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Abstract 13 

This study presents a Bayesian approach for the parameters’ identification of the STICS crop 14 

model based on the recently developed Differential Evolution Adaptive Metropolis (DREAM) 15 

algorithm. The posterior distributions of nine specific crop parameters of the STICS model were 16 

sampled with the aim to improve the growth simulations of a winter wheat (Triticum aestivum L.) 17 

culture. The results obtained with the DREAM algorithm were initially compared to those obtained 18 

with a Nelder-Mead Simplex algorithm embedded within the OptimiSTICS package. Then, three types 19 

of likelihood functions implemented within the DREAM algorithm were compared, namely the 20 

standard least square, the weighted least square, and a transformed likelihood function that makes 21 

explicit use of the coefficient of variation (CV). The results showed that the proposed CV likelihood 22 

function allowed taking into account both noise on measurements and heteroscedasticity which are 23 

regularly encountered in crop modelling.  24 

 25 
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 1.  Introduction 26 

In recent decades, the number of dynamic crop models developed for estimating crop 27 

performance based on the interactions between environment and agricultural management has greatly 28 

increased. There are two types of models: specific and generic. The former are process-oriented 29 

models capable of simulating water balance, nitrogen balance, growth and the development of a given 30 

crop, while maintaining reasonable input requirements. For example, the CERES-Wheat model 31 

simulates the growth, development and yield of wheat (Triticum aestivum L.), taking account of the 32 

effects of weather, genetics, soil (water, carbon and nitrogen), planting, irrigation and nitrogen 33 

fertilizer management (Ritchie and Otter, 1984; Singh et al., 2008). Generic models are based on 34 

physiological principles for growth and development processes that are common across many crops. 35 

They use a modular code for crop modelling, providing easy ways of comparing modelling approaches 36 

without the need to change the code. They also provide a way to interpret data from field experiments 37 

in various environments (Monteith, 1996) and to analyse the processes at the plant component level 38 

(Confalonieri and Bechini, 2004). Well-known generic models that are able to simulate the growth and 39 

development of various crops (wheat, maize, sorghum, etc.) are EPIC (William et al., 1989), 40 

WOFOST (Van Diepen et al., 1989), DAISY (Hansen et al., 1990), STICS (Brisson et al., 1998) and 41 

SALUS (Basso and Ritchie, 2005).  42 

The number of parameters required by generic models is higher than for specific models. The 43 

STICS model used in this study (Brisson et al., 1998; Brisson et al., 2003; Brisson et al., 2009) is 44 

characterized by its ability to adapt to a wide range of agro-environmental issues and its adaptability to 45 

various crops : e.g. wheat, sugarbeet, sugarcane, rice. It implies that the number of parameters 46 

involved is high: more than 200 parameters are arranged in three main groups related to (i) soil, (ii) 47 

plant characteristics (species or genotype) and (iii) management techniques. The soil properties can be 48 

determined from pedotransfer functions but these give the mean soil properties for rather broadly 49 

defined soil textures classes and therefore provide limited site-specific information (Wösten et al., 50 

1999). The soil properties can also be measured directly on site, but this is very costly and time 51 

consuming. Management techniques are usually known as they reflect the farmer’s decisions. The 52 
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parameters related to plant growth and development are determined from the literature, from 53 

experiments conducted on specific processes included in the model (e.g. mineralization rate, critical 54 

nitrogen dilution curve) or from calibrations based on large experimental databases (Launay et al., 55 

2005; Flenet et al., 2004). In all cases, the propagation of uncertainty about the parameters could lead 56 

to a model that does not accurately describe responses observed in the field.  57 

Parameter estimation is not straightforward in generic crop models. Most of the equations are 58 

non-linear, coupled and hierarchical; the number of parameters to optimize is important; and field 59 

spatial variability and climatic temporal fluctuations are high. Several methods have been proposed for 60 

parameter estimation, based on frequentist or Bayesian approaches (Beven, 1989; Wallach et al. 61 

2006). In the first category are sensitivity analyses (Wallach et al., 2001; Ruget et al., 2002; Bechini et 62 

al., 2006; Makowski et al., 2006; Monod et al., 2006; Campolongo et al., 2007; Lamboni et al., 2009) 63 

and stepwise regression methods (Wallach et al., 2001, 2006). Recently, Wallach et al. (2009, 2011) 64 

developed a software package suited to the STICS crop model (OptimiSTICS) that used the Extended 65 

Fast algorithm (also used by Varella et al., 2010a, 2011) to analyse the sensitivity indices.  66 

The Bayesian approaches (Gilks et al., 1996; Jansen and Hagennars, 2004 ; Makowski et al. 67 

2002) are becoming increasingly popular for estimating model outputs and parameters distributions in 68 

different types of complex models, like the simulation of biological processes (Minunno et al., 2013), 69 

environmental (Dietzel and Reichert, 2012; Rasmussen and Hamilton, 2012), hydrological (Jeremiah 70 

et al., 2012; Laloy et al., 2010; Vrugt et al., 2003; Wu and Liu, 2012) or crop modelling (Makowski et 71 

al. 2006 ; Varella et al., 2010b). In these approaches, the parameters are considered as stochastic 72 

variables defined by the prior distribution of probability. The process aims to sample the posterior 73 

distribution of the parameters leading to the statistically most relevant simulations.  74 

Traditionally, it has been difficult to estimate the posterior distribution of parameter estimates 75 

and/or the model output predictions, but the use of Markov Chain Monte Carlo (MCMC) simulations 76 

(Metropolis et al., 1953; Vrugt et al., 2009b) has made this task easier. The basis of these methods is a 77 

Markov chain, which generates a random walk through the search space and iteratively visits solutions 78 

with stable frequencies. To do this, an MCMC algorithm generates trial moves from a current position 79 

in the parameter space, defined by the actual position in the Markov chain, to a new position in the 80 
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parameter space. The earliest and most widely used MCMC approach is the Random Walk Metropolis 81 

(RWM) algorithm (Metropolis et al., 1953). One of the particularities of the algorithm lies in the use 82 

of the Metropolis acceptance probability ratio (Metropolis et al., 1953) as a selection rule to decide 83 

whether or not the candidate parameter set could replace its parents. The result of the algorithm is a 84 

Markov chain that, for the values that are sufficiently far from the starting point, has a unique 85 

stationary distribution with stable frequencies stemming from the underlying probability density 86 

function (pdf). 87 

In 1970, Hastings extended the original MCMC to include non-symmetrical proposal 88 

distribution. Called the Metropolis Hastings (MH) algorithm, this extension became the basic building 89 

block of many existing MCMC sampling schemes. In the 1990s, much research was devoted to 90 

Markov chain sampling (e.g., Gilks et al. 1996; Gelman et al., 1997; Brooks, 1998). Although this 91 

research improved the efficiency of MCMC algorithms, they remained inefficient when confronted 92 

with posteriors with very heavy tails and with posterior model output prediction surfaces that 93 

contained multiple local optima. Recognizing the limitations of previous MCMC schemes, ter Braak 94 

(2006) developed the Differential Evolution-Markov Chain (DE-MC) method, which can run 95 

simultaneously and in parallel with several Markov chains and uses a genetic algorithm for estimating 96 

parameter evolution. DE-MC solves the RWM practical problem of choosing an appropriate scale and 97 

orientation for the jumping distribution. Vrugt et al. (2008a, 2009a) proposed a new MCMC sampler 98 

called the Differential Evolution Adaptive Metropolis (DREAM) algorithm. DREAM is a follow-up of 99 

the DE-MC method and an adaptation of the Shuffled Complex Evolution Metropolis (SCEM-UA) 100 

global optimization algorithm (Vrugt et al., 2003). The authors showed how using self-adaptive 101 

randomised subspace sampling, with explicit consideration of aberrant trajectories, could still enhance, 102 

sometimes considerably, the efficiency of the DE-MC algorithm. Vrugt et al. (2009a) demonstrated 103 

that there was an optimal choice for the multiple of the difference of two randomly chosen members 104 

from remaining chains used in the genetic algorithm. The advantages of DREAM are summarised 105 

here. First, DREAM solves two important problems. One is the automatic selection of an appropriate 106 

scale and orientation of the proposal distribution during evolution towards the posterior distribution 107 

(i.e., self-adaptive randomized subspace sampling). The second one is the efficient accommodation of 108 
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heavy-tailed and multimodal target. Unlike the SCEM-UA algorithm, DREAM can maintain a detailed 109 

balance and ergodicity while showing good efficiency for complex and highly non-linear and 110 

multimodal target distributions (Vrugt et al., 2009a). DREAM also solves limitations such as the need 111 

to choose the starting values and the unlimited number of parameters that could be optimized at the 112 

same time (Makowski et al.,2002). Finally, and most recently, Vrugt et al. (2011) have shown how 113 

DREAM could be enhanced using parameter sampling from past states of the genetic evolutionary 114 

chains, leading to the DREAM-ZS algorithms (Vrugt et al., 2011; Laloy et al., 2012). Let's also 115 

mention that in the recent years, another suitable solutions emerged which consist to consider 116 

simultaneously parameter optimization and data assimilation (Vrugt et al., 2006, Mansouri et al., 117 

2013). 118 

In recent years, the debate has focused on the use of a formal or informal approach for 119 

specifying the likelihood function (Beven et al., 2008; Schoups and Vrugt, 2010; Vrugt et al. 2008b, 120 

2009b). Informal likelihood functions have been proposed as a pragmatic approach to uncertainty 121 

estimation in the presence of complex residual error structures. Importance sampling algorithms, such 122 

as the Generalised Likelihood Uncertainty Estimation (GLUE) method (Beven and Binley, 1992), are 123 

becoming very popular because they have the potential to deal with estimation uncertainty problems 124 

where simple theoretical likelihood assumptions are not appropriate (Beven and Binley, 1992; Beven, 125 

2008; Vrugt et al., 2009b). For example, Varella et al. (20010b, 2011) investigated characterizing soil 126 

properties in agricultural fields by inverting the STICS dynamic crop model, using the observations 127 

conducted in those fields by remote sensing or yield monitoring. This method, however, involves  128 

discretisating the parameter space in order to perform optimization, and such an approach could lead 129 

to an inaccurate representation of the posterior parameter distribution when the model parameters are 130 

numerous (Makowski et al., 2002). 131 

Alternatively, the formal approach starts from an assumed statistical model for the residual 132 

errors (Joseph and Guillaume, 2013 ; Laloy et al., 2010 ; Vrugt et al., 2009b). This model, which is 133 

specified a priori, is then used to derive the appropriate form for the likelihood function that links the 134 

model output with the real-life measurements and that should therefore correctly sample the high-135 

probability density region of the parameter space. MCMC simulations then allow behavioural 136 
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solutions to be separated from non-behavioural ones, using a threshold based on the sampled 137 

probability mass. Typically, the residual error assumptions can be classified into three groups relating 138 

to (i) error variance, (ii ) error distribution and (iii ) error correlation. The advantage of the formal 139 

approach is that error model hypotheses are stated explicitly and their validity can be verified a 140 

posteriori (e.g., Schoups and Vrugt, 2010). The formal approach, however, has been criticised for 141 

relying too heavily on residual error assumptions that do not reflect reality in many applications 142 

(Beven et al., 2008). For example, considering that the errors are independent and identically 143 

distributed, following a normal distribution with zero mean and constant variance σ², the statistical 144 

error model would result in the standard least squares (SLS) approach (Box and Tiao, 1973). In many 145 

cases, however, and especially in agricultural research, the errors are correlated, non-stationary and 146 

non-Gaussian. Correlations between model residuals often arise when several measurements are 147 

performed at different dates in a given site-year. Site-year characteristics have a strong influence on 148 

observations and, as only a part of the between site-year variability can be predicted by crop models, 149 

model residuals obtained in a given site-year have different variances and are often correlated 150 

(Wallach et al., 2006).  151 

The main objective of this paper is to extend the available parameter estimation tools of the 152 

STICS soil-crop model. Currently, DREAM and DREAM-ZS are probably among the most optimized 153 

MCMC algorithms than can offer genericity and robustness in the parameter sampling process. On the 154 

other hand, the STICS model is widely used and its ability to simulate contrasted situations and to 155 

adapt to new species is well recognised; to date, however, parameter optimization is rarely obtained 156 

using MH algorithms. The first aim of this paper is therefore to extend the parameter estimation 157 

techniques available for the STICS model by using the DREAM-ZS scheme and to assess the coupling 158 

of both algorithms.  159 

At another level, in-field measurement errors associated with crop modelling experiments is 160 

not a trivial problem. To improve the computational efficiency of the sampling MCMC algorithms, the 161 

expert knowledge could be expressed at the process initialisation stage through a more appropriate 162 

definition (e.g., tightening) of the parameters’ prior distribution. In our opinion, however, it should 163 

also advantageously appear in the likelihood function, making it possible to take account of systematic 164 
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error measurements. In this context, and using a formal representation of error assumptions, a new 165 

version of the likelihood function was derived that makes explicit use of the coefficient of variation 166 

(CV) of the measurements and which should be able to account for heteroscedastic error cases.   167 
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 2.  Material and methods 168 

 2.1.  Case study 169 

The data used in this paper derive from an experiment designed to study wheat growth 170 

response (Triticum aestivum L., cultivar Julius) under different nitrogen fertilization levels. The 171 

experimental blocks were prepared on two soil types (loamy and sandy loam), corresponding to the 172 

agro-environmental conditions of the Hesbaye region in Belgium. The measurements were the results 173 

of four repetitions by date, nitrogen level, soil type and crop season. Each repetition was performed on 174 

a small block (2 m × 6 m) within the original experiment as a complete randomised block distribution, 175 

spread over the field within each soil type, to ensure measurement independence. A wireless 176 

microsensor network was used to continuously characterize the soil (water content, suction, 177 

temperature at two depths: 30 and 50 cm) and the atmosphere (radiation, temperature, relative 178 

humidity) within the vegetation. Pluviometry data were also acquired in the experimental field. 179 

Biomass and soil nitrogen content were regularly measured manually. 180 

This paper focuses on the biomass growth, described by the MASEC output within the STICS 181 

model, over three years (crop seasons 2008-09 to 2010-11). Two fertilization levels were considered in 182 

this study: crop growth (i) without nitrogen feeding and (ii) under a nitrogen level of 180 kgN.ha-1 183 

applied in three fractions and according to three equivalent doses, respectively at the tillering (Zadoks 184 

stage 23), redress (Zadoks stage 30), and last-leaf stages (Zadoks stage 39). The above ground biomass 185 

measurements were performed at a bi-weekly interval from mid-February (about Julian day 410) until 186 

harvest. The above ground biomass was defined here as the sum of straw and grain yields. The 187 

measurements were performed on dried samples, corresponding to the sampling of three adjacent 188 

50cm rows. 189 

Table 1 summarizes the different identified cultural situations (CS) according to the cropping 190 

seasons and the stresses events. For each of the two crop cycles of the first season (CS 1 and 2), ten 191 

measurements were performed. Nine aboveground biomass measurements were made for each 192 

nitrogen level of the season 2009-10 (CS 3 and 4) while five biomass samples were taken during the 193 

last season (CS 5 and 6).   194 
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Table 1: The different cultural situations (CS) and the stress effects 195 

Stress effect 
No nitrogen stress 

180kgN.ha-1 
Nitrogen stress 

0kgN.ha-1 

No water stress 
Season 2008-09 

CS 1 
Calibration dataset 

CS 2 
Calibration dataset 

Water stress #1 
Season 2009-10   

CS 3  
Calibration dataset 

CS 4 
Calibration dataset 

Water stress #2 
Season 2010-11   

CS 5 
Validation dataset 

CS 6 
Validation dataset 

 196 

2.1.1.  Calibration dataset 197 

The first two years of experiments were used to calibrate the model. The 2008-2009 crop was 198 

sown in late October (Julian day 297) and harvested in mid-August (Julian day 593).  The yields were 199 

quite high and close to the optimum of the cultivar, mainly because of the good weather conditions and 200 

the sufficient nitrogen nutrition level. In the 2009-2010 season, the crop was sown in early November 201 

(Julian day 323) and harvested a bit later than in first year (Julian day 598), due to the poor aestival 202 

conditions. This season was characterised by significant water stress that occurred at the early season 203 

(February) and in the early summer (July). 204 

2.1.2.  Validation dataset 205 

The last year of experiments was used to perform the model validation. During the season 206 

2010-11, the measured yields were close to the ones observed in 2009-10. However, a lower number 207 

of tillers and fewer grains per ear were observed. This was a consequence of strong climate-induced 208 

stresses, namely an important water deficit and high temperatures at spring (from the middle of March 209 

till the end of May). Owing to the return of rain at early summer, the grains have been correctly filled 210 

but the straw yield has remained really poor. 211 

 212 

 2.2.  Model description 213 

2.2.1.  The STICS crop model 214 

The STICS crop growth model (INRA, France) used in this study has been described in 215 

several papers (Brisson et al., 1998; Brisson et al., 2003; Brisson et al., 2009). STICS is a generic soil-216 

crop model that can simulate a broad range of crops. It simulates the water, carbon and N dynamics in 217 

the soil-plant-atmosphere system on a day-by-day basis. It allows to take into account the effect of 218 
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water and nutrient stress on development rate (Palosuo et al., 2011). It requires daily weather data 219 

inputs (i.e., minimum and maximum temperatures, total radiation and total rainfall, vapour pressure 220 

and wind speed).  221 

Within STICS, the eco-physiology of aboveground growth is driven by a classic carbon 222 

balance : the leaf development allows the interception of the solar radiation, which is converted into 223 

biomass and later oriented towards harvestable organs. The whole plant phenology of aboveground 224 

growth is driven by the degree-day thermal index [°C-day]. 225 

 226 

2.2.2.  Parameter assumptions 227 

Nine parameters involved in the aboveground biomass growth simulation were selected to be 228 

optimised. However, in order to avoid over-parameterization (Varella, 2011; Varella et al., 2010b), the 229 

selected parameters were chosen as not being all directly linked to the formalism of the simulated 230 

variable (MASEC) : we considered parameters involved in the phenology (stlevamf, stamflax), the leaf 231 

area development (dlaimaxbrut, durvieF), parameters directly related to biomass growth (efcroijuv, 232 

efcroirepro, efcroiveg) and finally related to water and nitrogen stresses (psisto, INNmin). The 233 

remaining parameters of the species were fixed at the suggested default values (Brisson et al., 1998; 234 

2003).  235 

Table 2 summarizes the studied parameters, their initial value and their prior distribution. In 236 

this table, the ILEV, IAMF and ILAX stages correspond respectively to the stage of emergence, the 237 

day when the leaf growth rate is maximal (AMF stage), and the day when the maximal leaf area index  238 

(LAI) is reached. The complete senescence of the crop, conducted by the durvieF parameter is reached 239 

a few days before maturity of the crop. The radiation use efficiency is known to be different during 240 

plant growth. It is lower during the juvenile phase, which extends between emergence (ILEV) and 241 

AMF stage (IAMF). It is higher during the vegetative stage, which occurs between AMF stage and 242 

flowering, and during the reproductive phase. As an illustration, the Figure 1 shows the biomass 243 

measurements performed during the crop season 2008-2009 with the corresponding standard 244 

deviation.  245 
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Table 2 : Initial parameters values and prior distribution 246 

Parameter θinit Prior values Unit Definition 

dlaimaxbrut 4.5E-4 [0 - 4E-3] m²leaf.(plant)-1.(°C-day)-1 Maximum rate of LAI daily increase 
stlevamf  255 [0 - 400] °C-day Duration between ILEV and IAMF stages 
stamflax 350 [0 - 500] °C-day Duration between IAMF and ILAX stages 
durvieF 220 [0 - 500] °C-day Maximal lifespan of an adult leaf 
efcroijuv 1.8 [0 - 4.5] g.MJ-1 Radiation use efficiency during juvenile phase 
efcroiveg 4.25 [0 - 10] g.MJ-1 Radiation use efficiency during vegetative stage 
efcroirepro 4.25 [0 - 9] g.MJ-1 Radiation use efficiency during grain filling phase 
INNmin 0.360 [0 - 1] / Minimum value of Nitrogen Nutrition Index allowed 
psisto 15 [1 - 20] bar Absolute value of the potential of stomatal closing 

 247 

The lower and upper boundaries of the prior parameter distribution were slightly modified 248 

compared with the original OptimiSTICS package. They were reduced in order to ensure faster 249 

convergence, but they were kept wide enough to produce a sufficiently high parameter space.  250 

 251 

 252 

Figure 1: Biomass measurements (mean values and standard deviations),  253 
and principal phenological stages of the crop during the cultural season 2008-09.  254 

 255 

The parameters were sampled/optimized on the first four contrasted cultural situations, i.e. 256 

corresponding to the climatic input data of season S.2008-09 and S.2009-10, and to the nitrogen level 257 

0 and 180kgN.ha-1 (CS 1-4 in table 1). A total of 38 biomass measurements were used to identify the 258 

nine parameters. Once the parameters sampled, the model was then evaluated on the crop season 259 

2010-11 (CS 5 and 6). 260 

 261 

 2.3.  Bayesian theorem, error assumptions and adapted likelihood function  262 

2.3.1.  The Bayes theorem 263 
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According to the Bayes theorem, the posterior probability density function (pdf) π(θ|Y) is 264 

given by following equation: 265 

( ) ( ) ( )
( )Y

Y
Y

π
θπθπ

θπ
.

=                                                       (1) 266 

In this expression, θ and Y represent the vectors of the parameters and the measurements, respectively, 267 

and π(θ|Y) represents the pdf of the parameters given the observed data and/or measurements. This 268 

probability constitutes the posterior probability of the estimated parameters. π(θ) is the probability 269 

distribution of the parameters to be estimated. This constitutes the prior probability, referring to the 270 

prior knowledge existing about the parameters. It usually consists of a uniform distribution limited by 271 

realistic lower and upper bound parameter values. π(Y) is the probability distribution of the observed 272 

data. It is a constant determined by the requirement that the integral of the posterior distribution π(θ|Y) 273 

over the parameter space must equal 1. π(Y|θ) is the probability distribution of the measurements given 274 

the parameters and is referred to as the likelihood function. Its value is determined from the probability 275 

distribution of the error εi between modelled and observed data : 276 

( ) ( ) niyXyXY iii ,...,1,,ˆ, =−= θθε                                               (2) 277 

where n is the total number of observations, ŷi(θ,X) is the i th modelled value, according to model inputs 278 

X and model parameters θ and yi is the corresponding observation.  279 

The problem lies in estimating the likelihood function. Assuming that errors, also called 280 

residuals (Equation 2), are uncorrelated and Gaussian-distributed (Equation 3), 281 

( )2,0 ii N σε ≈       (3) 282 

the likelihood function can be simplified, taking the following form (Equation 4; Box and Tiao, 1973): 283 

( ) ( )[ ]
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 −
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=

2

2
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2

1

i

ii
n

i i

yXy
Y

σ
θ

πσ
θπ                                    (4) 284 

where σ²i is the error variance on measurement i.  285 

Finally, for reasons of algebraic simplicity, numerical stability and algorithm implementation, 286 

Vrugt et al. (2009b) proposed using the logarithm transformation of the likelihood function: 287 
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The actual form of Equation 5 is known as the weighted least square (WLS) function. Instead 289 

of the σi² value, a constant value for the error variance σ² could be hypothesised. Such an assumption 290 

would consist to consider a constant error variance whatever the measurement dates and their absolute 291 

values. In that way, it allows simplifications to be made in Equation 5, which results in the standard 292 

least square (SLS) form of the equation. These error assumptions (SLS and WLS), however, are both 293 

quite strong and can be unrealistic in crop modelling (e.g., when the measurements are performed at a 294 

same location throughout the season). 295 

 296 

2.3.2.  Experimental design and residual assumptions  297 

As noted above, the SLS and WLS approaches made the assumption that the errors were 298 

uncorrelated and (identically or proportionally) Gaussian-distributed. The experimental design was 299 

adapted to meet part of this assumption and the original experiment was implemented as a complete 300 

randomised block distribution.  301 

Applying Fisher’s three principles (Preece, 1990) – replication, randomization and local 302 

control – allows the error variances to be estimated while increasing the precision of the experiment 303 

(diminution of error). More precisely, randomisation allows an unbiased estimation of the residual 304 

variance to be obtained, whereas local control (sometimes called blocking) increases the precision of 305 

the experiment. The main objectives of the complete randomised block distribution, especially its 306 

randomisation component, is to create experimental units that are as similar as possible in order to 307 

reduce, within the blocks, the heterogeneity of the experimental conditions. This allows the spatial 308 

correlation to be reduced and, at a lower measure, the temporal correlation between the measurements, 309 

which then correspond to an average over replicates. 310 

Each of the yi-values and the corresponding standard σi, deviations needed for the likelihood 311 

function calculation therefore resulted from four replicates randomly spread over the experimental 312 

field. 313 

 314 
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2.3.3.  Non-stationary and correlation error assumptions  315 

From these in-field observations, it appeared that the averages and the standard deviations of 316 

the total biomass measurements increased throughout the seasons, transducing a non-stationarity of the 317 

residuals. As the first part of the results section shows, however, the CVs, expressed as the ratio 318 

between the standard deviation and the measure (Equation 6), exhibited stationary values: 319 

i

i

y
CV

σ=                   (6) 320 

We therefore decided to introduce CV explicitly into Equation 4 and, after log-transformation, 321 

a revised likelihood function was obtained (Equation 7), referred here-after as CV likelihood function: 322 
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Typically, crop growth is known to be a heteroscedastic phenomenon. In that way, if the CV is 324 

stationary over the seasons and over the years, the proposed formula will offer important advantages. 325 

On one hand, if too few measurements are available for practical reasons (such as financial constraints 326 

or storm events), the use of the proposed likelihood function would allow the computation of a CV 327 

relevant for the whole crop growth cycle, which will increase the efficiency of the parameters 328 

sampling process.  329 

On another hand, ideally, the CV value should correspond exclusively to the expression of the 330 

crop natural genetic variability. However, for practical reasons, it involves measurement errors, i.a. 331 

linked to inadequate measurements sampling process or non-adapted equipment. Such errors will be 332 

added to the natural variability and may conduct to overestimated CV values. Next to the prior 333 

definition, the definition of a realistic CV value will thus also allow to express the expert’s knowledge 334 

at each step of the parameter sampling process. 335 

 2.4.  Parameter identification and model output uncertainty 336 

2.4.1.  The OptimiSTICS parameter optimisation package 337 

The OptimiSTICS package was used as a reference in this study to assess the performance of 338 
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the DREAM algorithm. A brief description of OptimiSTICS is given here beneath, a full description 339 

can be found in Wallach et al. (2011).  OptimiSTICS calculates the parameter values that optimize the 340 

goodness-of-fit criterion (for example that minimize a sum of squared errors). OptimiSTICS uses the 341 

Nelder-Mead simplex algorithm which can be used for multidimensional minimization for any 342 

function. The simplex algorithm used is the Matlab function "fminsearchbnd". 343 

However, crop models are complex functions of the parameters and there is no assurance that 344 

local optimization techniques will converge to the global optimum. To overcome this problem, in 345 

OptimiSTICS, the simplex algorithm is run with several different starting points. The more numerous 346 

starting points used, the less the risk of missing the global optimum.  347 

It is worth mentioning that the OptimiSTICS package proposes different options. The software 348 

can treat the case where some parameters are genotype specific while others are common to all 349 

genotypes. It can also automatically do several sequential stages of parameter estimation. Finally, the 350 

software offers the possibility to consider different model errors, including the WLS case (Wallach et 351 

al., 2011).    352 

 353 

2.4.2.  The DREAM algorithm and the associated parameter uncertainty 354 

The origins and developments that led to DREAM were depicted in details in the introduction 355 

section. The present section and the following are focused on the advantages offered by DREAM in 356 

terms of post-data treatment.  357 

Assessing the posterior distribution of the model parameters using MCMC simulations, 358 

performed with DREAM or DREAM-ZS, led to several chains that contained all the necessary 359 

information about model parameterization.   360 

The first step in obtaining parameter estimates is to select, among the chains, the parameter set 361 

that offers the optimal solution (θopt), i.e. the one that optimises the convergence criterion. However, 362 

provided convergence has achieved a stationary distribution, from a statistical/methodological point of 363 

view, the information contained in each chain has the same relevance. In a second step, the marginal 364 

posterior pdfs were thus evaluated, with the concatenated information contained in each chain (e.g., 365 

drawing their histograms). This insight should offer primal information about the quality of sampling, 366 
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depending on whether the histograms exhibit a pronounced mode, are bimodal or close to the prior 367 

distribution. An interesting discussion about such observations was reported by Laloy et al. (2010). 368 

When designing decision-support tools, it seems necessary for the modeller to summarize the 369 

marginal posterior pdf in one parameter estimate. An initial step in assessing the most probable 370 

parameter value involves calculating the posterior means (Equation 8), the corresponding standard 371 

deviation, and eventually the correlation coefficients between the generated parameter samples. 372 
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In this equation, d is the number of sampled parameters and 2×d is the number of chains, n is the 374 

number of last elements in a chain of the sampling process, when each chain exhibits a stable posterior 375 

parameter distribution, and θi is one of the numerous probable values for the parameters. The number 376 

of chains was fixed as two times the number of parameters (2×d). In this study, the last n=1000 377 

elements of each chain were compiled in order to calculate the mean of each parameter value. 378 

 379 

2.4.3.  The DREAM algorithm and the output predictive uncertainty 380 

In addition to parameter uncertainty, we were also interested in the predictive uncertainty 381 

linked to the corresponding model output. The posterior distribution of the model parameters derived 382 

with DREAM or DREAM-ZS contains all the information needed to summarize predictive uncertainty 383 

(Vrugt et al., 2009b). A common and easy approach is to evaluate the model output Y for the last P 384 

parameter sets of each chain (2×d chains) when convergence has been achieved for a stationary 385 

distribution. The so-obtained model output set {Yj, j = 1,...,2×d×P} is summarized in the desired way, 386 

e.g. by computing the 2.5% and 97.5% percentiles of the model predictions, which difference 387 

corresponds to the 95% uncertainty boundaries. This predictive distribution includes only the effect of 388 

parameter uncertainty (Vrugt et al., 2009b). The wider the parameter posterior distribution, the wider 389 

the 95% boundaries. In addition, the 50% percentile simulation could also be used to evaluate model 390 

performance, and be compared with the f(X,θmean) simulations. 391 

In this case, the last 1.000 sets were no longer considered. To reduce the simulation time, the 392 

dataset was reduced to the last 30 values of each Markov chain. Since there are 18 chains 393 
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(2×d parameters), the parameter uncertainty evaluation in the model MASEC output was summarized 394 

in the percentile computation of  30 × 18 = 540 simulations.  395 

 396 

2.4.4.  The sampling process 397 

 Even if the STICS model has been widely used to study and simulate wheat growth, Belgian 398 

cultivars differ from French ones, notably by their phenology and yields. For a first evaluation of the 399 

model, the original parameters file of the wheat species remained at the suggested default values 400 

(Brisson et al., 1998; 2003) included in the STICS software. This case was referred to as the initial 401 

case and θinit represents this initial parameter set.  402 

As a first parameter optimisation technique, the OptimiSTICS package was used. In 403 

accordance with the requirements of the DREAM algorithm (see below), 18 starting points were used 404 

and randomly generated among the prior knowledge one owned about parameter, i.e. it's a priori 405 

distribution. When running OptimiSTICS, the residuals were considered as being independent errors, 406 

with zero expectation and the same variance, which corresponds to the same assumptions as for the 407 

SLS case run with the DREAM algorithm (see below). This case is referred later as OptimiSTICS-408 

SLS. The selected parameter set was the one that gave the minimum error (Wallach et al., 2011), i.e. 409 

the one that should offer the optimal solution (θ
opt). 410 

The DREAM-ZS algorithm was then used to perform parameter sampling of the STICS 411 

model. To evaluate its performance, various assumptions about the error measurements were 412 

considered and taken into account for different likelihood functions.  413 

The first case made use of a classical sum of squared error to represent the likelihood function, 414 

in line with the frequentist approaches. Since simplification appeared in the algorithm, the constant 415 

standard deviation disappeared and the measurements were considered only by their mean value. This 416 

case was referred to as the DREAM-SLS case, and θSLS
  represented the corresponding optimised 417 

parameter set. The second case corresponded to the weighting, within the likelihood function 418 

computation, of residual data by the nominal standard deviation calculated on the basis of the four 419 

replicates of in-field measurements, and relied on implementing Equation 5. This case, corresponding 420 
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to the DREAM-WLS, was represented by θWLS. Finally, DREAM’s ability to retrieve parameter values 421 

was evaluated against the error measurement assumption making an explicit use of the CV (Equation 422 

7). This case will be referred as DREAM-CV. Table 3 summarizes all the error measurement 423 

assumptions. 424 

With regard to the DREAM options, the toolbox was run a maximum of 22,500 times, which 425 

corresponded to 2,500 evaluation functions multiplied by the number of parameters (d = 9). This value 426 

was checked on preliminary studies to ensure convergence. The number of Markov chains was fixed at 427 

18 because there were nine parameters to be estimated (MC ≥ 2d, Vrugt et al., 2009a). 428 

In each cases, a single-step calibration procedure, involving all the variables (i.e. the MASEC 429 

output of the 4 CS) and all the parameters to optimize, was used instead of a multiple-step 430 

optimization procedure (Guillaume et al., 2011). 431 

 432 

Table 3: The different cases considered for measurements errors  433 

Case Error assumption Error value 

OptSTICS-SLS  & Variance fixed for all measurements (whatever date or observation value) - 
DREAM-SLS 

DREAM-WLS Nominal variance value computed from replications of observed values σi  

DREAM-CV  Global CV value computed from all replications of observed values 0.145 

 434 

 2.5.  Evaluation of the global model output estimates 435 

A crop model is a good representation of reality if it can be used to predict observable 436 

phenomena in the range for which it was calibrated (Loague and Green., 1991). This underlines the 437 

need to define criteria that will determine whether a model is ‘acceptable’, in pursuit of set objectives. 438 

The first criterion is the Root Mean Square Error (RMSE): 439 
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where n is the number of observations, yi is an available observation of the Y measurement vector, and 441 

ŷi is the corresponding simulated value, which relies on the vector X of inputs. θpost
1,...,d represents the 442 

vector of d parameter estimated on the posterior distribution, using one of the proposed techniques. 443 
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The model efficiency (EF) criterion presents an upper boundary, which facilitates its 444 

interpretation and makes it suitable for comparing different situations: 445 
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If the model is perfect, then yi =  ŷi for each i, and EF = 1. 447 

Ultimately, the normalised deviation (ND) criterion shows the tendency of the model to 448 

provide  under- or over-estimations, overall, of the real case. This parameter can be positive or 449 

negative, but is ideally equal to zero. 450 
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RMSE, EF and ND are rarely used alone for evaluating model quality. Brisson et al. (2002) 452 

and Beaudoin et al. (2008) used RMSE, EF and ND jointly, on the basis that model calibration or 453 

validation is accurate if the RMSE is relatively low compared with the mean of the observations, and if  454 

1,0

5,0

≤
≥

ND

EF
            (13) 455 

 456 

 2.6.  Software availability 457 

The software programs (STICS-OptimiSTICS and DREAM) are libraries of Matlab® functions 458 

divided into several sub-packages. The STICS interface sub-package is based on the OptimiSTICS 459 

codes and is responsible for managing the STICS simulations and their inputs and outputs. The 460 

OptimiSTICS codes were obtained upon request by the authors (emmah_web@paca.inra.fr). This 461 

sub-package writes inputs and parameter values into the ASCII files read by STICS, called the STICS 462 

executable function, and reads the model outputs from the ASCII files written by STICS.  463 

The DREAM and DREAM-ZS source codes were obtained from the developer 464 

(jasper@uci.edu). Interested users should contact him directly. Other options specific to the DREAM 465 
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toolbox were discussed by Vrugt et al. (2008a, 2009a). 466 
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 3.  Results and discussions 467 

 3.1.  Spatial and temporal independence of the biomass coefficients of variation  468 

First, the value of each individual CV was calculated for the data obtained for each soil type 469 

(2), nitrogen level (7) and date of measurement (±10 per season) (Figure 2) in the original experiment. 470 

The linear regression applied to the whole data set took the following form: 471 

bDayaCV += .       (14) 472 

with ‘Day’ being the Julian day of the measurement, and a and b the parameters. The  a slope 473 

and b parameters were respectively equal to -0.0002 (with a 95% confidence interval [-0.0005 ; 474 

+2.698.10-5])  and 0.2555 (with a 95% confidence interval [0.1187 ; 0.3922]). Considering that (i) the 475 

block distribution was a complete randomized experiment, (ii ) the 95% confidence interval of the a 476 

slope parameter included the zero value and (iii ) that the coefficient of determination R2 was low 477 

(0.0139), the measurements could be considered as being independent. A mean CV value was 478 

computed from all measurements (0.145) and introduced in Equation 7. 479 

 480 

Figure 2: Coefficients of variation (CV) of the total biomass measurements (grey dots).  481 
Overall mean value (solid black line) and linear regression (dashed grey line - Eq. 14). 482 

 483 

 3.2.  Parameters identification 484 

As an example, Figure 3 presents the marginal pdf of parameters estimates when the sampling 485 

process had achieved a stationary distribution at the end of the WLS process. The results are given for 486 

four parameters: stamflax, efcroijuv, efcroiveg and psisto. The grey bars represent the histograms 487 

drawn using data computation from all the Markov chains.  488 
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Figure 3 shows four contrasted cases of marginal pdf. The parameters efcroijuv, efcroiveg 489 

exhibited a marked mode. The efcroijuv parameter showed a left dissymmetry in its pdf, which 490 

signified that very low values were rejected during the sampling process. The stamflax parameter had 491 

a relatively irregular shape, indicating some uncertainty about its most likely value. However, the 492 

existence of a probable dominant mode around 200 degree-day is clearly noticeable. Finally, the psisto 493 

parameter showed a pdf clearly close to its prior distribution. This observation may results from two 494 

different sources. On the one hand, the STICS model is known to have little sensitivity to the psisto 495 

parameter (Ruget et al., 2002). On the other hand, as the psisto parameter is the critical potential of 496 

stomatal closure, one may suppose that the number of observations performed during the water stress 497 

events was not high enough to parameterise the model. The plant water potential being seldom reached 498 

and/or observed in this rain fed experiment conducted under a temperate climate, the sampling process 499 

led to high uncertainty of the posterior distribution of the parameter. 500 

Tables 4 and 5 present the parameter estimates at the end of the various sampling processes. 501 

Except for the psisto parameter, the optimised parameter set obtained with the OptimiSTICS-SLS 502 

algorithm and the sampled parameter set obtained with the DREAM-SLS approach were very close. It 503 

would also appear that the close results obtained using OptimiSTICS or the DREAM-SLS case did 504 

especially differ from the DREAM-WLS case for the stamflax parameter and the three radiation use 505 

efficiencies. Finally, apart from the psisto and stamflax parameters, the DREAM-CV approach tended 506 

to converge on the same parameter estimates obtained in the DREAM-WLS case. 507 

With regard to Table 5 which focuses on the DREAM-WLS case, the mean estimators were 508 

evaluated in comparison with the absolute optimal estimates that might have been obtained through all 509 

the chains. Apart from the stamflax, durvieF and psisto parameters, the mean estimators were very 510 

close to the optimal estimates. The three previous parameters exhibit a marginal shape with high 511 

uncertainty (Figure 3). Such differences between the two values could result from an insufficient 512 

number of function evaluations, or might appear when the parameter to optimize has a shape without a 513 

pronounced mode, which often occurs when at least one of the parameter’s prior boundaries is taken 514 

too close to the final value, when the parameter is physically bounded and exhibits a bimodal pdf 515 

(Laloy et al., 2010) or when it shows a tail in the posterior distribution (e.g., stamflax parameter). 516 



23 
 

517 

 518 
Figure 3: Marginal pdfs for the stlevamf, efcroijuv, efcroiveg and psisto parameters. 519 

Histogram of the parameter estimates at the end of the DREAM-WLS process. 520 
 521 

Table 4: Parameter estimates θmean at the end of the sampling processes. 522 

Case OptStics-SLS DREAM-SLS DREAM-WLS DREAM-CV 

dlaimaxbrut 1.5E-3 1.4E-3 1.4E-3 1.5E-3 
stlevamf 328 324 332 326 
stamflax 386 406 198 321 
durvieF 370 354 350 347 
efcroijuv 0.69 0.41 0.98 1.06 
efcroiveg 6.26 6.03 4.26 3.90 
efcroirepro 4.49 4.64 5.75 5.86 
INNmin 0.29 0.35 0.39 0.45 
psisto 6.76 10.55 10.10 6.56 

 523 
Finally, another interesting aspect of the DREAM and DREAM-ZS sampling algorithm lies in 524 

the possibility of studying parameter correlation (Table 5). Moderate to strong correlations were found 525 

between model parameters, especially between the radiation use efficiency coefficient (efcroijuv and 526 

efcroiveg) and the dlaimaxbrut parameters, which latter controls the overall leaf area index (LAI) 527 

development. In particular the correlation between efcroijuv and dlaimaxbrut was the strongest, with a 528 

correlation coefficient of -0.84. It highlighted the important effect of both parameters on LAI and 529 

biomass output, during the early growth, i.e. before AMF stage. A high value of dlaimaxbrut would 530 
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lead to an important increase of leaf area, which would have to be compensated by a lower efficiency 531 

of radiation use. 532 

The solar radiation use efficiency coefficients are strongly negatively correlated in pairs, 533 

efcroijuv vs. efcroiveg (-0.59) and efcroiveg vs. efcroirepro (-0.26). It clearly meant that an under- or 534 

overestimation of one parameter of the pairs was compensated during the next phenological stage to 535 

avoid the under- or overestimation of the global simulations in front of the measurements. 536 

Overall, parameters were logically correlated in relation with the preceding stage or the stage 537 

during which they are the most expressed (e.g. efcroijuv during the stlevamf or stamflax stages), while 538 

poor correlations were observed for parameters referring to different formalisms/physiological aspects 539 

(e.g. durvieF and psisto). 540 

 541 

Table 5: Summary of statistics of the marginal posterior parameter distribution in the DREAM-WLS 542 
case: optimal parameter set (θopt), posterior (θmean), posterior standard deviation (STD), and correlation 543 
coefficients over 18,000 generated samples. 544 

Parameter θopt θmean STD dlaimaxb. stlevamf stamflax durvieF efcroijuv efcroiveg efcroirep. INNmin psisto 

dlaimaxb. 1.5E-3 1.4E-3 3.0E-4 1 -0.22 -0.47 -0.03 -0.84 -0.60 0.16 -0.05 -0.08 
stlevamf 336 332 10.37  1 0.16 -0.19 0.29 0.49 -0.06 -0.25 0.06 
stamflax 328 198 48.41   1 0.12 0.46 0.11 -0.15 -0.04 0.08 
durvieF 280 350 33.91    1 0.04 -0.08 0.06 0.24 -0.03 
efcroijuv 1.05 0.98 0.09     1 -0.59 0.01 -0.09 0.36 
efcroiveg 4.05 4.26 0.21      1 -0.26 -0.46 -0.07 
efcroirep. 6.86 5.75 0.69       1 0.15 0.11 
INNmin 0.47 0.39 0.02        1 -0.27 
psisto 13.2 10.10 2.45         1 

 545 
Although the parameters were selected to avoid over-parameterization, it appeared that, at the 546 

end of the sampling process, some of them were sometimes highly correlated. Remembering that these 547 

parameters were not directly linked to the formalism driving the simulated output variable, these 548 

results highlighted that the information contained in the measurements were probably not sufficient to 549 

identify and accurately estimate all nine parameters.  This could never have been shown with a classic 550 

Simplex algorithm as it doesn't provide any information on distributions or correlations of parameters.  551 

These observations suggest to adapt the experimental design to the modelling expectations. 552 

First of all, the selected parameters should be optimised on the output variable which they impact the 553 

most directly the process. In this case study, it would correspond to measure other model outputs (e.g. 554 

LAI measurements or phenological observations to sample stlevamf, stamflax and durvieF 555 

parameters). Another adaptation would be to increase the measurement frequency when needed, i.a. 556 



25 
 

during the phases where the growth is the fastest or focusing on identified stress events. Last proposal 557 

would be to increase the degree of variation in model driving variables, i.e. the weather sequences, 558 

and/or the controlling variables, like the assessed experimental nitrogen fertilisation level. These 559 

remarks corroborate the researches of Beaudoin et al. (2008) and Basso et al. (2010) who highlighted 560 

the importance of numerous measurements and long-term experiments, respectively for the parameter 561 

optimisation process and the study of crop yield answer as response to climatic variability. 562 

 563 

 3.3.  Uncertainty on the predictions for the calibration dataset 564 

As highlighted above, correlation may be strong between parameters. The strength of 565 

Bayesian techniques is that one can cope with such correlated parameter sets. After convergence, the 566 

posterior distribution of the model parameters derived with DREAM may be used to compute model 567 

outcomes ensembles. The predictive uncertainty can then be summarized by model outcomes 568 

averaging and confidence interval computation. However, in front of the important computational time 569 

needed by such a procedure, it may be interesting to use a unique parameter set. The next two 570 

paragraphs will thus focus on the comparison of the set of mean values of parameters and the 571 

simulations associated to the posterior distribution of the model parameters. 572 

Figures 4, 5 and 6 present respectively the results of the model output simulations after three 573 

sampling processes: (i) the DREAM-SLS case, (ii ) the DREAM-WLS case and (iii ) using the realistic 574 

CV value (DREAM-CV). 575 

It seems that the DREAM-SLS approach led to final selected parameter estimators that tend to 576 

bias the model output simulations (Figure 4), especially at the early stages, from sowing until Julian 577 

day 470.  The same phenomenon, and pretty close simulations, were observed with the parameter set 578 

obtained at the end of the OptimiSTICS-SLS optimisation process. The corresponding growth of this 579 

physiological stage is governed mainly by the dlaimaxbrut, stlevamf and efcroijuv parameters. Since 580 

the dlaimaxbrut parameter governs the whole LAI growth, and because its value converges 581 

approximately on the same value whatever the process, this parameter could be considered as correctly 582 

estimated.  583 

With regard to Tables 4 and 5, the parameter estimates obtained for stlevamf seemed correct 584 
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compared with the DREAM-WLS case, although the efcroijuv parameter effectively did not converge 585 

towards realistic physical values using DREAM-SLS. The lower value during this early stage was then 586 

compensated with a higher efcroiveg value applied after the stamflax stage, until the initiation of 587 

flowering. 588 

589 

 590 

 591 

Figure 4: Model output simulations for the DREAM-SLS case.  No nitrogen cases (right) and 180kgN.ha-1 592 
(left). Winter wheat growing season 2008-09 (upper) and 2009-10 (low). Light grey area represents the 593 

95% uncertainty boundaries. Solid black line represents the simulations obtained with mean estimates for 594 
parameters. 595 

In addition, when comparing the DREAM-SLS process with the DREAM-WLS approach, the 596 

particular shape of the uncertainty boundaries is noticeable. In the DREAM-SLS case, the 95% 597 

uncertainty boundaries exist at the start of the growth, and can be observed from Julian day 450. They 598 

seem relatively constant throughout the growing season and for all CS. Analysing the results obtained 599 

with the WLS likelihood function, one can immediately notice (i) the precise match of the observation 600 

at early stage (before Julian day 500) and for the same period, and (ii) the extremely tight boundaries 601 

around the simulated output. These observations are consistent with the assumptions made in the 602 
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statistical errors model.  603 

The comparison of the DREAM-WLS case (Figure 5) and the DREAM-CV approach (using a 604 

realistic CV value of 0.145 - Figure 6) gives similar results, both in terms of uncertainty interval and 605 

simulations based on parameter values selected with the mean estimators. In both cases, the 606 

uncertainty intervals are very tight around the simulated output small at the early stages, but widen at 607 

the end of the simulation curve. This is due to the noise/standard deviation which is increasing 608 

proportionally to the absolute value of measurements (heteroscedasticity), as previously mentioned. 609 

The comparison from both the DREAM-WLS and DREAM-CV cases (Figures 5 and 6) showed thus 610 

pretty close simulations. This expected result is consistent with theory and the errors model defined 611 

within the likelihood function, but it allowed us to conclude that the proposed formula was correctly 612 

implemented and computationally as efficient as the WLS likelihood function. Nevertheless, since it 613 

takes account of the natural genetic variability of crop species, the proposed formula (Equation 7) 614 

opens the door to a new approach in parameter identification. Deeper considerations about the use of 615 

such a function are described in the conclusion section. 616 

The other observation concerns case-to-case analysis of the different cultural situations. In 617 

general, the sampling/optimization process leads to simulations that fit the measurements properly, 618 

taking account of nitrogen and water stresses. Since the model evaluation criteria are of poorer quality 619 

compared with the DREAM-SLS case, it seems right that the simulation relying on the WLS or CV 620 

likelihood function are slightly further from the measurements.  621 

622 
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 623 
Figure 5: Model output simulations for the DREAM-WLS case. No nitrogen cases (right) and 180kgN.ha-1 624 

(left). Winter wheat growing season 2008-09 (upper) and 2009-10 (low). Light grey area represents the 625 
95% uncertainty boundaries. Solid black line represents the simulations obtained with mean estimates for 626 

parameters. 627 

628 

 629 
Figure 6: Model output simulations for the DREAM-CV (CV = 0.145) case. No nitrogen cases (right) and 630 

180kgN.ha-1 (left). Winter wheat growing season 2008-09 (upper) and 2009-10 (low). Light grey area 631 
represents the 95% uncertainty boundaries. Solid black line represents the simulations obtained with 632 

mean estimates for parameters. 633 

 634 

 3.4.  Evaluation of the overall model quality  635 

Figure 7 presents the results of the model output evaluation criteria, both for the calibration 636 
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and validation procedures. The grey-scale histograms correspond to different model output 637 

simulations: simulations performed on the basis, respectively, of the mean parameter density estimates 638 

(light grey) and the 50% percentile of the last 540 simulations (dark grey). The horizontal black line 639 

represents the initial run of the model, based on the initial STICS parameter set. 640 

In the sampling processes conducted on the calibration dataset (left graphs on Figure 7), the 641 

results of the model evaluation were greatly improved compared with the initial run. RMSE was 642 

divided at least by two. The EF criterion, already superior to 0.5, was nevertheless improved and was 643 

close to 1. The ND criterion was also enhanced, and was always lower than the expected 0.1 value. 644 

With regards to the thresholds generally considered in crop modelling (Brisson et al., 2002 ; Beaudoin 645 

et al., 2008), the model was considered has being correctly calibrated. 646 

Comparing the various optimisation/sampling processes, it appeared that OptimiSTICS-SLS 647 

and DREAM-SLS cases always gave the better results. Their similar objective functions, i.e. the 648 

minimization of the RMSE between simulations and calibration data, explained why they converged 649 

on similar parameter set, and thus gave obviously the best RMSE on the data used for the calibration. 650 

The DREAM-WLS and DREAM-CV cases showed also and quite logically similar performances.  651 

It is worth mentioning that, in all the calibration cases, the mean parameter set obtained at the 652 

end of the sampling process led to similar results than the 50% percentile computed out of the last 540 653 

simulations. 654 

Considering the validation dataset (right graphs on Figure 7), the three criteria were enhanced 655 

in comparison of the initial run, even if the performances were slightly lower than in the calibration 656 

run. The RMSE was approximately 1 t/ha lower than the initial run. The model efficiency (EF) which 657 

was below the 0.5 threshold under the initial parameter set, was improved till more or less 0.65. The 658 

ND criterion, was improved under all the considered error assumptions and remained always under the 659 

validation threshold of 0.1. In presence of these results, the model was considered as validated 660 

whatever the error assumption made. 661 

Concerning the intercomparison on the validation dataset, the four error assumptions led to 662 

quite similar results. One could however notice the lower quality of the simulations obtained with the 663 

mean parameter set computed at the end of the DREAM-WLS sampling process. It was shown that the 664 
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posterior distribution of parameters could have multimodal or dissymmetrical distributions. While the 665 

correlation between parameters was obviously maintained during the sampling process, due to the 666 

shape of posterior distribution, a set of parameters calculated as the mean of the last given element of 667 

all chains may thus not necessarily represent a combination that will provide a good model evaluation, 668 

especially when assessed on an independent/validation data set.   669 

 670 

671 

672 

 673 
Figure 7 : Model evaluation criteria based on the calibration dataset (left) and the validation dataset 674 

(right). Initial model run (horizontal black line). Model evaluation using the parameters estimated with 675 
mean density (light grey), and the percentile 50% of the 540 model output simulations (black). 676 
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 3.5.  Uncertainty on the predictions for the validation dataset 677 

To validate previous statements, the temporal evolution of the model's outputs were computed 678 

for the validation dataset and for the different error assumptions (Figure 8). As previously observed, in 679 

the DREAM-SLS case (and this was also true with the parameter set obtained with 680 

OptimiSTICS-SLS), the simulations did not respect the biophysical behaviour of plants at early stages, 681 

compensating later the biomass growth with higher radiation use efficiencies. The results obtained 682 

under the ‘no nitrogen’ case and for the DREAM-WLS and DREAM-CV error assumptions were 683 

satisfactory. With 180 kgN/ha, the simulations were of poor quality when compared to the 684 

measurements. In a global way, the crop season 2010-11 is known to be particularly challenging in 685 

terms of modelling, since water deficits occurred, deeper than the ones observed in 2009-10. Although 686 

the criteria used to evaluate the model quality encountered the validation thresholds, the temporal 687 

evolution indicates the need for model improvement by selecting other or more parameters for 688 

identification. It may also suggest the need to use other formalisms better adapted to take into account 689 

water deficits. 690 

691 

692 
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 693 
 694 

Figure 8: Model output simulations for season 20010-11, under 180kgN/ha (left graphs) and 0 kgN/ha 695 
(right graphs), and for the different error assumptions, DREAM-SLS case (upper graphs), DREAM-WLS 696 

case (middle graphs) and DREAM-CV case (Lower graphs). Light grey area represents the 95% 697 
uncertainty boundaries. Solid black line represents the simulations obtained with mean estimates for 698 

parameters. 699 

 700 

 3.6.  Residual analysis 701 

The Figure 9 shows the error analysis results for the residuals between measurements and the 702 

fitted models using the SLS, WLS and CV likelihood functions for the four cultural cycles (CS 1 to 4). 703 

Three aspects are considered: (i) the residuals versus the simulated biomass, (ii ) the comparison of 704 

assumed and observed pdf and (iii ) the partial autocorrelation coefficients of residuals. 705 

In the DREAM-SLS case, the distribution of residual errors against simulated biomass 706 

appeared quite stationary, suggesting homoscedasticity. Although the number of measurements was 707 

low, the error histogram did not seem inconsistent with the assumed Gaussian pdf. Finally, errors were 708 

not correlated whatever the lag, highlighting the independence of the measurements. The assumptions 709 

for the statistical error model were thus a posteriori validated.  710 

The error analysis graphs drawn using the DREAM-WLS or DREAM-CV approaches were 711 

relatively close. In both cases, the residuals seemed to increase with simulated biomass, up to 10 t/ha 712 

and were quite constant thereafter (between 10 and 20 t/ha). The residual histograms did not really 713 

match the expected Gaussian distribution (e.g., if the histograms peaked around the zero value, there 714 

was a dissymmetry and a tail in the positive values of residuals). Finally, the residuals were at least 715 

significantly correlated at a lag of one measure, but in both cases this correlation was very close to the 716 

95% boundaries. 717 
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In line with the graphical analysis depicted in the simulations obtained under the 718 

DREAM-WLS or DREAM-CV cases (in Figures 5 and 6), it appeared clear that the model 719 

underestimated the measurements step by step, meaning that if at a particular moment a measurement 720 

was underestimated, there would be a tendency for this to happen with the next measure. Moreover, 721 

the underestimation seemed to appear only after Julian day 520, when half the biomass had yet to be 722 

produced (for biomass superior to 10t/ha). 723 

As mentioned by Wallach et al. (2006), since only a part of the between site-year variability 724 

can be predicted by crop models, correlations between model residuals often arise when several 725 

measurements are performed at different dates in a given site-year. However, this issue was 726 

acknowledged by the application of three mechanisms, respectively (i) the implementation of the 727 

experiment as a complete randomised block distribution, (ii ) the consideration of the coefficient of 728 

variation within the error model, and finally (iii ) by the implementation of a single-step sampling 729 

procedure, involving all the parameters to optimize and the variables output of the 4 cultural situation 730 

at the same time (Guillaume et al., 2011). 731 

For these reasons, and assuming that observational climatic inputs and in-field output 732 

measurement errors were negligible, meaning, in our case, that they are due solely to genetic 733 

variability, the systematic under-estimation of the in-field biomass samples for the higher values of 734 

biomass could be fully attributed to modelling inadequacies. Rather than enabling the conclusion that 735 

could be drawn about the non-stationarity or the non-normality of the error model, it suggested the 736 

need for model improvement, whether by selecting other (or more) parameters or other formalisms 737 

(stresses effects). 738 

 739 

 740 

 741 
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 742 

 743 

 744 

Figure 9: Model residual analysis, for three different likelihood functions: SLS (upper graphs), WLS 745 
(middle graphs) and likelihood function for which CV =0.145 (lower graphs). Analysis of the residuals 746 

against biomass simulation (left graphs), assumed (solid black line) and observed (grey bar) pdf of 747 
residuals (centred graphs) and partial autocorrelation coefficients of residuals (solid circle black line) with 748 

95% significance boundaries (horizontal grey line) (right graphs). 749 
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 4.  Conclusion 750 

This study assessed the potential of the DREAM algorithm for optimizing the STICS crop 751 

model parameters with the aim of improving the simulations of the biomass growth of a winter wheat 752 

culture (Triticum aestivum L.).  753 

Nine parameters involved in leaf area development, radiation use efficiency and stress effects 754 

were chosen for optimization of the biomass growth output. Different likelihood functions and error 755 

assumptions were evaluated: a standard least square (SLS), a weighted least square (WLS) and a 756 

transformed likelihood function that makes explicit use of the coefficient of variation (CV). The 757 

performances of the DREAM algorithm were compared with a Nelder-Mead Simplex algorithm 758 

adapted to the STICS model under the OptimiSTICS package. 759 

This study showed that it was possible to successfully use the DREAM algorithm combined to 760 

a complex crop model such as STICS. The DREAM algorithm offers the advantage of Bayesian 761 

techniques and MCMC simulations, i.e. the approximation of the parameters' posterior distribution, 762 

the evaluation of correlations, and the uncertainties estimation in the output predictions. 763 

The parameters’ sampling using the SLS likelihood function within the DREAM algorithm 764 

showed close results to those obtained using OptimiSTICS. The model evaluation criteria, RMSE, EF, 765 

and ND were substantially improved compared with the initial set of parameter values. The residual 766 

analysis also showed the validity of the SLS approach of DREAM. These results were very 767 

satisfactory and encouraging. However, when using the SLS likelihood function, considering the 768 

temporal evolution of the simulated biomass during a crop cycle characterised by significant water 769 

deficit that occurred at the early season, it appeared that the simulations did not fully respect the 770 

biophysical behaviour of plant growth which compensated later the biomass growth thanks to higher 771 

efficiency of radiation use. Insignificant or unrealistic values occurred thus for some parameters. This 772 

was probably due to the fact that too limited information was included in the dataset to efficiently 773 

sample the posterior distribution of the selected nine parameters. Although parameters with low 774 

interaction were chosen, correlation appeared in the parameters’ posterior distribution. This 775 

observation highlighted the importance of adapting the experimental design to the plant-soil system 776 
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dynamics with modeling purposes.    777 

Finally, it is worth mentioning that the proposed likelihood function based on an explicit 778 

formulation of the CV presented several advantages. The results were very close to those obtained 779 

with the standard WLS likelihood function and were satisfactory in terms of evaluation criteria, 780 

RMSE, EF and ND. From a biophysical point of view, relevant values for all parameters were 781 

obtained. Furthermore, the proposed CV likelihood function allows taking into account not only the 782 

noise on measurements but also the heteroscedasticity regularly encountered in crop modeling. 783 
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