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Abstract

This study presents a Bayesian approach for thenpeters’ identification of the STICS crop
model based on the recently developed DifferenBablution Adaptive Metropolis (DREAM)
algorithm. The posterior distributions of nine sfieccrop parameters of the STICS model were
sampled with the aim to improve the growth simwlasi of a winter wheat (Triticum aestivum L.)
culture. The results obtained with the DREAM algor were initially compared to those obtained
with a Nelder-Mead Simplex algorithm embedded witiie OptimiSTICS package. Then, three types
of likelihood functions implemented within the DREAalgorithm were compared, namely the
standard least square, the weighted least squadea dransformed likelihood function that makes
explicit use of the coefficient of variation (CVljhe results showed that the proposed CV likelihood
function allowed taking into account both noise mmeasurements and heteroscedasticity which are

regularly encountered in crop modelling.
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1. Introduction

In recent decades, the number of dynamic crop msodeleloped for estimating crop
performance based on the interactions betweenamagnt and agricultural management has greatly
increased. There are two types of models: speaifid generic. The former are process-oriented
models capable of simulating water balance, nitndgglance, growth and the development of a given
crop, while maintaining reasonable input requiretserror example, the CERES-Wheat model
simulates the growth, development and yield of wif€eticum aestivurrl.), taking account of the
effects of weather, genetics, soil (water, carbod aitrogen), planting, irrigation and nitrogen
fertilizer management (Ritchie and Otter, 1984;g8iret al., 2008). Generic models are based on
physiological principles for growth and developmenbcesses that are common across many crops.
They use a modular code for crop modelling, praxgdéasy ways of comparing modelling approaches
without the need to change the code. They alsoigiecy way to interpret data from field experiments
in various environments (Monteith, 1996) and tolgsethe processes at the plant component level
(Confalonieri and Bechini, 2004). Well-known gewamodels that are able to simulate the growth and
development of various crops (wheat, maize, sorgheatn.) are EPIC (William et al., 1989),
WOFOST (Van Diepen et al., 1989), DAISY (Hansemlet1990), STICS (Brisson et al., 1998) and
SALUS (Basso and Ritchie, 2005).

The number of parameters required by generic masdlgher than for specific models. The
STICS model used in this study (Brisson et al.,81®xisson et al., 2003; Brisson et al., 2009) is
characterized by its ability to adapt to a widegeof agro-environmental issues and its adaptalbdlit
various crops : e.g. wheat, sugarbeet, sugarcare, It implies that the number of parameters
involved is high: more than 200 parameters arenggd in three main groups related to (i) soil, (ii)
plant characteristics (species or genotype) afpchfanagement techniques. The soil properties ean b
determined from pedotransfer functions but these ¢ghe mean soil properties for rather broadly
defined soil textures classes and therefore proliidiéed site-specific information (Wosten et al.,
1999). The soil properties can also be measuretttliron site, but this is very costly and time

consuming. Management techniques are usually krnasvthey reflect the farmer’'s decisions. The
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parameters related to plant growth and developnaeat determined from the literature, from
experiments conducted on specific processes indlidehe model €.9. mineralization rate, critical
nitrogen dilution curve) or from calibrations basewl large experimental databases (Launay et al.,
2005; Flenet et al., 2004). In all cases, the pgapan of uncertainty about the parameters cowdd le
to a model that does not accurately describe regsosbserved in the field.

Parameter estimation is not straightforward in gengop models. Most of the equations are
non-linear, coupled and hierarchical; the nhumbepafameters to optimize is important; and field
spatial variability and climatic temporal fluctuas are high. Several methods have been proposed fo
parameter estimation, based on frequentist or Bayegpproaches (Beven, 1989; Wallach et al.
2006). In the first category are sensitivity anal/éWallach et al., 2001; Ruget et al., 2002; Beiakti
al., 2006; Makowski et al., 2006; Monod et al., @0Campolongo et al., 2007; Lamboni et al., 2009)
and stepwise regression methods (Wallach et &1,20006). Recently, Wallach et al. (2009, 2011)
developed a software package suited to the STIG® model (OptimiSTICS) that used the Extended
Fast algorithm (also used by Varella et al., 20204,1) to analyse the sensitivity indices.

The Bayesian approaches (Gilks et al., 1996; JaasdrHagennars, 2004 ; Makowski et al.
2002) are becoming increasingly popular for estimgainodel outputs and parameters distributions in
different types of complex models, like the simiglatof biological processes (Minunno et al., 2013),
environmental (Dietzel and Reichert, 2012; Rasmusg®l Hamilton, 2012), hydrological (Jeremiah
et al., 2012; Laloy et al., 2010; Vrugt et al., 30Wu and Liu, 2012) or crop modelling (Makowski et
al. 2006 ; Varella et al., 2010b). In these apphneac the parameters are considered as stochastic
variables defined by the prior distribution of pabldity. The process aims to sample the posterior
distribution of the parameters leading to the stiglly most relevant simulations.

Traditionally, it has been difficult to estimateetposterior distribution of parameter estimates
and/or the model output predictions, but the usklafkov Chain Monte Carlo (MCMC) simulations
(Metropolis et al., 1953; Vrugt et al., 2009b) maade this task easier. The basis of these metbals i
Markov chain, which generates a random walk thrahghsearch space and iteratively visits solutions
with stable frequencies. To do this, an MCMC altyon generates trial moves from a current position

in the parameter space, defined by the actualipnsit the Markov chain, to a new position in the
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parameter space. The earliest and most widely M&&dC approach is the Random Walk Metropolis
(RWM) algorithm (Metropolis et al., 1953). One bktparticularities of the algorithm lies in the use
of the Metropolis acceptance probability ratio (Meblis et al., 1953) as a selection rule to decide
whether or not the candidate parameter set copldae its parents. The result of the algorithm is a
Markov chain that, for the values that are suffitle far from the starting point, has a unique
stationary distribution with stable frequenciesnstgng from the underlying probability density
function (pdf).

In 1970, Hastings extended the original MCMC tolude non-symmetrical proposal
distribution. Called the Metropolis Hastings (MHyarithm, this extension became the basic building
block of many existing MCMC sampling schemes. le 990s, much research was devoted to
Markov chain sampling (e.g., Gilks et al. 1996; iBah et al., 1997; Brooks, 1998). Although this
research improved the efficiency of MCMC algorithrtisey remained inefficient when confronted
with posteriors with very heavy tails and with posir model output prediction surfaces that
contained multiple local optima. Recognizing thaitations of previous MCMC schemes, ter Braak
(2006) developed the Differential Evolution-Markdwhain (DE-MC) method, which can run
simultaneously and in parallel with several Marktxains and uses a genetic algorithm for estimating
parameter evolution. DE-MC solves the RWM practjmalblem of choosing an appropriate scale and
orientation for the jumping distribution. Vrugt &t (2008a, 2009a) proposed a new MCMC sampler
called the Differential Evolution Adaptive Metrom{DREAM) algorithm. DREAM is a follow-up of
the DE-MC method and an adaptation of the Shuf@ednplex Evolution Metropolis (SCEM-UA)
global optimization algorithm (Vrugt et al.,, 2003)he authors showed how using self-adaptive
randomised subspace sampling, with explicit comatiten of aberrant trajectories, could still enhgnc
sometimes considerably, the efficiency of the DE-BlIGorithm. Vrugt et al. (2009a) demonstrated
that there was an optimal choice for the multipfiehe difference of two randomly chosen members
from remaining chains used in the genetic algoritiiime advantages of DREAM are summarised
here. First, DREAM solves two important problemseQs the automatic selection of an appropriate
scale and orientation of the proposal distributituming evolution towards the posterior distribution

(i.e., self-adaptive randomized subspace samplirtgg).second one is the efficient accommodation of
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heavy-tailed and multimodal target. Unlike the SGBEIX algorithm, DREAM can maintain a detailed
balance and ergodicity while showing good efficierfor complex and highly non-linear and
multimodal target distributions (Vrugt et al., 2@)9DREAM also solves limitations such as the need
to choose the starting values and the unlimitedbmimef parameters that could be optimized at the
same time (Makowski et al.,2002). Finally, and mastently, Vrugt et al. (2011) have shown how
DREAM could be enhanced using parameter sampliog fpast states of the genetic evolutionary
chains, leading to the DREAM-ZS algorithms (Vrugtat., 2011; Laloy et al., 2012). Let's also
mention that in the recent years, another suitsoleitions emerged which consist to consider
simultaneously parameter optimization and datamakgion (Vrugt et al., 2006, Mansouri et al.,
2013).

In recent years, the debate has focused on theofuseformal or informal approach for
specifying the likelihood function (Beven et alQ(8; Schoups and Vrugt, 2010; Vrugt et al. 2008Db,
2009b). Informal likelihood functions have beenpwsed as a pragmatic approach to uncertainty
estimation in the presence of complex residualrestrmctures. Importance sampling algorithms, such
as the Generalised Likelihood Uncertainty Estima(i@LUE) method (Beven and Binley, 1992), are
becoming very popular because they have the patedntideal with estimation uncertainty problems
where simple theoretical likelihood assumptionsraeappropriate (Beven and Binley, 1992; Beven,
2008; Vrugt et al., 2009b). For example, Varellale{20010b, 2011) investigated characterizing) soi
properties in agricultural fields by inverting t&JICS dynamic crop model, using the observations
conducted in those fields by remote sensing ordyiabnitoring. This method, however, involves
discretisating the parameter space in order tooparbptimization, and such an approach could lead
to an inaccurate representation of the postericarpater distribution when the model parameters are
numerous (Makowski et al., 2002).

Alternatively, the formal approach starts from aswaned statistical model for the residual
errors (Joseph and Guillaume, 2013 ; Laloy et24l10 ; Vrugt et al., 2009b). This model, which is
specifieda priori, is then used to derive the appropriate form fierlikelihood function that links the
model output with the real-life measurements arat #hould therefore correctly sample the high-

probability density region of the parameter spa®ECMC simulations then allow behavioural
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solutions to be separated from non-behavioural ,ones\g a threshold based on the sampled
probability mass. Typically, the residual erroruamptions can be classified into three groups rdati

to (i) error variance,ii() error distribution andii{) error correlation. The advantage of the formal
approach is that error model hypotheses are septicitly and their validity can be verified
posteriori (e.g., Schoups and Vrugt, 2010). The formal apgrohowever, has been criticised for
relying too heavily on residual error assumptiohattdo not reflect reality in many applications
(Beven et al., 2008). For example, considering tit errors are independent and identically
distributed, following a normal distribution witheto mean and constant variange the statistical
error model would result in the standard least sspIéSLS) approach (Box and Tiao, 1973). In many
cases, however, and especially in agriculturalanete the errors are correlated, non-stationary and
non-Gaussian. Correlations between model residofiésy arise when several measurements are
performed at different dates in a given site-y&ite-year characteristics have a strong influente o
observations and, as only a part of the betweenrysiar variability can be predicted by crop models,
model residuals obtained in a given site-year hdiNferent variances and are often correlated
(Wallach et al., 2006).

The main objective of this paper is to extend thailable parameter estimation tools of the
STICS soil-crop model. Currently, DREAM and DREANsAre probably among the most optimized
MCMC algorithms than can offer genericity and rdbess in the parameter sampling process. On the
other hand, the STICS model is widely used andlifity to simulate contrasted situations and to
adapt to new species is well recognised; to daieekier, parameter optimization is rarely obtained
using MH algorithms. The first aim of this papertierefore to extend the parameter estimation
techniques available for the STICS model by usirgRREAM-ZS scheme and to assess the coupling
of both algorithms.

At another level, in-field measurement errors aiséed with crop modelling experiments is
not a trivial problem. To improve the computatioaiciency of the sampling MCMC algorithms, the
expert knowledge could be expressed at the praoégdisation stage through a more appropriate
definition (e.g., tightening) of the parametepsior distribution. In our opinion, however, it should

also advantageously appear in the likelihood femgtmaking it possible to take account of systernati



165 error measurements. In this context, and usingradbrepresentation of error assumptions, a new
166 version of the likelihood function was derived timadkes explicit use of the coefficient of variation

167 (CV) of the measurements and which should be abéetount for heteroscedastic error cases.



168

169
170

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

194

2. Material and methods
2.1. Case study

The data used in this paper derive from an experindesigned to study wheat growth
response Triticum aestivumL., cultivar Julius) under different nitrogen fiéeation levels. The
experimental blocks were prepared on two soil tyfi@smy and sandy loam), corresponding to the
agro-environmental conditions of the Hesbaye regioBelgium. The measurements were the results
of four repetitions by date, nitrogen level, sgjp¢ and crop season. Each repetition was perfooned
a small block (2 m x 6 m) within the original exjpeent as a complete randomised block distribution,
spread over the field within each soil type, to usasmeasurement independence. A wireless
microsensor network was used to continuously charae the soil (water content, suction,
temperature at two depths: 30 and 50 cm) and thesghere (radiation, temperature, relative
humidity) within the vegetation. Pluviometry datene also acquired in the experimental field.
Biomass and soil nitrogen content were regularlgsneed manually.

This paper focuses on the biomass growth, deschipede MASEC output within the STICS
model, over three years (crop seasons 2008-0910-20). Two fertilization levels were considered in
this study: crop growth (i) without nitrogen feegliand (ii) under a nitrogen level of 180 kgN‘ha
applied in three fractions and according to thrg@ialent doses, respectively at the tillering (@esl
stage 23), redress (Zadoks stage 30), and lasstiegds (Zadoks stage 39). The above ground biomass
measurements were performed at a bi-weekly intdrged mid-February (about Julian day 410) until
harvest. The above ground biomass was defined dé®rthe sum of straw and grain yields. The
measurements were performed on dried samples,spomding to the sampling of three adjacent
50cm rows.

Table 1 summarizes the different identified cultwituations (CS) according to the cropping
seasons and the stresses events. For each ofdhadw cycles of the first season (CS 1 and 2), ten
measurements were performed. Nine aboveground B®maeasurements were made for each
nitrogen level of the season 2009-10 (CS 3 andhleviive biomass samples were taken during the

last season (CS 5 and 6).
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Table 1: Thedifferent cultural situations (CS) and the stress effects

Stress effect

No nitrogen stress
180kgN.ha

Nitrogen stress
OkgN.ha'

No water stress
Season 2008-09

Cs1i
Calibration dataset

CS2
Calibration dataset

Water stress #1
Season 2009-10

Cs3
Calibration dataset

CSs4
Calibration dataset

Water stress #2
Season 2010-11

CS5
Validation dataset

CS6
Validation dataset

2.1.1. Calibration dataset
The first two years of experiments were used tibte the model. The 2008-2009 crop was
sown in late October (Julian day 297) and harvestenid-August (Julian day 593). The yields were
quite high and close to the optimum of the cultivaainly because of the good weather conditions and
the sufficient nitrogen nutrition level. In the ZBA010 season, the crop was sown in early November
(Julian day 323) and harvested a bit later thafirsh year (Julian day 598), due to the poor aestiv
conditions. This season was characterised by g&gnif water stress that occurred at the early seaso
(February) and in the early summer (July).
2.1.2. Validation dataset
The last year of experiments was used to perfornniladel validation. During the season
2010-11, the measured yields were close to the obssrved in 2009-10. However, a lower number
of tillers and fewer grains per ear were obserddils was a consequence of strong climate-induced
stresses, namely an important water deficit ant tegiperatures at spring (from the middle of March
till the end of May). Owing to the return of raihearly summer, the grains have been correctlgdill

but the straw yield has remained really poor.

2.2. Model description
2.2.1. TheSTICScrop mode
The STICS crop growth model (INRA, France) usedtiis study has been described in
several papers (Brisson et al., 1998; Brisson.e2@03; Brisson et al., 2009). STICS is a gensuit
crop model that can simulate a broad range of clogsmulates the water, carbon and N dynamics in

the soil-plant-atmosphere system on a day-by-dajsbét allows to take into account the effect of
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water and nutrient stress on development rate ¢Balet al., 2011). It requires daily weather data
inputs (i.e., minimum and maximum temperaturesaltoadiation and total rainfall, vapour pressure
and wind speed).

Within STICS, the eco-physiology of abovegroundvgio is driven by a classic carbon
balance : the leaf development allows the intefoppdf the solar radiation, which is converted into
biomass and later oriented towards harvestablensrgehe whole plant phenology of aboveground

growth is driven by the degree-day thermal ind&xdfay].

2.2.2. Parameter assumptions

Nine parameters involved in the aboveground biongagath simulation were selected to be
optimised. However, in order to avoid over-parameégion (Varella, 2011; Varella et al., 2010b)e th
selected parameters were chosen as not beingraditlgli linked to the formalism of the simulated
variable (MASEC) : we considered parameters invibivethe phenologystlevamf stamflay, the leaf
area developmentdlaimaxbrut durvieF), parameters directly related to biomass groveticréijuy,
efcroireprq efcroiveg and finally related to water and nitrogen stresgusisto, INNmih The
remaining parameters of the species were fixetiesuggested default values (Brisson et al., 1998;
2003).

Table 2 summarizes the studied parameters, thiéalimalue and their prior distribution. In
this table, the ILEV, IAMF and ILAX stages corresbrespectively to the stage of emergence, the
day when the leaf growth rate is maximal (AMF s)aged the day when the maximal leaf area index
(LAI) is reached. The complete senescence of the, @onducted by theéurvieF parameter is reached
a few days before maturity of the crop. The radratiise efficiency is known to be different during
plant growth. It is lower during the juvenile phaseéhich extends between emergence (ILEV) and
AMF stage (IAMF). It is higher during the vegetatigtage, which occurs between AMF stage and
flowering, and during the reproductive phase. Asillastration, the Figure 1 shows the biomass
measurements performed during the crop season 20@B-with the corresponding standard

deviation.
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246  Table2: Initial parametersvaluesand prior distribution

Parameter g™ Prior values  Unit Definition
dlaimaxbrut 4.5E-4 [0 - 4E-3] méy.(plant)’.(°C-day)*  Maximum rate of LAl daily increase
stlevamf 255 [0 - 400] °C-day Duration between ILEV andVIR stages
stamflax 350 [0 - 500] °C-day Duration between IAMF and KAtages
durvieF 220 [0 - 500] °C-day Maximal lifespan of an adehf
efcroijuv 1.8 [0-45] g.M3 Radiation use efficiency during juvenile phase
efcroiveg 4.25 [0-10] g.M3 Radiation use efficiency during vegetative stage
efcroirepro  4.25 [0-9] g.M3 Radiation use efficiency during grain filling pleas
INNmin 0.360 [0-1] / Minimum value of Nitrogen Nutritidndex allowed
psisto 15 [1-20] bar Absolute value of the potentiaktiimatal closing
247
248 The lower and upper boundaries of {hor parameter distribution were slightly modified

249 compared with the original OptimiSTICS package. ytveere reduced in order to ensure faster

250 convergence, but they were kept wide enough toym®a sufficiently high parameter space.

251
251
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0 360 35‘0 400 4‘;0 * 560 55‘0 660
2 5 2 Julian Day
253 Figure 1: Biomass measur ements (mean values and standard deviations),
254 and principal phenological stages of the crop during the cultural season 2008-09.
255
256 The parameters were sampled/optimized on the fiinst contrasted cultural situationise.

257 corresponding to the climatic input data of seaS@008-09 and S.2009-10, and to the nitrogen level
258 0 and 180kgN.Ha(CS 1-4 in table 1). A total of 38 biomass measumats were used to identify the
259 nine parameters. Once the parameters sampled, ddel mwas then evaluated on the crop season
260 2010-11 (CS 5 and 6).

261

262  2.3. Bayesian theorem, error assumptions and adapted likelihood function

263 2.3.1. TheBayestheorem
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According to the Bayes theorem, the posterior poditya density function (pdf)z(4]Y) is

given by following equation:

()= "(YJ%(H (1)

In this expressiorg andY represent the vectors of the parameters and thsurements, respectively,
and z(0|Y) represents the pdf of the parameters given therebd data and/or measurements. This
probability constitutes thposterior probabilityof the estimated parametergd) is the probability
distribution of the parameters to be estimateds Tainstitutes therior probability, referring to the
prior knowledge existing about the parametéirasually consists of a uniform distribution limd by
realistic lower and upper bound parameter valz@é) is the probability distribution of the observed
data. It is a constant determined by the requiréiet the integral of the posterior distributia(d|Y)
over the parameter space must equa{¥p) is the probability distribution of the measurensegitzen
the parameters and is referred to adikedihood function Its value is determined from the probability

distribution of the errog; between modelled and observed data :

(@Y. x)=9,(x,6)-y, i=1..n )
wheren is the total number of observatiofigd,X) is thei™ modelled value, according to model inputs
X and model parametefisandy; is the corresponding observation.

The problem lies in estimating the likelihood fuoot Assuming that errors, also called

residuals (Equation 2), are uncorrelated and Gaunstistributed (Equation 3),
£ = N(O, aiz) (3)

the likelihood function can be simplified, takirfgetfollowing form (Equation 4; Box and Tiao, 1973):

H(Y|c9): Ijﬁe)(p{_ [9. (e,zxa)iz_ Yi ]Z} 4

whereg? is the error variance on measurement

Finally, for reasons of algebraic simplicity, numcat stability and algorithm implementation,

Vrugt et al. (2009b) proposed using the logarithmmsformation of the likelihood function:
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71y (Y16) = -g-ln(ZH)-Zln(o:)—%g(MT (5)

i
The actual form of Equation 5 is known as the wiidHeast square (WLS) function. Instead
of the ;2 value, a constant value for the error variasfceould be hypothesised. Such an assumption
would consist to consider a constant error variamoatever the measurement dates and their absolute
values. In that way, it allows simplifications te made in Equation 5, which results in the standard
least square (SLS) form of the equation. Thesea essumptions (SLS and WLS), however, are both
quite strong and can be unrealistic in crop moaglie.g, when the measurements are performed at a

same location throughout the season).

2.3.2. Experimental design and residual assumptions

As noted above, the SLS and WLS approaches madasgwemption that the errors were
uncorrelated and (identically or proportionally) USaian-distributed. The experimental design was
adapted to meet part of this assumption and thggnati experiment was implemented asamplete
randomised block distribution

Applying Fisher's three principles (Preece, 1990)eplication randomizationand local
control — allows the error variances to be estimated whiteeasing the precision of the experiment
(diminution of error). More preciselyandomisationallows an unbiased estimation of the residual
variance to be obtained, wherdasal control (sometimes calletllocking increases the precision of
the experiment. The main objectives of #@mplete randomised block distributjoaspecially its
randomisationcomponent, is to create experimental units thataar similar as possible in order to
reduce, within the blocks, the heterogeneity of éxperimental conditions. This allows the spatial
correlation to be reduced and, at a lower measheaemporal correlation between the measurements,
which then correspond to an average over replicates

Each of they;-values and the corresponding standardieviationsneeded for the likelihood
function calculation therefore resulted from foeplicates randomly spread over the experimental

field.
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2.3.3. Non-stationary and correlation error assumptions
From these in-field observations, it appeared thataverages and the standard deviations of
the total biomass measurements increased througfimseasons, transducing a non-stationarity of the
residuals. As the first part of the results secttiows, however, the CVs, expressed as the ratio

between the standard deviation and the measura(iggb), exhibited stationary values:
cv=- (6)

We therefore decided to introduce CV explicitlyoriEquation 4 and, after log-transformation,

a revised likelihood function was obtained (Equafi), referred here-after as CV likelihood function

5.6.X) _)Y
710y (V10)= =2 In(2rmCV?) - ZIn(yl) Z( Y, 1)

293 CV

(7)

Typically, crop growth is known to be a heterosatidgphenomenon. In that way, if the CV is
stationary over the seasons and over the yearprap@sed formula will offer important advantages.
On one hand, if too few measurements are avaifablgractical reasons (such as financial constgaint
or storm events), the use of the proposed likehfumction would allow the computation of a CV
relevant for the whole crop growth cycle, which Iwiiicrease the efficiency of the parameters
sampling process.

On another hand, ideally, the CV value should gmpoad exclusively to the expression of the
crop natural genetic variability. However, for pieal reasons, it involves measurement erroegs,
linked to inadequate measurements sampling pramessn-adapted equipment. Such errors will be
added to the natural variability and may conducioterestimated CV values. Next to thdor
definition, the definition of a realistic CV valwell thus also allow to express the expert’s knavge

at each step of the parameter sampling process.

2.4. Parameter identification and model output uncertainty
2.4.1. TheOptimiSTICS parameter optimisation package

The OptimiSTICS package was used as a referenttesiistudy to assess the performance of



339
340
341
342
343
344
345
346
347
348
349
350
351
352
353

354
355
356
357
358
359
360
361
362
363
364
365
366

15

the DREAM algorithm. A brief description of OptinT&CS is given here beneath, a full description
can be found in Wallach et al. (2011). OptimiSTI€8culates the parameter values that optimize the
goodness-of-fit criterion (for example that minimaesum of squared errors). OptimiSTICS uses the
Nelder-Mead simplex algorithm which can be used duultidimensional minimization for any
function. The simplex algorithm used is the Matlaiction ‘fminsearchbnd

However, crop models are complex functions of tammeters and there is no assurance that
local optimization techniques will converge to thlebal optimum. To overcome this problem, in
OptimiSTICS, the simplex algorithm is run with sealedifferent starting points. The more numerous
starting points used, the less the risk of missiegglobal optimum.

It is worth mentioning that the OptimiSTICS packageposes different options. The software
can treat the case where some parameters are genspgcific while others are common to all
genotypes. It can also automatically do severaleetipl stages of parameter estimation. Finallg, th
software offers the possibility to consider differenodel errors, including the WLS case (Wallach et

al., 2011).

2.4.2. The DREAM algorithm and the associated parameter uncertainty

The origins and developments that led to DREAM wagpicted in details in the introduction
section. The present section and the followingfaceised on the advantages offered by DREAM in
terms of post-data treatment.

Assessing the posterior distribution of the modatameters using MCMC simulations,
performed with DREAM or DREAM-ZS, led to severalaois that contained all the necessary
information about model parameterization.

The first step in obtaining parameter estimatés select, among the chains, the parameter set
that offers the optimal solutio®¥), i.e. the one that optimises the convergence criteriamwéver,
provided convergence has achieved a stationamjtdison, from a statistical/methodological poirit o
view, the information contained in each chain Hesdame relevance. In a second step, the marginal
posterior pdfs were thus evaluated, with the carted information contained in each chain (e.qg.,

drawing their histograms). This insight should ofie@mal information about the quality of sampling,
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depending on whether the histograms exhibit a prooed mode, are bimodal or close to the prior
distribution. An interesting discussion about sabkervations was reported by Laloy et al. (2010).
When designing decision-support tools, it seemessary for the modeller to summarize the
marginal posterior pdf in one parameter estimate.iditial step in assessing the most probable
parameter value involves calculating the postemeans (Equation 8), the corresponding standard

deviation, and eventually the correlation coefiitgebetween the generated parameter samples.

1 nx2xd
Hmean= 6 38
~oxd Z . (8)

In this equationd is the number of sampled parameters and i8xhe number of chaing, is the
number of last elements in a chain of the sampligess, when each chain exhibits a stable posterio
parameter distribution, arét] is one of the numerous probable values for tharpaters. The number
of chains was fixed as two times the number of patars 2xd). In this study, the lagh=1000

elements of each chain were compiled in order knutzte the mean of each parameter value.

2.4.3. The DREAM algorithm and the output predictive uncertainty

In addition to parameter uncertainty, we were aiderested in the predictive uncertainty
linked to the corresponding model output. The pastelistribution of the model parameters derived
with DREAM or DREAM-ZS contains all the informatioreeded to summarize predictive uncertainty
(Vrugt et al., 2009b). A common and easy approacto ievaluate the model outputfor the lastP
parameter sets of each chalxq chains) when convergence has been achieved foati@rstry
distribution. The so-obtained model output{&t j = 1,...,2xdxP} is summarized in the desired way,
e.g. by computing the 2.5% and 97.5% percentiles of niedel predictions, which difference
corresponds to the 95% uncertainty boundaries. gieidictive distribution includes only the effedt o
parameter uncertainty (Vrugt et al., 2009b). Thdewithe parameter posterior distribution, the wider
the 95% boundaries. In addition, the 50% percestitalation could also be used to evaluate model
performance, and be compared with f}¢6™°*) simulations.

In this case, the last 1.000 sets were no longesidered. To reduce the simulation time, the

dataset was reduced to the last 30 values of eaatkdV chain. Since there are 18 chains



394
395
396

397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419

420

17

(2xd parameters), the parameter uncertainty evaluatitime model MASEC output was summarized

in the percentile computation of 30 x 18 = 540wdations.

2.4.4. The sampling process

Even if the STICS model has been widely usedudysaind simulate wheat growth, Belgian
cultivars differ from French ones, notably by thgirenology and yields. For a first evaluation & th
model, the original parameters file of the wheatcsps remained at the suggested default values
(Brisson et al., 1998; 2003) included in the STKftware. This case was referred to asittitéal
caseandd,; represents this initial parameter set.

As a first parameter optimisation technique, theti@$TICS package was used. In
accordance with the requirements of the DREAM ailor (see below), 18 starting points were used
and randomly generated among the prior knowledge amned about parametére. it's a priori
distribution. When running OptimiSTICS, the residuaere considered as being independent errors,
with zero expectation and the same variang@ch corresponds to the same assumptions as dor th
SLS case run with the DREAM algorithm (see beloW)is case is referred later @ptimiSTICS-
SLS. The selected parameter set was the one that gaveihimum error (Wallach et al., 2011g.
the one that should offer the optimal solutiéffy.

The DREAM-ZS algorithm was then used to performapaeter sampling of the STICS
model. To evaluate its performance, various assomptabout the error measurements were
considered and taken into account for differerglifood functions.

The first case made use of a classical sum of squaror to represent the likelihood function,
in line with the frequentist approaches. Since finption appeared in the algorithm, the constant
standard deviation disappeared and the measuremergsconsidered only by their mean value. This
case was referred to as the DREAM-St&se, andds s represented the corresponding optimised
parameter set. The second case corresponded tavelghting, within the likelihood function
computation, of residual data by the nominal steshdkeviation calculated on the basis of the four

replicates of in-field measurements, and reliedngplementing Equation 5. This case, corresponding
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to the DREAM-WLS, was represented @y, s Finally, DREAM's ability to retrieve parameterluas
was evaluated against the error measurement agsammpaking an explicit use of the CV (Equation
7). This case will be referred as DREAM-CV. Tables@mmarizes all the error measurement
assumptions.

With regard to the DREAM options, the toolbox wag a maximum of 22,500 times, which
corresponded to 2,500 evaluation functions muégly the number of parameters (d = 9). This value
was checked on preliminary studies to ensure cgevee. The number of Markov chains was fixed at
18 because there were nine parameters to be estifffC> 2d, Vrugt et al., 2009a).

In each cases, a single-step calibration procedwelving all the variables (i.e. the MASEC
output of the 4 CS) and all the parameters to dpimwas used instead of a multiple-step

optimization procedure (Guillaume et al., 2011).

Table 3: Thedifferent cases considered for measurementserrors

Case Error assumption Error value
OptSTICS-SLS & Variance fixed for all measuremetisatever date or observation value)

DREAM-SLS

DREAM-WLS Nominal variance value computed from reglions of observed values Gi
DREAM-CV Global CV value computed from all replizns of observed values 0.145

2.5. Evaluation of the global model output estimates

A crop model is a good representation of realityititan be used to predict observable
phenomena in the range for which it was calibrdtaxhgue and Green., 1991). This underlines the
need to define criteria that will determine whethenodel is ‘acceptable’, in pursuit of set objeesi.

The first criterion is the Root Mean Square ErRMSE):

n 2

RMSE= \/lz(yi -9,(x.67)) ©)

i=1

wheren is the number of observationgjs an available observation of tfeneasurement vector, and

t

¥ is the corresponding simulated value, which redieghe vectoX of inputs.6”°%; _4represents the

vector ofd parameter estimated on thesteriordistribution, using one of the proposed techniques
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The model efficiency (EF) criterion presents an emppoundary, which facilitates its

interpretation and makes it suitable for compadiifgrent situations:

EF =1--% , EF<1 (10)

If the model is perfect, thepp= 3 for eachi, andeF = 1.
Ultimately, the normalised deviation (ND) criterimhows the tendency of the model to
provide under- or over-estimations, overall, of tteal case. This parameter can be positive or

negative, but is ideally equal to zero.

5, (x,67%)-3y,

ND= i=1 i=1 (11)

RMSE, EF and ND are rarely used alone for evalgatiodel quality. Brisson et al. (2002)
and Beaudoin et al. (2008) used RMSE, EF and NbBtlypion the basis that model calibration or
validation is accurate if tieRMSEis relatively low compared with the mean of theetvations, and if

EF =05

IND[< 01 13)

2.6. Software availability
The software programs (STICS-OptimiSTICS and DREAI libraries of Matlabfunctions

divided into several sub-packages. The STICS iaterfsub-package is based on the OptimiSTICS
codes and is responsible for managing the STICSulations and their inputs and outputs. The
OptimiSTICS codes were obtained upon request byatitéors ¢mmah_web@paca.inrg.fiThis
sub-package writes inputs and parameter valueshetdScCIl files read by STICS, called the STICS
executable function, and reads the model outpata the ASCI! files written by STICS.

The DREAM and DREAM-ZS source codes were obtainedmf the developer

(jasper@uci.edu Interested users should contact him directihe®options specific to the DREAM
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3. Resultsand discussions

3.1. Spatial and temporal independence of the biomass coefficients of variation

First, the value of each individu@lV was calculated for the data obtained for eachtgpg
(2), nitrogen level (7) and date of measuremen® (@dr season) (Figure 2) in the original experiment
The linear regression applied to the whole dat#osét the following form:

CV =a.Day+b (14)

with ‘Day’ being the Julian day of the measurement,aaddb the parameters. Tha slope
and b parameters were respectively equal to -0.0002h(&it95% confidence interval [-0.0005 ;
+2.698.10]) and 0.2555 (with a 95% confidence interval &1 ; 0.3922]). Considering tha) the
block distribution was a complete randomized expernt, (i) the 95% confidence interval of tlze
slope parameter included the zero value ain}l that the coefficient of determinatior? Rias low
(0.0139), the measurements could be consideredessy bndependent. A mea@V value was

computed from all measurements (0.145) and intrediiic Equation 7.
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Figure 2: Coefficients of variation (CV) of the total biomass measurements (grey dots).
Overall mean value (solid black lin€) and linear regression (dashed grey line- Eq. 14).

3.2. Parametersidentification

As an example, Figure 3 presents the marginal pda@mmeters estimates when the sampling
process had achieved a stationary distributioheatnd of the WL@rocess. The results are given for
four parametersstamflax efcroijuy, efcroivegand psista The grey bars represent the histograms

drawn using data computation from all the Markosink.
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Figure 3 shows four contrasted cases of margin&l fiue parametergfcroijuy, efcroiveg
exhibited a marked mode. Thefcroijuv parameter showed a left dissymmetry in its pdfjctvh
signified that very low values were rejected durihg sampling process. Tetamflaxparameter had
a relatively irregular shape, indicating some utaety about its most likely value. However, the
existence of a probable dominant mode around 2§fededay is clearly noticeable. Finally, th&sto
parameter showed a pdf clearly close to its pristridution. This observation may results from two
different sources. On the one hand, the STICS misdehown to have little sensitivity to thmsisto
parameter (Ruget et al., 2002). On the other hasdhepsistoparameter is the critical potential of
stomatal closure, one may suppose that the nunih#yservations performed during the water stress
events was not high enough to parameterise the Induke plant water potential being seldom reached
and/or observed in this rain fed experiment coretlicinder a temperate climate, the sampling process
led to high uncertainty of the posterior distriloutiof the parameter.

Tables 4 and 5 present the parameter estimatée @&nd of the various sampling processes.
Except for thepsisto parameter, the optimised parameter set obtainéd tve OptimiSTICS-SLS
algorithm and the sampled parameter set obtaintddtivé DREAM-SLS approach were very close. It
would also appear that the close results obtairsgguOptimiSTICS or the DREAM-SLS case did
especially differ from the DREAM-WLS case for teeamflaxparameter and the three radiation use
efficiencies. Finally, apart from thgsistoandstamflaxparameters, the DREAM-CV approach tended
to converge on the same parameter estimates othtainiee DREAM-WLS case.

With regard to Table 5 which focuses on the DREANIS\tase, the mean estimators were
evaluated in comparison with the absolute optirstihreates that might have been obtained through all
the chains. Apart from thstamflax,durvieF and psisto parameters, the mean estimators were very
close to the optimal estimates. The three previmummeters exhibit a marginal shape with high
uncertainty (Figure 3). Such differences between tthio values could result from an insufficient
number of function evaluations, or might appearmtie parameter to optimize has a shape without a
pronounced mode, which often occurs when at leastad the parameterjfzrior boundaries is taken
too close to the final value, when the parametgrhigsically bounded and exhibits a bimodal pdf

(Laloy et al., 2010) or when it shows a tail in pasterior distribution (e.gstamflaxparameter).
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519 Figure 3: Marginal pdfsfor the stlevamf, efcroijuv, efcroiveg and psisto par ameters.
520 Histogram of the parameter estimates at the end of the DREAM-WL S process.
521
522 Table4: Parameter estimates ™" at the end of the sampling processes.
Case OptStics-SLS ~ DREAM-SLS ~ DREAM-WLS DREAM-CV
dlaimaxbrut 1.5E-3 1.4E-3 1.4E-3 1.5E-3
stlevamf 328 324 332 326
stamflax 386 406 198 321
durvieF 370 354 350 347
efcroijuv 0.69 0.41 0.98 1.06
efcroiveg 6.26 6.03 4.26 3.90
efcroirepro 4.49 4.64 5.75 5.86
INNmin 0.29 0.35 0.39 0.45
psisto 6.76 10.55 10.10 6.56
523
524 Finally, another interesting aspect of the DREAMI ®REAM-ZS sampling algorithm lies in
525 the possibility of studying parameter correlatidalfle 5). Moderate to strong correlations were fbun
526 between model parameters, especially between thatian use efficiency coefficienefcroijuv and
527 efcroiveg and thedlaimaxbrut parameters, which latter controls the overall leefa index (LAI)

528
529

530

development. In particular the correlation betwefmoijuv anddlaimaxbrutwas the strongest, with a

correlation coefficient of -0.84. It highlightedethmportant effect of both parameters on LAI and

biomass output, during the early growile. before AMF stage. A high value dfaimaxbrutwould
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lead to an important increase of leaf area, whiolld/have to be compensated by a lower efficiency
of radiation use.

The solar radiation use efficiency coefficients ateongly negatively correlated in pairs,
efcroijuv vs. efcroive@-0.59) andefcroiveg vs. efcroirepr¢-0.26). It clearly meant that an under- or
overestimation of one parameter of the pairs waspemsated during the next phenological stage to
avoid the under- or overestimation of the globaildations in front of the measurements.

Overall, parameters were logically correlated ilatien with the preceding stage or the stage
during which they are the most expressed.(efcroijuvduring thestlevamfor stamflaxstages), while
poor correlations were observed for parametersriefeto different formalisms/physiological aspects

(e.g. durvieFandpsistq.

Table 5: Summary of statistics of the marginal posterior parameter distribution in the DREAM-WLS
case: optimal parameter set (0", posterior (™), posterior standard deviation (STD), and correlation
coefficients over 18,000 generated samples.

Parameter §°™ omean STD  dlaimaxb. stlevamf stamflax durvieF efcroij@fcroiveg efcroirep. INNmin  psisto
dlaimaxb. 1.5E-3 1.4E-3 3.0E4 1 -0.22 -0.47 -0.03 -0.84 600. 0.16 -0.05 -0.08
stlevamf 336 332 10.37 1 0.16 -0.19 0.29 0.49 -0.06 -0.250.06
stamflax 328 198 48.41 1 0.12 0.46 0.11 -0.15 -0.04 0.08
durvieF 280 350 33.91 1 0.04 -0.08 0.06 0.24 -0.03
efcroijuv  1.05 0.98 0.09 1 -0.59 0.01 -0.09 0.36
efcroiveg 4.05 4.26 0.21 1 -0.26 -0.46 -0.07
efcroirep. 6.86 5.75 0.69 1 0.15 0.11
INNmin 0.47 0.39 0.02 1 -0.27
psisto 13.2 10.10 2.45 1

Although the parameters were selected to avoid-pasmeterization, it appeared that, at the
end of the sampling process, some of them were tdore highly correlated. Remembering that these
parameters were not directly linked to the fornmalidriving the simulated output variable, these
results highlighted that the information contaimedhe measurements were probably not sufficient to
identify and accurately estimate all nine paransetdthis could never have been shown with a classic
Simplex algorithm as it doesn't provide any infotima on distributions or correlations of parameters

These observations suggest to adapt the experihdgggn to the modelling expectations
First of all, the selected parameters should benig¢d on the output variable which they impact the
most directly the process. In this case studyoitily correspond to measure other model outputs (
LAl measurements or phenological observations topsa stlevamf stamflax and durvieF

parameters). Another adaptation would be to ineréhs measurement frequency when needad,



557
558
559
560
561
562

563
564
565

566
567
568
569
570
571
572
573
574
575
576
S77
578
579
580
581
582
583
584

25

during the phases where the growth is the fastesicasing on identified stress events. Last prapos
would be to increase the degree of variation in ehabliving variablesj.e. the weather sequences,
and/or the controlling variables, likkhe assessed experimental nitrogen fertilisatiarelleThese
remarks corroborate the researches of Beaudoih @088) and Basso et al. (2010) who highlighted
the importance of numerous measurements and lengeeperiments, respectively for the parameter

optimisation process and the study of crop yielslxgr as response to climatic variability.

3.3. Uncertainty on the predictions for the calibration dataset

As highlighted above, correlation may be strongween parameters. The strength of
Bayesian techniques is that one can cope with sonielated parameter sets. After convergence, the
posterior distribution of the model parameters\aatiwith DREAM may be used to compute model
outcomes ensembles. The predictive uncertainty tbem be summarized by model outcomes
averaging and confidence interval computation. Hegen front of the important computational time
needed by such a procedure, it may be interestingse a unique parameter set. The next two
paragraphs will thus focus on the comparison of she of mean values of parameters and the
simulations associated to the posterior distributbthe model parameters.

Figures 4, 5 and 6 present respectively the resiiise model output simulations after three
sampling processes) the DREAM-SLS caseijif the DREAM-WLS case andii() using the realistic
CV value (DREAM-CV).

It seems that the DREAM-SLS approach led to fieddcted parameter estimators that tend to
bias the model output simulations (Figure 4), esflgcat the early stages, from sowing until Julian
day 470. The same phenomenon, and pretty closdations, were observed with the parameter set
obtained at the end of the OptimiSTICS-SLS optitmsaprocess. The corresponding growth of this
physiological stage is governed mainly by thaimaxbrut stlevamfand efcroijuv parameters. Since
the dlaimaxbrut parameter governs the whole LAI growth, and beeails value converges
approximately on the same value whatever the psptieis parameter could be considered as correctly
estimated.

With regard to Tables 4 and 5, the parameter estBnabtained fostlevamfseemed correct
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compared with the DREAM-WLS case, although éfieroijuv parameter effectively did not converge
towards realistic physical values using DREAM-SI8e lower value during this early stage was then
compensated with a highefcroivegvalue applied after thetamflaxstage, until the initiation of

flowering.
251 251
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Figure 4: Model output simulationsfor the DREAM-SLScase. No nitrogen cases (right) and 180kgN.ha*
(left). Winter wheat growing season 2008-09 (upper) and 2009-10 (low). Light grey area representsthe
95% uncertainty boundaries. Solid black linerepresentsthe ssimulations obtained with mean estimates for
parameters.

In addition, when comparing the DREAM-SLS proce#ththe DREAM-WLS approach, the
particular shape of the uncertainty boundaries asceable. In the DREAM-SLS case, the 95%
uncertainty boundaries exist at the start of tloawgin, and can be observed from Julian day 450. They
seem relatively constant throughout the growinggeand for all CS. Analysing the results obtained
with the WLS likelihood function, one can immedigitaotice (i) the precise match of the observation
at early stage (before Julian day 500) and forstirae period, and (ii) the extremely tight boundarie

around the simulated output. These observationscansistent with the assumptions made in the
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statistical errors model.

The comparison of the DREAM-WLS case (Figure 5) i@l DREAM-CV approach (using a
realistic CV value of 0.145 - Figure 6) gives samitesults, both in terms of uncertainty intervad a
simulations based on parameter values selected thighmean estimators. In both cases, the
uncertainty intervals are very tight around theuated output-smalht the early stages, but widen at
the end of the simulation curve. This is due to tlwése/standard deviation which is increasing
proportionally to the absolute value of measureméheteroscedasticity), as previously mentioned.
The comparison from both the DREAM-WLS and DREAM-Ca5ses (Figures 5 and 6) showed thus
pretty close simulations. This expected resultassestent with theory and the errors model defined
within the likelihood function, but it allowed ue tonclude that the proposed formula was correctly
implemented and computationally as efficient asMHeS likelihood function. Nevertheless, since it
takes account of the natural genetic variabilitycasp species, the proposed formula (Equation 7)
opens the door to a new approach in parameterifidation. Deeper considerations about the use of
such a function are described in the conclusioticec

The other observation concerns case-to-case ampalydhe different cultural situations. In
general, the sampling/optimization process leadsirtaulations that fit the measurements properly,
taking account of nitrogen and water stresses.eSime model evaluation criteria are of poorer dquali
compared with thé®REAM-SLS case, it seems right that the simulation relyingteen WLS or CV

likelihood function are slightly further from theemsurements.
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Figure5: Model output simulations for the DREAM-WL S case. No nitrogen cases (right) and 180kgN.ha™
(left). Winter wheat growing season 2008-09 (upper) and 2009-10 (low). Light grey arearepresentsthe
95% uncertainty boundaries. Solid black linerepresentsthe ssmulations obtained with mean estimates for

parameters.
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Figure 6: Model output simulationsfor the DREAM-CV (CV = 0.145) case. No nitrogen cases (right) and
180kgN.ha (left). Winter wheat growing season 2008-09 (upper) and 2009-10 (low). Light grey area
representsthe 95% uncertainty boundaries. Solid black linerepresentsthe simulations obtained with

mean estimates for parameters.

3.4. Evaluation of the overall model quality

Figure 7 presents the results of the model outpaluation criteria, both for the calibration
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and validation procedures. The grey-scale histograsorrespond to different model output
simulations: simulations performed on the basispeetively, of the mean parameter density estimates
(light grey) and the 50% percentile of the last S#@ulations (dark grey). The horizontal black line
represents the initial run of the model, basedheninitial STICS parameter set.

In the sampling processes conducted on the cabhbratataset (left graphs on Figure 7), the
results of the model evaluation were greatly impompared with the initial run. RMSE was
divided at least by two. The EF criterion, alreadyerior to 0.5, was nevertheless improved and was
close to 1. The ND criterion was also enhanced,vaasl always lower than the expected 0.1 value.
With regards to the thresholds generally considerenlop modelling (Brisson et al., 2002 ; Beaudoin
et al., 2008), the model was considered has bairrgatly calibrated.

Comparing the various optimisation/sampling proess# appeared that OptimiSTICS-SLS
and DREAM-SLS cases always gave the better restitsir similar objective functions, i.e. the
minimization of the RMSE between simulations antibcation data, explained why they converged
on similar parameter set, and thus gave obvioldybest RMSE on the data used for the calibration.
The DREAM-WLS and DREAM-CV cases showed also antedagically similar performances.

It is worth mentioning that, in all the calibraticases, the mean parameter set obtained at the
end of the sampling process led to similar reshlis the 50% percentile computed out of the laét 54
simulations.

Considering the validation dataset (right graph$-mure 7), the three criteria were enhanced
in comparison of the initial run, even if the pem@nces were slightly lower than in the calibration
run. The RMSE was approximately 1 t/ha lower tHaninitial run. The model efficiency (EF) which
was below the 0.5 threshold under the initial patemset, was improved till more or less 0.65. The
ND criterion, was improved under all the considesedr assumptions and remained always under the
validation threshold of 0.1. In presence of thessults, the model was considered as validated
whatever the error assumption made.

Concerning the intercomparison on the validatiotaskt, the four error assumptions led to
quite similar results. One could however noticeltveer quality of the simulations obtained with the

mean parameter set computed at the end of the DRBAIE sampling process. It was shown that the
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posterior distribution of parameters could havetimadal or dissymmetrical distributions. While the
correlation between parameters was obviously maetaduring the sampling process, due to the
shape of posterior distribution, a set of paransetefculated as the mean of the last given elenfent
all chains may thus not necessarily represent éuwtion that will provide a good model evaluation,

especially when assessed on an independent/validddita set.

5 5
45 45
4 4
35 35

g 3 g 3

= =

8 8

=5 =5

[sa] [sa]

g g

Z 7 Z 7
15 15

o
v
T

o om

OptSTICS-SLS DREAM-SLS DREAM-WLS DREAM-CV

0

OptSTICS-SLS DREAM-SLS DREAM-WLS DREAM-CV

09 ] M 09

08 038

07 0.7 o *

0.6 0.6 -
505 5os

0.4 0.4

0.3 03

02 02

0.1 0.1

OptSTICS-SLS DREAM-SLS DREAM-WLS DREAM-CV OptSTICS-SLS DREAM-SLS DREAM-WLS DREAM-CV

0.9F 0.9
0.8+ 0.8
0.7r 0.7
0.6 0.6
g 0.5 g 0.5
0.4F 0.4
0.3F 0.3
0.2+ 0.2
0.1F 0.1 ==
[k = =m Dl . 7 A | _ =h
OptSTICS-SLS DREAM-SLS DREAM-WLS DREAM-CV OptSTICS-SLS DREAM-SLS DREAM-WLS DREAM-CV

Figure 7 : Model evaluation criteria based on the calibration dataset (left) and the validation dataset
(right). Initial model run (horizontal black line). Model evaluation using the parameters estimated with
mean density (light grey), and the per centile 50% of the 540 model output simulations (black).
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677  3.5. Uncertainty on the predictionsfor the validation dataset

678 To validate previous statements, the temporal émiwf the model's outputs were computed
679 for the validation dataset and for the differembeassumptions (Figure 8). As previously obseried,
680 the DREAM-SLS case (and this was also true with tbarameter set obtained with
681 OptimiSTICS-SLS), the simulations did not respéet biophysical behaviour of plants at early stages,
682 compensating later the biomass growth with higlaeliation use efficiencies. The results obtained
683 under the ‘no nitrogen’ case and for the DREAM-Wagd DREAM-CV error assumptions were
684 satisfactory. With 180 kgN/ha, the simulations west poor quality when compared to the
685 measurements. In a global way, the crop season-PD1€ known to be particularly challenging in
686 terms of modelling, since water deficits occurrdgeper than the ones observed in 2009-10. Although
687 the criteria used to evaluate the model qualityoentered the validation thresholds, the temporal
688 evolution indicates the need for model improvembwntselecting other or more parameters for
689 identification. It may also suggest the need toatker formalisms better adapted to take into aectou

690 water deficits.
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Figure 8: Model output simulationsfor season 20010-11, under 180kgN/ha (left graphs) and 0 kgN/ha
(right graphs), and for the different error assumptions, DREAM-SL S case (upper graphs), DREAM-WLS
case (middle graphs) and DREAM-CV case (Lower graphs). Light grey arearepresentsthe 95%
uncertainty boundaries. Solid black linerepresentsthe simulations obtained with mean estimates for
parameters.

3.6. Residual analysis

The Figure 9 shows the error analysis resultstferresiduals between measurements and the
fitted models using the SLS, WLS and CV likelihdadctions for the four cultural cycles (CS 1 to 4).
Three aspects are considerdd:tile residuals versus the simulated biomassihe comparison of
assumed and observed pdf aiiid the partial autocorrelation coefficients of resits.

In the DREAM-SLS case, the distribution of residw@alors against simulated biomass
appeared quite stationary, suggesting homosceitiastithough the number of measurements was
low, the error histogram did not seem inconsistattt the assumed Gaussian pdf. Finally, errors were
not correlated whatever the lag, highlighting theéependence of the measurements. The assumptions
for the statistical error model were thauposteriorivalidated.

The error analysis graphs drawn using the DREAM-WIr®REAM-CV approaches were
relatively close. In both cases, the residuals seleim increase with simulated biomass, up to 1® t/h
and were quite constant thereafter (between 102@ndha). The residual histograms did not really
match the expected Gaussian distribution (e.ghefhistograms peaked around the zero value, there
was a dissymmetry and a tail in the positive valoiesesiduals). Finally, the residuals were attleas
significantly correlated at a lag of one measutg i both cases this correlation was very closg¢o

95% boundaries.
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In line with the graphical analysis depicted in tisemulations obtained under the
DREAM-WLS or DREAM-CV cases (in Figures 5 and 6), dppeared clear that the model
underestimated the measurements step by step, mgethiait if at a particular moment a measurement
was underestimated, there would be a tendencyhisrtd happen with the next measure. Moreover,
the underestimation seemed to appear only afteanJdhy 520, when half the biomass had yet to be
produced (for biomass superior to 10t/ha).

As mentioned by Wallach et al. (2006), since onlyaat of the between site-year variability
can be predicted by crop models, correlations betweaodel residuals often arise when several
measurements are performed at different dates mivan site-year. However, this issue was
acknowledged by the application of three mechanigespectively ij the implementation of the
experiment as aomplete randomised block distributjofii) the consideration of the coefficient of
variation within the error model, and finalljii} by the implementation of a single-step sampling
procedure, involving all the parameters to optinanel the variables output of the 4 cultural sitati
at the same time (Guillaume et al., 2011).

For these reasons, and assuming that observatmimahtic inputs and in-field output
measurement errors were negligible, meaning, in eage, that they are due solely to genetic
variability, the systematic under-estimation of thdield biomass samples for the higher values of
biomass could be fully attributed to modelling irgdacies. Rather than enabling the conclusion that
could be drawn about the non-stationarity or the-mormality of the error model, it suggested the
need for model improvement, whether by selectifgeio{or more) parameters or other formalisms

(stresses effects).
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745 Figure 9: Model residual analysis, for three different likelihood functions: SLS (upper graphs), WLS
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749 95% significance boundaries (horizontal grey line) (right graphs).
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4. Conclusion
This study assessed the potential of the DREAMritlya for optimizing the STICS crop

model parameters with the aim of improving the dations of the biomass growth of a winter wheat
culture (Triticum aestivuni.).

Nine parameters involved in leaf area developmadiation use efficiency and stress effects
were chosen for optimization of the biomass groaukput. Different likelihood functions and error
assumptions were evaluated: a standard least s§Ba&), a weighted least square (WLS) and a
transformed likelihood function that makes explioge of the coefficient of variation (CV). The
performances of the DREAM algorithm were compardthva Nelder-Mead Simplex algorithm
adapted to the STICS model under the OptimiSTIGkaze.

This study showed that it was possible to succtgsfse the DREAM algorithm combined to
a complex crop model such as STICS. The DREAM d#lgor offers the advantage of Bayesian
techniques and MCMC simulations, i.e. the approxionaof the parameters' posterior distribution,
the evaluation of correlations, and the uncertagngistimation in the output predictions.

The parameters’ sampling using the SLS likelihoodcfion within the DREAM algorithm
showed close results to those obtained using ORTiiAS. The model evaluation criteria, RMSE, EF,
and ND were substantially improved compared with ititial set of parameter values. The residual
analysis also showed the validity of the SLS apgmoaf DREAM. These results were very
satisfactory and encouraging. However, when using $LS likelihood function, considering the
temporal evolution of the simulated biomass dumngrop cycle characterised by significant water
deficit that occurred at the early season, it amgzbahat the simulations did not fully respect the
biophysical behaviour of plant growth which compeed later the biomass growth thanks to higher
efficiency of radiation use. Insignificant or unlisic values occurred thus for some parameters Th
was probably due to the fact that too limited infation was included in the dataset to efficiently
sample the posterior distribution of the selecték rparameters. Although parameters with low
interaction were chosen, correlation appeared i@ farameters’ posterior distribution. This

observation highlighted the importance of adaptimg experimental design to the plant-soil system



777
778
779
780
781
782
783

36

dynamics with modeling purposes.

Finally, it is worth mentioning that the proposekielihood function based on an explicit
formulation of the CV presented several advantags. results were very close to those obtained
with the standard WLS likelihood function and wesatisfactory in terms of evaluation criteria,
RMSE, EF and ND. From a biophysical point of viewlevant values for all parameters were
obtained. Furthermore, the proposed CV likelihoodction allows taking into account not only the

noise on measurements but also the heteroscetastigilarly encountered in crop modeling.
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