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This paper introduces a new implementation of the Surface Energy Balance System (SEBS) algorithm
harnessing the many cores available on Graphics Processing Units (GPUs). This new implementation uses
Compute Unified Device Architecture C (CUDA-C) programming model and is designed to be executed on
a system equipped with NVIDIA�’s graphic cards. The output of the new implementation is compared to
a MATLAB code that has already been fully tested in the Water Cycle Multimission Observation Strategy
(WACMOS) project. The code is timed against both MATLAB and a purely high-performance C imple-
mentation of the same algorithm. The code has been tested on several different NVIDIA� cards, with
different compute capabilities. The authors have decided to provide the entire source code to the
scientific community free of charge; hence, at the end, the instruction on how to obtain the code is also
presented.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

EvapoTranspiration (ET) is a portmanteau word, describing the
combined amount of water evaporated and transpired by canopies
and land surfaces. ET represents a direct feedback of moisture to the
atmosphere and is of utmost importance in the understanding of
the terrestrial climate system (Penman, 1948; Su and Menenti,
1999; Su and Jacobs, 2001) and therefore it is of interest in
several applications, such as Drought Assessment, Agricultural
Irrigation Management, Weather Forecasting, Hydrological
Modeling, and Climate Simulations and Predictions.

Several types of ET, found in the literatures, are (1) potential (2)
reference or (3) actual. Potential ET (PET) provides an estimate of
the total capacity or energy available to evapotranspire water,
assuming there is no limitation in water resources. Reference ET
refers to the amount of water evaporated by a reference crop
(usually short grass) under the prevailing meteorological condi-
tions. The goal of estimating Actual ET (AET) is to come up with an
estimate of the real or actual state of the system.
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There are several methods to calculate AET (Su, 2002;
Bastiaanssen, 1998; Kustas and Norman, 1999), which have been
already reviewed in Glenn et al. (2007) and Kalma et al. (2008). Not
only do these algorithms tackle a large set of coupled nonlinear
equations, they also require a large set of input variables; hence, too
much computational time is needed. This paper focuses on SEBS
and its implementation on GPU using CUDA-C in order to increase
its performance by decreasing the total computation time needed.

2. Surface Energy Balance System (SEBS)

SEBS uses the surface energy balance (SEB) equation to calculate
ET. However, contrary to other algorithms, that calculate ET as the
residual of this equation, SEBS make use of the Evaporative Fraction
(EF) to estimate the actual evapotranspiration in order to account
for water limiting cases. The SEB equation (Glenn et al., 2007;
Kalma et al., 2008) describes the net radiation as the sum of four
components, i.e.:

Rn ¼ lE þ G0 þ H þ S; (1)

where Rn is the total net radiation, lE is the latent heat, G0 is the
ground heat flux, H is the sensible heat, and S is the storage of heat,
[W m�2]. In SEBS, latent heat is calculated using:
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lE ¼ LðRn � G0Þ; (2)
Fig. 1. Land Surface Temperature [K]eMOD11A1e Tile: h09v04eYear 2008eDoY194.
where L is the evaporative fraction (dimensionless) that is calcu-
lated as follows:

L ¼ Lr
lEwet

Rn � G0
; (3)

and

Lr ¼ 1� H � Hwet

Hdry � Hwet
: (4)

Lr is called the relative evaporation (dimensionless). Hdry and
Hwet are the sensible heat fluxes under the hypothetical dry and
wet conditions. lEwet is the evapotranspiration under the wet
conditions, and in fully dry conditions, lEdry is zero. For more
detailed information on the SEBS algorithm, governing equations,
and how to process data one can refer to journal papers and reports
already published, such as Su (2002), Timmermans and Su (2011),
Jia et al. (2003) and Su et al. (2005).

3. SEBS data requirements

SEBS requires three sets of input data:

� The first set consists of remotely sensed vegetation parameters,
such as: surface albedo, emissivity, and surface temperature.

� The second set includes meteorological data, such as: air
temperature, wind speed, and vapor pressure.

� The third set of data includes remotely sensed parameters such
as incoming longwave and shortwave radiation.

In this paper, Climate Forecast System Reanalysis (CFSR) (http://
dss.ucar.edu/pub/cfsr.html, w0.3� resolution), North America Land
Data Assimilation System (NLDAS) (http://ldas.gsfc.nasa.gov/nldas/,
0.125� resolution), along with Moderate-Resolution Imaging Spec-
troradiometer (MODIS) products were used.

4. Graphical Processing Units and CUDA-C

High resolution estimates of ET by SEBS can be a very time
consuming task. As an example, calculation of ET using a single
processor over the United State of America (USA) with 1km Spatial
resolution and daily temporal resolution for one year can take
about 10 days (based on 25 MODIS tiles). This will increase expo-
nentially with decreasing spatial resolution. Therefore, it is
important to provide a high-performance code that can reduce the
computation time considerably.

The SEBS algorithm requires many inputs; however, once all the
required input variables are provided in a single grid cell (pixel),
there would be no inter-pixel communication between one pixel
and its surrounding pixels. Thus, a domain-decomposition approach
to parallelize the SEBS algorithmwould be the best and the easiest
approach. In a domain-decomposition approach using central pro-
cessingunits (CPUs) the entire computational domain is divided into
smaller parts, and each part is assigned to a single core. If one needs
higher speedup, more processor nodes must be provided. This
means that multiple machines with very strong CPUs have to be
networked together. However, this requires to transport data over
network links and deal with the latency and overhead associated
with it, not to mention the cost of descent networking devices that
are required to connect these computing nodes together.

An interesting solution is to move the computation to the
graphics processing units (GPUs) that exists almost on every
graphic card sold these days. A GeForce GTX 580 with 3GB of DDR5
memory will provide 512 computing cores. A Tesla C2070 with 6GB
of memory provides the user with 448 computing cores. All these
computing cores are on a single device and there is no need to
purchase any extra networking devices. Consequently the cost per
computing core is way lower using GPUs rather than CPUs. Many
top supercomputers are now equipped with GPUs. In fact “NVIDIA
chips are now in three of the five fastest supercomputers in the
world” (Crothers, 2011). About three years ago the first super-
computer, equipped with GPU, showed up in top 500 supercom-
puters list. Since then these numbers are growing (Crothers, 2011;
Abouali, 2011). Since then GPUs are being used in many fields
including environmental modeling (Sousa et al., 2012; Singh et al.,
2011; Kalyanapu et al., 2011; Bryan, 2013).

While the number of cores can be increased easily, the perfor-
mance boost depends greatly on adaptability of the code to these
cores. To run algorithms on the GPU cores, first the code needs to be
rewritten with the programming model suitable for GPUs. There
are few programming models available, that can be used to
communicate with this device and perform scientific computing,
known as General Purpose Graphics Processing Units (GPGPUs).
OpenCL and CUDA-C are the most common ones. OpenCL targets
different hardware, while CUDA is developed by NVIDIA and can be
used only onmachines equipped with NVIDIA’s GPUs. In CUDA, one
launches a computation grid, with different computing blocks in
each grid, where each block holds a group of computing threads. It
is possible to assign each thread a certain task. These computational
grids are scheduled on GPUs to be executed. In this case, the grid
was chosen in such a way that there is one thread for each pixel of
a MODIS tile.

For more information on CUDA and its programming model one
can refer to the documents provided by NVIDIA on CUDA zone
(http://developer.nvidia.com/nvidia-gpu-computing-
documentation).

5. Test data

A test data set is prepared in order to compare the performance
of different implementations of SEBS algorithm. The data set is
chosen over a small region covering Prosser, WA, with 120 � 120
pixels, Fig. 1. The resolution of each pixel is 1 km. The MODIS
products were the source of remote sensing data sets. The Majority
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Fig. 2. Speedup relative to MATLAB code.
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of the meteorological data were collected from NLDAS, with a few
exception that were collected from CFSR, including mean sea level
pressure. The NCAR Command Language (NCL e http://www.ncl.
ucar.edu/) was used to preprocess the data set and prepare the
input data set for SEBS in NetCDF format. All data belongs to the
194th day of year 2008. It has to be noted that this data set is 100
times smaller than a single MODIS tile and there are 25 MODIS tiles
that cover the USA completely.

6. MATLAB to C

First the MATLAB codes were converted to C language. The
resulting C code was optimized by changing the order of some of
the calculations and reducing the number of memory access. Later,
Fig. 3. Difference in dailyevapotranspiration [mm$day�1] betweenMATLAB andCCode.
the code was compiled. Both -O2 and -O3 optimization flags were
tested. The level 3 optimization flag was only slightly improving the
performance. In both MATLAB and C code the time needed to read
the input data fromNetCDF files and storing the output was ignored
and only the time needed to run SEBS algorithmwas considered in
the speedup calculation. Both MATLAB (Version 2011a) and C code
were executed on a Macbook Pro with 8GB of DDR3 RAM and
equipped with 2.66 GHz Intel Core 2 Duo CPU. The code was run
several times, the lowest and the highest time were ignored and
then averaged. As it is shown in Fig. 2, the C code already achieved
a speedup of about 4.4. Since the MATLAB version was already
validated as part of the WACMOS project (Timmermans, 2011,
2009a, 2009b, 2009c), the output of the C code was compared
against those of MATLAB. This comparison is shown in Fig. 3 for
daily evapotranspiration.

7. C to CUDA-C

The next stage was implementing the SEBS algorithm using
CUDA-C to be executed on GPUs. The C functions developed
previously were wrapped with CUDA instructions and introduced
as device functions. Later, certain global functions (CUDA kernels)
were developed, which assigns one computing thread to each pixel
of the input data sets. The code timed on different devices. The list
of devices, the number of computing cores available, and their
compute capabilities is listed in Table 1.

One of the bottle-necks in GPU computing is the transfer of data
from computer RAM to videomemory on graphic card. Unlike C and
MATLAB code that included only the computation time, the timing
Table 1
GPU devices used in timing.

Model Memory N. cores Compute cap.

GeForce 9400M 256MB 16 1.1
GeForce 9600M 256MB 32 1.1
Tesla M1060 4GB 240 1.3
GeForce GTX 480 1.5GB 480 2.0

http://www.ncl.ucar.edu/
http://www.ncl.ucar.edu/


Fig. 4. Difference in daily evapotranspiration [mm$day�1] between MATLAB and
CUDA-C Code.

Table 2
Speedup.

Device Compile
switch

Speedup rel.
to MATLAB

Speedup rel.
to C

GeForce GTX 480 f4, f3 554.76 126.1
GeForce GTX 480 f4 394.78 89.7
Tesla M1060 f1, f3 380.5 86.4
Tesla M1060 f1 291.2 66.1
Tesla M1060 f2 291.7 66.2
Tesla M1060 f2, f3 370.3 84.1
GeForce 9600M f1, f3 84.7 19.2
GeForce 9600M f1 43.8 9.9
GeForce 9400M f1, f3 54.0 12.3
GeForce 9400M f1 25.6 5.8

f1:-arch ¼ sm_11, f2:-arch ¼ sm_13, f3:-use_fast_math, f4:-arch ¼ sm_20.
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on CUDA-C also included the amount of time needed to upload data
from RAM into the graphic card and download the results from the
graphic card on to the RAM. As Fig. 2 shows, even on a very old
graphic card, (GeForce 9400M), a speedup of about 25.6 relative to
MATLAB code was achieved, (or 5.8 relative to C code). CUDA-C
implementation was also tested on Tesla M1060 card and ach-
ieved a speedup of about 291.2 relative to MATLAB code, (or 66.2
relative to C code).

The nvcc compiler allows the use of ‘-use_fast_math’ option,
which forces the code to use a less accurate but much faster version
of some functions, such as exp(). As Fig. 2 shows this will increase
the speedup on GeForce 9400M from 25.6 to 54.0 (a factor of 2.1)
and on Tesla card from 291.2 to 380.5 (a factor of 1.3). No sensible
changes in the output accuracy were detected while using ‘-use_-
fast_math’ compiler options. The output of CUDA-C version using
‘-use_fast_math’ compared to MATLAB version is shown in Fig. 4.
Hence, it is suggested to keep this switch, while compiling. Table 2
summarizes the performance achieved on different platforms using
different compiler flags.

8. Conclusions and suggestions

Two new implementations of the SEBS algorithm using C and
CUDA-C were introduced. These implementations were tested
using a small data set and the codes were timed. At best case, it was
possible to achieve about 554 (126.1) times speedup (going from 10
days of computation to 30 minutes). Of course the time needed to
read the input data from hard drive and store it back must be
added; however, these overheads must be added regardless of the
implementation being used. This speedup was achieved by using
only one CUDA-enabled card. To further speedup the program one
can use multiple NVIDIA card. One can also make use of streams
available in CUDA-C to separate the memory transfer and the
computation. Here, the computation space was decomposed only
spatially, but it can be also done temporally. As an example, the
Computational Science Research Center (CSRC) at San Diego State
University (SDSU) hosts a cluster with 12 nodes connected by
InfiniBand. There are two Tesla M1060 card available on each node.
It is possible to combine CUDA-C with MPI and assign one node for
each month and one Tesla card only for 15 days of calculation.
Furthermore, it is believed that using Parallel NetCDF (http://trac.
mcs.anl.gov/projects/parallel-netcdf) and having concurrent
access to the input data sets could enhance the performance even
more. The authors hope that they can address these issues in the
near future.

8.1. Software availability

� Software Name: SEBS-GPU.
� Developer: The same as the authors of this paper.
� Hardware Requirements: PC equipped with CUDA-Enabled
NVIDIA Graphic card.

� Software Requirements: GCC, NVCC, NetCDF, MATLAB (only for
MATLAB interface).

� Cost: free only for noncommercial use and solely for academic
and research purposes.

� Programming Language: C, CUDA-C, MATLAB (only for MATLAB
interface).

� Download instruction: Requires subversion. To download
anonymously (no username or password required) issue the
following command: svn co http://sebs-gpu.googlecode.com/
svn/trunk/sebs-gpu-read-only.
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