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a b s t r a c t

A formalised means of simplifying hydrological models concurrent with calibration is proposed for use
when nonlinear models can be initially formulated as over-parameterised constrained absolute deviation
regressions of nonlinear expressions. This provides a flexible modelling framework for approximation of
nonlinear situations, while allowing the models to be amenable to algorithmic simplification. The degree
of simplification is controlled by a user-specified forcing parameter l. That is, an original over-
parameterised linear model is reduced to a simpler working model which is no more complex than
required for a given application. The degree of simplification is a compromise between two factors. With
weak simplification most parameters will remain, risking calibration overfitting. On the other hand, a
high degree of simplification generates inflexible models. The linear LASSO (Least Absolute Shrinkage
and Selection Operator) is utilised for the simplification process because of its ability to deal with linear
constraints in the over-parameterised initial model.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

There tends to be a preference in hydrological modelling toward
larger multi-purpose models in the various subject areas, as noted
by Fenicia et al. (2011) in the context of rainfall-runoff modelling.
While using a “big model” approach has understandable attraction,
there have been concerns over whether models may be overly
complex in practical applications. See, for example, Perrin et al.
(2001) and Jakeman and Hornberger (1993). Beven (2006) identi-
fied finding a means of reduction of model dimensionality as one of
a number of important research topics in runoff modelling.

There have been many proposed qualitative and quantitative
approaches to model simplification in the hydrological literature. A
review is beyond the scope of this paper but selected works include
Dooge (1997), Schoups et al. (2008), Sivapalan et al. (2003),
Sivakumar (2008), Fenicia et al. (2008), Hill (2006), Tonkin and
Doherty (2005), Hunt et al. (2007), Arkesteijn and Pande (2013),
and Diodato et al. (2014).
y), liusx@igsnrr.ac.cn (S. Liu).
One generic approach toward simpler models is data-based
mechanistic modelling (DBM) were options are restricted to
simpler but physically plausible models consistent with data
(Young, 2003, 2006; Young and Garnier, 2006; Young et al., 1996).
Some combinations of DBM with other approaches are presented
by Young and Ratto (2009, 2011) and Young (2013).

In the spirit seekingmodel simplicity, the present paper outlines
the potential for algorithmic hydrological model simplification
through use of the LASSO (Least Absolute Shrinkage and Selection
Operator). The requirement here is that both the model and model
fitting function are first set up as linear expressions. That is, the
initial model as applied to a calibration data set is expressed as a
sequence of linear equality and inequality expressions. The initial
model is then formally reduced to a simpler model no more com-
plex than required for application to a given data set.

There is of course an apparent contradiction in carrying out
linear modelling of nonlinear hydrological processes. However, we
make a case that constrained linear modelling of the type consid-
ered here can be formulated to be as “nonlinear” as necessary,
through the use of linear combinations of nonlinear basis functions.
A basis function can be defined as an element of a particular basis
for a function space. For example, a quadratic polynomial comprises
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the basis functions 1, x, and x2 and the expression a1 þ bx þ cx2 is a
linear combination of basis functions.

The method will be illustrated with respect to an example
rainfall-runoff model but the intention is for general application.
However, this simplification approach is very much in its infancy
and we use “evaluation” throughout the paper in preference to
“validation” to avoid any implications of confirmation at this time.

With respect to the paper organisation, Section 2 gives an
illustration of how a general nonlinear time series model can be
reformulated in a linear way for later simplification. Section 3 gives
a brief introduction to the LASSO method. Section 4 defines the
linear LASSO simplification algorithm utilised here. Section 5 is an
illustrative simplification of an over-paramerised basic rainfall-
runoff model. Section 6 is a brief comment on possible applica-
tion to groundwater modelling. Section 7 discusses issues of
modelling philosophy which arise when models are derived from
an automated simplification process. Possible further de-
velopments are considered in Section 8. Concluding comments are
given in Section 9.
2. Linear models as nonlinear approximations

A requirement before the simplification process is the creation
of an initial linear model for the nonlinear situation under study.
That is, the entire model must be specified as a sequence of linear
constraints, with fitting to data being a linear programming (LP)
minimisation of absolute deviations.

Achieving accurate linear approximation to a nonlinear reality is
not necessarily a trivial task and a full review of all mechanisms by
which it might be achieved is beyond the scope of this paper.
However, a sense of the type of formulation required is illustrated
in this section with respect to creating a linear approximation for a
general nonlinear time series model.

The nonlinear conceptual time series model is familiar and not
necessarily specific to hydrology: Events occur at points in time and
each event marks the initiation of a continuous non-negative
nonlinear response which may be of arbitrary form but eventu-
ally declines to zero with increasing time. The responses may
change from one event to the next depending on event magnitude
and the current state of the system. The event responses sum
together, producing the model time series output for some
recording point. Variations of this approach have long been used in
the context of rainfall-runoff modelling where the current state of a
catchment influences the nature of runoff responses from rainfall
events, with the individual event responses summing to givemodel
discharge, possibly superimposed on a constant baseflow.

A conversion of this conceptual model to a linear approximation
model is demonstrated by first considering a single event and its
response. Defining this event to occur at time t ¼ t, the magnitude
of the response at any subsequent time t is expressed as a weighted
finite mixture of L pre-selected non-negative nonlinear functions
g(t), all with origin at time t:

f ðt; ZtÞ ¼
XL
i¼1

uiðZtÞgiðtÞ t � t (1)

The uiðZtÞ terms in Eq. (1) are non-negative weighting ex-
pressions which give greater or lesser emphasis to individual gi(t)
functions. The particular set of g(t) functions chosen by the mod-
eller would be representative of a range of possible event responses
for the physical process under consideration. For example, in the
case of a rainfall-runoff model this could be a number of different
hydrograph forms characteristic of the catchment type and size.
The choice of g(t) functions will inevitably include some which will
not in fact be helpful for a given application to data. However, these
redundant functions will be eliminated later in the simplification
process. A greater number of g(t) functions would be chosen for a
model intended for more general use. This will result in a greater
number of g(t) eliminations during the subsequent simplification
when applied to data.

The uiðZtÞ terms in Eq. (1) are linear combinations of a set of M
independent variables Zt whose magnitude may have influence on
the system at event time t:

uiðZtÞ ¼
XM
j¼1

aijZtj aij � 0 Ztj � 0 (2)

The avoidance of negative uiðZtÞ terms ensures Eq. (1) cannot
yield a negative prediction for the positive-valued response process
concerned.

Eq. (2) defines the ith of the L weighting expressions in Eq. (1)
and is a linear combination of the same set of independent vari-
ables Z. However, the weighting coefficients aij differ in value from
one weighting expression to the next. The initial choice of the M
independent causal variables represents a physical working hy-
pothesis and it may happen that most are later eliminated in the
linear LASSO simplification process, described in the next section.

In summary, the nonlinear response following a single event is
modelled as a positive-valued weighted mixture of pre-chosen
nonlinear g(t) functions, with their associated weights being
linear combinations of M independent causal variables. As noted
earlier, pre-chosen functions like g(t) are referred to as basis
functions (Bishop, 2006, p.138) and when used as weighted mix-
tures can approximate many different nonlinear functions when L
is sufficiently large.

With respect now to multiple events, the events are defined to
occur at respective times t[1], t[2], t[3]…, with the same set of g(t)
functions and Z variables operative for each t[i]. However, the
respective weights u(Z) for each of the g(t) will differ from one
event to the next because the magnitudes of the Z variables change
with time.

The model time series output at any given time t is the sum of
the responses from all previous events up to that time. Defining
t¼ 0 as the start of the time series, at some subsequent time t there
will have been K(t) previous events which occurred at times t[1], t
[2]… t[K]. Therefore, at time t themodel-generated value h(t,Z) can
be written:

hðt; ZÞ ¼ u0 þ
XKðtÞ
n¼1

f
�
t; Zt½n�

�
(3)

where Zt½n� denotes the magnitudes of the independent variables at
the time of the nth event. The constant u0 may be set to zero
depending on the context. For example, a non-zero value might
represent some constant baseflow in a rainfall-runoff model.

As an aside, if an event can be thought of as the input of a set of
particles into a store and the response is the time-varying rate of
exit of those particles from the store, then at any time t the model-
definedmean residence time T(t,Z) of particles (derived from all the
prior events) exiting the store is given by the weighted average of
the previous event times:

Tðt; ZÞ ¼
XKðtÞ
n¼1

t½n�f
�
t; Zt½n�

�,XKðtÞ
n¼1

f
�
t; Zt½n�

�
(4)

Eq. (4) could have application, for example, in considering the
age of water exiting from a catchment.

Having expressed the conceptual model as a linear
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approximation, it remains to set out the coefficients as an LP
minimisation matrix. The coefficients are all constrained to be non-
negative to avoid negative h(t,Z) values and the minimisation is
with respect to least absolute deviations.

Following from Eq. (3), the matrix will have U rows (with each
row corresponding here to a unit of time) and L � Mþ 2U columns,
with one additional column with all values set to 1.0 if u0 is
permitted to have an unknown nonzero value. The 2U columns
here are the utility fitting variables required for least absolute de-
viations regression, two per data observation, and are not part of
the model (Bloomfield and Steiger, 1983; ch. 6). As far as the model
parameters are concerned, u0 would be an unknown to be solved
for, along with the L�M unknown a coefficients. All the unknowns
are constrained to be non-negative in the LP solution, as required
by the specification of Eq. (1) and Eq. (2).

The number of matrix rows U will generally be less than the
original number of rows in the time series concerned. This is
because the user must define the first row in the matrix to be
corresponding to a t large enough to avoid any response effects
which may be still present from events prior to the start of the time
series at t ¼ 0.

The LP matrix does not define a linear model with M indepen-
dent Z variables corresponding to the independent X variables of a
standard linear regression. The Z variables do not influence the
model in a direct linear way, but indirectly through the interme-
diary of determining the weight magnitudes via the time-varying
weighted linear combinations of the L different nonlinear g(t)
functions. It may happen that the Z variables are themselves out-
puts from pre-chosen nonlinear expressions. The L � M variables
here might be better termed pseudo variables because they
combine the effect of different g(t) functions as opposed to physical
variables.

This type of initial model with numerous g(t) functions will
inevitably result in many superfluous parameters and there is no
suggestion that such models should be applied directly in practice.
Instead, they are only a means to an end and serve as the necessary
preliminary stage before initiating the subsequent linear LASSO
simplification to produce models for application. The following
section gives a brief general description of the LASSO concept
before considering the simplification algorithm.

3. The LASSO and linear LASSO

The LASSO (Least Absolute Shrinkage and Selection Operator)
was introduced by Tibshirani (1996) as a means of eliminating less
informative variables in least squares multiple linear regression. It
has been applied in many fields but has only relatively recently
been introduced into the hydroclimatic literature (Hammami et al.,
2012). To our knowledge, the present paper is the first application
of the LASSO in the more general context of model simplification
rather than simply selection of a subset of informative independent
variables in linear regression.

Briefly, the LASSO concept maintains the linear regression
approach of seeking to match a linear function to a data set, but
with the additional aspect of some degree of forcing of the pa-
rameters toward zero. Scaling is required prior to avoid preferential
elimination of parameters because of units of measurement. A user-
specified positive parameter l defines the relative partitioning
between optimising the parameter values toward data matching or
forcing the parameters to zero. A large value of l will cause all
parameters to be set to zero while a small l will not have any
simplifying effect. See also Hammami et al. (2012), Wheeler (2009),
and Tibshirani (2011).

The deleted variables will be those whose elimination has least
effect on fitting the linear regression model to data while all
parameters are being forced toward zero. Deletion might arise, for
example, if a variable has weak explanatory power. Alternatively,
some variables may be highly correlated so that when one is
eliminated to zero another can take its place.

The nonzero parameters remaining after a LASSO process will
have values biased toward zero. This can be offset with a subse-
quent standard linear regression with the independent variables
now being just that surviving subset. The parameter values from
the second regression will usually have larger absolute values and
the model will better fit the data because the biasing effect will be
at least partly removed.

However, the least-squares LASSO has a disadvantage for model
simplification purposes. Specifically, linear constraints cannot be
included without transforming the fit procedure into a quadratic
optimisation exercise, which may be slow to run for large problems
and will not necessarily yield a global minimum.

There is particular advantage in being able to incorporate linear
constraints into models, both as part of the model description and
because the constraints may result in many parameters never
becoming part of the model. Such model improvement from in-
clusion of constraints has previously was noted, for example, by
Gharari et al. (2014).

The constraints here might be as simple as avoiding negative
discharge in a hydrological model or could be a more complex
constraint set to approximate some physical process.

We therefore utilise here the linear LASSO (Wang et al., 2006)
as the LASSO version most suited to model simplification. This
permits linear constraints while still giving a single optimal global
solution for calibration fitting with specified l. In addition, the
linear LASSO can be applied when there are more parameters than
data points.

Given N data values of some dependent variable Y, and J inde-
pendent variables in the absolute deviations regression matrix, the
linear LASSO can be written as the LP minimisation:

Minimise
XN
t¼1

�����Yt �
 
a0 þ

XJ
i¼1

Xitai

!�����þ l
XJ
i¼0

jaij (5)

where J is not necessarily less than N.
Eq. (5) is a penalised regression operation that is a compromise

between minimising absolute deviations from data and forcing the
absolute values of the a coefficients toward zero. The minimisation
here is with respect to finding the set of a coefficients which
minimise Eq. (5) conditional on a specified value of l. Increasing l

has the effect of forcing more a coefficients to zero. As with the
least-squares LASSO, the X values are first standardised to dimen-
sionless values (making l dimensionless) so that no one ai is pref-
erentially forced to zero because of units of measurement. As
before, when l is sufficiently large the a coefficients will be forced
to zero to give the limit case of maximum simplification but no
predictive ability.
4. Model simplification with the linear LASSO

It is assumed that a model has already been formulated as an LP
optimisation matrix so that the Eq. (5) minimisation can apply. The
required data here is a calibration set and associated independent
variables, together with a second data set for model evaluation
purposes.

Our approach to linear LASSO model simplification concurrent
with calibration is summarised in the sequential minimisation
schematic:
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For l ¼ 0; D; Step Dl

Minimise
PN
t¼1

�����Yt �
 
a0 þ

XJ
i¼1

Xitai

!�����þ l
XJ
i¼0

jaij

Minimise
PN
t¼1

�����Yt �
 
a0 þ

XJðlÞ
i¼1

Xitai

!�����
End

(6)

where the a values may be subject to linear constraints as part of
the model specification. J and J(l) are respectively the number of
model parameters before and after the linear LASSO.

In words, l is incremented from zero to some value D and for
given l there are two minimisations carried out in sequence,
adjusting the aj values each time. The first minimisation is the
linear LASSO expression of Eq. (5) which serves to force some a
values to zero. The second minimisation for bias correction is or-
dinary calibration matching to data using an LP routine tominimise
least absolute deviations. This second minimisation uses only the
J(l) number of X variables which survived the linear LASSO process.
These variables are likely to gain new a coefficients, some of which
may in fact be zero if the coefficients have been constrained to be
non-negative.

Depending on the model, the X variables in Eq. (6) may be in-
dependent variables in the usual regression sense, but they might
also be pseudo-variables as noted in the previous section.

As l is incremented from zero there will be a general decline in
the number of surviving independent variables. At the same time,
there will tend to be an improvement in the fit of the model to the
evaluation data set because overfitting effects are progressively
reduced. However, at some point any further increase in l causes
worse fits to the evaluation data because the model has become
overly simplified and inflexible. Between these end points there will
be some optimal zone which may include a number of moderately
simplifiedmodels whichmight all fare reasonably in both calibration
and evaluation. In this case a subjective choice of appropriate model
must be made, which might favour the simplest model within the
acceptable range. The evaluation data set here plays a role in the
choice of l and ideally further sets of independent evaluation data
should be utilised as a true test of the resulting simplified model.
Table 1
Parameter values of the nine inverse Gaussian distribution distributions utilised as
g(t) expressions. Both m and distribution modes are measured as hours after time t.
Plots are displayed in Figs. 1 and 2.

Distribution 1 2 3 4 5 6 7 8 9

m 3.00 5.00 5.00 7.00 10.00 20.00 20.00 50.00 150
f 3.60 2.81 1.43 4.38 0.99 0.80 0.30 0.18 0.10
Mode 2 3 2 5 3 5 2 3 5
5. Example application

The method will be illustrated with respect to simplifying a
basic rainfall-runoff model constructed like the time series model
described in Section 2. It is not our intention to establish the
viability of the simplification approach by creating a fully-
developed new simplified runoff model which is demonstrably at
least as functional as some already in use. Our purpose is only to
give an example demonstration of the simplification process me-
chanics for one rather basic model. However, we hope that suffi-
cient interest may be generated for specialists to consider
evaluating more developed linear LASSO simplified models for
possible application in a range of different fields.

The example data comprises 600 observations of hourly rainfall
and discharge data from a small 14 km2 sub-catchment within the
Mahurangi River drainage basin in the Northland region of New
Zealand. Visual inspection of the hydrograph indicated rapid
discharge responses and quite short recessions typical of a small
catchment.

The g(t) functions chosen comprise nine inverse Gaussian
probability density functions with parameterisation given by:
gðtÞ ¼
"

mf

2pðt � tÞ3
# 1=2

ef exp
�
� 1
2
f

�
t � t

m
þ m

t � t

��
t > t

(7)

where f is a dimensionless shape parameter and t þ m is the dis-
tribution mean. The parameter m can also be thought of as the
distribution mean as measured from origin at t. Table 1 lists the
nine m, f pairings which define the nine specific gi(t) functions
chosen for the model, selected here to have distribution mode
values soon after a rain event (Figs. 1 and 2).

The inverse Gaussian distributions have some linkage to hy-
drology in that they are derived as arrival time distributions which
have analogies to the water arrival times of a hydrograph (Bardsley,
1983). The family of gamma distributions are another option for g(t)
functions with a hydrological linkage, in this case through a linear
reservoir cascade model (Nash, 1957).

The choice of inverse Gaussian distribution parameters and the
number of distributions selected was subjective and based only on
having a sufficient range of g(t) functions which were deemed
typical of the hydrographs. A greater number of g(t) functions is
likely to be required for more complex hydrographs. A similar set of
different inverse Gaussian distributions would have served equally
well, as could other distributions discussed by various authors
(Nadarajah, 2007; Pramanik et al., 2010; Muneepeerakul et al.,
2010).

The subjectivity aspect is not a critical factor here because the
hydrographs are being modelled as finite mixture distributions. For
sufficiently large L such distributions have ability to mimic each
other by adjustment of the weights of their respective component
distributions.

The development of the specific runoff prediction model is now
considered, followed by its simplification when applied to the
example data set.

With respect to constructing the initial linear model, each hour
of non-zero rainfall is an event which initiates a 9-component
hydrograph as a weighted mixture of the nine g(t) functions
plotted in Figs. 1 and 2. Eighteen Z variables are defined as rainfall,
the square of rainfall, and the cube of rainfall, with respect to both
the current rainfall initiating the hydrograph and for each of the
rainfalls in the five previous hours. That is, for a given event the
weight assigned to each of the nine g(t) functions is an 18-term
cubic polynomial function of rainfall in the current hour and in
each of the previous 5 h. All the polynomial coefficients are con-
strained to be non-negative, which in this case avoids negative
discharge.

Because only rainfalls are being referenced as causal variables
we symbolise here using R rather than Z. Eq. (3) can be written in
this case to give the ith of the 9 weights which apply to a 9-
component hydrograph originating from rain Rt at time t:

utiðRÞ ¼
Xt

t¼t�5

ai1tRt þ ai2tR
2
t þ ai3tR

3
t (8)



Fig. 1. Plot of chosen g(t) functions: inverse Gaussian distributions 1e4 as listed in
Table 1.
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Rt is always greater than zero but some or all of the rainfall for
the previous 5 h may be zero, depending on previous rainfall
frequency.

The weight specification in Eq. (8) does not mean that discharge
is being modelled as a cubic polynomial function of rainfall. The
polynomials relate to the individual weights, which are likely to
influence different parts of the hydrograph. Also, many of the a
coefficients will be removed during simplification so it is possible
that some weights in the final simplified model will be reduced to
linear functions of rainfall while others might be cubic or quadratic.
For example, this allows for discovery of hydrograph peaks
increasing nonlinearly with rainfall while recession discharge in-
creases linearly with rainfall amount.

There is no specific hydrological reason for selecting the poly-
nomial weight functions used here, other than giving a flexible
range of possible linkages between rainfall and the respective
weights. Implementing flexible empirical expressions as approxi-
mations to complex physical situations is not unknown in hydrol-
ogy. For example, Young (2003, Eq. (8c)) transforms recorded
rainfall to effective rainfall by way of a cubic polynomial function of
an estimate of current soil water storage.
Fig. 2. Plot of chosen g(t) functions: inverse Gaussian distributions 5e9 as listed in
Table 1.
The non-negative constraint on the a coefficients in Eq. (8)
might result in some of the power terms causing parts of an
event hydrograph to increase rapidly with increasing rainfall, as
might occur in reality as the extent of catchment saturation in-
creases. Flexible functions other than polynomials could serve
equally well here as long they are constrained to be positive. As will
be seen, just the non-negative constraint may itself result in a
dramatic reduction in the number of a parameters even before the
linear LASSO is applied.

The use of previous rainfalls as causal variables could have some
hydrological justification in terms of acting as a proxy for current
catchment wetness at time of rainfall, but are used here mainly for
the convenience of illustration. It is also noted that easily measured
proxy variables for catchment wetness are a component in DBM
modelling (Young, 2003). Ideally, a rainfall-runoff model should
incorporate where possible direct measurements of soil moisture
and other catchment variables, which would also be defined over
space in the case of a distributed model.

From Eq. (1) and Eq. (3) the pre-simplification model Q(t,R) for
discharge at time t can be written:

Qðt;RÞ ¼ u0 þ
XKðtÞ
n¼1

f
�
t; t½n�;Rt½n�

�

f
�
t; t½n�;Rt½n�

�
¼
X9
i¼1

ut½n�i
�
Rt½n�

�
giðtÞ

(9)

where u0 is baseflow, ut½n�iðRt½n�Þ is from Eq. (8), and gi(t) is defined
by Eq. (7) and Table 1.

A rainfall-runoff model of the same general form as Eq. (9) was
developed by Bardsley and Liu (2003), although simplification
possibilities were not considered in that paper.

The baseflow constant, the nine g(t) expressions, and the 18-
term weighting expressions collectively define an LP matrix
which includes 163 model variables with coefficients to be either
solved for or eliminated during the calibration/simplification
process.

The data of the first 400 h in Figs. 3 and 4 are utilised for cali-
bration/simplification, with hours 400e600 used for model eval-
uation. The evaluation data set was deliberately selected to include
a peak discharge considerably exceeding the largest events in the
calibration set.

Table 2 summarises the results of the application of the pro-
cess of Eq. (6) to the 400 calibration data points, for selected
values of the simplification parameter l. For l > 0, the simplifi-
cation process is equivalent to an optimal allocation of weights
between the nine g(t) expressions, taking into account the twin
aims of data fitting and model simplification. For l ¼ 0 the model
seeks only the best fit to the calibration data with no simplifi-
cation forcing. Various descriptive indices in Table 2 are listed for
comparison of model values and data, for both the calibration
and evaluation data sets.

The utilised goodness of fit index V in Table 2 is a measurewhich
varies between 0 for worst fit and 1 for a perfect fit (Bardsley, 2013):

V ¼ r2
.
ð2� EÞ 0 � V � 1 (10)

E ¼ 1�
P ðOi � PiÞ2P�

Oi � O
�2 �∞< E � 1

where E is the Nash-Sutcliffe efficiency (Nash and Sutcliffe, 1970)
and r2 is the coefficient of determination between the discharge
observations Oi and model predictions Pi. Any V exceeding 0.5r2



Fig. 3. Model calibration fitting (l ¼ 0, 13 nonzero parameters) prior to simplification.
The calibration data is for the first 400 h, with the last 200 h being used for evaluation.
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reflects that the model gives a better fit than the mean of the
observed data. Therefore any V exceeding 0.5 ensures the model
must match the data better than the data mean, with the degree of
matching being quantified by comparison of squared deviations. A
fit measure based on squared deviations instead of absolute de-
viations was used here to reduce the possibility of creating overly-
favourable fit values after minimising least absolute deviations
with the linear LASSO calibration.

It is evident from Table 2 that just the constraint against nega-
tive values is sufficient for initial elimination of a large number of
model parameters, with the original 163 parameters being reduced
to 13 for l¼ 0. That is, any value other than zero for 150 parameters
would give aworse calibration fit. Thirteen linear parameters is still
a relatively large number for a runoff model and overfitting can be
seen from the calibration and evaluation fit values being 0.92 and
0.52, respectively.

As l increases there is a rapid improvement in the progressively
simplified model's ability to match the evaluation data up to a
maximum Ve of 0.87, corresponding to six model parameters and
three g(t) functions. When simplification forcing increases further
there is a decline in both calibration and evaluation fits because of
reduced model flexibility.
Fig. 4. Model fitting (6 parameters) to calibration data after previous linear LASSO
simplification with (0.9 � l � 2.0), giving the best match to evaluation data.
The linear LASSO induces abrupt model changes as l increases
past threshold values. For example, l increasing over the small
interval from 2.0 to 2.1 results in worse fits because of induced
changes in the weighting function coefficients, although the total
number of parameters and g(t) functions remain unchanged. In
contrast, the simplified model remains unchanged over the range
0.9 � l � 2.0, which also happens to give the best matching to the
evaluation data.

The model's selection of g(t) functions was quite stable with
L(l) ¼ 3 for all nonzero values of l. These groups consistently
comprise the three distributions 1, 2, and 9 for l in the range 0.4 �
l � 2.5. Also, distributions 1 and 3 are present in all the groups of
three for the whole range of l investigated. The simplification
process here evidently has the effect of progressively reducing the
number of terms in the weighting expressions, but always keeping
three g(t) functions in the simplified models.

The reduced number of terms in the weighting expressions
during simplification has the net effect of reducing the model
discharge peak magnitudes in the evaluation period. This shows
clearly in the listed d values of Table 2 where the difference be-
tween actual and model values for the highest flood peak shifts
from over-prediction to under-prediction as l increases. A similar
pattern is evident for mean of the model discharges for the eval-
uation period. As might be expected, the mean model discharges
for the calibration period are close to the true mean value of
0.79 m3 s�1.

Fig. 3 shows a calibration/evaluation time series plot for the 13-
parameter model for l ¼ 0, with poor matching to the evaluation
data generally and there is considerable error in flood peaks.

Fig. 4 gives the corresponding time series for the best evaluation
data match (0.9 � l � 2.0). It is of interest that this level of
simplification apparently gives a reasonable estimate of the
12.8 m3 s�1 peak discharge around hour 500, despite the peak
discharge of the calibration data being much lower (6 m3 s�1). This
simplifiedmodel comprises three g(t) functions and six parameters,
with one of the six being a non-zero baseflow constant. However,
there is still probably a residual effect of calibration overfitting here.
This can be seen by writing out the expression for the model
discharge from a single rain event at time t. Following from Eq. (9),
this gives:

Qðt;RÞ ¼ u0 þ a1R
2
t�1g1ðtÞ þ a2R

2
tg2ðtÞ þ ða3Rt þ a4Rt�1

þ a5Rt�5Þg9ðtÞ
(11)

where t > t, u0 is a positive baseflow constant and the a terms are
non-zero numerical values corresponding to the surviving subset of
the a coefficients defined in Eq. (8).

The suggestion of some overfitting effect here derives from the
model's Rt�5 term in Eq. (11), because there seems no hydrological
reason why a rainfall 5 h previously should specifically influence
the weighting associated with distribution 9.

This influence of overfitting notwithstanding, the simplified
model of Eq. (11) has an interesting aspect in that the selected in-
verse Gaussian distributions 1 and 2 have weight terms increasing
with the square of rainfall. The only other surviving g(t) function is
distribution 9, which is weighted by a linear function of current and
previous hourly rainfalls. From Table 1, distributions 1 and 2 are
peaked g(t) functions with relatively small mean values while
distribution 9 is strongly skewed with a large mean, providing
much of the hydrograph tail component. That is, the hydrograph
peaks will tend to increase nonlinearly with rainfall while the
hydrograph recession discharges will increase linearly with rainfall.
Fig. 5 illustrates the simplifiedmodel's predicted nonlinear increase



Table 2
Results from the calibration/simplification process as a function of the forcing parameter l. Vc ¼ calibration goodness of fit; Ve ¼ evaluation goodness of fit; J(l) ¼ number of
parameters remaining after simplification; L(l) ¼ number of g(t) functions remaining after simplification; d ¼ model minus observed discharge for the peak flood discharge
near hour 500 in the evaluation set;Qc¼model mean discharge for calibration data; Qe¼model mean discharge for evaluation data. Actualmean discharges for the calibration
and evaluation data are 0.79 and 1.62 m3 s�1, respectively. A constant non-zero baseflow parameter is present in all parameter sets.

l 0.0 0.4 0.5 0.6 0.9 1.5 2.0 2.1 2.5 3.3 3.5 10.0
Vc 0.92 0.92 0.90 0.90 0.89 0.89 0.89 0.83 0.83 0.80 0.75 0.68
Ve 0.52 0.57 0.78 0.81 0.87 0.87 0.87 0.80 0.80 0.71 0.61 0.52
J(l) 13 9 8 7 6 6 6 6 5 5 4 4
L(l) 5 3 3 3 3 3 3 3 3 3 3 3
d (m3 s�1) 7.70 7.20 1.80 1.53 �1.04 �1.04 �1.04 �3.90 �3.80 �5.50 �7.10 �8.10
Qc (m3 s�1) 0.78 0.78 0.79 0.79 0.79 0.79 0.79 0.78 0.78 0.78 0.77 0.73
Qe (m3 s�1) 2.32 2.18 2.01 1.95 1.82 1.82 1.82 1.72 1.72 1.65 1.54 1.43
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in peak discharge, using hydrographs from progressively increasing
simulated rainfalls. One implication of the influence of R2 terms in
the model is that catchment peak runoff response will be more
difficult to predict when there is spatial variability of rainfall.

A differentiation between a nonlinear peak response and linear
recession response is not unusual in hydrology, but it is of interest
to check how well this effect is established by the model. In this
regard, one useful approach that LASSO simplification permits is a
form of sensitivity analysis by noting which model parameters are
most resistant to elimination by further increasing l.

This effect on model parameter configuration with increasing l

is shown in Table 3. The somewhat unlikely nature of the Rt�5

parameter for distribution 9 tends to be reinforced by its disap-
pearance after l ¼ 2.5. A consistent feature, however, is the
continued association of nonlinear weighting terms with the most
rapid-response g(t) distributions (distributions 5 and below). At the
same time, there is continued association of linear weighting with
the longer-tailed distributions 8 and 9. There is some degree of
swapping among similar distributions with increasing l, but the
stability of the respective linear and nonlinear g(t) weight associ-
ations suggests detecting a real hydrological effect from this limited
data set.

This purely illustrative model is deficient in many respects and
as noted earlier there is no suggestion that a new functional
Fig. 5. Simulated hydrographs from the simplified model of Eq. (11), for 6 h of continuou
correspond, respectively, to rain rates of 2, 4, 6, 8, and 10 mm/h. Inset shows the nonlinear
rainfall-runoff model has now been created by the simplification
process. There is no water balancing or residence time analysis,
evaporation is included only implicitly, and the calibration period is
too small to establish seasonality effects. Also, the evaluation data
was used in deciding the appropriate l. For proper evaluation of any
LASSO-simplified model it would be necessary to consider fully
independent evaluation data sets subsequent to the selection of l. It
would also be desirable to use multiple evaluation criteria and not
just a single matching index (Bennett et al., 2013).

Furthermore, despite its large number of parameters the initial
linear model incorporates no more hydrological structure than a
basic unit hydrograph scheme with time-varying parameters. It
could be desirable, for example, to include threshold effects so that
small amounts of rainfall might not necessarily generate a hydro-
graph response. At the expense of an increased number of initial
parameters, this could be achieved using higher order polynomials
to allow an effectively zero g(t) weighting to small rain events.
Finally, no explicit consideration has been given to any error
structure, which should be part of any viable predictive model.

6. Possibilities for the linear LASSO with groundwater models

Any model which is already expressed in linear form will be
amenable to LASSO simplification. The obvious example of
s rain at a constant rate, starting at zero time. Hydrographs from smallest to largest
increase of peak discharge as a function of simulated rainfall rate.



Table 3
Parameters associated with surviving g(t) functions for the larger values of l. The
l ¼ 2 column corresponds to the simplified model given by Eq. (11). All models also
include a non-zero baseflow parameter u0.

g(t) R l: 2 2.1 2.5 3.3 3.5 10

1 Rt�2 C C C C

1 Rt�3 C

1 R2
t�1 C

2 R2t C C C

5 R2t C C

8 Rt�2 C

9 Rt C C C C C C

9 Rt�1 C C C C C

9 Rt�5 C C
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numerical groundwater models is considered briefly here. Creating
groundwater models no more complex than needed was consid-
ered by Hill (2006) by way of building up a groundwater model
incrementally. Other studies discussing groundwater model
simplification include Fienen et al. (2009) and Blakers et al. (2011).

For a runoff model the limit physical situation for total simpli-
fication is when all parameters are forced to zero so the model
predicts zero discharge. For a groundwater model the equivalent
situation is having all water fluxes forced to zero at all locations so
there is no longer a groundwater flow field.

Considering the specific case of finite difference groundwater
models, one approach to LASSO simplification would be to seek to
match some calibration data set while at the same time trying to
force all head gradients to zero. Thewhole groundwatermodel here
is set up and solved as an LP minimisation, where some of the finite
difference equations may not be solved exactly because of the
simplification effect. All boundary conditions herewould have to be
specified as linear constraints. In the ordinary groundwater cali-
bration following the LASSO step the head gradients which had
been forced to zerowould be now fixed to be zero head gradients as
an additional set of boundary conditions.

Themotivation for LASSO simplification of a groundwatermodel
is likely to be different from, say, simplification of a runoff model.
Having a groundwater model with a considerable extent of local
zero head gradients may well be far removed from known hydro-
geological reality. However, the simplifiedmodels in this case could
play a role as groundwater emulationmodels. That is, the simplified
models could still answer the same groundwater questions as the
original model but possibly at less cost because there is no need for
detailed geological information from the new zero-flow regions of
the emulation model. The emulation models would also have a
further advantage in that they are likely to run faster.
7. Discussion

This section anticipates some of the issues and concerns likely to
arise from the simplification modelling approach considered in this
paper. The LASSO simplification approach is essentially opposite to
usual modelling in hydrology whereby a model structure is first
selected and then effort expended seeking to optimise a relatively
small number of nonlinear parameters. In contrast, the simplifica-
tion process starts with a large number of user-specified fixed-
value nonlinear parameters and then seeks optimal combinations
of linear mixtures of functions of the fixed parameters. Unhelpful
functions and parameters are eliminated at the same time, with the
model structure remaining unknown until completion of the
process.
Although the nonlinear parameters are fixed and not optimised
the procedure actually gives (i) greater flexibility and (ii) has more
calibration utility. The first holds because finite mixtures of many
nonlinear functions can give greater model flexibility than by
optimising a few nonlinear parameters in a few functions. The
second applies because the calibration process can be reduced to an
LP optimisation problem, giving fast solutions and globally optimal
parameters for a given level of simplification.

Creating simplified models from a linear LASSO process might
be loosely described as nonparametric modelling because individ-
ual parameters will often have minimal identifiable connection to
physical reality. This has implications for parameter interpretation,
identifiability of parameters and models, and formulation of model
error structure. It also raises the deeper issue of the nature of hy-
drological knowledge and how this should be incorporated into
models.

All these topics are currently active research themes in the hy-
drological literature. For example, see Yen et al. (2014) and cited
references for error analysis in a watershed modelling context.
Beven and Young (2013) include a detailed description of various
error types. Shin et al. (2015) discuss a range of methods for
assessing identifiability of rainfall-runoff models.

Identifiability issues arise from LASSO-simplified models
because a relatively large number of linear parameters proxy for a
small number of nonlinear parameters. Unlike the case with most
hydrological models, the linear parameters do not attempt to
represent a physical reality. Individual parameters can be expected
to appear and disappear with minor changes in calibration data.
This is analogous to small changes in magnitude of a nonlinear
parameter. Linear parameter instability is are also likely to occur
from using different fitting weights in weighted calibration, as
suggested by (Liang and B�ardossy, 2012) to emphasise some data
points which are seen as being more informative. The simplified
model parameter values will also changewith different g(t) choices,
different levels of simplification forcing, and different methods of
pre-LASSO standardisation of coefficient values. Similar issues will
arise with any system of models with structural adaption to the
situation of application e see, for example, Gray and Wotherspoon
(2012).

Linear LASSO simplifiedmodels and their associated parameters
are therefore poorly defined in the sense that a hypothetical large
extension of calibration data is not guaranteed to give convergence
to a particular set of final parameters. This differs from the limit
behaviour of an ideal model as envisaged by Andr�eassian et al.
(2012). In fact, it is not even helpful to refer to a simplified linear
model as “the” model because there will be different models
created from one calibration to the next in the same time series,
even when using long calibration periods.

All this may create a sense of unease relative to the certainty of
using established hydrological models with a fixed nonlinear
structure and a relatively small fixed number of parameters with
hydrological names. However, we suggest that unpredictable
algorithmic model simplification is actually advantageous because
it forces attention toward model output and away from a focus on
model parameters with their associated issues of identifiability,
estimation accuracy, and sometimes dubious physical linkages.

It is worth noting in this context the comments by M. Sivapalan
(cited by Beven, 2008) that seeking detailed error analysis struc-
tures could be something of a distraction from the core scientific
task of developing better hydrological modelling approaches and
measurement techniques. Similarly, a focus on model-related
identifiability will not necessarily lead to a useful conclusion in
the absence of ability to clearly confirm that some particular feature
has been uniquely “identified”. There are distant echoes here of a
rather sterile period in engineering hydrology seeking probability
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distributions and estimation methods which were best suited to
histograms of extreme event data (Bardsley, 1994).

There is of course an essential need for error frameworks in any
modelling endeavour but with simplification-driven variable
model structure the main error focus is likely to be on predictive
uncertainty. Fortunately, predictive uncertainty is mostly encap-
sulated by the differences in observed and model-predicted values
(Mantovan et al., 2007), largely avoiding issues of error associated
with model structural uncertainty. In addition some quantification
of model uncertainty might be possible using linear programming
tolerance analysis (Arsham, 2007).

One criticism that is likely to be raised of the linear LASSO
simplification process is that the resulting models are not physi-
cally based because they are linear and hydrological processes may
be strongly nonlinear. As discussed in Section 2, the reply here is
that a linear model using pre-selected g(t) or other nonlinear ex-
pressions is simply a different way of representing nonlinearity and
is no less nonlinear because it does not explicitly incorporate
nonlinear parameters. The standard example is that a dependent
variable Y may be modelled as a nonlinear polynomial function of
some independent variable X but the model is still linear because
the powers of X have been calculated prior.

There is no reason therefore why the simplified linear models
should not extrapolate as well as their nonlinear equivalents,
providing the nonlinearities have been sufficiently captured in
calibration. Like any other system of hydrological models, the
calibration/simplification approach will fail at evaluation if the
calibration data is not sufficiently extensive to include the full range
of natural variation, or if spurious relations remain after
simplification.

Concerns might also be raised over the use of minimising ab-
solute deviations for model calibration and simplification, as
opposed to least squares. This was discussed in earlier hydrological
literature when Natale and Todini (1976a, b) demonstrated some
improvement in unit hydrograph estimation by constrained least
squares compared to a previous use of minimum absolute de-
viations (Eagleson et al., 1966). In practice, when dealing with
constrained models with large numbers of observations it seems
unlikely that least squares results would be very different, although
there may be numerical problems with the resulting quadratic
programming exercise, as noted in Section 3. More recently,
Arkesteijn and Pande (2013) found it helpful to use a least absolute
deviations fit measure in a formal analysis of complexity in hy-
drological models.

On a more technical matter, it is noted that parameters derived
from LASSO simplification are not optimal in any formal sense (Fan
and Li, 2001). Our use of the linear LASSO is purely pragmatic in
that it quickly enables elimination of large numbers of irrelevant
parameters. However, some potentially useful parameters might be
eliminated and some poor ones selected. In specific instances
involving smaller numbers of linear parameters it may still be best
to use more classical methods. For example, Bardsley and Manly
(1985) used all subsets regression in a simple estimation model
as a means of identifying less informative rain gauges for removal.

Finally, a brief concluding comment is offered here with respect
to hydrological knowledge and hydrological models generally. It
could happen, for example, that a more fully developed version of
the inverse Gaussian runoff model of Section 5 is found to give good
results over multiple calibration and evaluation data sets. However,
this would not imply that the small-scale processes of hydrograph
generationwithin a catchment arewell described by the directional
random walk basis of inverse Gaussian distributions. Similarly,
obtaining a good result if the model incorporated gamma distri-
butions would not indicate that catchment water transfer is by
routing through a series of linear reservoirs via the cascade model
of Nash (1957). A more correct statement is that event hydrographs
are positively skewed by delayed flow so mixtures of positively-
skewed distributions are geometrically well suited to mimic
hydrographs.

Indeed, it would be equally justifiable to replace the g(t) func-
tions with a set of subjectively-defined histograms without any
reference to mathematical expressions. Going further, we would
argue that at most spatial scales hydrological knowledge is essen-
tially qualitative. However, local information may still be usefully
incorporated into models (Hughs, 2010). This does not deny the
existence of well-defined physics at the scale of the very small and
very uniform, but simply that the heterogeneity of nature makes
upscaling mathematically unjustifiable. Beven (2014) provides
useful discussion on this topic.

Qualitative hydrological knowledge does not lend itself to
explicit mathematical expression, but it should still be possible to
express that knowledge as model inequality statements (Gharari
et al., 2014). Further, if the entire model can be formulated in the
first instance as a large number of linear inequalities then the linear
simplification framework considered here is a natural means of
creating hydrological models specific to a given application.

8. Further development

If the linear simplification approach outlined here proves useful
in practice then it could be helpful to accumulate and share hy-
drological knowledge in the form of selected g(t) functions or other
nonlinear expressions relevant to the various fields of research. In
the context of catchment modelling such collections would be
analogous to the runoff parameter libraries suggested by Perrin
et al. (2008).

It would also be of interest to apply the method to distributed
catchment models (after an initial linear formulation). This should
lead to identification, for example, of the localities within a catch-
ment which are of most importance to predicting discharge char-
acteristics. The resulting reduced model is also likely to show
improvement in computational performance.

A further extension of the method could be to have the equiv-
alent of a multi-objective calibration, which can be a useful means
of incorporating further information into a model (Efstratiadis and
Koutsoyiannis, 2010). This could be achieved in the framework
considered here by still keeping a single linear objective function
but with grouped terms weighted by their importance. Each group
here would correspond to a different objective. In such situations it
could happen that some of these embedded objective functions are
eliminated in the simplification process.

The linear LASSO was discussed in this paper as the method of
choice for simplifying hydrological models formulated as con-
strained linear systems. The method is well established, easy to
understand, and has a large literature in both theoretical and
applied fields. However, other selection methods are available as
well and there is active research in the field. By way of some
selected references, Li (1991) gives an inverse method of dimension
reduction in general regression models and Kohn et al. (2001)
describe a Bayesian methodology for linear basis function model
simplification. Various aspects of subset selection techniques are
reviewed by Johnstone and Titterington (2009), Miller (2002), and
Galelli et al. (2014).

9. Conclusion

A method was presented which uses the linear LASSO as a
means of formalising the simplification of a class of linear hydro-
logical models. This is a departure from the traditional use of the
LASSO for selecting a subset of predictor variables in multiple linear
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regression.
The simplification method has attraction in its generality, being

in principle applicable over many fields of nonlinear hydrology and
in other subject areas of environmental science as well. However,
the value of the approach is certainly dependent on meeting the
challenge of formulating hydrological models using a sufficiently
extensive set of linear equalities and inequalities so as to capture
the main features of the nonlinear environmental processes. The
way is then open for use of the simplification process to create fully
functional reduced models no more complex than required for
application to a given data set. Whether this can be achieved re-
mains an open question for now. We hope that sufficient interest
might be created to encourage in-depth studies of models derived
from the linear LASSO or other linear simplification procedures.
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Appendix 1. Setting up the LP matrix for the time series
model of Section 2.

Each row in the LP matrix is taken as corresponding to a
particular time point t. For a given t the first element in that row in
the LP matrix is given by:

XKðtÞ
n¼1

g1ðtÞZt½n�;1 (A1)

where Zt½n�; 1 denotes the magnitude of the first causal variable at
the time of the n th rain event.

Similarly, the second element in the same row is given by:

XKðtÞ
n¼1

g1ðtÞZt½n�;2 (A2)

where Zt½n� ;2 denotes the magnitude of the second causal variable
at the time of the n th rain event.

This process continues through to the M th element of the row:

XKðtÞ
n¼1

g1ðtÞZt½n�;M (A3)

ElementMþ 1 in the row is the start of the terms for the second
g(t) function:

XKðtÞ
n¼1

g2ðtÞZt½n�;1 (A4)
This process continues until theM� L elements of the row have
been completed, and then all rows completed. The M� Lþ 1 col-
umn in the LP matrix is set to 1.0 if u0 is permitted to be a positive
constant. The matrix columns will then be rescaled, perhaps to a
constant mean value, so that no one column is preferentially
excluded in the linear LASSO minimisation simplification. Addi-
tional columns are then added corresponding to the LP utility
variables used in the minimisation operation, in the usual setup for
minimising least absolute deviations (Bloomfield and Steiger, 1983;
ch. 6). Finally, the recorded time series is placed in the last column.
With reference to the specifications of Section 2, all the unknown
coefficients will be constrained to be non-negative in the LP solu-
tion process.

Once set up, the LP minimisation can be carried out with any
suitable LP package. We used the open source software lpsolve
(Berkelaar et al., 2004). The linear LASSO algorithm described by
Wang et al. (2006) will be more computationally efficient, which
could be a factor for the large LP minimisations created from
extended calibration data sets and more complex initial linear
models.
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