence, a mathematical aggregation of the experts’ opinions is used. 

 
Figure 3. A screen capture of the Elicitator showing the creation of an elicitation problem. 

 
Figure 4. A screen capture of the Elicitator showing the expert elicitation interface. 

 

The implementation of expert elicitation in UncertWeb is provided by the Elicitator
34

. 

It largely builds on the existing SHELF methodology developed by Oakley and 

O’Hagan (2010). One major extension is that the entire process is Web-based. It 

involves a problem owner who defines their problem, provides background 

information and selects experts. Figure 3 shows an example of the initial Webpage 

viewed by the problem owner. Once experts are selected, they are notified and can 

perform the elicitation independently behind their own computer, at any suitable time 

and at their own pace. Figure 4 shows a typical Web-based form that the expert would 

need to fill in. Results are communicated to the expert and provisions for 

reconsidering and changing earlier judgements are provided. Once all experts have 

submitted their opinion these are aggregated by the tool and the resulting probability 

distribution is stored in UncertML (Figure 5). All stages of the problem are recorded, 

so that the lineage of the elicitation is fully accessible to the problem owner, and 

could potentially also be inserted in a published workflow to support reproducible 

science. 
 

Figure 5. A screen capture of the Elicitator showing the pooling of expert judgments. 
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The Elicitator facilitates the elicitation of both numerically continuous and categorical 

variables. In addition, it also supports the elicitation of spatially distributed 

continuous variables, by providing a tool to estimate the semivariogram. 

 

5.3.2 Spatio-temporal aggregation and disaggregation  

Aggregation and disaggregation are common operations or computational components 

inside environmental models. For instance, hydrological models may aggregate rain 

when they compute river discharge from spatio-temporally distributed rainfall values. 

Alternatively, they may predict spatially distributed soil moisture content from 

catchment average (aggregated) precipitation. Outside the modelling context, 

aggregation and disaggregation is required when the spatial, temporal or spatio-

temporal resolution (or support) of the model input or output does not match the 

resolution required at the next stage of processing. This sort of functionality is 

typically found in model couplers, such as the OASIS3 coupler (Valcke, 2006) but the 

uncertainty introduced by the aggregation/disaggregation process is not estimated by 

these couplers. 

 

A very common case is that of time series data. When rainfall data are available on a 

daily basis, but a model requires data on a monthly basis, the time series can be 

temporally aggregated. By spatio-temporal aggregation we mean the computation of a 

single value from a set of (spatially or temporally or spatio-temporally) contiguous 

values, for one or more of these sets. The aggregation involves the application of an 

aggregation function, such as the mean, median, maximum, 95-percentile, or variance. 

Spatio-temporal disaggregation is the reverse process: from one or more aggregated 

values, one or more sets of values for smaller spatial, temporal or spatio-temporal 

units are generated. Other words used for these processes are upscaling (aggregation) 

or downscaling (disaggregation). Typically, aggregation is a relatively simple activity 

when a simple function can be applied such as taking the average value over a number 

of grid cells and will reduce uncertainty. More complex forms can involve techniques 

such as block kriging. Disaggregation typically involves more modelling, and requires 

ancillary information about the phenomenon that is not available from the aggregated 

data alone (Bierkens et al., 2000) and will increase the uncertainty in the smaller 

scales. 

 

Because spatio-temporal aggregation and disaggregation are commonly-required 

activities when model chains are formed, the UncertWeb tools will include a generic 

Web Service for spatial, temporal or spatio-temporal aggregation. It will only work 

with Monte Carlo samples, and for each sample element will aggregate the values to a 

new spatio-temporal resolution (Heuvelink and Pebesma, 1999). Disaggregation will 

be implemented prototypically, for a very limited set of cases, using the area-to-point 

kriging technique. 

5.3.3 Uncertainty and sensitivity analysis 

 

When models are exposed on the Web in a discoverable manner, users will not 

necessarily be familiar with the detail of the models, and their response to inputs. The 

problem becomes even worse when models are composed in workflows, where they 

might have rather unexpected behaviour, due to the interactions of the different 

components in the workflow, that needs to be characterised and understood by the 



users. One way to address this is by undertaking uncertainty or sensitivity analysis 

(Oakley and O’Hagan, 2004).  

 

Uncertainty analysis involves describing the distribution of the outputs given a 

particular distribution on the inputs, which might include some of the inputs being 

fixed, i.e., assumed to be perfectly known. Uncertainty analysis is typically achieved 

using Monte Carlo techniques although screening methods as proposed in Morris 

(1991), or other local methods (Hill and Tiedeman, 2007) can also provide useful 

insights into the model response. Sensitivity analysis involves understanding the 

model’s response to variation in inputs, and can take many forms, including local 

methods based on derivatives (Hill and Tiedeman, 2007) and global methods, based 

on variance (Saltelli et al, 2010). Variance-based sensitivity analysis is generally 

regarded as being more useful, since it allows users to apportion the proportion of 

variance in the output distribution explained by inputs, and their interactions over the 

whole of the realistic input space. It is however necessary to acknowledge that local 

sensitivity analysis methods based on locally linearising the model, while potentially 

susceptible to errors that arise from strong non-linearities in model response can prove 

useful in complex models as part of an exploratory analysis (Campolongo et al., 2007) 

and can be used, for example, to assess the ability of observations to inform 

parameters (Foglia et al., 2009) and predictions (Tiedeman et al., 2004, Water 

Resources Research; Moore and Doherty, 2005 WRR; Tonkin et al., 2007, USGS 

report). 

 

A problem with the Monte Carlo methods used for variance based sensitivity analysis, 

particularly when applied to models with large run times, is the time required to 

undertake such an analysis (O’Hagan, 2011). One possible means to address 

computational costs is to employ emulator technology (Shahsavani and Grimvall, 

2011). Emulation involves creating a statistical surrogate model of the underlying 

model. The surrogate mode is fast to evaluate and can be used in place of the original 

model as long as the additional ‘emulator uncertainty’ is accounted for in its usage. 

The ongoing MUCM project
35

 has developed emulation techniques so they can be 

applied to a wider range of models although limitations remain (see the MUCM 

toolkit
36

 for details, and references therein).  

 

At present emulation methods are most effective when a small number of outputs are 

being considered, which are real-valued. Very large numbers of outputs require 

multivariate emulation, which entails describing a complex high dimensional 

conditional probability distribution. Discrete valued variables require further 

development of the emulation theory which is mainly based on Gaussian processes 

(e.g. O’Hagan, 2006) thus assumes a continuously (and often smoothly) varying 

continuous valued output. Typically one considers emulation for a small number of 

summary outputs, which might be some combination of all the model outputs, for 

example the average temperature over a region, or the proportion of a given land use 

type in a given area over a given time period. If it is necessary then it is possible to 

build multi-output emulators (Urban and Fricker, 2010; Conti and O'Hagan, 2010) 

however these are generally rather complex and often it is better to build many very 

accurate individual emulators – these will capture the joint response of the outputs, 
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just not the joint emulator uncertainty on the outputs, which will typically be very 

small by design.  

 

Building an emulator for a computer model, whether exposed as a workflow, a Web 

Service or a single machine executable is a complex process. There are several steps 

each involving complex judgements, ideally informed by the model owners / builders. 

The main steps in constructing an emulator for a given workflow, also depicted in 

Figure 6, are: 

 Elicit input ranges and uncertainties – often uncertainties on model inputs will 

not be known, making it necessary to elicit expert beliefs about the values of 

these inputs. This task is supported by elicitation methods discussed in Section 

Error! Reference source not found.. 

 (Optionally) find important inputs – using a process known as screening 

(Morris, 1991), identify inputs that have significant effect on the model 

output(s) of interest. Identifying inconsequential inputs allows the reduction of 

the dimension of the input space, thus having a positive effect on emulator 

complexity and training efficiency. 

 Design the training set – with a sampling method such as Latin Hypercube 

(Santner et al., 2003), a set of points to cover the input space is generated. The 

model is then run at these points, producing a training set of input-output 

pairs. 

 Train the emulator – an emulator is typically a Gaussian process consisting of 

a mean function, covariance function, and a set of parameters. Training 

typically employs Bayesian inference (O'Hagan, 2006). Once an emulator is 

trained, it can be saved in a portable format such as XML or JSON. 

 Validate the emulator – validation is essential to ensure the probabilistic 

judgements represented are correct (Bastos and O'Hagan, 2008). If validation 

results are unacceptable, parameters can be adjusted and training can be 

restarted. 

 Use the emulator – the emulator can be used for uncertainty analysis, 

sensitivity analysis, calibration, forecasting and decision making (O'Hagan, 

2006). In the uncertainty-enabled Model Web it will be possible to use this 

emulator as you would any other model component. 

 

 

Figure 6. The main steps in constructing an emulator. For each stage, including the optional 

screening step, the methods supported within UncertWeb are listed. 

 

Several practical implementation issues are addressed when developing a user driven 

tool to construct an emulator for a Model Web component. 

 The tool must be able to read descriptions of model inputs and outputs, and 

perform runs for training and validation. For this to be possible without 

requiring specific code, each Web-enabled model must be exposed in a 

standard way. As the tool will be building service requests, this includes any 

inputs and outputs. The service and information model profiles developed 

within UncertWeb aim to facilitate this interoperability. Screening, training 

and validating an emulator requires several hundred runs of the model. If this 

model takes minutes or even hours to compute, it is impractical to require a 

user to keep a web-based program running for this time. Moving this 

responsibility to the server allows the tasks to be run independently of client 



state, but also introduces resource management and reliability issues. 

Mechanisms for asynchronous execution have been developed to queue tasks 

if resources are unavailable, and resume tasks in the event of system failure. 

 Constructing an emulator requires several choices to be made. Some of these 

choices can be set to default values, and some of those default values may be 

changed by expert users. Providing this vast array of options leads to usability 

challenges. A user could be overwhelmed if they are required to make too 

many choices, or an expert user may not feel as though they have enough 

control over the construction process. 

 

In theory it is possible to greatly speed up the computation of uncertainty and 

sensitivity analysis using emulators, and they are likely to prove particularly effective 

in distributed modelling frameworks where the emulators can be invoked just as any 

other model component, but can also be transported easily as JSON or XML, and run 

almost instantly. Of course not all models will be amenable to emulation, and it is 

envisaged that often it will be more appropriate to emulate a workflow linking several 

model components directly, not just single model instances. Several classes of model 

are currently not amenable to emulation, including models with discrete valued 

outputs, models with discontinuous outputs (with respect to variation in inputs) and 

models with very large numbers of inputs and outputs. Such models require very case 

specific emulation methods which are not currently supported within UncertWeb. 

 

It is not always clear that construction of an emulator can be justified. Extensive 

examples of the successful utilisation of emulators in modelling studies can be found, 

for example, in the references in Kennedy et al. (2006). However the construction of 

an emulator itself is expensive, requiring many model runs to be made. There will be 

cases where the expense of constructing an emulator cannot be justified, but this will 

also mean that a formal uncertainty or variance based sensitivity analysis will be 

rendered impossible (very large / slow to evaluate model, in which case local methods 

could be considered) or trivial (very small / fast to evaluate model). We do not 

imagine that emulators will be appropriate or required for all workflows, but we do 

anticipate that they will in some cases enhance our ability to characterise and use 

models. 

 

5.3.4 Visualisation 

 

Communication and visualisation of results and associated uncertainties produced by 

UncertWeb requires a systematic approach that incorporates contributions from 

cognitive science as well as statistics. A large body of literature and methods are 

available (e.g., Wittenbrink et al., 1996; Pang et al., 1997; MacEachran et al. 2005; 

Kardos et al., 2007; van de Kassteele and Velders, 2006; Garlandini and Fabrikant, 

2009; Wood et al., 2009) and existing state-of-the-art techniques will therefore be 

implemented in the UncertWeb visualisation tool. 

 

For visualisation of uncertainty it is sensible to distinguish between uncertain 

phenomena that are measured on a continuous-numerical scale (e.g. precipitation, 

concentration of air pollutants, income per head) and those measured on a categorical 

scale, whose groupings may have no numerical meaning or ranking (e.g. soil type, 

land cover, age group). Also, it matters greatly whether the phenomenon varies in 



space, in time, in both space and time, or is constant in space and time (Heuvelink et 

al., 2007). Hence, the various uncertainty visualisations can be conveniently presented 

in a two-dimensional table. The main techniques that will be implemented in 

UncertWeb are given in Table 4. 

 

For phenomena that vary neither in space nor in time, standard presentation formats 

such as boxplots, pie charts and graphs of the probability distribution (e.g. the jstat 

Javascript library
37

) will be used. For spatially distributed phenomena, either static 

displays with adjacent maps or animations of realisations will be provided. The option 

to mask or whiten parts of the study area that are too uncertain will also be provided. 

A very useful option is for Web-based interactive visualisation to allow the user to 

select locations at which visualisation techniques developed for non-spatial and non-

temporal variables can be applied. Uncertainty in dynamic variables can be displayed 

similarly to uncertainty in spatial variables, with additional possibilities, such as 

displaying multiple realisations against time in a single figure. This method does not 

apply to uncertain spatial variables, but in that case multiple realisations can be shown 

in animation mode. Finally, for space-time phenomena the only feasible options are to 

let users select locations or time points (slices) to which any of the uncertainty 

visualisation techniques for spatial or temporal variables will then be applied. 

 
Table 4. Types of uncertainty visualisation tools implemented in UncertWeb for combinations of 

measurement scale and space-time variability.  

 
 I. continuous numerical II. categorical 

A. non-

spatial, non-

temporal 

1. graph of the probability density or 

cumulative distribution  (e.g., Figure 5) 

2. error bar, interquartile range, 

confidence interval, box plot 

1. graph of probability distribution 

2. pie chart, stacked bars, bar chart 

 

B. spatial 1. adjacent maps of the mean and 

standard deviation;adjacent  maps of the 

lower and upper limits of a confidence 

interval  

2. maps of multiple realisations (draws 

from the probability distribution) in one 

frame 

3. masking or whitening of areas with 

large uncertainty 

4. interactive facility to apply techniques 

from category A1 at selected point 

locations in map 

5. animations of realisations 

1. adjacent maps of the category with 

maximum probability and the associated 

probability 

2.  map of the category with maximum 

probability but masked, whitened or 

blinking when the probability is below 

an (interactive) threshold 

3. entropy map  

4. interactive facility to apply techniques 

from category A2 at selected point 

locations in map 

C. temporal 1. graphs of mean, lower and upper 

limits of confidence interval, or error 

bars against time 

2. multiple realisations plotted in one 

figure 

3. interactive facility to apply techniques 

from category B1 at selected time points 

1. graph of category with maximum 

probability but masked, whitened or 

blinking when the probability is below 

an (interactive) threshold 

2. graph of entropy 

3. interactive facility to apply techniques 

from category B2 at selected time points 
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D. spatio-

temporal 

1. interactive facility to apply techniques 

from category B1 at time points  

2. interactive facility to apply techniques 

from category C1 at point locations in 

map 

1. interactive facility to apply techniques 

from category B2 at time points 

2. interactive facility to apply techniques 

from category C2 at point locations in 

map 

 

Overall, the set of tools being developed in UncertWeb and explained in Section 5.3 

describe a minimal requirement for tools that should be available to a modelling 

framework which claims to provide practical uncertainty support.  

6 Discussion and conclusions 
 

Existing modelling frameworks address uncertainty to variable extents, and there are 

important lessons for the Model Web: for example, easy-to-use tools which clearly 

describe their assumptions and requirements can encourage users to assess, record and 

use uncertainty information at all stages of the modelling process. Reliable 

communication of uncertainty information between diverse models, across 

disciplines, will avoid the bottlenecks where rich and useful uncertainty information 

can be lost to the decision maker. Tools to assist with the visualisation of uncertainty 

can help to communicate this information to a range of different users whose needs 

may be very different (Davis and Keller, 1997).  

 

Existing modelling frameworks also have varying levels of interoperability, with 

some being strongly specialised to specific domains, or specific types of problem, for 

example time-stepping models in the OpenMI framework. Interoperability itself is a 

complex topic and can in any case be achieved at a number of methods. We would 

argue that one might consider the following levels of interoperability: 

1. Machine encoding interoperability – a common underlying representation of 

basic data values, e.g. big-endian or byte order assumptions, often IEEE 

standards based. 

2. Format encoding interoperability – use of a common data format which 

specifies, for example, header structure or the order of elements, delimiters 

and tags. Examples are NetCDF, GML and O&M application schema, 

shapefile, etc. 

3. Semantic dictionary interoperability - understanding of the meaning of the 

data values, based on semantics / ontologies, for example RDF / OWL. This is 

'hardwired' semantics via a dictionary.  

4. Semantic machine interoperability - the real goal of semantic integration 

where machines can 'understand' concepts and reason with them, typically 

without resorting to a central controlled vocabulary.  

5. Information interoperability – here, the relation of the data to reality is 

quantified so that the data can be used appropriately in a given application. At 

present this is little addressed. 

To achieve information interoperability it is necessary to quantify the information (or 

uncertainty) in all aspects of the modelling operation. No existing modelling 

frameworks provide a complete solution to managing uncertainty. We contend that 

information interoperability, i.e., the ability not just to share data and models, but to 

actually base rational decisions and policy on the outcomes from these integrated 



modelling frameworks, requires a rigorous and consistent definition of uncertainty 

and a framework that can manage this from end to end.  

 

When addressing uncertainty, a probabilistic approach seems most natural (Dawid, 

2004;  O’Hagan, 2011) although other approaches such as fuzzy set theory and 

Generalised Likelihood Uncertainty Estimation (Beven and Freer, 2001) are also 

applied. Other coherent frameworks for managing uncertainty, for example Bayes 

Linear (Goldstein and Wooff, 2007), and imprecise probability (Reichert, 1997) also 

deserve attention. These frameworks have attractive features, in that they require 

fewer assumptions to be used (for example Bayes Linear methods work with 

expectation, not full probability distributions), but then enable one to make weaker 

statements as a result (since one only has expectations, including some higher order 

judgements).  

 

All quantitative approaches also have limitations; ‘unknown unknowns’ will always 

require a qualitative treatment, and in simulations of social systems the issue of 

human choice and free will make modelling particularly challenging, and 

uncertainties still more challenging to quantify. Even for environmental models of 

systems that are reasonably well understood, for example the Earth’s atmosphere, 

obtaining reliable uncertainty estimates for inputs and model structure uncertainty is 

an open research problem. Expert elicitation can assist in the determination of 

subjective uncertainty on unobserved model inputs and more rigorous and precise 

uncertainty estimation for observations can assist in characterising the uncertainty on 

other inputs. As discussed in Section 2.2, careful validation of uncertainty judgements 

should be undertaken whenever possible using appropriate probabilistic methods 

(Gneiting et al., 2007). 

 

In order for a modelling framework to support probabilistic uncertainty it is necessary 

that: 

 a model for probabilistic uncertainty be defined for communication between all 

components including model and data resources (in this work, this model is 

UncertML) 

 uncertainty should be propagated through model components by an appropriate 

mechanism (typically Monte Carlo) with minimal change to the model 

component; 

 where necessary, conversions between different representations of probabilistic 

uncertainty (e.g. a probability distribution to samples) should be automated; 

 changes of spatial, temporal and spatio-temporal support should be provided 

which also propagate uncertainty; 

To make the framework accessible to a variety of users tools which permit the 

following  operations would be beneficial: 

 expert elicitation of uncertain inputs; 

 automated method to assess uncertain inputs where observations exist, based on 

statistical inference; 

 uncertainty and sensitivity analysis; 

 visualisation of uncertain variables across space, time and space-time; 

 probabilistic validation of the outputs of the chains when observations are 

available. 

To address the computational issues it will be necessary to consider parallelism and 

cloud based deployment, and also the use of emulators, or statistical surrogate models, 



which can be deployed easily on Web Services in a semi-automated manner, and can 

be built either for model components or sections of the complete workflow. 

 

Many computational, theoretical, architectural and user interaction issues remain to be 

addressed before a comprehensive framework for managing uncertainty can become a 

reality. The UncertWeb modelling framework represents an attempt to address many 

of these issues and to push the boundary of what can practically be achieved closer to 

a complete uncertainty management system. Further development of the UncertWeb 

framework could be envisaged to develop tools to assist with inferential (or 

estimation) problems such as data assimilation and model calibration (parameter 

estimation). Many of the generic calibration and uncertainty evaluation tools listed in 

Table 2 provide useful and tested methodologies to enhance uncertainty management, 

and a concerted effort to integrate the most widely used methods from these tools into 

an interoperable architecture such as that of UncertWeb would be most beneficial to 

all. 

 

Ultimately it seems natural that we should be considering computers whose basic 

types include not only floats, integers etc., but also the equivalent continuous and 

discrete random variables, in their many representations. Ruckdeschel et al. (2006) 

provide an implementation of this idea in the R environment. This would represent an 

ambitious but important paradigm shift, from viewing uncertainty information as 

metadata which is attached to a quantised or estimated value and may be ignored or 

discarded, to using uncertainty itself as the fundamental element for computation and 

modelling. 
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