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a b s t r a c t

Bayesian inference has found widespread application and use in science and engineering to reconcile
Earth system models with data, including prediction in space (interpolation), prediction in time (fore-
casting), assimilation of observations and deterministic/stochastic model output, and inference of the
model parameters. Bayes theorem states that the posterior probability, pðH

���~YÞ of a hypothesis, H is
proportional to the product of the prior probability, p(H) of this hypothesis and the likelihood, LðH

���~YÞ of
the same hypothesis given the new observations, ~Y, or pðH

���~YÞfpðHÞLðH
���~YÞ. In science and engineering, H

often constitutes some numerical model, F (x) which summarizes, in algebraic and differential equations,
state variables and fluxes, all knowledge of the system of interest, and the unknown parameter values, x
are subject to inference using the data ~Y. Unfortunately, for complex system models the posterior dis-
tribution is often high dimensional and analytically intractable, and sampling methods are required to
approximate the target. In this paper I review the basic theory of Markov chain Monte Carlo (MCMC)
simulation and introduce a MATLAB toolbox of the DiffeRential Evolution Adaptive Metropolis (DREAM)
algorithm developed by Vrugt et al. (2008a, 2009a) and used for Bayesian inference in fields ranging from
physics, chemistry and engineering, to ecology, hydrology, and geophysics. This MATLAB toolbox pro-
vides scientists and engineers with an arsenal of options and utilities to solve posterior sampling
problems involving (among others) bimodality, high-dimensionality, summary statistics, bounded
parameter spaces, dynamic simulation models, formal/informal likelihood functions (GLUE), diagnostic
model evaluation, data assimilation, Bayesian model averaging, distributed computation, and informa-
tive/noninformative prior distributions. The DREAM toolbox supports parallel computing and includes
tools for convergence analysis of the sampled chain trajectories and post-processing of the results. Seven
different case studies illustrate the main capabilities and functionalities of the MATLAB toolbox.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction and scope

Continued advances in direct and indirect (e.g. geophysical,
pumping test, remote sensing) measurement technologies and
improvements in computational technology and process knowl-
edge have stimulated the development of increasingly complex
ring, University of California
175, USA.
environmental models that use algebraic and (stochastic) ordinary
(partial) differential equations (PDEs) to simulate the behavior of a
myriad of highly interrelated ecological, hydrological, and biogeo-
chemical processes at different spatial and temporal scales. These
water, energy, nutrient, and vegetation processes are often non-
separable, non-stationary with very complicated and highly-
nonlinear spatio-temporal interactions (Wikle and Hooten, 2010)
which gives rise to complex system behavior. This complexity poses
significant measurement and modeling challenges, in particular
how to adequately characterize the spatio-temporal processes of
the dynamic system of interest, in the presence of (often)
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incomplete and insufficient observations, process knowledge and
system characterization. This includes prediction in space (inter-
polation/extrapolation), prediction in time (forecasting), assimila-
tion of observations and deterministic/stochastic model output,
and inference of the model parameters.

The use of differential equations might be more appropriate
than purely empirical relationships among variables, but does not
guard against epistemic errors due to incomplete and/or inexact
process knowledge. Fig. 1 provides a schematic overview of most
important sources of uncertainty that affect our ability to
describe as closely and consistently as possible the observed
system behavior. These sources of uncertainty have been dis-
cussed extensively in the literature, and much work has focused
on the characterization of parameter, model output and state
variable uncertainty. Explicit knowledge of each individual error
source would provide strategic guidance for investments in data
collection and/or model improvement. For instance, if input
(forcing/boundary condition) data uncertainty dominates total
simulation uncertainty, then it would not be productive to in-
crease model complexity, but rather to prioritize data collection
instead. On the contrary, it would be naive to spend a large
portion of the available monetary budget on system character-
ization if this constitutes only a minor portion of total prediction
uncertainty.

Note that model structural error (label 4) (also called epistemic
error) has received relatively little attention, but is key to learning
and scientific discovery (Vrugt et al., 2005; Vrugt and Sadegh,
2013).

The focus of this paper is on spatio-temporal models that may
be discrete in time and/or space, but with processes that are
continuous in both. A MATLAB toolbox is described which can be
used to derive the posterior parameter (and state) distribution,
conditioned on measurements of observed system behavior. At
least some level of calibration of these models is required to make
sure that the simulated state variables, internal fluxes, and output
variables match the observed system behavior as closely and
consistently as possible. Bayesian methods have found widespread
application and use to do so, in particular because of their innate
ability to handle, in a consistent and coherent manner parameter,
state variable, and model output (simulation) uncertainty.

If ~Y ¼ f~y1;…; ~yng signifies a discrete vector of measurements at
times t ¼ {1,…,n} which summarizes the response of some
Fig. 1. Schematic illustration of the most important sources of uncertainty in environmental s
conditions), (3), initial state, (4) model structural, (5) output, and (6) calibration data uncerta
optimistic approach in most practical situations. Question remains how to describe/infer pro
environmental system J to forcing variables U ¼ {u1,…,un}. The
observations or data are linked to the physical system.

~Y)Jðx�Þ þ ε; (1)

where x� ¼ fx�1;…; x�dg are the unknown parameters, and
ε ¼ {ε1,…,εn} is a n-vector of measurement errors. When a hy-
pothesis, or simulator, Y)F ðx�; ~u; ~j0Þ of the physical process is
available, then the data can be modeled using

~Y)F
�
x�; ~U; ~j0

�
þ E; (2)

where ~j0 2J2 ℝt signify the t initial states, and E ¼ {e1,…,en}
includes observation error (forcing and output data) as well as error
due to the fact that the simulator, F (,) may be systematically
different from reality, Jðx�Þ for the parameters x*. The latter may
arise from numerical errors (inadequate solver and discretization),
and improper model formulation and/or parameterization.

By adopting a Bayesian formalism the posterior distribution of
the parameters of the model can be derived by conditioning the
spatio-temporal behavior of the model on measurements of the
observed system response

p
�
x
���~Y� ¼

pðxÞp
�
~Y
���x�

p
�
~Y
� ; (3)

where p(x) and pðx
���~YÞ signify the prior and posterior parameter

distribution, respectively, and L x
���~Y� �

≡ p ~Y
���x� �

denotes the likeli-

hood function. The evidence, pð~YÞ acts as a normalization constant
(scalar) so that the posterior distribution integrates to unity

p
�
~Y
�
¼
Z
c

pðxÞp
�
~Y
���x�dx ¼

Z
c

p
�
x; ~Y

�
dx; (4)

over the parameter space, x 2 c 2 ℝd. In practice, pð~YÞ is not
required for posterior estimation as all statistical inferences about
pðx
���~YÞ can be made from the unnormalized density

p
�
x
���~Y�fpðxÞL

�
x
���~Y� (5)

If we assume, for the time being, that the prior distribution, p(x)
ystems modeling, including (1) parameter, (2) input data (also called forcing or boundary
inty. The measurement data error is often conveniently assumed to be known, a rather
perly all sources of uncertainty in a coherent and statistically adequate manner.
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is well defined, then the main culprit resides in the definition of the
likelihood function, Lðx

���~YÞ used to summarize the distance be-
tween the model simulations and corresponding observations. If
the error residuals are assumed to be uncorrelated then the like-
lihood of the n-vector of error residuals can be written as follows

L
�
x
���~Y� ¼ f~y1ðy1ðxÞÞ � f~y2ðy2ðxÞÞ �…� f~ynðynðxÞÞ ¼

Yn
t¼1

f~yt ðytðxÞÞ;

(6)

where fa(b) signifies the probability density function of a evaluated
at b. If we further assume the error residuals to be normally
distributed, etðxÞ�D N ð0; bs2

t Þ then Equation (6) becomes

L
�
x
���~Y; bs2

�
¼
Yn
t¼1

1ffiffiffiffiffiffiffiffiffiffiffiffi
2pbs2

t

q exp

"
� 1
2

�
~yt � ytðxÞbst

�2
#
; (7)

where bs ¼ fbs1;…; bsng is a n-vector with standard deviations of the
measurement error of the observations. This formulation allows for
homoscedastic (constant variance) and heteroscedastic measure-
ment errors (variance dependent on magnitude of data).1 For rea-
sons of numerical stability and algebraic simplicity it is often
convenient to work with the log-likelihood, L ðx

���~Y; bs2Þ instead

L
�
x
���~Y; bs2

�
¼ �n

2
logð2pÞ �

Xn
t¼1

flogðbstÞg � 1
2

Xn
t¼1

�
~yt � ytðxÞbst

�2

:

(8)

If the error residuals, EðxÞ ¼ ~Y � YðxÞ ¼ fe1ðxÞ;…; enðxÞg exhibit
temporal (or spatial) correlation then one can try to take explicit
account of this in the derivation of the log-likelihood function. For
instance, suppose the error residuals assume an AR(1)-process

etðxÞ ¼ cþ fet�1ðxÞ þ ht ; (9)

with ht �D N ð0; bs 2
t Þ, expectation E½etðxÞ� ¼ c=ð1� fÞ, and variance

Var[et(x)]¼ bs2/(1�f2). This then leads to the following formulation
of the log-likelihood (derivation in statistics textbooks)

ℒ
�
x
���~Y ; c;f; bs2

�
¼ �n

2
logð2pÞ � 1

2
log
hbs2

1

.�
1� f2

�i
� ðe1ðxÞ � ½c=ð1� fÞ�Þ2

2bs2
1=
�
1� f2	 �

Xn
t¼2

flogðbstÞg

� 1
2

Xn
t¼2

ððetðxÞ � c� fet�1 xð ÞÞbst Þ2

(10)

where jfj<1 signifies the first-order autoregressive coefficient. If
we assume c to be zero (absence of long-term trend) then Equation
(10) reduces, after some rearrangement, to
1 If homoscedasticity is expected and the variance of the error residuals,

s2 ¼ 1
n�1

Pn
t¼1

et xð Þð Þ2 is taken as sufficient statistic for bs2, then one can show that the

likelihood function simplifies to L x
���~Y� �

∝
Pn
t¼1

��et xð Þ���n .
ℒ
�
x
���~Y ;f; bs2

�
¼ �n

2
logð2pÞ þ 1

2
log
�
1� f2

�
� 1
2

�
1� f2

�bs�2
1 e1ðxÞ2 �

Xn
t¼2

flogðbstÞg

� 1
2

Xn
t¼2

�ðetðxÞ � fet�1ðxÞÞbst

�2
; (11)

and the nuisance variables {f,bs} are subject to inference with the
model parameters, x using the observed data, ~Y2.

Equation (11) is rather simplistic in that it assumes a-priori that
the error residuals follow a stationary AR(1) process. This
assumption might not be particularly realistic for real-world
studies. Various authors have therefore proposed alternative for-
mulations of the likelihood function to extend applicability to sit-
uations where the error residuals are non-Gaussian with varying
degrees of kurtosis and skewness (Schoups and Vrugt, 2010; Smith
et al., 2010; Evin et al., 2013; Scharnagl et al., 2015). Latent variables
can also be used to augment likelihood functions and take better
consideration of forcing data and model structural error (Kavetski
et al., 2006a; Vrugt et al., 2008a; Renard et al., 2011). For systems
with generative (negative) feedbacks, the error in the initial states
poses no harm as its effect on system simulation rapidly diminishes
when time advances. One can therefore take advantage of a spin-up
period to remove sensitivity of the modeling results (and error
residuals) to state value initialization.

The process of investigating phenomena, acquiring new infor-
mation through experimentation and data collection, and refining
existing theory and knowledge through Bayesian analysis has many
elements in common with the scientific method. This framework,
graphically illustrated in Fig. 2 is adopted in many branches of the
earth sciences, and seeks to elucidate the rules that govern the
natural world.

Once the prior distribution and likelihood function have been
defined, what is left in Bayesian analysis is to summarize the pos-
terior distribution, for example by the mean, the covariance or
percentiles of individual parameters and/or nuisance variables.
Unfortunately, most dynamic system models are highly nonlinear,
and this task cannot be carried out by analytical means nor by
analytical approximation. Confidence intervals construed from a
classical first-order approximation can then only provide an
approximate estimate of the posterior distribution. What is more,
the target is assumed to be multivariate Gaussian ([2-norm type
likelihood function), a restrictive assumption. I therefore resort to
Monte Carlo (MC) simulation methods to generate a sample of the
posterior distribution.

In a previous paper, we have introduced the DiffeRential Evo-
lution AdaptiveMetropolis (DREAM) algorithm (Vrugt et al., 2008a,
2009a). This multi-chain Markov chain Monte Carlo (MCMC)
simulation algorithm automatically tunes the scale and orientation
of the proposal distribution en route to the target distribution, and
exhibits excellent sampling efficiencies on complex, high-
dimensional, and multi-modal target distributions. DREAM is an
adaptation of the Shuffled Complex Evolution Metropolis (Vrugt
et al., 2003) algorithm and has the advantage of maintaining
detailed balance and ergodicity. Benchmark experiments [e.g.
(Vrugt et al., 2008a, 2009a; Laloy and Vrugt, 2012; Laloy et al., 2013;
Linde and Vrugt, 2013; Lochbühler et al., 2014; Laloy et al., 2015)]
have shown that DREAM is superior to other adaptive MCMC
sampling approaches, and in high-dimensional search/variable
2 A nuisance variable is a random variable that is fundamental to the probabilistic
model, but that is not of particular interest itself.



Fig. 2. The iterative research cycle for a soil-tree-atmosphere-continuum (STAC). The initial hypothesis is that this system can be described accurately with a coupled soil-tree
porous media model which simulates, using PDEs, processes such as infiltration, soil evaporation, variably saturated soil water flow and storage, root water uptake, xylem wa-
ter storage and sapflux, and leaf transpiration. Measurements of spatially distributed soil moisture and matric head, sapflux, and tree trunk potential are used for model calibration
and evaluation. The model-data comparison step reveals a systematic deviation in the early afternoon and night time hours between the observed (black circles) and simulated
(solid red line) sapflux data. It has proven to be very difficult to pinpoint this epistemic error to a specific component of the model. Ad-hoc decisions on model improvement
therefore usually prevail. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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spaces even provides better solutions than commonly used opti-
mization algorithms.

In just a few years, the DREAM algorithm has found wide-
spread application and use in numerous different fields,
including (among others) atmospheric chemistry (Partridge
et al., 2011, 2012), biogeosciences (Scharnagl et al., 2010;
Braakhekke et al., 2013; Ahrens and Reichstein, 2014; Dumont
et al., 2014; Starrfelt and Kaste, 2014), biology (Coelho et al.,
2011; Zaoli et al., 2014), chemistry (Owejan et al., 2012;
Tarasevich et al., 2013; DeCaluwe et al., 2014; Gentsch et al.,
2014), ecohydrology (Dekker et al., 2010), ecology (Barthel
et al., 2011; Gentsch et al., 2014; Iizumi et al., 2014; Zilliox and
Goselin, 2014), economics and quantitative finance (Bauwens
et al., 2011; Lise et al., 2012; Lise, 2013), epidemiology (Mari
et al., 2011; Rinaldo et al., 2012; Leventhal et al., 2013),
geophysics (Bikowski et al., 2012; Linde and Vrugt, 2013; Laloy
et al., 2012; Carbajal et al., 2014; Lochbühler et al., 2014, 2015),
geostatistics (Minasny et al., 2011; Sun et al., 2013), hydro-
geophysics (Hinnell et al., 2011), hydrologeology (Keating et al.,
2010; Laloy et al., 2013; Malama et al., 2013), hydrology (Vrugt
et al., 2008a, 2009a; Shafii et al., 2014), physics (Dura et al.,
2011; Horowitz et al., 2012; Toyli et al., 2012; Kirby et al.,
2013; Yale et al., 2013; Krayer et al., 2014), psychology (Turner
and Sederberg, 2012), soil hydrology (W€ohling and Vrugt,
2011), and transportation engineering (Kow et al., 2012). Many
of these publications have used the MATLAB toolbox of DREAM,
which has been developed and written by the author of this
paper, and shared with many individuals worldwide. Yet, the
toolbox of DREAM has never been released formally through a
software publication documenting how to use the code for
Bayesian inference and posterior exploration.
In this paper, I review the basic theory of Markov chain Monte
Carlo (MCMC) simulation, provide MATLAB scripts of some
commonly used posterior sampling methods, and introduce a
MATLAB toolbox of the DREAM algorithm. This MATLAB toolbox
provides scientists and engineers with a comprehensive set of
capabilities for application of the DREAM algorithm to Bayesian
inference and posterior exploration. The DREAM toolbox im-
plements multi-core computing (if user desires) and includes
tools for convergence analysis of the sampled chain trajectories
and post-processing of the results. Recent extensions of the
toolbox are described as well, and include (among others) built-
in functionalities that enable use of informal likelihood functions
(Beven and Binley, 1992; Beven and Freer, 2001), summary sta-
tistics (Gupta et al., 2008), approximate Bayesian computation
(Nott et al., 2012; Sadegh and Vrugt, 2013, 2014), diagnostic
model evaluation (Vrugt and Sadegh, 2013), and the limits of
acceptability framework (Beven, 2006; Beven and Binley, 2014).
These developments are in part a response to the emerging
paradigm of model diagnostics using summary statistics of sys-
tem behavior. Recent work has shown that such approach pro-
vides better guidance on model malfunctioning and related
issues than the conventional residual-based paradigm (Sadegh
et al., 2015b; Vrugt, submitted for publication). The main capa-
bilities of the DREAM toolbox are demonstrated using seven
different case studies involving (for instance) bimodality, high-
dimensionality, summary statistics, bounded parameter spaces,
dynamic simulation models, formal/informal likelihood func-
tions, diagnostic model evaluation, data assimilation, Bayesian
model averaging, distributed computation, informative/non-
informative prior distributions, and limits of acceptability. These
example studies are easy to run and adapt and serve as



Fig. 3. Example target distribution: A square with unit radius (in black) centered at the
origin. The Monte Carlo samples are coded in dots (rejected) and plusses (accepted).
The number of accepted samples can now be used to estimate the value of p z 3.0912.

J.A. Vrugt / Environmental Modelling & Software 75 (2016) 273e316 277
templates for other inference problems.
The present contribution follows papers by others in the same

journal on the implementation of DREAM in high-level statistical
languages such as R (Joseph and Guillaume, 2014) as well as
general-purpose languages such as Fortran (Lu et al., 2014). Other
unpublished versions of DREAM include codes in C (http://people.
sc.fsu.edu/~jburkardt/c_src/dream/dream.html) and Python
(https://pypi.python.org/pypi/multichain_mcmc/0.2.2). These
different codes give potential users the option to choose their
preferred language, yet these translations are based on source
code supplied by the author several years ago and have limited
functionalities compared to the MATLAB package described
herein. The present code differs from its earlier versions in that it
contains a suite of new options and new methodological de-
velopments (Vrugt and Sadegh, 2013; Sadegh and Vrugt, 2014;
Vrugt, 2015a,submitted for publication).

The remainder of this paper is organized as follows. Section 2
reviews the basic theory of Monte Carlo sampling and MCMC
simulation, and provides a MATLAB code of the Random Walk
Metropolis algorithm. This is followed in Section 3 with a brief
discussion of adaptive single and multi-chain MCMC methods.
Here, I provide a source code of the basic DREAM algorithm. This
source code has few options available to the user and Section 4
therefore introduces all the elements of the MATLAB toolbox of
DREAM. This section is especially concerned with the input and
output arguments of the DREAM program and the various func-
tionalities, capabilities, and options available to the user. Section 5
of this paper illustrates the practical application of the DREAM
toolbox to seven different case studies. These examples involve a
wide variety of problem features, and illustrate some of the main
capabilities of the MATLAB toolbox. In Section 6, I then discuss a
few of the functionalities of the DREAM code not demonstrated
explicitly in the present paper. Examples include Bayesian model
selection using a new and robust integration method for inference
of the marginal likelihood, pð~YÞ (Volpi et al., 2015), the use of
diagnostic Bayes to help detect epistemic errors (Vrugt, submitted
for publication), and the joint treatment of parameter, model
input (forcing) and output (calibration/evaluation) data uncer-
tainty. In the penultimate section of this paper, I discuss relatives
of the DREAM algorithm including DREAM(ZS), DREAM(D) (Vrugt
et al., 2011), DREAM(ABC) (Sadegh and Vrugt, 2014), and MT-
DREAM(ZS) (Laloy and Vrugt, 2012) and describe briefly how their
implementation in MATLAB differs from the present toolbox.
Finally, Section 8 concludes this paper with a summary of the
work presented herein.

2. Posterior exploration

A key task in Bayesian inference is to summarize the posterior
distribution. When this task cannot be carried out by analytical
means nor by analytical approximation, Monte Carlo simulation
methods can be used to generate a sample from the posterior dis-
tribution. The desired summary of the posterior distribution is then
obtained from the sample. The posterior distribution, also referred
to as the target or limiting distribution, is often high dimensional. A
large number of iterativemethods have been developed to generate
samples from the posterior distribution. All these methods rely in
some way on Monte Carlo simulation. The next sections discuss
several different posterior sampling methods.

2.1. Monte Carlo simulation

Monte Carlo methods are a broad class of computational algo-
rithms that use repeated random sampling to approximate some
multivariate probability distribution. The simplest Monte Carlo
method involves random sampling of the prior distribution. This
method is known to be rather inefficient, which I can illustratewith
a simple example. Lets consider a circle with unit radius in a square
of size x2 [�2,2]2. The circle (posterior distribution) has an area of
p and makes up p/16 z 0.196 of the prior distribution. I can now
use Monte Carlo simulation to estimate the value of p. I do so by
randomly sampling N ¼ 10,000 values of x from the prior distri-
bution. The M samples of x that fall within the circle are posterior
solutions and indicated with the plus symbol in Fig. 3. Samples that
fall outside the circle are rejected and printed with a dot. The value
of can now be estimated using p z 16M/N which in this numerical
experiment with N ¼ 10,000 samples equates to 3.0912.

The target distribution is relatively simple to sample in the
present example. It should be evident however that uniform
random sampling will not be particularly efficient if the hypercube
of the prior distribution is much larger. Indeed, the chance that a
random sample of x falls within the unit circle decreases rapidly
(quadratically) with increasing size of the prior distribution. If a
much higher dimensional sample were considered then rejection
sampling would quickly need many millions of Monte Carlo sam-
ples to delineate reasonably the posterior distribution and obtain
an accurate value of p. What is more, in the present example all
solutions within the circle have an equal density. If this were not
the case then many accepted samples are required to approximate
closely the distribution of the probability mass within the posterior
distribution. Indeed, methods such as the generalized likelihood
uncertainty estimation (GLUE) that rely on uniform sampling (such
as rejection sampling) can produce questionable results if the target
distribution is somewhat complex and/or comprises only a rela-
tively small part of the prior distribution (Vrugt, 2015a). In sum-
mary, standard Monte Carlo simulation methods are
computationally inefficient for anything but very low dimensional
problems.

This example is rather simple but conveys what to expect when
using simple Monte Carlo simulation methods to approximate
complex and high-dimensional posterior distributions. I therefore

http://people.sc.fsu.edu/%7Ejburkardt/c_src/dream/dream.html
http://people.sc.fsu.edu/%7Ejburkardt/c_src/dream/dream.html
https://pypi.python.org/pypi/multichain_mcmc/0.2.2
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resort to Markov chain Monte Carlo simulation to explore the
posterior target distribution.

2.2. Markov chain Monte Carlo simulation

The basis of MCMC simulation is aMarkov chain that generates a
random walk through the search space and successively visits so-
lutions with stable frequencies stemming from a stationary distri-
bution, pð,Þ.3 To explore the target distribution, pð,Þ, a MCMC
algorithm generates trial moves from the current state of the
Markov chain xt�1 to a new state xp. The earliest MCMC approach is
the random walk Metropolis (RWM) algorithm introduced by
Metropolis et al. (1953). This scheme is constructed to maintain
detailed balance with respect to pð,Þ at each step in the chain. If
p(xt�1) (p(xp)) denotes the probability to find the system in state
xt�1 (xp) and q(xt�1 / xp)(q(xp / xt�1)) is the conditional proba-
bility to perform a trial move from xt�1 to xp (xp to xt�1), then the
probability pacc(xt�1/ xp) to accept the trial move from xt�1 to xp is
related to pacc(xp / xt�1) according to

pðxt�1Þq
�
xt�1/xp

	
pacc

�
xt�1/xp

	
¼ p

�
xp
	
q
�
xp/xt�1

	
pacc

�
xp/xt�1

	
(12)

If a symmetric jumping distribution is used, that is
q(xt�1 / xp) ¼ q(xp / xt�1), then it follows that

pacc
�
xt�1/xp

	
pacc

�
xp/xt�1

	 ¼ p
�
xp
	

pðxt�1Þ
(13)
ALGORITHM 1. MATLAB function script of the RandomWalk Metropolis (RWM) algorithm. Notation matches variable names used in main
text. Based on input arguments prior, pdf, T and d, the RWM algorithm creates a Markov chain, x and corresponding densities, p_x. prior() is
an anonymous function that draws N samples from a d-variate prior distribution. This function generates the initial state of the Markov
chain. pdf() is another anonymous function that computes the density of the target distribution for a given vector of parameter values, x.
Input arguments T and d signify the number of samples of the Markov chain and dimensionality of the parameter space, respectively. Built-
in functions of MATLAB are highlighted with a low dash. The function handle q(C,d) is used to draw samples from a d-variate normal
distribution, mvnrnd() with zero mean and covariance matrix, C. rand draws a value from a standard uniform distribution on the open
interval (0,1), min() returns the smallest element of two different scalars, zeros() creates a zeroth vector (matrix), eye() computes the d � d
identity matrix, sqrt() calculates the square root, and nan() fills each entry of a vector (matrix) with not a number.
This Equation does not yet fix the acceptance probability.
Metropolis et al. (1953) made the following choice
3 This notation for the target distribution has nothing to do with the value of p ¼
3.1415... subject to inference in Fig. 3.
pacc
�
xt�1/xp

	 ¼ min


1;

p
�
xp
	

pðxt�1Þ
�
; (14)

to determine whether to accept a trial move or not. This
selection rule has become the basic building block of many
existing MCMC algorithms. Hastings (1970) extended Equation
(14) to the more general case of non-symmetrical jumping
distributions

pacc
�
xt�1/xp

	 ¼ min

"
1;

p
�
xp
	
q
�
xp/xt�1

	
pðxt�1Þq

�
xt�1/xp

	#; (15)

inwhich the forward (xt�1 to xp) and backward (xp to xt�1) jump do
not have equal probability, q(xt�1/xp) s q(xp/xt�1). This gener-
alization is known as the Metropolis-Hastings (MH) algorithm and
broadens significantly the type of proposal distribution that can be
used for posterior inference.

The core of the RWM algorithm can be coded in just a few lines
(see Algorithm 1) and requires only a jumping distribution, a
function to generate uniform random numbers, and a function to
calculate the probability density of each proposal. Note, for the time
being I conveniently assume the use of a noninformative prior
distribution. This simplifies the Metropolis acceptance probability
to the ratio of the densities of the proposal and the current state of
the chain. The use of an informative prior distribution will be
considered at a later stage.
In words, assume that the points {x0,…,xt�1} have already been
sampled, then the RWM algorithm proceeds as follows. First, a
candidate point xp is sampled from a proposal distribution q that
depends on the present location, xt�1 and is symmetric, q(xt�1,xp) ¼
q(xp, xt�1). Next, the candidate point is either accepted or rejected
using the Metropolis acceptance probability (Equation (14)). Finally,



Fig. 4. (A) bivariate scatter plots of the RWM derived posterior samples. The green, black and blue contour lines depict the true 68, 90 and 95% uncertainty intervals of the target
distribution, respectively. (B,C) traceplot of the sampled values of x1 (top) and x2 (bottom). (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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if the proposal is accepted the chainmoves toxp, otherwise the chain
remains at its current location xt�1. Repeated application of these
three steps results in aMarkov chainwhich, under certain regularity
conditions, has a unique stationary distribution with posterior
probability density function, pð,Þ. In practice, this means that if one
looks at the values of x sufficiently far from the arbitrary initial value,
that is, after a burn-inperiod, the successively generated states of the
chain will be distributed according to pð,Þ, the posterior probability
distribution of x. Burn-in is required to allow the chain to explore the
search space and reach its stationary regime.

Fig. 4 illustrates the outcome of the RWM algorithm for a simple
d ¼ 2-dimensional multivariate normal target distribution with
correlated dimensions. This target distribution is specified as
anonymous function (a function not stored as program file) in
MATLAB

pdf ¼ @ðxÞmvnpdfðx; ½0 0�; ½1 0:8; 0:8 1�Þ (16)

where the @ operator creates the handle, and the parentheses
contain the actual function itself. This anonymous function ac-
cepts a single input x, and implicitly returns a single output, a
vector (or scalar) of posterior density values with same number of
rows as x.

The chain is initialized by sampling from U 2½�10;10�, where
U dða; bÞ denotes the d-variate uniform distributionwith lower and
upper bounds a and b, respectively, and thus

prior ¼ @ðN;dÞ unifrndð � 10; 10; N; dÞ (17)

The left graph presents a scatter plot of the bivariate posterior
samples using a total of T ¼ 50,000 function evaluations and burn-
in of 50%. The contours depict the 68, 90, and 95% uncertainty in-
tervals of the target distribution. The right graph displays a plot of
the generation number against the value of parameter, x1 and x2 at
each iteration. This is also called a traceplot.

Perhaps not surprisingly, the bivariate samples of the RWM al-
gorithm nicely approximate the target distribution. The acceptance
rate of 23% is somewhat lower than considered optimal in theory
but certainly higher than derived fromMonte Carlo simulation. The
posterior mean and covariance are in excellent agreement with
their values of the target distribution (not shown).

This simple example just serves to demonstrate the ability of
RWM to approximate the posterior target distribution. The relative
ease of implementation of RWM and its theoretical underpinning
have led to widespread application and use in Bayesian inference.
However, the efficiency of the RWM algorithm is determined by
the choice of the proposal distribution, q(,) used to create trial
moves (transitions) in the Markov chain. When the proposal dis-
tribution is too wide, too many candidate points are rejected, and
therefore the chain will not mix efficiently and converge only
slowly to the target distribution. On the other hand, when the
proposal distribution is too narrow, nearly all candidate points are
accepted, but the distance moved is so small that it will take a
prohibitively large number of updates before the sampler has
converged to the target distribution. The choice of the proposal
distribution is therefore crucial and determines the practical
applicability of MCMC simulation in many fields of study (Owen
and Tribble, 2005).
3. Automatic tuning of proposal distribution

In the past decade, a variety of different approaches have been
proposed to increase the efficiency of MCMC simulation and
enhance the original RWM and MH algorithms. These approaches
can be grouped into single and multiple chain methods.
3.1. Single-chain methods

The most common adaptive single chain methods are the
adaptive proposal (AP) (Haario et al., 1999), adaptive Metropolis
(AM) (Haario et al., 2001) and delayed rejection adaptive metrop-
olis (DRAM) algorithm (Haario et al., 2006), respectively. These
methods work with a single trajectory, and continuously adapt the
covariance, S of a Gaussian proposal distribution,
qtðxt�1; ,Þ ¼ N dðxt�1; sdSÞ using the accepted samples of the chain,
S ¼ cov(x0,…,xt�1) þ 4Id. The variable sd represents a scaling factor
(scalar) that depends only on the dimensionality d of the problem,
Id signifies the d-dimensional identity matrix, and 4 ¼ 10�6 is a
small scalar that prevents the sample covariance matrix to become
singular. As a basic choice, the scaling factor is chosen to be
sd ¼ 2.382/d which is optimal for Gaussian target and proposal
distributions (Gelman et al., 1996; Roberts et al., 1997) and should
give an acceptance rate close to 0.44 for d ¼ 1, 0.28 for d ¼ 5 and
0.23 for large d. A MATLAB code of the AM algorithm is given on the
next page (see Algorithm 2).



ALGORITHM2. Basic MATLAB code of adaptiveMetropolis (AM) algorithm. This code is similar to that of the RWMalgorithm in Algorithm 1
but the d� d covariancematrix, C of the proposal distribution, q() is adapted using the samples stored in theMarkov chain. Built-in functions
of MATLAB are highlighted with a low dash. mod() signifies the modulo operation, and cov() computes the covariance matrix of the chain
samples, x.
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Single-site updating of x (Haario et al., 2005) is possible to in-
crease efficiency of AM for high-dimensional problems (large d). In
addition, for the special case of hierarchical Bayesian inference of
hydrologic models, Kuczera et al. (2010) proposed to tune S using a
limited-memory multi-block pre-sampling step, prior to a classical
single block Metropolis run.
ALGORITHM 3. Metropolis algorithm with adaptation of the scaling fa
updated after each 25 successive generations to reach a desired acceptan
means generic values and should be determined through trial-and-err
chain to ensure reversibility of the last 50% of the samples.
Another viable adaptation strategy is to keep the covariance
matrix fixed (identity matrix) and to update during burn-in the
scaling factor, sd until a desired acceptance rate is achieved. This
approach differs somewhat from the AM algorithm but is easy to
implement (see Algorithm 3).
ctor, sd rather than covariance matrix instead. The scaling factor is
ce rate between 20 and 30%. Themultipliers of 0.8 and 1.2 are by no
or. Note, adaptation is restricted to the the first half of the Markov
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Whether a specific adaptation scheme of the scaling factor
(also called jump rate) works well in practice depends on the
properties of the target distribution. Some tuning is hence
required to achieve adequate results. Practical experience sug-
gests that covariance matrix adaptation (AM) is preferred over
scaling factor adaptation. The proposals created with the AM al-
gorithm will more rapidly behave as the target distribution.

The use of a multivariate normal proposal distribution with
adaptive covariance matrix or jump rate works well for Gaussian-
shaped target distributions, but does not converge properly for
multimodal distributions with long tails, possibly infinite first and
second moments (as demonstrated in section). Experience further
suggests that single chain methods are unable to traverse effi-
ciently complex multi-dimensional parameter spaces with mul-
tiple different regions of attraction and numerous local optima.
The use of an overly dispersed proposal distribution can help to
avoid premature convergence, but with a very low acceptance
rate in return. With a single chain it is also particularly difficult to
judge when convergence has been achieved. Even the most
powerful diagnostics that compare the sample moments of the
first and second half of the chain cannot guarantee that the target
distribution has been sampled. Indeed, the sample moments of
both parts of the chain might be identical but the chain is stuck in
a local optimum of the posterior surface or traverses consistently
only a portion of the target distribution (Gelman and Shirley,
2009). In fact, single chain methods suffer many similar prob-
lems as local optimizers and cannot guarantee that the full
parameter space has been explored adequately in pursuit of the
target distribution.

3.2. Multi-chain methods: DE-MC

Multiple chain methods use different trajectories running in
parallel to explore the posterior target distribution. The use of
multiple chains has several desirable advantages, particularly
when dealing with complex posterior distributions involving
long tails, correlated parameters, multi-modality, and numerous
local optima (Gilks et al., 1994; Liu et al., 2000; ter Braak, 2006;
ter Braak and Vrugt, 2008; Vrugt et al., 2009a; Radu et al., 2009).
The use of multiple chains offers a robust protection against
premature convergence, and opens up the use of a wide arsenal
of statistical measures to test whether convergence to a limiting
distribution has been achieved (Gelman and Rubin, 1992). One
popular multi-chain method that has found widespread appli-
cation and use in hydrology is the Shuffled Complex Evolution
Metropolis algorithm (SCEM-UA, Vrugt et al., 2003). Although
the proposal adaptation of SCEM-UA violates Markovian prop-
erties, numerical benchmark experiments on a diverse set of
multi-variate target distributions have shown that the method is
efficient and close to exact. The difference between the limiting
distribution of SCEM-UA and the true target distribution is
negligible in most reasonable cases and applications. The SCEM-
UA method can be made an exact sampler if the multi-chain
adaptation of the covariance matrix is restricted to the burn-in
period only. In a fashion similar to the AP (Haario et al., 1999)
and AM algorithm, the method then derives an efficient
Gaussian proposal distribution for the standard Metropolis al-
gorithm. Nevertheless, I do not consider the SCEM-UA algorithm
herein.

ter Braak (2006) proposed a simple adaptive RWM algorithm
called Differential Evolution Markov chain (DE-MC). DE-MC uses
differential evolution as genetic algorithm for population evolution
with aMetropolis selection rule to decidewhether candidate points
should replace their parents or not. In DE-MC, N different Markov
chains are run simultaneously in parallel. If the state of a single
chain is given by the d-vector x, then at each generation t�1 the N
chains in DE-MC define a population, X which corresponds to an N
� d matrix, with each chain as a row. Then multivariate proposals,
Xp are generated on the fly from the collection of chains,
X ¼ fx1t�1;…; xNt�1g using differential evolution (Storn and Price,
1997; Price et al., 2005)

Xi
p ¼ gd

�
Xa � Xb

�
þ zd; asbsi; (18)

where g denotes the jump rate, a and b are integer values drawn
without replacement from {1,…,i�1,iþ1,…,N}, and z�D N dð0; c�Þ is
drawn from a normal distribution with small standard deviation,
say c* ¼ 10�6. By accepting each proposal with Metropolis
probability

pacc
�
Xi/Xi

p

�
¼ min

h
1; p
�
Xi
p

�.
p
�
Xi
�i

; (19)

aMarkov chain is obtained, the stationary or limiting distribution of
which is the posterior distribution. The proof of this is given in ter
Braak and Vrugt (2008). Thus, if paccðXi/Xi

pÞ is larger than some
uniform label drawn from U ð0;1Þ then the candidate point is
accepted and the ith chain moves to the new position, that is
xit ¼ Xi

p, otherwise xit ¼ xit�1.
Because the joint pdf of the N chains factorizes to

pðx1��,Þ �…� pðxN��,Þ, the states x1…xN of the individual chains
are independent at any generation after DE-MC has become inde-
pendent of its initial value. After this burn-in period, the conver-
gence of a DE-MC run can thus be monitored with the bR-statistic of
Gelman and Rubin (1992). If the initial population is drawn from
the prior distribution, then DE-MC translates this sample into a
posterior population. From the guidelines of sd in RWM the optimal
choice of g ¼ 2.38/2d. With a 10% probability the value of g ¼ 1, or
p(g¼1) ¼ 0.1 to allow for mode-jumping (ter Braak, 2006; ter Braak
and Vrugt, 2008; Vrugt et al., 2008a, 2009a) which is a significant
strength of DE-MC as will be shown later. If the posterior distri-
bution consists of disconnected modes with in-between regions of
low probability, covariance based MCMC methods will be slow to
converge as transitions between probability regions will be
infrequent.

The DE-MC method can be coded in MATLAB in about 20 lines
(Algorithm 4), and solves an important practical problem in RWM,
namely that of choosing an appropriate scale and orientation for
the jumping distribution. Earlier approaches such as (parallel)
adaptive direction sampling (Gilks et al., 1994; Roberts and Gilks,
1994; Gilks and Roberts, 1996) solved the orientation problem
but not the scale problem.

Based on input arguments, prior, pdf, N, T, and d, defined by the
user de_mc returns a sample from the posterior distribution. prior
is an anonymous function that draws N samples from a d-variate
prior distribution, and similarly pdf is a function handle which
computes the posterior density of a proposal (candidate point).

To demonstrate the advantages of DE-MC over single chain
methods please consider Fig. 5 that presents histograms of the
posterior samples derived from AM (left plot) and DE-MC (right
plot) for a simple univariate target distribution consisting of a
mixture of two normal distributions

pðxÞ ¼ 1
6
jð�8;1Þ þ 5

6
jð10;1Þ; (20)

where j(a,b) denotes the probability density function (pdf) of a
normal distribution with mean a and standard deviation b. The
target distribution is displayed with a solid black line, and in
MATLAB language equivalent to



ALGORITHM 4. MATLAB code of differential evolution-Markov chain (DE-MC) algorithm. Variable use is consistent with symbols used in
main text. Based on input arguments prior, pdf, N, T and d, the DE-MC algorithm evolves N different trajectories simultaneously to produce
a sample of the posterior target distribution. Jumps in each chain are computed from the remaining N-1 chains. The output arguments x
and p_x store the sampled Markov chain trajectories and corresponding density values, respectively. Built-in functions are highlighted
with a low dash. randsample draws with replacement ‘true’ the value of the jump rate, gamma from the vector [gamma_RWM 1] using
selection probabilities [0.9 0.1]. randn() returns a row vector with d draws from a standard normal distribution. I refer to introductory
textbooks and/or the MATLAB “help” utility for its built-in functions setdiff(), and reshape().
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pdf ¼ @ðxÞ1=6�normpdfðx;8;1Þ þ 5=6�normpdfðx;10;1Þ:
(21)

The initial state of the Markov chain(s) is sampled from U ½�20;20�
using

prior ¼ @ðN;dÞ unifrndð20;20;N;dÞ: (22)

The AM algorithm produces a spurious approximation of the
bimodal target distribution. The variance (width) of the proposal
distribution is insufficient to enable the chain to adequately
explore both modes of the target distribution. A simple remedy to
this problem is to increase the (default) initial variance of the
univariate normal proposal distribution. This would allow the AM
Fig. 5. Histogram of the posterior distribution derived from the (A) AM (single chain), an
mixture target distribution.
sampler to take much larger steps and jump directly between both
modes, but at the expense of a drastic reduction in the acceptance
rate and search efficiency. Indeed, besides the occasional suc-
cessful jumps many other proposals will overshoot the target
distribution, receive a nearly zero density, and consequently be
rejected.

This rather simple univariate example illustrates the dilemma
of RWM how to determine an appropriate scale and orientation of
the proposal distribution. Fortunately, the histogram of the pos-
terior samples derived with the DE-MC algorithm matches
perfectly the mixture distribution. Periodic use of g ¼ 1 enables
the N ¼ 10 different Markov chains of DE-MC to transition directly
between the two disconnected posterior modes (e.g. ter Braak and
Vrugt (2008); Vrugt et al. (2008a); Laloy and Vrugt (2012)) and
d (B) DE-MC (multi-chain) samplers. The solid black line displays the pdf of the true
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rapidly converge to the exact target distribution. The initial states
of the DE-MC chains should be distributed over the parameter
space so that both modes can be found. What is more the use of N
trajectories allows for a much more robust assessment of
convergence.

In previous work (Vrugt et al., 2008a, 2009a) we have shown
that the efficiency of DE-MC can be enhanced, sometimes
dramatically, by using adaptive randomized subspace sampling,
multiple chain pairs for proposal creation, and explicit consider-
ation of aberrant trajectories. This method, entitled DiffeRential
Evolution Adaptive Metropolis (DREAM) maintains detailed bal-
ance and ergodicity and has shown to exhibit excellent perfor-
mance on a wide range of problems involving nonlinearity, high-
dimensionality, and multimodality. In these and other papers [e.g
(Laloy and Vrugt, 2012)] benchmark experiments have shown that
DREAM outperforms other adaptive MCMC sampling approaches,
and, in high-dimensional search/variable spaces, can even provide
better solutions than commonly used optimization algorithms.
3.3. Multi-chain methods: DREAM

The DREAM algorithm has it roots within DE-MC but uses
subspace sampling and outlier chain correction to speed up
convergence to the target distribution. Subspace sampling is
implemented in DREAM by only updating randomly selected di-
mensions of x each time a proposal is generated. If A is a subset of
d*-dimensions of the original parameter space, ℝd�

4ℝd, then a
jump, dXi in the ith chain, i ¼ {1,…,N} at iteration t ¼ {2,…,T} is
calculated from the collection of chains, X ¼ fx1t�1;…; xNt�1g using
differential evolution (Storn and Price, 1997; Price et al., 2005)

dXi
A ¼ zd� þ ð1d� þ ld� Þgðd;d�Þ

X
j¼1

d �
Xaj

A � Xbj

A

�
dXi

sA ¼ 0;

(23)

where

g ¼ 2:38ffiffiffiffiffiffiffiffiffiffi
2dd*

p

is the jump rate, d denotes the number of chain pairs used to
generate the jump, and a and b are vectors consisting of d integers
drawn without replacement from {1,…,i�1,iþ1,…,N}. The default
value of d¼ 3, and results, in practice, in one-third of the proposals
being created with d ¼ 1, another third with d ¼ 2, and the
remaining third using d ¼ 3. The values of l and z are sampled
independently from U d� ð�c; cÞ and N d� ð0; c�Þ, respectively, the
multivariate uniform and normal distribution with, typically,
c ¼ 0.1 and c* small compared to the width of the target distri-
bution, c* ¼ 10�6 say. Compared to DE-MC, p(g¼1) ¼ 0.2 to enhance
the probability of jumps between disconnected modes of the
target distribution. The candidate point of chain i at iteration t then
becomes

Xi
p ¼ Xi þ dXi; (24)

and the Metropolis ratio of Equation (19) is used to determine
whether to accept this proposal or not. If paccðXi/Xi

pÞ � U ð0;1Þ
the candidate point is accepted and the ith chain moves to the
new position, that is xit ¼ Xi

p, otherwise xit ¼ xit�1. The default
equation for g should, for Gaussian and Student target distribu-
tion, result in optimal acceptance rates close to 0.44 for d ¼ 1, 0.28
for d ¼ 5, and 0.23 for large d (please refer to Section 7.84 of
Roberts and Casella (2004) for a cautionary note on these
references acceptance rates).
The d*-members of the subset A are sampled from the entries

{1,…,d} (without replacement) and define the dimensions of the
parameter space to be sampled by the proposal. This subspace
spanned by A is construed in DREAM with the help of a crossover
operator. This genetic operator is applied before each proposal is
created and works as follows. First, a crossover value, cr is sampled
from a geometric sequence of nCR different crossover probabilities,

CR ¼
�

1
nCR

; 2
nCR

;…;1


using the discrete multinomial distribution,

M (CR,pCR) on CR with selection probabilities pCR. Then, a d-vector z
¼ {z1,…,zd} is drawn from a standard multivariate normal distri-

bution, z �DU dð0;1Þ. All those values j which satisfy zj � cr are
stored in the subset A and span the subspace of the proposal that
will be sampled using Equation (23). If A is empty, one dimension of
{1,…,d} will be sampled at random to avoid the jump vector to have
zero length.

The use of a vector of crossover probabilities enables single-site
Metropolis (A has one element), Metropolis-within-Gibbs (A has
one or more elements) and regular Metropolis sampling (A has d el-
ements), and constantly introduces new directions in the parameter
space that chains can take outside the subspace spanned by their
current positions.What ismore, the use of subspace sampling allows
using N < d in DREAM, an important advantage over DE-MC that
requires N ¼ 2d chains to be run in parallel (ter Braak, 2006). Sub-
space sampling as implemented in DREAM adds one extra algo-
rithmic variable, nCR to the algorithm. The default setting of nCR ¼ 3
has shown to work well in practice, but larger values of this algo-
rithmic variablemight seemappropriate for high-dimensional target
distributions, say d > 50, to preserve the frequency of low-
dimensional jumps. Note, more intelligent subspace selection
methods can be devised for target distributions involving many
highly correlated parameters. These parameters should be sampled
jointly in a group, otherwise too many of the (subspace) proposals
will be rejected and the search can stagnate. This topic will be
explored in future work.

To enhance search efficiency the selection probability of each
crossover value, stored in the nCR-vector pCR, is tuned adaptively
during burn-in by maximizing the distance traveled by each of the
N chains. This adaptation is described in detail in Vrugt et al.
(2008a, 2009a), and a numerical implementation of this approach
appears in the MATLAB code of DREAM on the next page.

The core of the DREAM algorithm can be written in about 30
lines of code (see Algorithm 5). The input arguments are similar to
those used by DE-MC and include the function handles prior and
pdf and the values of N, T, and d.

TheMATLAB code listed above implements the different steps of
the DREAM algorithm as detailed in themain text. Structure, format
and notation matches that of the DE-MC code, and variable names
correspond with their symbols used in Equations (23) and (24).
Indents and comments are used to enhance readability and to
convey themain intent of each line of code. Note that this code does
not monitor convergence of the sampled chain trajectories, an
important hiatus addressed in the MATLAB toolbox of DREAM
discussed in the next sections. The computational efficiency of this
code can be improved considerably, for instance through vectori-
zation of the inner for loop, but this will affect negatively
readability.

The source code of DREAM listed below differs in several
important ways from the basic code of the DE-MC algorithm
presented in Section 3.2. These added features increase the
length of the code with about 20 lines, but enhance significantly
the convergence speed of the sampled chains to a limiting dis-
tribution. For reasons of simplicity, a separate function is used for



ALGORITHM 5. MATLAB code of the differential evolution adaptive Metropolis (DREAM) algorithm. The script is similar to that of DE-MC
but uses (a) more than one chain pair to create proposals, (b) subspace sampling, and (c) outlier chain detection, to enhance convergence to
the posterior target distribution. Built-in functions are highlighted with a low dash. The jump vector, dX(i,1:d) of the ith chain contains the
desired information about the scale and orientation of the proposal distribution and is derived from the remaining N-1 chains. deal() assigns
default values to the algorithmic variables of DREAM, std() returns the standard deviation of each column of X, and sum() computes the sum
of the columns A of the chain pairs a and b. The function check() is a remedy for outlier chains.
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one of these features, the correction of outlier chains. This
function is called check (line 44) and patches a critical vulnera-
bility of multi-chain MCMC methods such as SCEM-UA, DE-MC,
and DREAM (Vrugt et al., 2003; ter Braak and Vrugt, 2008; Vrugt
et al., 2008a, 2009a). The performance of these methods is
impaired if one or more of their sampled chains have become
trapped in an unproductive area of the parameter space while in
pursuit of the target distribution. The state of these outlier chains
will not only contaminate the jumping distribution of Equation
(23) and thus slow down the evolution and mixing of the other
“good” chains, what is much worse, dissident chains make it
impossible to reach convergence to a limiting distribution. For as
long as one of the chains samples a disjoint part of the parameter
space, the bR-diagnostic of Gelman and Rubin (1992) cannot reach
its stipulated threshold of 1.2 required to officially declare
convergence.

The problem of outlier chains is well understood and easily
demonstrated with an example involving a posterior response
surface with one or more local area of attractions far removed
from the target distribution. Chains that populate such local
optima can continue to persist indefinitely if the size of their
jumps is insufficient to move the chain outside the space span-
ned by this optima (see Fig. 2 of ter Braak and Vrugt (2008)).
Dissident chains will occur most frequent in high-dimensional
target distributions, as they require the use of a large N, and
complex posterior response surfaces with many areas of
attraction.

The function check is used as remedy for dissident chains. The
mean log density of the samples stored in the second half of each
chain is used as proxy for the “fitness” of each trajectory, and these
N data points are examined for anomalies using an outlier
detection test. Those chains (data points) that have been labeled
as outlier will relinquish their dissident state and move to the
position of one of the other chains (chosen at random). Details of
this procedure can be found in Vrugt et al. (2009a). The MATLAB
toolbox of DREAM implements four different outlier detection
methods the user can choose from. Details will be presented in the
next section.
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Those proficient in statistics, computer coding and numerical
computation, will be able to personalize this code for their own
applications. Yet, for others this codemight not suffice as it has very
few built-in options and capabilities. To satisfy these potential
users, I have therefore developed a MATLAB toolbox for DREAM.
This package has many built-in functionalities and is easy to use in
practice. The next sections will introduce the various elements of
the DREAM package, and use several examples to illustrate how the
package can be used to solve a wide variety of Bayesian inference
problems involving (among others) simple functions, dynamic
simulation models, formal and informal likelihood functions,
informative and noninformative prior distributions, limits of
acceptability, summary statistics, diagnostic model evaluation, low
and high-dimensional parameter spaces, and distributed
computing.

Before I proceed to the next section, a few remarks are in order.
The code of DREAM listed on the previous page does not adapt the
selection probabilities of the individual crossover values nor does it
monitor the convergence of the sampled chain trajectories. These
functionalities appear in the toolbox of DREAM. In fact, several
different metrics are computed to help diagnose convergence of the
sampled chains to a limiting distribution.
ALGORITHM 6. Distributed implementation of DREAM in MATLAB. T
posals are evaluated in parallel on different cores using the built-in pa
The MATLAB code of DREAM listed in Algorithm 5 evolves each
of the N chains sequentially. This serial implementation satisfies
DREAM's reversibility proof (ter Braak and Vrugt, 2008; Vrugt et al.,
2009a), but will not be efficient for CPU-intensive models. We can
adapt DREAM to a multi-core implementation in which the N
proposals are evaluated simultaneously in parallel using the
distributed computing toolbox of MATLAB (Algorithm 6).

Numerical experiments with a large and diverse set of test
functions have shown that the parallel implementation of DREAM
converges to the correct target distribution. I will revisit this topic
in Section 7.1 of this paper.
4. MATLAB implementation of DREAM

The basic code of DREAM listed in Algorithm 5 was written in
2006 but many new functionalities and options have been added to
the source code in recent years due to continued research de-
velopments and to support the needs of a growing group of users.
The DREAM code can be executed from the MATLAB prompt by the
command
his code differs from the standard code of DREAM in that the pro-
rfor function of the parallel computing toolbox.
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½chain; output; fx� ¼ DREAM ðFunc_name;DREAMPar; Par_infoÞ

where Func_name (string), DREAMPar (structure array), and the
variable Par_info (structure array), etc. are input arguments defined
by the user, and chain (matrix), output (structure array) and fx
(matrix) are output variables computed by DREAM and returned to
the user. Tominimize the number of input and output arguments in
the DREAM function call and related primary and secondary func-
tions called by this program, I use MATLAB structure arrays and
group related variables in one main element using data containers
called fields. Two optional input arguments that the user can pass
to DREAM are Meas_info and options and their content and usage
will be discussed later.

The DREAM function uses more than twenty other functions to
implement its various steps and functionalities and generate
samples from the posterior distribution. All these functions are
summarized briefly in Appendix A. In the subsequent sections I will
discuss the MATLAB implementation of DREAM. This, along with
prototype case studies presented herein and template examples
listed in RUNDREAM should help users apply Bayesian inference to
their data and models.
4.1. Input argument 1: Func_Name

The variable Func_Name defines the name (enclosed in quotes)
of the MATLAB function (.m file) used to calculate the likelihood (or
proxy thereof) of each proposal. The use of a m-file rather than
anonymous function (e.g. pdf example), permits DREAM to solve
inference problems involving, for example, dynamic simulation
models, as they can generally not be written in a single line of code.
If Func_name is conveniently assumed to be equivalent to ’model’
then the call to this function becomes

Y ¼ model ðxÞ (25)

where x (input argument) is a 1� d vector of parameter values, and
Y is a return argument whose content is either a likelihood, log-
likelihood, or vector of simulated values or summary statistics,
respectively. The content of the function model needs to be written
by the user - but the syntax and function call is universal. Appendix
Table 1
Main algorithmic variables of DREAM:mathematical symbols, corresponding fields of DRE
work and shown to work well for a range of target distributions.

Symbol Description

Problem dependent
d Number of parameters
N Number of Markov chains
T Number of generations
L ðx

���~YÞ (Log)-Likelihood function
Default variablesa

ncr Number of crossover values
d Number chain pairs proposal
lb Randomization
zc Ergodicity
p(g¼1) Probability unit jump rate

Outlier detection test
K Thinning rate

Adapt crossover probabilities?
Gd Shaping factor
b0

e Scaling factor jump rate

a A change to the default values of DREAM will affect the convergence (acceptance) ra
b l D� U d� ð�DREAMPar:lambda;DREAMPar:lambdaÞ.
c z D� N d� ð0;DREAMPar:zetaÞ.
d For pseudo-likelihood functions of GLUE (Beven and Binley, 1992).
e Multiplier of the jump rate, g¼b0g, default b0¼1.
C provides seven different templates of the function model which
are used in the case study presented in Section 5.

4.2. Input argument 2: DREAMPar

The structure DREAMPar defines the computational settings of
DREAM. Table 1 lists the different fields of DREAMPar, their default
values, and the corresponding variable names used in the mathe-
matical description of DREAM in Section 3.3.

The field names of DREAMPar match exactly the symbols (let-
ters) used in the (mathematical) description of DREAM in Equations
(23) and (24). The values of the fields d, N, T depend on the
dimensionality of the target distribution. These variables are
problem dependent and should hence be specified by the user.
Default settings are assumed in Table 1 for the remaining fields of
DREAMPar with the exception of GLUE and lik whose values will be
discussed in the next two paragraphs. To create proposals with
Equation (23), the value of N should at least be equivalent to 2dþ1
or N¼ 7 for the default of d¼ 3. This number of chains is somewhat
excessive for low dimensional problems involving just a few pa-
rameters. One could therefore conveniently set d ¼ 1 for small d.
The default settings of DREAMPar are easy to modify by the user by
declaring individual fields and their respective value.

The DREAM algorithm can be used to sample efficiently the
behavioral solution space of informal and likelihood functions used
within GLUE (Beven and Binley, 1992; Beven and Freer, 2001). In
fact, as will be shown later, DREAM can also solve efficiently the
limits of acceptability framework of Beven (2006). For now it suf-
fices to say that the field GLUE of structure DREAMPar stores the
value of the shaping factor used within the (pseudo)likelihood
functions of GLUE. I will revisit GLUE and informal Bayesian infer-
ence at various places in the remainder of this paper. The content of
the field lik of DREAMPar defines the choice of likelihood function
used to compare the output of the function model with the avail-
able calibration data. Table 2 lists the different options for lik the
user can select from. The choice of likelihood function depends in
large part on the content of the return argument Y of the function
model, which is either a (log)-likelihood, a vector with simulated
values, or a vector with summary statistics, respectively.

If the return argument, Y of function model is equivalent to a
likelihood or log-likelihood then field lik of DREAMPar should be
AMPar and default settings. These default settings have been determined in previous

Field DREAMPar Default

d �1
N �2dþ1
T �1
lik [1,2], [11�17], [21�23], [31�34]

nCR 3
delta 3
lambda 0.1
zeta 10�12

p_unit_gamma 0.2
outlier ’iqr’
thinning 1
adapt_pCR ’yes’
GLUE >0
beta0 1

te.
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set equivalent to 1 or 2, respectively. This choice is appropriate for
problems involving some prescribed multivariate probability dis-
tributionwhose density can be evaluated directly. Examples of such
functions are presented in the first two case studies of Section 5.
Option 1 and 2 also enable users to evaluate their own preferred
likelihood function directly in the model script. In principle, these
two options are therefore sufficient to apply the DREAM code to a
large suite of problems. Nevertheless, to simplify implementation
and use, the DREAM package contains about 15 different built-in
likelihood functions.

Likelihood functions 11e17 and 31e34 are appropriate if the
output of model consists of a vector of simulated values of some
variable(s) of interest. Some of these likelihood functions (e.g.,
12e14, 16, 17) contain extraneous variables (nuisance coefficients)
whose values need to be inferred jointly with the model parame-
ters, x. Practical examples of joint inference are provided in the
RUNDREAM script and Appendix B. Likelihood functions 21 and 22
are appropriate if the return argument Yof model consists of one or
more summary statistics of the simulated data. These two likeli-
hood functions allow use of approximate Bayesian computation
and diagnostic model evaluation (Vrugt and Sadegh, 2013; Sadegh
and Vrugt, 2014; Vrugt, submitted for publication). Finally, likeli-
hood function 23 enables use of the limits of acceptability frame-
work (Beven, 2006; Beven and Binley, 2014; Vrugt, 2015a). Section
5 presents the application of different likelihood functions and
provides templates for their use. Appendix B provides the mathe-
matical formulation of each of the likelihood functions listed in
Table 2. Note, likelihood 22 and 23 use a modified Metropolis se-
lection rule to accept proposals or not. This issue is revisited in
Section 7 of this paper.

The generalized likelihood (GL) function of Schoups and Vrugt
(2010) (14) is most advanced in that it can account explicitly for
bias, correlation, non-stationarity, and nonnormality of the error
Table 2
Built-in likelihood functions of the DREAM package. The value of field lik of DRE
model; [1] likelihood, [2] log-likelihood, [11e17] vector of simulated values, [21
The mathematical formulation of each likelihood function is given in Appendi

lik Description

User-free likelihood functions
1 Likelihood, Lðx

���~YÞ
2 Log-likelihood, L ðx

���~YÞ
Formal likelihood functions
11 Gaussian likelihood: measurement error integrate
12a Gaussian likelihood: homos/heteroscedastic data e
13a,b Gaussian likelihood: with AR-1 model of error res
14c Generalized likelihood function
15 Whittle's likelihood (spectral analysis)
16a Laplacian likelihood: homos/heteroscedastic data
17c Skewed Student likelihood function
ABC e diagnostic model evaluation
21d Noisy ABC: Gaussian likelihood
22d,e ABC: Boxcar likelihood
GLUE e limits of acceptability
23e Limits of acceptability
GLUE e informal likelihood functions
31f Inverse error variance with shaping factor
32f Nash and Sutcliffe efficiency with shaping factor
33f Exponential transform error variance with shapin
34f Sum of absolute error residuals

a Measurement data error in field Sigma of Par_info or inferred jointly with
b First-order autoregressive coefficient is nuisance variable.
c Nuisance variables for model bias, correlation, non-stationarity and nonno
d Default of ε ¼ 0.025 in field epsilon of options to delineate behavioral spa
e Uses a modified Metropolis selection rule to accept proposals or not.
f Shaping factor, G defined in field GLUE of DREAMPar (default G ¼ 10).
residuals trough the use of nuisance coefficients. In a recent paper,
Scharnagl et al. (2015) has introduced a skewed student likelihood
function (17) as modification to the GL formulation (14) to describe
adequately heavy-tailed error residual distributions. Whittle's
likelihood (Whittle, 1953) (15) is a frequency-based approximation
of the Gaussian likelihood and can be interpreted as minimum
distance estimate of the distance between the parametric spectral
density and the (nonparametric) periodogram. It also minimizes
the asymptotic KullbackeLeibler divergence and, for autoregressive
processes, provides asymptotically consistent estimates for
Gaussian and non-Gaussian data, even in the presence of long-
range dependence (Montanari and Toth, 2007). Likelihood func-
tion 16, also referred to as Laplace or double exponential distribu-
tion, differs from all other likelihood functions in that it assumes a
[1-norm of the error residuals. This approach weights all error re-
siduals equally and the posterior inference should therefore not be
as sensitive to outliers.

Likelihood functions 11e17 and 31e34 represent a different
school of thought. Formulations 11e17 are derived from first-order
statistical principles about the expected probabilistic properties of
the error residuals, EðxÞ ¼ ~Y � YðxÞ. These functions are also
referred to as formal likelihood functions. For example if the error
residuals are assumed to be independent (uncorrelated) and nor-
mally distributed then the likelihood function is simply equivalent
to formulation 11 or 12, depending on whether the measurement
data error is integrated out (11) or explicitly considered (12).

The second class of likelihood functions, 31e34, avoids over-
conditioning of the likelihood surface in the presence of
epistemic and other sources, and their mathematical formulation is
guided by trial-and-error, expert knowledge, and commonly used
goodness-of-fit criteria (Beven and Binley, 1992; Freer et al., 1996;
Beven and Freer, 2001). These informal likelihood functions
enable users to implement the GLUE methodology of Beven and
AMPar depends on the content of the return argument Y from the function
e23] vector of summary statistics, and [31e34] vector of simulated values.
x B.

References

e.g. Equation (7)
e.g. Equations (8), (10) and (11)

d out Thiemann et al. (2001) see also footnote 1
rror Equation (7)
iduals Equations (10) and (11)

Schoups and Vrugt (2010a)
Whittle (1953)

error Laplace (1774)
Scharnagl et al. (2015)

Turner and Sederberg (2012)
Sadegh and Vrugt (2014)

Vrugt (2015a)

Beven and Binley (1992)
Freer et al. (1996)

g factor Freer et al. (1996)
Beven and Binley (1992)

parameters.

rmality residuals.
ce.
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Binley (1992). The use of DREAM enhances, sometimes dramati-
cally, the computational efficiency of GLUE (Blasone et al., 2008).

The field thinning of DREAMPar allows the user to specify the
thinning rate of each Markov chain to reduce memory re-
quirements for high-dimensional target distributions. For
instance, for a d ¼ 100 dimensional target distribution with
N ¼ 100 and T ¼ 10,000, MATLAB would need a staggering 100-
million bytes of memory to store all the samples of the joint
chains. Thinning applies to all the sampled chains, and stores only
every Kth visited state. This option reduces memory storagewith a
factor of T/K, and also decreases the autocorrelation between
successively stored chain samples. A default value of K ¼ 1 (no
thinning) is assumed in DREAM. Note, large values for K (K [ 10)
can be rather wasteful as many visited states are not used in the
computation of the posterior moments and/or plotting of the
posterior parameter distributions.

Multi-chain methods can suffer convergence problems if one or
more of the sampled chains have become stuck in a local area of
attractionwhile in pursuit of the target distribution. This fallacy has
been addressed in the basic source code of DREAM listed in
Algorithm 5 and the function check was used to detect and resolve
aberrant trajectories. Dissident chains are more likely to appear if
the target distribution is high-dimensional and the posterior
response surface is non-smooth with many local optima and re-
gions of attraction. These non-ideal properties are often the
consequence of poor model numerics (Clark and Kavetski, 2010;
Schoups et al., 2010) and hinder convergence of MCMC simula-
tion methods to the target distribution. The field outlier of
DREAMPar lists (in quotes) the name of the outlier detection test
that is used to expose dissident chains. Options available to the user
include the ’iqr’ (Upton and Cook, 1996), ’grubbs’ (Grubbs, 1950),
’peirce’ (Peirce, 1852), and ’chauvenet’ (Chauvenet, 1960) method.
These nonparametric methods diagnose dissident chains by
comparing the mean log-density values of each of the N sampled
trajectories. The premise of this comparison is that the states
visited by an outlier chain should have a much lower average
density than their counterparts sampling the target distribution.
Those chains diagnosed as outlier will give up their present posi-
tion in the parameter space in lieu of the state of one of the other
N � 1 chains, chosen at random. This correction step violates
detailed balance (irreversible transition) but is necessary in some
cases to reach formally convergence to a limiting distribution.
Numerical experiments have shown that the default option
DREAMPar.outlier ¼ ’iqr’ works well in practice. Note, the problem
of outlier chains would be resolved if proposals are created from
past states of the chains as used in DREAM(ZS), DREAM(DZS) and MT-
DREAM(ZS). Dissident chains can then sample their own position
and jump directly to the mode of the target if g ¼ 1 (ter Braak and
Vrugt, 2008; Laloy and Vrugt, 2012). We will revisit this issue in
Section 7 of this paper.
Table 3
DREAM input argument Par_info: Different fields, their default settings and variable typ

Field Par_info Description Option

initial Initial sample ’uniform’/’latin’/’n
min Minimum values
max Maximum values
boundhandling Boundary handling ’eflect’/’bound’/’fo
mu Mean ’normal’
cov Covariance ’normal’
prior Prior distribution

a Multiplicative case: each cell of the d-array contains a different marginal prior pdf.
b Multivariate case: an Anonymous function with prior pdf is provided by user.
The field adapt_pCR of DREAMPar defines whether the cross-
over probabilities, pCR are adaptively tuned during a DREAM run so
as to maximize the normalized Euclidean distance between two
successive chain states. The default setting of ’yes’, can be set to ’no’
and thus switched off by the user. The selection probabilities are
tuned only during burn-in of the chains to not destroy reversibility
of the sampled chains.

The default choice of the jump rate in DREAM is derived from
the value of sd ¼ 2.382/d in the RWM algorithm. This setting should
lead to optimal acceptance rates for Gaussian and Student target
distributions, but might not yield adequate acceptance rates for
real-word studies involving complex multivariate posterior
parameter distributions. The field beta0 of structure DREAMPar
allows the user to increase (decrease) the value of the jump rate,
g ¼ 2.38b0/2dd*, thereby improving the mixing of the individual
chains. This b0-correction is applied to all sampled proposals, with
the exception of the unit jump rate used for mode jumping. Values
of b0 2 [1/4,1/2] have shown to enhance significantly the conver-
gence rate of DREAM for sampling problems involving parameter-
rich groundwater and geophysical models (e.g. Laloy et al. (2015)).

4.3. Input argument 3: Par_info

The structure Par_info stores all necessary information about
the parameters of the target distribution, for instance their prior
uncertainty ranges (for bounded search problems), starting values
(initial state of each Markov chain), prior distribution (defines
Metropolis acceptance probability) and boundary handling (what
to do if out of feasible space), respectively. Table 3 lists the different
fields of Par_info and summarizes their content, default values and
variable types.

The field initial of Par_info specifies with a string enclosed be-
tween quotes how to sample the initial state of each of theN chains.
Options available to the user include (1) ’uniform’ (2) ’latin’ (3)
’normal’ and (4) ’prior’, and they create the initial states of the
chains by sampling from (1) a uniform prior distribution, (2) a Latin
hypercube (McKay et al., 1979), (3) a multivariate normal distri-
bution, and (4) a user defined prior distribution. The first three
options assume the prior distribution to be noninformative (uni-
form/flat), and consequently the posterior density of each proposal
to be directly proportional to its likelihood. On the contrary, if the
option ’prior’ is used and a non-flat (informative) prior distribution
of the parameters is specified by the user, then the density of each
proposal becomes equivalent to the product of the (multiplicative)
prior density and likelihood derived from the output of model.

Option (1) and (2) require specification of the fields min and
maxof Par_info. These fields contain in a 1� d-vector the lower and
upper bound values of each of the parameters, respectively. If op-
tion (3) ’normal’ is used then the fields mu (1 � d-vector) and cov
(d � d-matrix) of Par_info should be defined by the user. These
es.

s Default Type

ormal’/’prior’ String
e∞d 1�d-vector
∞d 1�d-vector

ld’/’none’ ’none’ String
1�d-vector
d�d-matrix
Cell arraya/function handleb
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fields store the mean and covariance matrix of the multivariate
normal distribution. We will revisit the option ’prior’ at the end of
this section.

The fields min and max of the structure Par_info serve two
purposes. First, they define the feasible parameter space from
which the initial state of each of the chains is drawn if ’uniform’

random or ’latin’ hypercube sampling is used. Second, they can
define a bounded search domain for problems involving one or
more parameters with known physical/conceptual ranges. This
does however require the bound to be actively enforced during
chain evolution. Indeed, proposals generated with Equations (23)
and (24) can fall outside the hypercube defined by min and max
even if the initial state of each chain are well within the feasible
search space. The field boundhandling of Par_info provides several
options what to do if the parameters are outside their respective
ranges. The four different options that are available are (1) ’bound’,
(2) ’eflect’, (3) ’fold’, and (4) ’none’ (default). These methods are
illustrated graphically in Fig. 6 and act on one parameter at a time.

The option ’bound’ is most simplistic and simply sets each
parameter value that is out of bound of equal to its closest bound.
The option ’eflect’ is somewhat more refined and treats the
boundary of the search space as a mirror through which each in-
dividual parameter value is reflected backwards into the search
space. The reflection step size is simply equivalent to the “amount”
of boundary violation. The ’bound’ and ’eflect’ options are used
widely in the optimization literature in algorithms concerned only
with finding the minimum (maximum, if appropriate) of a given
cost or objective function. Unfortunately, these two proposal
correction methods violate detailed balance in the context of
MCMC simulation. It is easy to show for both boundary handling
methods that the forward (correction step) and backward jump
cannot be construed with equal probability. The third option ’fold’
treats the parameter space as a continuum representation by
simply connecting the upper bound of each dimension to its
respective lower bound. This folding approach does not destroy the
Markovian properties of the N sampled chains, and is therefore
preferred statistically. However, this approach can provide “bad”
proposals (reduced acceptance rate) if the posterior distribution is
located at the edges of the search domain. Then, the parameters can
jump from one side of the search domain to the opposite end.

The option ’bound’ is least recommended in practice as it col-
lapses the parameter values to a single point. This not only re-
linquishes unnecessarily sample diversity but also inflates
artificially the solution density (probability mass) at the bound. The
loss of chain diversity also causes a-periodicity (proposal and cur-
rent state are similar for selected dimensions) and distorts
convergence to the target distribution. A simple numerical
Fig. 6. Different options for parameter treatment in bounded search spaces in the DREAM
boundary handling approach that maintains detailed balance.
experiment with a truncated normal target distribution will
demonstrate the superiority of the folding approach. This results in
an exact inference of the target distribution whereas a reflection
step overestimates the probability mass at the bound. For most
practical applications, a reflection step will provide accurate results
unless too many dimensions of the target distribution find their
highest density in close vicinity of the bound.

What is left is a discussion of the use of ’prior’ as initial sampling
distribution of the chains. This option is specifically implemented
to enable the use of an informative (non-flat) prior distribution. The
user can select among two choices for ’prior’, that is the use of a
multiplicative prior or multivariate prior distribution. In the mul-
tiplicative case each parameter has its own prior distribution, and
the field prior of Par_info should be declared a cell array. Each cell
then specifies between quotes the density of the corresponding
parameter in the vector x, for example

Par_info:prior ¼ f’normpdf �2;0:1ð Þ’; ’tpdf 10ð Þ’;
’unifpdf �2;4ð Þ’g (26)

uses a normal distributionwith mean of �2 and standard deviation
of �0.1 for the first parameter, a Student distribution with n ¼ 10
degrees of freedom for the second dimension, and a uniform dis-
tribution between �2 and 4 for the third and last parameter of the
target distribution, respectively. The prior density of some param-
eter vector is then simply equivalent to the product of the indi-
vidual densities specified in field prior of Par_info. The user can
select from the following list of built-in density functions in MAT-
LAB: beta, chi-square, extreme value, exponential, F, gamma, geo-
metric, generalized extreme value, generalized Pareto,
hypergeometric, lognormal, noncentral F, noncentral t, noncentral
chi-square, normal (Gaussian), Poisson, Rayleigh, T, uniform, and
the Weibull density. The function name of each density and cor-
responding input variables is easily found by typing “help stats” in
the MATLAB prompt.

The multiplicative prior assumes the parameters of the prior
distribution to be uncorrelated, an assumption that might not be
justified for some inference problems. The second option for ’prior’
includes the use of a multivariate prior distribution, and declares
the field prior of structure Par_info to be an anonymous function,
for example

Par_info:prior ¼ @ðx; a;bÞmvnpdfðx; a;bÞ (27)

where mvnpdf(x,a,b) is the d-variate normal distribution, N dða; bÞ,
evaluated at x and with mean a and covariance matrix, b, respec-
tively. The input variables, a and b should be specified as separate
fields of structure Par_info, for example Par_info.a ¼ zeros(1,d) and
package. a) Set to bound, b) reflection, and c) folding. The option folding is the only



Table 4
Content of (optional) input structure Meas_info. This fourth input argument of
DREAM is required if the return argument of model constitutes a vector of simulated
values (or summary statistics) of one or more variables.

Field Meas_info Description Type

Y Measurement data n�1-vector
Sigma Measurement error scalar or n�1-vector
S Summary statistics (ABC) m�1-vector
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Par_info.b ¼ eye(d). The use of a multivariate prior allows the user
to take into explicit consideration parameter interdependencies.
Options available to the user include the multivariate normal and
multivariate t-distribution, respectively.

If the standard built-in densities of MATLAB (univariate and
multivariate) are insufficient for a given application then the user is
free to contribute their own function for the prior distribution. This
subroutine should follow exactly the same format as the standard
MATLAB densities, and the name of the function should end with
“pdf”, for example ownpdf.m. What is more, the user has to supply
a second function ending with “rnd”, (e.g. ownrnd.m) which
returns random samples from the user-defined prior pdf. This
function should match exactly the format of standard built-in
univariate and multivariate random number generators such as
lognrnd and mvnrnd, respectively, and will be used by DREAM to
sample the initial states of the N different chains. If this second
code, ownrnd.m is too difficult to write then the user can always
choose to draw the initial states of the chains in DREAM from an
noninformative prior, using for instance Latin hypercube sampling.
That is, Par_info.initial ¼ ’latin’ with min and max of structure
Par_info defining the sampling ranges of the parameters. This
alternative approach might be favored in practice anyway as it will
allow DREAM to explore more thoroughly, at least in the first
generations, the parameter space outside the prior pdf. Unless of
course, the parameter space defined by min and max is limited to
the area of ownpdf.m with high prior density.

4.4. (Optional) input argument 4: Meas_info

The fourth input argument Meas_info of the DREAM function is
mandatory if the output of model constitutes a vector of simulated
values or summary metrics of one or more entities of interest.
Table 4 describes the different fields of Meas_info, their content and
type.

The field Y of Meas_info stores the n � 1 observations of the
calibration data, ~Y against which the output, Y of model is
compared. The n-vector of error residuals, EðxÞ ¼ ~Y � YðxÞ is then
translated into a log-likelihood value using one of the formal
(11e17) or informal (31e34) likelihood functions listed in Table 2
and defined by the user in field lik of structure DREAMPar. The
Table 5
Content of (optional) input structure options. This fifth input argument of the main DREA
multi-processor calculation, workspace saving, ABC, diagnostic model evaluation, diagn

Field options Description

parallel Distributed multi-core calculation?
IO If parallel, IO writing of model?
modout Store output of model?
save Save DREAM workspace?
restart Restart run? (’save’ required)
DB Diagnostic Bayes?
epsilon ABC cutoff threshold
rho ABC distance function
linux Execute in Linux/unix?
diagnostics Within chain convergence diagnostics?

a Default setting of options.epsilon ¼ 0.025.
b Default is inline(’abs(Meas_info.S � Y)’) or rðSð~YÞ; SðYðxÞÞÞ ¼

���Sð~YÞ � SðYðxÞÞ
���.
field S of Par_info storesm� 1 summary statistics of the data, and is
mandatory input for likelihood functions 21, 22, 23 used for ABC,
diagnostic model evaluation, and limits of acceptability. Examples
of these approaches are given in the case studies section of this
paper. The number of elements of Y and S should match exactly the
output of the script model written by the user.

The field Sigma of structure Meas_info stores the measurement
error of each entry of the field Y. This data error is necessary input
for likelihood functions 12, 13 and 16. A single value for Sigma
suffices if homoscedasticity of the data error is expected, otherwise
n-values need to be declared and specify the heteroscedastic error
of the observations of Y.

In case the measurement error of the data Y is unknown, three
different approaches can be implemented. The first option is to
select likelihood function 11. This function is derived from Equation
(7) by integrating over (out) the data measurement error. Field
Sigma of Meas_info can then be left blank (empty). The second
option uses likelihood function 12, 13, or 16 and estimates the
measurement data error along with the model parameters using
nuisance variables. The field Sigma of Meas_info should then be
used as inline function, for example, Meas_info.
Sigma ¼ inline(’a þ bY’), which defines mathematically the rela-
tionship between the observed data, Y and corresponding mea-
surement data error, Sigma. The scalars a and b are nuisance
variables and their values append the vector of model parameters,
which increases the dimensionality of the target distribution to
d þ 2. If the initial states of the chains are sampled from a uniform
distribution (Par_info.initial ¼ ’uniform’) then the ranges of a and b
augment the d-vectors of fields min and max. Note, care should be
exercised that Sigma > 0 ca,b. The user is free to define the mea-
surement error function, as long as the nuisance variables used in
the inline function are in lower caps, and follow the order of the
alphabet. The third and last option uses likelihood function 14
(Schoups and Vrugt, 2010) or 17 (Scharnagl et al., 2015). These
functions do not use field Sigma (can be left empty) but rather use
their own built-in measurement error model. The coefficients of
the error models are part of a larger set of nuisance parameters that
allow these likelihood functions to adapt to nontraditional error
residual distributions. Appendix B details how to use and adapt
likelihood function 11 and 17.
4.5. (Optional) input argument 5: options

The structure options is optional and passed as fifth input
argument to DREAM. The fields of this structure can activate (among
others) file writing, distributedmulti-core calculation, storage of the
model output simulations, ABC, diagnostic model evaluation, diag-
nostic Bayes, and the limits of acceptability framework. Table 5
summarizes the different fields of options and their default settings.
M code is required to activate several of its built-in capabilities such as distributed
ostic Bayes and limits of acceptability.

Options Type

no/yes String
no/yes String
no/yes String
no/yes String
no/yes String
no/yes String

scalar or m�1-vectora

inline functionb

no/yes String
no/yes String
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Multi-core calculation takes advantage of the MATLAB Parallel
Computing Toolbox and evaluates the N different proposals created
with Equations (23) and (24) on a different processor. Parallel
computing is built-in the DREAM code and can be activated auto-
matically if the user sets the field parallel of field options equal to
’yes’ (default ’no’). Such distributed calculation can significantly
reduce the run time of DREAM for CPU-demanding forward
models. For simple models that require only a few seconds to run
the time savings of a parallel run is usually negligible due to latency
(transport delay) of the hardware and operating system. In fact, for
the mixture distribution of Equation (20) multi-core evaluation of
the N proposals increases the wall-time of DREAM as compared to
sequential calculation.

The field IO (input/output) of options allows the user to
communicate to DREAM the desired setup of their distributed
computing environment. If file writing is used in model to
communicate the parameter values of the DREAM proposal to some
external program coded in Fortran or C then the field IO of options
should be set equal to ’yes’. Then, DREAMwill create automatically,
during initialization, N different copies of the model directory (and
underlying folders) to satisfy each individual processor. This
method avoids the corruption of model input and output files that
were to happen if the external programwere executed at the same
time by different processors working in the same directory. At the
end of each DREAM trial, the duplicate directories are removed
automatically. This approach to parallelization was used in the
HYDRUS-1D case study in Section 5.3. If, on the contrary, the model
function involves MATLAB code only then a common directory
suffices for all the different workers as all input and output argu-
ments can be passed directly through shared memory. The field IO
of options can then be set to ’no’. The same holds if the model
function involves use of shared libraries linked through the built-in
MEX-compiler of MATLAB (see Case study 4).

For CPU-intensive forward models it would be desirable to not
only store the parameter samples but also keep in memory their
corresponding model simulations returned by model and used to
calculate the likelihood of each proposal. This avoids having to
rerun the model script many times after DREAM has terminated to
assess model predictive (simulation) uncertainty. The field modout
of options allows the user to store the output of the model script. If
simulation output storage is desired then modout should be set
equal to ’yes’, and the N simulations of X are stored, after each
generation, in a binary file “Z.bin”. These simulations are then
returned to the user as third output argument, fx of DREAM. If chain
thinning is activated (please check Table 1) then this applies to the
simulations stored in fx as well so that the rows of fx match their
samples stored in the chains.

To help evaluate the progress of DREAM, it can be useful to
periodically store the MATLAB workspace of the main function
“DREAM.m” to a file. This binary MATLAB file, “DREAM.mat”, is
written to the main directory of DREAM if the field save of struc-
ture options is set equal to ’yes’. This binary file can then be loaded
into the workspace of another MATLAB worker and used to eval-
uate the DREAM results during its execution. What is more, the
“DREAM.mat” file is required if the user wishes to reboot a pre-
maturely aborted DREAM trial or continue with sampling if
convergence (e.g. section 4.7) has not been achieved with the
assigned computational budget in field T of DREAMPar. A reboot is
initiated by setting the field restart of structure options equal to
’yes’. In case of a prematurely terminated DREAM run, rebooting
will finalize the computational budget assigned to this trial. If lack
of convergence was the culprit, then a restart run will double the
number of samples in each chain, or, add to the existing chains
whatever new number of samples specified by the user in field T of
DREAMPar.
The MATLAB code of DREAM was developed in Windows. For a
unix/linux operating system the user should set the field linux of
options to ’yes’. The field diagnostics controls the computation of
within-chain convergence diagnostics (see section 4.7). The default
setting of this field is ’no’. The single chain diagnostics augment the
multi-chain bR-statistic of Gelman and Rubin (1992) and enable a
more robust assessment of convergence.

For ABC or diagnostic model evaluation the fields rho and
epsilon of options need to be specified unless their default settings
are appropriate. The field rho is an inline function object which
specifies the mathematical formulation of the distance function
between the simulated and observed summary statistics. In prac-
tice, a simple difference operator rho ¼ inline(’abs(Meas_info.S �
Y)’) (default) suffices, where Y (output of model) and field S of
Meas_info denote the observed and measured summary statistics,
respectively. The field epsilon of options stores a small positive
value (default of 0.025) which is used to truncate the behavioral
(posterior) parameter space.

If ABC is used then the user can select two different imple-
mentations to solve for the target distribution. The first approach,
adopted from Turner and Sederberg (2012), uses likelihood
function 21 to transform the distance function between the
observed and simulated summary metrics in a probability density
that DREAM uses to derive the target distribution. This approach
can produce nicely bell-shaped marginal distributions, but does
not guarantee that the posterior summary metrics fall within
epsilon of their observed values. A more viable and powerful
approach was introduced recently by Sadegh and Vrugt (2014)
and uses likelihood function 22 with the following modified
Metropolis acceptance probability to decide whether to accept
proposals or not

pacc
�
Xi/Xi

p

�
¼
8<: I
�
f
�
Xi
p

�
� f
�
Xi
��

if f
�
Xi
p

�
<0

1 if f
�
Xi
p

�
� 0

; (28)

where I(a) is an indicator function that returns one if a is true, and
zero otherwise. The mathematical expression of the fitness
(likelihood) function 22 is given in Table B1 (in Appendix B).
Equation (28) is implemented in an extension of DREAM called
DREAM(ABC) and rapidly guides the posterior summary metrics to
lie within epsilon of their observed counterparts. Section 5.4 of
this paper demonstrates the application of ABC to diagnostic
inference using an illustrative case study involving a catchment
hydrologic model.
4.6. Output arguments

I now briefly discuss the three output (return) arguments of
DREAM including chain, output and fx. These three variables
summarize the results of the DREAM algorithm and are used for
convergence assessment, posterior analysis and plotting.

The variable chain is a matrix of size T � d þ 2 � N. The first
d columns of chain store the sampled parameter values (state),
whereas the subsequent two columns list the associated log-prior
and log-likelihood values respectively. If thinning is applied to
each of the Markov chains then the number of rows of chain is
equivalent to T/K þ 1, where K � 2 denotes the thinning rate. If a
non-informative (uniform) prior is used then the values in column

dþ 1 of chain are all zero and consequently, pðx
���~YÞfLðx

���~YÞ. With an

informative prior, the values in column d þ 1 are non-zero and the

posterior density, pðx
���~YÞfpðxÞLðx

���~YÞ.
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The following MATLAB command

plotðchainð1 : end;1;2Þ; ’rþ ’Þ (29)

creates a traceplot (using red dots) of the first parameter of the
second chain. By plotting in the same Figure the remaining N � 1
chains (using different colors/symbols), the mixing of the Markov
chains can be assessed visually.

The structure output contains important (diagnostic) informa-
tion about the progress of the DREAM algorithm. The field RunTime
(scalar) stores the wall-time (seconds), R_stat (matrix), AR (matrix)
and CR (matrix) list for a given number of generations the bR
convergence diagnostic for each individual parameter of the target
distribution, the average acceptance rate, and the selection proba-
bility of each of the nCR crossover values, respectively, and outlier
(vector) contains the index of all outlier chains (often empty). The
MATLAB command

output:RunTime (30)

displays the wall time of DREAM, and the command

plotðoutput:ARð:;1Þ; output:ARð:;2ÞÞ (31)

plots the acceptance rate of proposals (in %) as function of gener-
ation number. This plot reveals important information about the
performance of the DREAM algorithm but cannot be used to judge
when convergence has been achieved (see next section).

Finally, the matrix fx stores the output Y of model. If this return
argument constitutes a vector of simulated values (summary
metrics) then fx is of sizeNT� n (NT�m), otherwise fx is a vector of
NT � 1 with likelihood or log-likelihood values. If thinning is used
then this applies to fx as well and the number of rows of fx becomes
equivalent to NT/K þ 1; K � 2.

The directory “../postprocessing” (under main directory)
contains a number of different functions that can be used to
visualize the different output arguments of DREAM. The script
DREAM_postproc can be executed from the MATLAB prompt after
the main DREAM function has terminated. Appendix A summa-
rizes briefly the graphical output of the post-processing scripts.
4.7. Convergence diagnostics & burn-in

From MCMC theory, the chains are expected to eventually
converge to a stationary distribution, which should be the desired
target distribution. But, howdowe actually assess that convergence
has been achieved in practice, without knowledge of the actual
target distribution?

Oneway to check for convergence is to seehowwell the chains are
mixing, or moving around the parameter space. For a properly
converged MCMC sampler, the chains should sample, for a suffi-
ciently long period, the approximate same part of the parameter
space, and mingle readily and in harmony with one another around
some fixed mean value. This can be inspected visually for each
dimension of x separately, and used to diagnose convergence
informally.

Another proxy for convergence monitoring is the acceptance
rate. A value between 15 and 30% is usually indicative of good per-
formance of aMCMC simulationmethod. Much lower values usually
convey that the posterior surface is difficult to traverse in pursuit of
the target distribution. A low acceptance rate can have different
reasons, for instance poormodel numerics, or the presence ofmulti-
modality and local optima. The user can enhance the acceptance
rate by declaring a value for b0 < 1 in field beta0 of structure
DREAMPar (see Table 1). This multiplier will reduce the jumping
distance, dX in Equation (23) and thus proposals will remain in
closer vicinity of the current state of each chain. This should
enhance the acceptance rate and mixing of individual chains. Note,
the acceptance rate can only diagnose whether a MCMC method
such as DREAM is achieving an acceptable performance, it cannot be
used to determine when convergence has been achieved.

The MATLAB code of DREAM includes various non-parametric
and parametric statistical tests to determine when convergence
of the sampled chains to a limiting distribution has been achieved.
The most powerful of these convergence tests is the multi-chainbR-statistic of Gelman and Rubin (1992). This diagnostic compares
for each parameter j ¼ {1,…,d} the within-chain

Wj ¼
2

NðT � 2Þ
XN
r¼1

XT
i¼PT=2R

�
xri;j � xrj

�2
xrj ¼

2
T � 2

XT
i¼PT=2R

xri;j

(32)

and between-chain variance

Bj
�
T ¼ 1

2ðN � 1Þ
XN
r¼1

�
xrj � xj

�2
xj ¼

1
N

XN
r¼1

xrj (33)

using

bRj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1
N

bs2ðjÞ
þ
Wj

� T � 2
NT

vuut ; (34)

where T signifies the number of samples in each chain, P:,R is the
integer rounding operator, and bs2ðjÞ

þ is an estimate of the variance of
the jth parameter of the target distribution

bs2ðjÞ
þ ¼ T � 2

T
Wj þ

2
T
Bj: (35)

To official declare convergence, the value bRj � 1:2 for each
parameter, j2 {1,…,d}, otherwise the value of T should be increased
and the chains run longer. As the N different chains are launched
from different starting points, the bR-diagnostic is a relatively robust
estimator.

The DREAM code computes automatically during execution thebR-statistic for each parameter. This statistic is returned to the user
in the field R_stat of options. After termination, the following
MATLAB command

plotðoutput:R_statð1: end; 2: DREAMPar:dþ 1ÞÞ (36)

creates a traceplot of the bR-convergence diagnostic for each of the
d parameters of the target distribution. This plot can be used to
determine when convergence has been achieved and thus which
samples of chain to use for posterior estimation and analysis. The
other samples can simply be discarded from the chains as burn-in.
An example of how to use the bR-statistic for convergence analysis
will be provided in case study 2 in section 5.2, a 100-dimensional
Student distribution.

The DREAM package also includes several within-chain di-
agnostics but their calculation is optional and depends on the
setting of the field diagnostics of structure options. If activated by
the user then DREAM computes, at the end of its run, the auto-
correlation function, the Geweke (1992), and Raftery and Lewis
(1992)-diagnostics.

The autocorrelation function for each parameter j ¼ {1,…,d} is
defined as



Fig. 7. (A) Histogram of posterior distribution derived from DREAM using N¼10 chains, and T¼5,000 generations. The solid black line depict the target distribution. (B) Trace plot.
Individual chains are coded with a different color (symbol). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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and returns the correlation between two samples k iterations apart
in the rth chain, r ¼ {1,…,N}. Compared to rejection sampling
which, per construction, produces uncorrelated samples, MCMC
chain trajectories exhibit autocorrelation as the current state of the
chain is derived from its previous state. This correlation is expected
to decrease with increasing lag k. The autocorrelation function is a
useful proxy to assess sample variability and mixing, but does not
convey when convergence has been achieved. A high autocorrela-
tion, say jrj > 0.8, at lags, say k � 5, simply demonstrates a rather
poor mixing of the individual chains.

The Geweke (1992)-diagnostic compares the means of two
nonoverlapping parts of the Markov chain using a standard Z-score
adjusted for autocorrelation. The Raftery and Lewis (1992)-statistic
calculates the number of iterations, T and length of burn-in
necessary to satisfy the condition that some posterior quantile of
interest, say q has a probability, p of lying within interval [q�r,qþr].
Default values are q ¼ 0.025, p ¼ 0.95, and r ¼ 0.01, respectively.
Details of how to compute and interpret these two statistics is
found in the cited references.

The three within-chain diagnostics are calculated for each of the
N chains and d parameters separately (if options.diagnostics¼ ’yes’)
and results stored in a file called “DREAM_diagnostics.txt”. This file
is subsequently printed to the screen in the MATLAB editor after
DREAM has terminated its run unless the user is running in a unix/
linux environment (options.linux ¼ ’yes’).

Altogether, joint interpretation of the different diagnostics
should help assess convergence of the sampled chain trajectories.
Of all these metrics, the bR-statistic provides the best guidance on
exactly when convergence has been achieved. This happens as soon
as this statistic drops below the critical threshold of 1.2 for all
d parameters of the target distribution. Suppose this happens at T*

iterations (generations) then the first (T*�1) samples of each chain
are simply discarded as burn-in and the remainingN(T�T*) samples
from the joint chains are used for posterior analysis. Note, I always
recommend to verify convergence of DREAM by visually inspecting
the mixing of the different chain trajectories.

In practice, one has to make sure that a sufficient number of
chain samples is available for the inference, otherwise the posterior
estimates can be biased. For convenience, I list here the total
number of posterior samples, N(T�T*) (in brackets) onewould need
for a reliable inference with DREAM for a given dimensionality of
the target distribution: d ¼ 1 (500); d ¼ 2 (1000); d ¼ 5 (5000);
d ¼ 10 (10,000); d ¼ 25 (50,000); d ¼ 50 (200,000); d ¼ 100
(1,000,000); d ¼ 250 (5,000,000). These listed numbers are only a
rough guideline, and based on several assumptions such as a
reasonable acceptance rate (> 10%) and not too complicated shape
of the posterior distribution. In general, the number of posterior
samples required increases with rejection rate and complexity of
the target distribution.

4.8. Miscellaneous

Themain reason towrite this toolbox of DREAM inMATLAB is its
relative ease of implementation, use, and graphical display. What is
more, the computational complexity of DREAM is rather limited
compared to the forward models in script model the code is
designed to work with. Indeed, the CPU-time of DREAM is deter-
mined in large part by how long it takes to evaluate the density of
the target distribution. Relatively little time savings are therefore
expected if DREAM were written and executed in a lower level
language such as Fortran or C.

The toolbox described herein has been developed for MATLAB
7.10.0.499 (R2010a). The current source code works as well for the
most recent MATLAB releases. Those that do not have access to
MATLAB, can use GNU Octave instead. This is a high-level inter-
preted language as well, and intended primarily for numerical
computations. The Octave language is quite similar to MATLAB so
that most programs are easily portable. GNU Octave is open-source
and can be downloaded for free from the following link: http://
www.gnu.org/software/octave/.

Finally, likelihood option 1 and 2 allow the user to return the
density of their own likelihood function (and prior distribution)
immediately to the main DREAM program to satisfy the needs of
their own specific inference problems and case studies. The same
holds for the use of summary statistics. The built-in likelihood
functions 21, 22 and 23 allow the use of any type of summary sta-
tistic (or combination thereof) the user deems appropriate for their
study.

5. Numerical examples

I now demonstrate the application of the MATLAB DREAM
package to seven different inference problems. These case studies
cover a diverse set of problem features and involve (among others)
bimodal and high-dimensional target distributions, summary sta-
tistics, dynamic simulation models, formal/informal likelihood
functions, diagnostic model evaluation, Bayesian model averaging,
limits of acceptability, and informative/noninformative prior
parameter distributions.

5.1. Case study I: one-dimensional mixture distribution

I revisit the bimodal target distribution of Equation (20). The
modes at �8 and 10 are so far separated that it is notoriously

http://www.gnu.org/software/octave/
http://www.gnu.org/software/octave/
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difficult for regular covariance based proposal distributions (AM
and RWM) to sample correctly the target distribution. The initial
state of the chains is sampled from U ½�20;20�. The following
MATLAB script defines the problem setup.
The initial sample is drawn using Latin hypercube sampling, and
the target distribution is defined in the script mixture of Appendix
C. Fig. 7 plots a histogram of the posterior samples, and (right) a
traceplot of the sampled value of x in each of the Markov chains.
The average acceptance rate is about 36.3%.

The sampled distribution is in excellent agreement with the
target distribution, in large part due to the ability of DREAM to
jump directly from onemode to the other when g¼ 1. The traceplot
shows periodic moves of all chains between both modes of the
target distribution and an excelling mixing of the sampled trajec-
tories. The time each chain spends in each of the two modes of the
mixture is consistent with their weight in Equation (20).
5.2. Case study II: 100-dimensional t-distribution

Our second case study involves a 100-dimensional Student
distributionwith 60	 of freedom. The target distribution, defined in
the script t_distribution of Appendix C, is centered at the zeroth
vector, with all pairwise correlations equivalent to 0.5. The problem
setup is given below.
The initial sample is drawn using Latin hypercube sam-
pling, and thinning is applied to each Markov chain to reduce
memory storage. Fig. 8 compares histograms of the sampled
marginal distribution of dimensions {25, 50, …, 100} with the
actual target distribution (black line). The sampled distribu-
tions are in excellent agreement with their observed coun-
terparts. The bR diagnostic illustrates that about 500,000
function evaluations are required to reach convergence to a
stationary distribution. The acceptance rate of 15.9% is close
to optimal.

The marginal distributions derived from DREAM closely
approximate their true histograms of the 100-dimensional target.
In particular, the tails of the sampled distribution are very well
represented with mean correlation of the d ¼ 100 dimensions of
0.50 and standard deviation of 0.015.

5.3. Case study III: dynamic simulation model

The third case study considers HYDRUS-1D, a variably saturated
porous flowmodel written in Fortran by �Sim�unek et al. (1998). This
case study is taken from Scharnagl et al. (2011), and involves
inference of the soil hydraulic parameters qr, qs, a, n, Ks and l (van
Genuchten, 1980) and the lower boundary condition (constant
head) using time-series of observed soil water contents in the



J.A. Vrugt / Environmental Modelling & Software 75 (2016) 273e316 295
unsaturated zone. The following MATLAB script defines the prob-
lem setup.
An explicit prior distribution is used for the soil hydraulic pa-
rameters to make sure that their posterior estimates remain in
close vicinity of their respective values derived from surrogate soil
data using the Rosetta toolbox of hierarchical pedo-transfer func-
tions (Schaap et al., 1998, 2001). The initial state of each chain is
sampled from the prior distribution, and boundary handling is
applied to enforce the parameters to stay within the hypercube
specified by min and max. To speed-up posterior exploration, the
Fig. 8. DREAM derived posterior marginal distribution of dimensions (A) 25, (B) 50, (C) 75, a
the target distribution. (E) Evolution of the bR convergence diagnostic of Gelman and Rubin
convergence to a limiting distribution.
N¼ 10 different chains are ran in parallel using theMATLAB parallel
computing toolbox.
The hydrus script is given in Appendix C. The Fortran
executable of HYDRUS-1D is called from within MATLAB
using the dos command. File writing and reading is used to
communicate the parameter values of DREAM to HYDRUS-
1D and to load the output of this executable back into
MATLAB. The output, Y of hydrus constitutes a vector of
simulated soil moisture values which are compared against
their observed values in Meas_info.Y using likelihood
function 11.
nd (D) 100 of the d ¼ 100 multivariate Student distribution. The solid black line depicts
(1992). The horizontal line depicts the threshold of 1.2, necessary to officially declare
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Fig. 9 presents histograms of the marginal posterior distribution
of four of the seven parameters considered in this study. The bot-
tom panel presents a time series plot of simulated soil moisture
contents. The dark gray region constitutes the 95% HYDRUS-1D
simulation uncertainty due to parameter uncertainty, whereas
the light gray region denotes the total simulation uncertainty
(parameter þ randomly sampled additive error). The observed soil
moisture values are indicated with a red circle.

The HYDRUS-1Dmodel closely tracks the observed soil moisture
contents with Root Mean Square Error (RMSE) of the posterior
mean simulation of about 0.01 cm3/cm3. About 95% of the
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observations lies within the gray region, an indication that the
simulation uncertainty ranges are statistically adequate. The
acceptance rate of DREAM averages about 12.6% e about half of its
theoretical optimal value of 22 e 25% (for Gaussian and Student
target distributions). This deficiency is explained in part by the high
nonlinearity of retention and hydraulic conductivity functions, and
numerical errors of the implicit, time-variable, solver of the
Richards' equation. This introduces irregularities (e.g. local optima)
in the posterior response surface and makes the journey to and
sampling from the target distribution more difficult.
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5.4. Case study IV: diagnostic model evaluation

The fourth case study illustrates the ability of DREAM to be used
for diagnostic model evaluation. A rather parsimonious 7-
parameter lumped watershed model (also known as hmodel) is
used with historical data from the Guadalupe River at Spring
Branch, Texas. This is the driest of the 12MOPEX basins described in
the study of Duan et al. (2006). The model structure and hydrologic
process representations are found in Schoups and Vrugt (2010). The
model transforms rainfall into runoff at the watershed outlet using
explicit process descriptions of interception, throughfall, evapora-
tion, runoff generation, percolation, and surface and subsurface
routing.

Daily discharge, mean areal precipitation, and mean areal po-
tential evapotranspiration were derived from Duan et al. (2006)
and used for diagnostic model evaluation with DREAM(ABC)
(Sadegh and Vrugt, 2014). Details about the basin and experimental
data, and likelihood function can be found there, and will not be
discussed herein. The same model and data was used in a previous
study Schoups and Vrugt (2010), and used to introduce the
generalized likelihood function of Table 1.

Four different summary metrics of the discharge data are used
for ABC inference (activated with likelihood function 22), including
S1 (-) the annual runoff coefficient, S2 (-) the annual baseflow co-
efficient, and S3 (day/mm) and S4 (-) two coefficients of the flow
duration curve (Vrugt and Sadegh, 2013; Sadegh et al., 2015a). The
following setup is used in the MATLAB package of DREAM.
The function Calc_metrics returns the values of the four sum-
mary statistics using as input a record of daily discharge values. The
actual model crr_model is written in the C-language and linked to
MATLAB into a shared library called a MEX-file. The use of such
MEX function significantly reduces the wall-time of DREAM.

Fig. 10 (top panel) presents histograms of the marginal distri-
butions of the summary statistics. The posterior summary metrics
lie within epsilon of their observed values, a necessary requirement
for successful ABC inference. The bottom panel presents a time
series plot of the observed (red dots) and hmodel simulated
streamflow values. The dark gray region constitutes the 95%
simulation uncertainty of the hmodel due to parameter
uncertainty.
The simulated summary metrics cluster closely (within epsilon)
around their observed counterparts. About 15,000 function evalu-
ations were required with DREAM(ABC) to converge to a limiting
distribution (not shown). This is orders of magnitude more efficient
than commonly used rejection samplers (Sadegh and Vrugt, 2014).
Note that the hmodel nicely mimics the observed discharge dy-
namics with simulation uncertainty ranges that envelop a large
portion of the discharge observations. Thus, the four summary
metrics used herein contain sufficient information to provide a
reasonably adequate calibration. The interested reader is referred to
Vrugt and Sadegh (2013) and Vrugt (submitted for publication) for
a much more detailed ABC analysis with particular focus on diag-
nosis and detection of epistemic errors.

5.5. Case study V: Bayesian model averaging

Ensemble Bayesian Model Averaging (BMA) proposed by
Raftery et al. (2005) is a widely used method for statistical post-
processing of forecasts from an ensemble of different models.
The BMA predictive distribution of any future quantity of interest
is a weighted average of probability density functions centered on
the bias-corrected forecasts from a set of individual models. The
weights are the estimated posterior model probabilities, repre-
senting each model's relative forecast skill in the training (cali-
bration) period.

Successful application of BMA requires estimates of the
weights and variances of the individual competing models in
the ensemble. In their seminal paper, Raftery et al. (2005)
recommends using the Expectation Maximization (EM) algo-
rithm (Dempster et al., 1997). This method is relatively easy to
implement, computationally efficient, but does not provide
uncertainty estimates of the weights and variances. Here I
demonstrate the application of DREAM to BMA model training
using a 36-year record of daily streamflow observations from
the Leaf River basin in the USA. An ensemble of eight different
calibrated watershed models is taken from Vrugt and Robinson
(2007a) and used in the present analysis. The names of these
models and the RMSE (m3/s) of their forecast error are listed in
Table 6.

Theory, concepts and applications of DREAM(BMA) have been
presented by Vrugt et al. (2008c) and interested readers are
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referred to this publication for further details. Here, I restrict
attention to the setup of BMA in the MATLAB package of DREAM.
The predictive distribution of each constituent member of the
ensemble is assumed to follow a gamma distribution with un-
known heteroscedastic variance. The BMA_calc script is listed in
Appendix C.

Table 6 summarizes the results of DREAM(BMA) and presents (in
column “Gamma”) the maximum a-posteriori (MAP) values of the
BMAweights for the differentmodels of the ensemble. Values listed
in parentheses denote the posterior standard deviation derived
from the DREAM sample. I also summarize the MAP values of the
weights for a Gaussian (conditional) distribution (columns
“Normal”) with homoscedastic (left) or heteroscedastic (right) error
variance, and report the average RMSE (m3/s), coverage (%) and
spread (m3/s) of the resulting BMA model during the 26-year eval-
uation period.
Table 6
Results of DREAM(BMA) by application to eight different watershed models using
daily discharge data from the Leaf River in Mississippi, USA. I list the individual
forecast errors of the models for the training data period, the corresponding MAP
values of the weights for a Gamma (default) and Gaussian forecast distribution
(numbers between parenthesis list the posterior standard deviation), and present
the results of the BMA model (bottom panel) during the evaluation period. The
spread (m3/s) and coverage (%) are derived from a 95% prediction interval.

Model RMSE Gamma Normala Normalb

ABC 31.67 0.02 (0.006) 0.03 (0.010) 0.00 (0.002)
GR4J 19.21 0.21 (0.016) 0.14 (0.013) 0.10 (0.013)
HYMOD 19.03 0.03 (0.008) 0.13 (0.046) 0.00 (0.005)
TOPMO 17.68 0.03 (0.006) 0.08 (0.047) 0.03 (0.010)
AWBM 26.31 0.05 (0.009) 0.01 (0.010) 0.00 (0.002)
NAM 20.22 0.05 (0.011) 0.14 (0.048) 0.11 (0.014)
HBV 19.44 0.24 (0.017) 0.13 (0.034) 0.31 (0.016)
SACSMA 16.45 0.37 (0.017) 0.34 (0.022) 0.43 (0.017)

BMA: log-likelihood �9775.1 �9950.5 �9189.4
BMA: RMSE 22.54 23.22 23.16
BMA: spread 39.74 46.98 46.54
BMA: coverage 93.65% 92.59% 95.71%

a Homoscedastic (fixed) variance.
b Heteroscedastic variance.
The values of the weights depend somewhat on the
assumed conditional distribution of the deterministic model
forecasts of the ensemble. The GR4J, HBV and SACSMA models
consistently receive the highest weights and are thus most
important in BMA model construction for this data set. Note
also that TOPMO receives a very low BMA weight, despite
having the second lowest RMSE value of the training data
period. Correlation between the individual forecasts of the
watershed models affects strongly the posterior distribution of
the BMA weights. The gamma distribution is preferred for
probabilistic streamflow forecasting with 95% simulation un-
certainty ranges that, on average, are noticeably smaller than
their counterparts derived from a normal distribution. The
interested reader is referred to Vrugt and Robinson (2007a)
and Rings et al. (2012) for a more detailed analysis of the
BMA results, and a comparison with filtering methods.

Fig. 11 presents histograms of the marginal posterior distribu-
tion of the BMA weights for each of the models of the ensemble.
The MAP values of the weights are separately indicated with a blue
cross.

The distributions appear rather well-defined and exhibit an
approximate Gaussian shape. The posterior weights convey which
models of the ensemble are of importance in the BMA model and
which models can be discarded without harming the results. The
use of fewermodels is computational appealing as it will reduce the
CPU-time to generate the ensemble.
5.6. Case study VI: generalized likelihood uncertainty estimation

Our sixth case study reports on GLUE and involves application of
an informal likelihood function to the study of animal population
dynamics. One of the first models to explain the interactions be-
tween predators and prey was proposed in 1925 by the American
biophysicist Alfred Lotka and the Italian mathematician Vito Vol-
terra. This model, one of the earliest in theoretical ecology, has been
widely used to study population dynamics, and is given by the
following system of two coupled differential equations
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Fig. 11. Histograms of the marginal posterior distribution of the weights and variances of each individual model of the ensemble. The MAP values of the weights are denoted with a
blue cross. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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dP1t
dt

¼ aP1t � bP1t P
2
t

dP2t
dt

¼ �gP2t þ dP1t P
2
t ;

(38)

where P1t and P2t denote the size of the prey and predator popula-
tion at time t respectively, a (-) is the prey growth rate (assumed
exponential in the absence of any predators), b (-) signifies the
attack rate (prey mortality rate for per-capita predation), g (-)
represents the exponential death rate for predators in the absence
of any prey, and d (-) is the efficiency of conversion from prey to
predator.
A synthetic monthly data set of a prey and predator population
is created by solving Equation (38) numerically for a 20-year period
using an implicit, time-variable, integration method (built-in ode
solver of MATLAB). The initial states, P10 ¼ 30 and P20 ¼ 4 and
parameter values a¼ 0.5471, b¼ 0.0281, g¼ 0.8439 and d¼ 0.0266
correspond to data collected by the Hudson Bay Company between
1900 and 1920. These synthetic monthly observations are subse-
quently perturbed with a homoscedastic error, and this corrupted
data set is saved as text file “abundances.txt” and used for infer-
ence. The following setup of DREAM is used in MATLAB.
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An informal likelihood function (32) is used to transform the
difference between the observed and simulated predator-prey
populations in a likelihood. The forward model script lotka_-
volterra can be found in Appendix C.

Fig. 12 presents the marginal posterior distributions of the pa-
rameters a, b, g and d (top panel) and displays (bottom panel) the
95% uncertainty (dark grey) of the simulated prey and predator
populations. The observed species abundances are separately
indicated with the red circles.

The parameter d appears best defined by calibration against the
observed species abundances with posterior ranges that are rather
tight. The histograms of a and g are rather dispersed with posterior
uncertainty ranges that encompass a large part of the prior distri-
bution. This relatively large parameter uncertainty translates into
an unrealistically large prediction uncertainty (bottom panel). Of
course, the results of DREAM depend strongly on the value of the
shaping factor, GLUE of DREAMPar in likelihood function 32. If this
value is taken to be much larger (e.g. 100), then the marginal dis-
tributions would be much peakier and center on the “true” Lok-
taeVolterra parameter values used to generate the synthetic record
of predator and prey populations. Moreover, the spread of the 95%
prediction uncertainty rangeswould bemuch smaller. Blasone et al.
(2008) presents a more in-depth analysis of the application of
MCMC simulation to GLUE inference.
5.7. Case study VII: limits of acceptability

In the manifesto for the equifinality thesis, Beven (2006) sug-
gested that a more rigorous approach to model evaluation would
involve the use of limits of acceptability for each individual
observation against which model simulated values are compared.
Within this framework, behavioral models are defined as those that
satisfy the limits of acceptability for each observation. Our seventh
and last case study briefly describes the application of DREAM to
sampling the behavioral parameter space that satisfies the limits of
acceptability of each observation.

I use a simple illustrative example involving modeling of the soil
temperature T in degrees Celsius using the following analytic
equation
Tðt; zÞ ¼ T0 þ A0exp
�
�z
d

�
sin
�
uðt � fÞ � z

d

�
; (39)

where t (hr) denotes time, T0 (oC) is the annual average temper-
ature at the soil surface, A0 (	C) is the amplitude of the tempera-
ture fluctuation, u ¼ 2p/24 (hr�1) signifies the angular frequency,
f (hr) is a phase constant, z (cm) is the depth in the soil profile
(positive downward) and d (cm) denotes the characteristic
damping depth.

A synthetic record of hourly soil temperature observations at z¼
5, z¼ 10, and z¼ 15 cm depth is used to illustrate the DREAM setup
and results. This data set was created by solving Equation (39) in
themodel script heatflow (see Appendix C) for a 2-day period using
T0 ¼ 200 C, A0 ¼ 50 C, f ¼ 8 (hr) and d ¼ 20 (cm). The hourly data
was subsequently perturbed with a normally distributed error of
0.5o C and used in the analysis. The limits of acceptability were set
to be equal to 2 	C for each of the m ¼ 144 temperature observa-
tions. The four parameters T0, A0, f and d are determined from the
observed temperature data using the following setup of DREAM in
MATLAB.
The value of the effective observation error is assumed to be a
constant, and consequently a scalar declaration suffices for this
field epsilon of structure Meas_info. If the limits of acceptability are
observation dependent then a vector, with in this case m ¼ 144
values, should be defined.

Fig. 13 presents the results of the analysis. The top panel pre-
sents marginal distributions of the parameters (A) T0, (B) A0, (C) f,
and (D) d, whereas the bottom panel presents time series plots of
(E) the original temperature data before corruption with a mea-
surement error, and the behavioral simulation space of Equation
(39) in model at (F) 5, (G) 10 and (H) 15 cm depth in the soil profile.
The gray region satisfies the limits of acceptability of each tem-
perature observation and measurement depth.

The histograms center around their true values (denoted with a
blue cross). The parameters T0, A0, and f appear well defined,
whereas the damping depth d exhibits a large uncertainty. This
uncertainty translates in a rather large uncertainty of the apparent
soil thermal diffusivity, KT ¼ 1

2ud
2 (cm2 hr�1). This concludes the

numerical experiments. The interested reader is referred to Vrugt



Fig. 13. Histograms (top panel) of the marginal posterior distribution of the heat flow parameters (A) T0, (B) A0, (C) f, and (D) d. The true values of the parameters are separately
indicated with a blue cross. Time series plot (bottom panel) of (E) original data (before corruption) at the 5, 10 and 15 cm depth in the soil profile, and (F)e(H) behavioral simulation
space (gray region) that satisfies the effective observation error (2 	C) of each temperature measurement. The corrupted data are separately indicated with dots. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Histograms (top panel) of the marginal posterior distribution of the LotkaeVolterra model parameters (A) a, (B) b, (C) g, and (D) d. Time series plot (bottom panel) of 95%
simulation uncertainty ranges of the (E) prey and (F) predator populations. The observed data are indicated with the red circles. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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(2015a) for a more detailed exposition of membership-set likeli-
hood functions such as those used in the GLUE limits of accept-
ability framework.
6. Additional options

The seven case studies presented herein illustrate only some of
the capabilities of the DREAM software package. The script RUN-

DREAM presents a more exhaustive overview of the different
functionalities of the DREAM toolbox, and includes 23 prototype
example studies involving among others much more complex and
higher dimensional target distributions as well, for example esti-
mation of the two- and/or three-dimensional soil moisture distri-
bution from travel time data of ground penetrating radar (Laloy
et al., 2012; Linde and Vrugt, 2013) and treatment of rainfall un-
certainty in hydrologic modeling (Vrugt et al., 2008a). Users can
draw inspiration from these different test problems and use them
as templates for their ownmodeling and inference problems. I now
list a few important topics that have not been explicitly addressed
herein.
6.1. Diagnostic Bayes

A recurrent issue with the application of ABC is self-sufficiency
of the summary metrics, Sð~YÞ. In theory, S(,) should contain as
much information as the original data itself, yet complex systems
rarely admit sufficient statistics. Vrugt (submitted for publication)
therefore proposed in another recent article a hybrid approach,
coined diagnostic Bayes, that uses the summary metrics as prior
distribution and the original data in the likelihood function, or
pðx
���~YÞfpðx

���Sð~YÞÞLðx���~YÞ. This approach guarantees that no infor-
mation is lost during the inference. The use of summary metrics as
prior distribution is rather unorthodox and arguments of in favor of
this approach are provided by Vrugt (submitted for publication).
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Diagnostic Bayes is easily setup and executed within DREAM.
The user has to set the field DB of structure options equal to ’yes’.
Then, the observations of the calibration data and related summary
statistics are stored in fields Y and S of structure Meas_info,
respectively. The output of the model script consists of the simu-
lated data, Y augmented at the end of the return vector Y with the
values of the simulated summary statistics, S(Y(x)).

6.2. Joint parameter and state estimation

The return argument Y of the function script model usually in-
volves the output of some model, Y)F ðx; ,Þ. The computation in
this script can involve state estimation as well. The return argu-
ment of model then involves a time-series of forecasts derived from
the Kalman filter. This approach, assumes time-invariant parameter
values and is at the heart of SODA and particle-DREAM (Vrugt et al.,
2005, 2013b).

6.3. Bayesian model selection

Inferences about the model parameters are typically made from

the unnormalized posterior density, pðx
���~YÞ in Equation (5). This

Equation ignores the normalization constant, pð~YÞ. This constant,
also referred to as marginal likelihood or evidence can be derived
from multi-dimensional integration of the posterior distribution,

pð~YÞ ¼ R
c

pðxÞLðx
���~YÞdc, where x 2 c2 ℝd. In the case of multiple

competing model hypotheses

p
�
~Y
���H� ¼

Z∞
�∞

pðHÞL
�
H
���~Y�dH (40)

the model with the largest value of pð~Y
���HÞ is preferred statistically.

The statistical literature has introduced several methods to
determine pð~Y

���HÞ (Chib, 1995; Kass and Raftery, 1995; Meng and
Wong, 1996; Lewis and Raftery, 1997; Gelman and Meng, 1998).
Numerical experiments with a suite of different benchmark func-
tions have shown that these approaches are not particularly accu-
rate for high-dimensional and complex target distributions that
deviate markedly from multi-normality. Volpi et al. (2015) have
therefore presented a new estimator of the marginal likelihood
which works well for a large range of posterior target distributions.
This algorithm uses the posterior samples derived fromDREAM and
is integrated in the MATLAB package.
6.4. Improved treatment of uncertainty

Most applications of Bayesian inference in Earth and environ-
mental modeling assume the model to be a perfect representation
of reality, the input (forcing) data to be observed without error, and
consequently the parameters to be the only source of uncertainty.
These assumptions are convenient in applying statistical theory but
often not borne out of the properties of the error residuals whose
probabilistic properties deviate often considerably from normality
with (among others) non-constant variance, heavy tails, and vary-
ing degrees of skewness and temporal and/or spatial correlation.
Bayes law allows for treatment of all sources of modeling error
through the use of nuisance variables, b for instance

p
�
x;b; ~U; ~j0

���~Y�fpðxÞpðbÞp
�
~U
�
p
�
~j0
	
L
�
x;b; ~U; ~j0

���~Y�: (41)

The nuisance variables are coefficients in error models of the initial
states and forcing data, respectively and their values subject to
inference with the parameters using the observed data, ~Y. The
BATEA framework is an example of this more advanced approach
(Kavetski et al., 2006a,b; Kuczera et al., 2006; Renard et al., 2010,
2011), and can be implemented with DREAM as well (Vrugt et al.,
2008a, 2009a,b). The formulation of Equation (41) is easily adapt-
ed to include errors in the calibration data as well (see Appendix B)
though it remains difficult to treat epistemic errors. What is more,
this approach with many nuisance variables will only work satis-
factorily if a sufficiently strong prior is used for each individual
error source. Otherwise the inference can rapidly degenerate and
become meaningless.

One can also persist in treating model parameter uncertainty
only, and use instead an advanced likelihood function whose
nuisance variables render it flexible enough to mimic closely
complex nontraditional error residual distributions (Schoups and
Vrugt, 2010; Evin et al., 2013; Scharnagl et al., 2015). The results
of such approach might be statistically meaningful in that the as-
sumptions of the likelihood function are matched by the actual
residual properties, yet this methodology provides little guidance
on structural model errors.

The answer to this complicated problem of how to detect, di-
agnose and resolve model structural errors might lie in the use of
summary statistics of the data rather than the data itself. A plea for
this approach has been made by Gupta et al. (2008) and Vrugt and
Sadegh (2013) have provided the mathematical foundation for
diagnostic model evaluation using ABC. Subsequent work by
Sadegh et al. (2015b) has shown the merits of this methodology by
addressing the stationarity paradigm. Other recent work demon-
strates that the use of summary metrics provides much better
guidance on model malfunctioning (Vrugt, submitted for
publication).

6.5. [U-norm of error residuals

Likelihood functions play a key role in statistical inference of the
model parameters. Their mathematical formulation depends on the
assumptions that are made about the probabilistic properties of the
error residuals. The validity of these assumptions can be verified a-
posteriori by inspecting the actual error residual time series of the
posteriormean simulation. Likelihood functions based on a [2-norm
(squared residuals) are most often used in practical applications,
despite their relative sensitivity to peaks and outlier data points.
Their use is motivated by analytic tractability - that is - with rela-
tively little ease confidence intervals of the parameters can be
construed from a classical first-order approximation around the
optimum. This attractive feature of a [2-type likelihood functionwas
of imminent importance in past eras without adequate computa-
tional resources but is a far less desirable quality nowadays with
availability of powerful computing capabilities and efficient algo-
rithms. Indeed, methods such as DREAM can solve for likelihood
functionswith anydesirednorm,U2ℕþ. For instance, the Laplacian
likelihood (see Table B1) uses a [1 norm of the error residuals and
therefore should be less sensitive to peaks and outliers. Unless there
are very good reasons to adopt a [2-type likelihood function, their
use might otherwise be a historical relic (Beven and Binley, 2014).

6.6. Convergence monitoring

The most recent version of DREAM also includes calculation of
the multivariate bR-statistic of Gelman and Rubin (1992). This sta-
tistic, hereafter referred to as bRd

-diagnostic, is defined in Brooks
and Gelman (1998) and assesses convergence of the d parameters
simultaneously by comparing their within and between-sequence
covariance matrix. Convergence is achieved when a rotationally
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invariant distance measure between the two matrices indicates
that they are “sufficiently” close. Then, the multivariate bRd

-statistic
achieves a value close to unity, otherwise its value is much larger. In
fact, the bR and bRd

-statistic take on a very similar range of values,
hence simplifying analysis of when convergence has been achieved.

The bRd
-statistic is particularly useful for high-dimensional

target distributions involving complicated multi-dimensional
parameter interactions. We do not present this statistic in the
present paper, but the DREAM package returns its value at different
iteration numbers in field MR_stat of structure options.
6.7. Prior distribution

The prior distribution, p(x) describes all knowledge about the
model parameters before any data is collected. Options include the
use of noninformative (flat, uniform) and informative prior distri-
butions. These built-in capabilities will not suffice for applications
involving complex prior parameter distributions defined (or not) by
a series of simulation steps rather than some analytic distribution.
Such priors are used abundantly in the fields of geostatistics and
geophysics, andhave ledMosegaardandTarantola (1995) todevelop
the extendedMetropolis algorithm (EMA). This algorithm builds on
the standard RWM algorithm, but samples proposals from the prior
distribution instead, thereby honoring existing data and the spatial
structure of the variable of interest (Hansen et al., 2012; Laloy et al.,
2015). The acceptance probability in Equation (14) then becomes

pacc
�
xt�1/xp

	 ¼ min


1;

L
�
xp
	

Lðxt�1Þ
�
; (42)

and the resulting chain simulated by EMA satisfies detailed balance.
This approach, also known as sequential simulation or sequential
geostatistical resampling, can handle complex geostatistical priors,
yet its efficiency is critically dependent on the proposal mechanism
used to draw samples from the prior distribution (Laloy et al., 2015;
Ruggeri et al., 2015).

The basic idea of EMA is readily incorporated in DREAM by
replacing the parallel direction jump of Equation (23) with a swap
type proposal distribution used in the DREAM(D) algorithm (see
section). For instance, the most dissimilar entries of two other
chains can be used to guide which coordinates to draw from the
prior distribution. This adaptive approach shares information about
the topology of the search space between the different chains, a
requirement to speed up the convergence to the target distribution.
I will leave this development for future research.

Dimensionality reduction methods provide an alternative to
EMA and represent the spatial structure of the variable of interest
with much fewer parameters than required for pixel based inver-
sion while maintaining a large degree of fine-scale information.
This allows for the use of standard closed-form prior distributions
for the reduced set of parameters. Examples of such approaches
include the discrete cosine transform (Jafarpour et al., 2009, 2010;
Linde and Vrugt, 2013; Lochbühler et al., 2015), wavelet transform
(Davis and Li, 2011; Jafarpour, 2011), and singular value decom-
position (Laloy et al., 2012; Oware et al., 2013).
7. The DREAM family of algorithms

In the past years, several other MCMC algorithms have appeared
in the literature with a high DREAM pedigree. These algorithms use
DREAM as their basic building block but include special extensions
to simplify inference (among others) of discrete and combinatorial
search spaces, and high-dimensional and CPU-intensive system
models. These algorithms have their own individual MATLAB
toolboxes identical to what is presented herein for DREAM, but
with unique algorithmic parameters. I briefly describe each of these
algorithms below, and discuss their algorithmic parameters in the
MATLAB code.
7.1. DREAM(ZS)

This algorithm creates the jump vector in Equation (23) from the
past states of the joint chains. This idea is implemented as follows.
If Z ¼ {z1,…,zm} is a matrix of size m � d which thinned history of
each of the N chains, then the jump is calculated using

dXi
A ¼ zd� þ ð1d� þ ld� Þgðd;d�Þ

X
j¼1

d �
Zaj

A � Zbj

A

�
dXi

sA ¼ 0;

(43)

where a and b are 2dN integer values drawn without replacement
from {1,…,m}.

The DREAM(ZS) algorithm contains two additional algorithmic
variables compared to DREAM, including m0, the initial size
(number of rows) of the matrix Z and k the rate at which samples
are appended to this external archive. Their recommended default
values are m0 ¼ 10d and k ¼ 10 iterations respectively. The initial
archive Z is drawn from the prior distribution of which the last N
draws are copied to the matrix X which stores the current state of
each chain. After each k draws (generations) in each Markov chain,
the matrix X is appended to Z.

The use of past samples in the jump distribution of Equation
(43) has three main advantages. First, a much smaller number of
chains suffices to explore the target distribution. This not only
minimizes the number of samples required for burn-in, but also
simplifies application of DREAM(ZS) to high-dimensional search
spaces. Indeed, whereas DREAM requires at least N � d/2,
benchmark experiments with DREAM(ZS) have shown that N ¼ 3
chains (set as default) suffices for a large range of target di-
mensionalities. Second, because the proposal distribution in
DREAM(ZS) uses past states of the chains only, each trajectory can
evolve on a different processor. Such distributed implementation
is used within DREAM as well, but violates, at least theoretically,
the convergence proof (see Section 3.3). Third, outlier chains do
not need forceful treatment. Such chains can always sample their
own past and with a periodic value of g ¼ 1 jump directly to the
mode of the target.

The sampling from an external archive of past states violates the
Markovian principles of the sampled chains, and turns the method
into an adaptive Metropolis sampler (Roberts and Rosenthal, 2007;
ter BraakandVrugt, 2008). To ensure convergence to the exact target
distribution the adaptation should decrease in time, a requirement
satisfied by DREAM(ZS) as Z grows by an order of N/m ¼ k/t which
hence slows downwith generation t (ter Braak and Vrugt, 2008).

To enhance the diversity of the proposals created by DREAM(ZS),
the algorithm includes a mix of parallel direction and snooker
jumps (ter Braak and Vrugt, 2008). This snooker jump is depicted
schematically in Fig. 14 and uses an adaptive step size. The indexes
a, b and c are drawn randomly from the integers {1,…,m} (without
replacement).

The orientation of the snooker jump is determined by the line
XiZa going through the current state of the ith chain and sample a of
the external archive. The snooker axis is now defined by the line
ZbZc and is projected orthogonally on to the line XiZa. The differ-
ence between the two projection points Zb⊥ and Zc

⊥ now defines the
length of the snooker jump as follows



Fig. 14. DREAM(ZS) algorithm: Explanation of the snooker update for a hypothetical
two-dimensional problem using some external archive of m¼10 points (grey dots).
Three points of this archive Za, Zb and Zc are sampled at random and define the jump of
the ith chain, Xi (blue) as follows. The points Zb and Zc are projected orthogonally on to
the dotted XiZa line. The jump is now defined as a multiple of the difference between
the projections points, Zb

⊥ and Zc⊥ (green squares) and creates the proposal, , Xi
p. The

DREAM(ZS) algorithm uses a 90/10% mix of parallel direction and snooker updates,
respectively. The probability of a snooker update is stored in field psnooker of structure
DREAMPar. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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dXi ¼ gs

�
Zb⊥ � Zc⊥

�
þ zd; (44)

where gs �D U ½1:2;2:2� signifies the snooker jump rate (ter Braak
and Vrugt, 2008). The proposal point is then calculated using
Equation (24).

The MATLAB code of DREAM(ZS) uses the exact same coding
terminology and variables as DREAM but includes three additional
fields in structure DREAMPar, that is m0, k and psnooker with
default values of 10d, 10 and 0.1, respectively. These are the algo-
rithmic parameters that determine the initial size of the external
archive, the rate at which proposals are appended to this archive,
and the probability of a snooker jump. Furthermore, a default value
of N ¼ 3 is used for the number of chains.

7.2. DREAM(D)

The DREAM(D) code is especially developed to sample efficiently
non-continuous, discrete, and combinatorial target distributions.
This method helps solve experimental design problems involving
real-time selection of measurements that discriminate best among
competing hypothesis (models) of the system under consideration
(Vrugt and ter Braak, 2011; Kikuchi et al., 2015). The DREAM(D) al-
gorithm uses DREAM as its main building block and implements
two different proposal distributions to recognize explicitly differ-
ences in topology between discrete and Euclidean search spaces.
The first proposal distribution is a regular parallel direction jump

dXi
A ¼

6664zd� þ ð1d� þ ld� Þgðd;d�Þ
X
j¼1

d �
Xaj

A � Xbj

A

�7775
d�

dXi
sA ¼ 0;

(45)

but with each of the sampled dimensions of the jump vector
rounded to the nearest integer using the operator, Pð,ÞR. The integer-
valued proposals, Xi

p2ℕd; i ¼ f1;…;Ng can be transformed to
non-integer values using a simple linear transformation
Xi
p ¼ Dx1Xi

p (46)

whereDx¼ {Dx1,…,Dxd} isa1�d-vectorwithdiscretization intervalof
each dimension of x and 1 denotes element-by-element multipli-
cation. For instance, consider a two-dimensional problemwith prior
U 2½�2;6� (and thus Par_info.min ¼ [�2 �2], Par_info.max ¼ [6 6])
and Dx ¼ {1/4,1/2}, then DREAM(D) samples the integer space, x1
2 [0�33] and x2 2 [0�17], respectively. A proposal, Xi

p ¼ f16;9g is
then equivalent to {�2,�2} þ {16�1/4,9�1/2} ¼ {2,5/2}. The field
stepsof structurePar_info stores in a1� d-vector the values ofDx. For
an integer space, the value of Dx ¼ 1d.

The parallel direction jump of Equation (45) works well for
discrete problems but is not necessary optimal for combinatorial
problems in which the optimal values are known a-priori but not
their location in the parameter vector. The topology of such search
problems differs substantially from Euclidean search problems.
Vrugt et al. (2011) therefore introduce two alternative proposal
distributions for combinational problems. The first of these two
proposal distributions swaps randomly two coordinates in each
individual chain. If the current state of the ith chain is given by

Xi
t�1 ¼ ½Xi

t�1;1;…;Xi
t�1;j;…;Xi

t�1;k;…;Xi
t�1;d� then the candidate

point becomes,Xi
p ¼ ½Xi

p;1;…;Xi
p;k;…;Xi

p;j;…;Xi
p;d�where j and k are

sampled without replacement from the integers {1,…,d}. It is
straightforward to see that this proposal distribution satisfies
detailed balance as the forward and backward jump have equal
probability.

This coordinate swappingdoesnot exploit any information about
the topologyof the solution encapsulated in theposition of the other
N�1 chains. Each chain essentially evolves independently to the
target distribution. This appears rather inefficient, particularly for
complicated search problems. The second proposal distribution
takes explicit information from the dissimilarities in coordinates of
the N chains evolving in parallel. This idea works as follows Vrugt
et al. (2011). Let Xa and Xb be two chains that are chosen at random
from the populationXt�1. From the dissimilar coordinates of a and b
twodifferentdimensions, say j and k, are pickedat random,and their
values swapped within each chain. The resulting two proposals, Xa

p
andXb

p are subsequentlyevaluatedbymodel and theproductof their
respective Metropolis ratios calculated, paccðXa/Xa

pÞpaccðXb/Xb
pÞ

using Equation (14). If this product is larger than the random label
drawn from U ð0;1Þ then both chains move to their respective
candidate points, that is, xat ¼ Xa

p and xbt ¼ Xb
p, otherwise they

remain at their current state, xat ¼ xat�1 and xbt ¼ xbt�1.
The dimensions j and k are determined by the dissimilarities of

the d coordinate values of two different chains. Unlike the random
swap this second proposal distribution (also referred to as directed
swap) shares information between two chains about their state.
Those coordinates of the chains that are dissimilar are swapped, a
strategy that expedites convergence to the target distribution. The
swap move is fully Markovian, that is, it uses only information from
the current states for proposal generation, and maintains detailed
balance (Vrugt et al., 2011). If the swap is not feasible (less than two
dissimilar coordinates), the current chain is simply sampled again.
This is necessary to avoid complications with unequal probabilities
of move types (Denison et al., 2002), the same trick is applied in
reversible jump MCMC (Green, 1995). Restricting the swap to dis-
similar coordinates does not destroy detailed balance, it just selects a
subspace to sample on the basis of the current state. For combina-
tional search problems, the DREAM(D) algorithm uses a default 90/
10% mix of directed and random swaps, respectively.

The field prswap of structure DREAMPar in DREAM(D) defines the
probability of a random swap (default DREAMPar.prswap ¼ 0.1).
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7.3. DREAM(DZS)

Alternative (not published) discrete variant of DREAM(ZS). This
code uses discrete (snooker) sampling from the past to explore
target distributions involving non-continuous and/or combinato-
rial parameter spaces.

7.4. DREAM(ABC)

This code has been developed by Sadegh and Vrugt (2014) for
diagnosticmodelevaluationandcanbeactivated fromwithinDREAM
using likelihood function 22. Implementation details have been dis-
cussed in the main text of this paper and in Appendix B and C.

7.5. DREAM(BMA)

Specific implementation of DREAM for Bayesian model aver-
aging. Theory and application of this method have been discussed
in Vrugt et al. (2008c) and an example has been presented in the
case studies section of this paper.

7.6. MT-DREAM(ZS)

The MT-DREAM(ZS) algorithm uses multiple-try sampling (Liu
et al., 2000), snooker updating, and sampling from an archive of
past states to enhance the convergence speed of CPU-intensive and
parameter rich models. Benchmark experiments in geophysics, hy-
drology and hydrogeology have shown that this sampler is able to
sample correctly high-dimensional target distributions (Laloy and
Vrugt, 2012; Laloy et al., 2012, 2013; Linde and Vrugt, 2013;
Carbajal et al., 2014; Lochbühler et al., 2014, 2015).

The MT-DREAM(ZS) algorithm uses as basic building block the
DREAM(ZS) algorithm and implements multi-try sampling in each of
the chains. This multi-try scheme is explained in detail by Laloy and
Vrugt (2012) and creates m different proposals in each of the N ¼ 3
(default) chains. If we use symbol Jd(,) to denote the jumping distri-
butions inEquation (43)or (44) then this schemeworksas follows. For
conveniencewhenever the symbol j is used Imean ’for all j2 {1,…,m}’.

(1) Create m proposals, Xj
p ¼ Xi þ Jdð,Þ.

(2) Calculate wj
p, the product of prior and likelihood of Xj

p and
store values in m-vector, wp ¼ fw1

p;…;wm
pg.

(3) Select Xi
p from Xp using selection probabilities wp.

(4) Set X1
r ¼ Xi

p and create remaining m�1 points of reference
set, Xj

r ¼ Xi
p þ Jdð,Þ.

(5) Calculate wj
r, the product of prior and likelihood of Xj

r and
store values in m-vector, wr ¼ fw1

r ;…;wm
r g.

(6) Accept Xi
p with probability

p
�
Xi/Xi

�
¼ min

241; �w1
r þ…þwm

r
	� �
35: (47)
acc p

w1
p þ…þwm

p

It can be shown that this method satisfies the detailed balance
condition and therefore produces a reversible Markov chainwith the
target distribution as the stationary distribution (Liu et al., 2000).

The advantage of this multi-try scheme is that the m proposals
can be evaluated in parallel. With the use of N¼ 3 chains this would
require only N � mt processors, which is much more practical for
large d than running DREAM in parallel with large N (Laloy and
Vrugt, 2012). Compared to DREAM(ZS) the MT-DREAM(ZS) algo-
rithm has one more algorithmic parameter, m, the number of multi-
try proposals in each of the N chains. This variable is stored in field
mt of DREAMPar and assumes a default value of m ¼ 5.
8. Summary

In this paper I have reviewed the basic theory of Markov chain
Monte Carlo (MCMC) simulation and have introduced a MATLAB
package of the DREAM algorithm. This toolbox provides scientists
and engineers with an arsenal of options and utilities to solve
posterior sampling problems involving (amongst others) bimo-
dality, high-dimensionality, summary statistics, bounded param-
eter spaces, dynamic simulation models, formal/informal
likelihood functions, diagnostic model evaluation, data assimila-
tion, Bayesian model averaging, distributed computation,
and informative/noninformative prior distributions. The DREAM
toolbox supports parallel computing and includes tools
for convergence analysis of the sampled chain trajectories and post-
processing of the results. Seven different case studies were used to
illustrate the main capabilities and functionalities of the MATLAB
toolbox. These example studies are easy to run and adapt and serve
as templates for other inference problems.

A graphical user interface (GUI) of DREAM is currently under
development and will become available in due course.
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Appendices

Appendix A

Table A1 summarizes, in alphabetic order, the different function/
program files of the DREAM package in MATLAB. The main program
RUNDREAM contains 23 different prototype studies which cover a
large range of problem features. These example studies have been
published in the geophysics, hydrologic, pedometrics, statistics and
vadose zone literature, and provide a template for users to setup
their own case study. The last line of each example study involves a
function call to DREAM, which uses all the other functions listed on
the next page to generate samples of the posterior distribution. Each
example problem of RUNDREAM has its own directory which stores
the model script written by the user and all other files (data file(s),
MATLAB scripts, external executable(s), etc.) necessary to run this
script and compute the return argument Y.

If activated by the user (field diagnostics of structure options is
set to ’yes’), then at the end of each DREAM trial, the autocorrela-
tion function, Geweke (1992) and Raftery and Lewis (1992)
convergence diagnostic are computed separately for each of the N
chains using the CODA toolbox written by James P. LeSage (http://
www.spatial-econometrics.com/). These functions are stored in
the folder “../diagnostics” under the main DREAM directory and
produce an output file called “DREAM_diagnostics.txt” which is
printed to the screen in the MATLAB editor at the end of each
DREAM trial. These within-chain convergence diagnostics were
designed specifically for single-chain Metropolis samplers, and
augment the multi-chain univariate and multivariate bR andbRd

-statistic of Gelman and Rubin (1992) and Brooks and Gelman
(1998) stored in fields R_stat and MR_stat of structure output,
respectively. Joint interpretations of all these different convergence

mailto:jasper@uci.edu
http://www.spatial-econometrics.com/
http://www.spatial-econometrics.com/
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diagnostics allows for a better assessment of when convergence to
the target distribution has been achieved. The single-chain di-
agnostics, require each chain to have at least 200 samples other-
wise the file “DREAM_diagnostics.txt” is returned empty.

The directory “../postprocessing” contains a number of different
functions designed to visualize the results (output arguments) of
DREAM. The program DREAM_POSTPROC creates a large number of
MATLAB figures, including (among others) traceplots of the
sampled chain trajectories, bivariate scatter plots and histograms of
the posterior samples, traceplots of the bR- and bRd

-diagnostics,
autocorrelation functions of the sampled parameter values, quan-
tileequantile plots of the error residuals, time series plots of the
95% simulation (prediction) uncertainty intervals. If ABC or diag-
nostic Bayes is used then marginal distributions of the sampled
summary statistics are plotted as well. The number of figures that is
plotted depends on the dimensionality of the target distribution,
the number of chains used, and the type of output argument (e.g.
likelihood/simulation/summary metrics or combination thereof)
that is returned by the function model written by the user.
Table A1
Description of the MATLAB functions and scripts (.m files) used by DREAM, version 3.0.

Name of function Description

ADAPT_PCR Calculates the selection probabilities of each crossover value
BOUNDARY_HANDLING Corrects those parameter values of each proposal that are outside the search domain (if so desired)
CALC_DELTA Calculates the normalized Euclidean distance between successive samples of each chain
CALC_DENSITY Calculates the log-likelihood of each proposal
CALC_PROPOSAL Computes proposals (candidate points) using differential evolution (see Equations (23) and (24))
CHECK_SIGMA Verifies whether the measurement error is estimated along with the parameters of the target distribution
DRAW_CR Draws crossover values from discrete multinomial distribution
DREAM Main DREAM function that calls different functions and returns sampled chains, diagnostics, and/or simulations
DREAM_CALC_SETUP Setup of computational core of DREAM and (if activated) the distributed computing environment
DREAM_CHECK Verifies the DREAM setup for potential errors and/or inconsistencies in the settings
DREAM_END Terminates computing environment, calculates single-chain convergence diagnostics, and checks return arguments
DREAM_INITIALIZE Samples the initial state of each chain
DREAM_SETUP Setup of the main variables used by DREAM (pre-allocates memory)
DREAM_STORE_RESULTS Appends model simulations to binary file “Z.bin”
EVALUATE_MODEL Evaluates the proposals (executes function/model script Func_name)
GELMAN Calculates the bR convergence diagnostic of Gelman and Rubin (1992)
GL Evaluates generalized likelihood function of Schoups and Vrugt (2010a)
LATIN Latin hypercube sampling
METROPOLIS_RULE Computes Metropolis selection rule to accept/reject proposals
MOMENT_TPDF Calculate absolute moments of the skewed standardized t-distribution
REMOVE_OUTLIER Verifies presence of outlier chains and resets their states
RUNDREAM Setup of 17 different example problems and calls the main DREAM script
WHITTLE Evaluates Whittle's likelihood function (Whittle, 1953)
Appendix B

The mathematical formulations of the built-in likelihood func-
tions of DREAM in Table 2 are given in Table B1 below. For conve-
nience, E(x) ¼ {e1(x),…,en(x)} signifies the n-vector of residuals,
~S ¼ fS1ð~YÞ;…; Smð~YÞg and S ¼ {S1(Y(x)),…,Sm(Y(x))} are m-vectors
with observed and simulated summary statistics, respectively, and
A¼ {a1,…,an} is a n-vector of filtered residuals in likelihood function
14 using an autoregressive model with coefficients, f ¼
{f1,…,f4}.



Table B1
Mathematical formulation of built-in likelihood functions of DREAM. Option (1) and (2) return directly a likelihood and log-likelihood value, respectively, and their formulation
is defined in the model script by the user.

lik Mathematical formulation Nuisance variables Note

Formal likelihood functions
11 L ðx

���~YÞ ¼ �n
2 logf

Pn
t¼1etðxÞ2g none

12
L ðx

���~YÞ ¼ �n
2 logð2pÞ �

Pn
t¼1flogðstÞg � 1

2
Pn

t¼1

�
et ðxÞ
st

�2 st;t2{1,…,n} y

13
L ðx

���~YÞ ¼ �n
2
logð2pÞ � 1

2
log

 
s21

ð1� f2Þ

!
� 1
2
ð1� f2Þ

�
e1ðxÞ
s1

�2

�Pn
t¼2

flogðstÞg � 1
2

Xn
t¼2

�ðetðxÞ � fet�1ðxÞÞ
st

�2

st,f; t2{1,…,n} y

14
L ðx

���~YÞxnlog

0@ub
2sx

ðxþ x�1Þ

1A�
Xn
t¼1

flogðstÞg � cb
Xn
t¼1

���ax;t ���2=ð1þbÞ

þðlBC � 1ÞPn
t¼1

ð~yt þ KBCÞ

s0,s1,b,x,m1,f,KBC,lBC zx

15
ℒ x

�����Ye
 !

¼ Pbn=2c
j¼1

log fℱ lj; x
� 	þ fE lj;F

� 	� 	þ g ljð Þ
fℱ lj ;xð ÞþfE lj ;Fð Þ

�  none ¶

16
ℒ x

�����Ye
 !

¼ �Pn
t¼1

log 2stð Þf g � Pn
t¼1

jet xð Þj
st

� � st;t2{1,…,n} y

17
L ðx

���~YÞ ¼Xn
t¼2

8<:logð2c2Gððnþ 1Þ=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=ðn� 2Þ

p
Þ
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p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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ABC e diagnostic model evaluation
21

L ðx
���~YÞ ¼ �m

2 logð2pÞ �mlogðεÞ � 1
2ε

�2 Pm
j¼1

rðSjð~YÞ; SjðYðxÞÞÞ2
none £♯

22 L ðx
���~YÞ ¼ min

j¼1:m
ðεj � rðSjð~YÞ; SjðYðxÞÞÞÞ none £♯

GLUE e limits of acceptability
23 L ðx

���~YÞ ¼Pm
j¼1fIð

���Sjð~YÞ � SjðYðxÞÞ
��� � εjÞg none )♯

GLUE - informal likelihood functions
31 L ðx

���~YÞ ¼ �G logfVar½EðxÞ�g none ⋄

32
L ðx

���~YÞ ¼ G log

 
1� Var½EðxÞ�

Var½~Y�

!
none ⋄

33 L ðx
���~YÞ ¼ �GVar½EðxÞ� none ⋄

34
L ðx

���~YÞ ¼ �logfPn
t¼1

�����etðxÞ
�����g none ⋄

y Measurement error, st defined in field Sigma of Meas_info or inferred jointly with x (see Appendix B).
z Measurement error defined as st ¼ s0þ s1 yt(x); Scalars ub, sx and cb derived from values of x and b; f ¼ {f1,…,f4} stores coefficients autoregressive model of error residuals.
x User is free to select exact formulation (depends on selection nuisance variables).
¶ Fourier frequencies, lj, spectral density function, fE(,) and periodogram, g(,) defined in Whittle (1953).
¥ Scalars c1 and c2 computed from n>2 and k>0; h signifies (n�1)-vector of restandardized first-order decorrelated residuals; G(,) and sign denote the gamma and signum
function, respectively.
£ ABC distance function, rðSð~YÞ; SðYðxÞÞÞ specified as inline function in field rho of structure options.
♯ ε (scalar or m-vector) stored in field epsilon of options.
) Variable I(a) returns one if a is true, zero otherwise.
⋄ Shaping factor, G defined in field GLUE of structure DREAMPar. Default setting of G ¼ 10.
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The generalized likelihood function of Schoups and Vrugt (2010)
allows for bias correction, which is applied to the first or higher
order filtered residuals prior to calculation of the likelihood. I refer
to Schoups and Vrugt (2010) and Scharnagl et al. (2015) for an exact
derivation and detailed analysis of likelihood functions 14 and 17,
respectively, and Whittle (1953) for an introduction to likelihood
15. The ABC likelihood functions 21 and 22 are described and dis-
cussed in detail by Turner and Sederberg (2012) and Sadegh and
Vrugt (2014), whereas the limits of acceptability function 23 is
introduced and tested in Vrugt (2015a). The pseudo-likelihoods in
31, 32, 33 and 34 are explicated in the GLUE papers of Beven and
coworkers (Beven and Binley, 1992; Freer et al., 1996; Beven and
Freer, 2001; Beven, 2006). The derivation and explanation of the
remaining likelihood functions, 11, 12, 13, and 16 can be found in
introductory textbooks on time-series analysis and Bayesian
inference.

Likelihood functions 14 and 17 extend the applicability of the
other likelihood functions to situations where residual errors are
correlated, heteroscedastic, and non-Gaussian with varying de-
grees of kurtosis and skewness. For instance, consider Fig. 15
which plots the density of the generalized likelihood function
for different values of the skewness, b and kurtosis, x. The
density is symmetric for x ¼ 1, positively skewed for x > 1 and
negatively skewed for x < 1. If x ¼ 1, then for b ¼ �1(0)[1] this
density reduces to a uniform (Gaussian) [double-exponential]
distribution.



Fig. 15. Densities of the generalized likelihood function of Schoups and Vrugt (2010) for different values of the kurtosis (b) and skewness (x).
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The Student likelihood function, 17, of Scharnagl et al. (2015) is
designed in part to better mimic residual distributions with heavy
tails (see Fig. 16).
Fig. 16. Densities of the skewed Student likelihood function of Scharnagl et al. (2015) for different values of the skewness (k) and kurtosis (x).
Table B2 summarizes several commonly used formal likelihood
functions in hydrologic modeling applications and lists how like-
lihood function 14 can be reduced to these by making specific as-
sumptions about the error residuals (see also Schoups and Vrugt
(2010)).
Table B2
Relationship of likelihood functions used/proposed in the hy
DREAM package.

Reference

Standard least squares
Sorooshian and Dracup (1980): Equation (20)
Sorooshian and Dracup (1980): Equation (26)
Kuczera (1983)
Bates and Campbell (2001)
Thiemann et al. (2001)
By fixing some of the values of the nuisance variables the like-
lihood function can be simplified to a specific family of probability
distributions.
I am now left to describe how to setup the joint inference of the
model and nuisance parameters using the data stored in field Y of
structure Meas_info. The MATLAB script on the next page provides
an example for likelihood function 14 involving a model with d ¼ 3
parameters, their names referred to in the excerpt as A, B and C.
drologic literature and the likelihood function 14 of the

Implementation using 14

f1 ¼ 0; f2 ¼ 0; f3 ¼ 0; f4 ¼ 0; s1 ¼ 0; x ¼ 1; b ¼ 0
f2 ¼ 0; f3 ¼ 0; f4 ¼ 0; s1 ¼ 0; x ¼ 1; b ¼ 0
f1 ¼ 0; f2 ¼ 0; f3 ¼ 0; f4 ¼ 0; x ¼ 1; b ¼ 0
b ¼ 0
b ¼ 0
f1 ¼ 0; f2 ¼ 0; f3 ¼ 0; f4 ¼ 0
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Each nuisance variable in the DREAM package is assigned a
unique label, hereafter also referred to as index or identifier. For
example, the coefficients, s0, f1, and KBC in likelihood function 14
have index, dþ1, dþ6 and dþ9, respectively which equates to an
index of 4, 9, and 12 for a model involving d ¼ 3 parameters. Those
indexes of the nuisance variables which are stored in the field
idx_vpar of global variable LV will be subject to inference. These
nuisance variables of the likelihood function augment the param-
eters. Nuisance variables not selected for inference are held con-
stant at their default value declared by the user in field fpar of LV.
Thus, in the MATLAB except above the nuisance variables {s0, s1, b,
f1, KBC, lBC} are subject to inference, whereas the remaining co-
efficients, {x, m1, f2, f3, f4} of likelihood 14 will assume their
respective default values of fpar.

A similar setup is used for likelihood function 17 (see below),
except that the user has to separately define the values of the fields
a, b, c, and d of structure LV. These values define the anchor points
to be used with piecewise cubic hermite interpolation, details of
which are given by Scharnagl et al. (2015).
All nuisance variables are selected for inference in this setup of
likelihood function 17, except the skewness parameter k which is
assumed to be unity (no skew).

For completeness, I also consider an example for likelihood
function 13 involving joint inference of the model parameters, the
measurement error of the data, st; t 2 {1,…,n}, and the first order
autoregressive parameter, f.

The user is free to determine the measurement error model of
the data as long as this is specified as an inline function object. In
the present example a heteroscedastic error model was assumed. If
homoscedasticity of the measurement error is expected then the
user can resort to another formulation of the inline function, for
instance without the parameter a. Whatever mathematical
formulation of the measurement data error model is used the
ranges of its parameters should augment those of the parameters
stored in field min and max of structure Par_info. These ranges are
then followed by those of the first-order autoregressive coefficient,
f. This order is consistent with that specified for likelihood function
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13 in the third column of Table B1.
The last example considered herein involves the use of likeli-

hood function 12 and 16 both of which share st; t 2 {1,…,n}, the
measurement error of the data. This variable can be specified by
the user in field Sigma of structure Meas_info (see section 4.4), or
alternatively be estimated along with the parameters of the target
distribution. I follow this second approach in the script listed on
the previous page.

This setup is similar to that of likelihood function 13, except
without the use of f. Likelihood function 12 and 16 do not assume
such first-order autoregressive correction of the error residuals.

Appendix C

This Appendix presents the different model functions used in
the six case studies presented in Section 5 of this paper. These
functions (.m file) serve as a template for users to help define
their own forward model in DREAM. All model functions have as
input argument, x a row-vector with d parameter values, and a
single output argument which contains the likelihood, log-
likelihood, a vector with simulated values or vector with sum-
mary statistics, respectively. A low-dash is used in the print out of
each model script to denote the use of a standard built-in function
of MATLAB.

Case study I: one-dimensional mixture distribution

The function mixture listed below uses the built-in normal
probability density function of MATLAB, normpdf() to calculate the
density (likelihood) of the mixture distribution for a given candi-
date point, x.

Case study II: 100-dimensional t-distribution

The function t_distribution listed below takes advantage of the
built-in functions, log() and mvtpdf() of MATLAB to calculate the
log-density (log-likelihood) of the multivariate t-probability den-
sity function with covariance matrix C and degrees of freedom, df.

The persistent declaration helps retain variables C and df in local
memory after the first function call has been completed. This is
computationally appealing, as it avoids having to recompute these
variables in subsequent function calls.
Case study III: dynamic simulation model

The MATLAB function hydrus listed on the next page executes
the HYDRUS-1D porous flow model and returns a vector with
simulated soil moisture values.

The HYDRUS-1D model is an executable file encoded with in-
structions in Fortran, and consequently it is not possible to pass the
d parameter values, x in MATLAB directly to this stand-alone pro-
gram. I therefore have to resort to an alternative, and somewhat
less efficient approach. First, in the MATLAB script hydrus a file
writing command is used to replace the current values of the pa-
rameters in the input files of HYDRUS-1D with those of the pro-
posal, x. Then, HYDRUS-1D is executed from within MATLAB using
the dos command and functionality. After this call has terminated, a
load-command is used to read in MATLAB workspace the output
files created by the HYDRUS-1D program. The simulated soil
moisture values are then isolated from the data stored in MATLAB
memory and returned to the main DREAM program. To maximize
computational efficiency, the option persistent is used to retain the
structure data in local memory after the first function call has been
completed.
Case study IV: likelihood-free inference

The MATLAB function hmodel listed on the next page simulates
the rainfall-runoff transformation for parameter values, x and
returns four summary statistics (signatures) of watershed behavior.
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The source code of the hmodel is written in C and linked into
a shared library using the MEX-compiler of MATLAB. This avoids
file writing, and enables a direct passing of the parameter values,
forcing data, and numerical solver settings to crr_model. A
second-order time-variable integration method is used to solve
the differential equations of the hmodel. The function Calc_-
metrics computes the four summary metrics using as input ar-
guments the simulated discharge record and observed
precipitation data.

Case study V: Bayesian model averaging

The MATLAB function BMA_calc returns the log-likelihood of
the BMA model for a given proposal, x consisting of weights and
variances.
The log-likelihood of the BMAmodel is computed as the log of the
sum of the likelihoods of each of ensemble member. In the
example considered herein, the conditional distribution of each
ensemble member is assumed to be Gaussian and with unknown
variance.

Case study VI: generalized likelihood uncertainty estimation

The MATLAB function lotka_volterra solves the predator-prey
system for the proposal, x and returns in a single vector, Y their
simulated abundances as function of time.

A time-variable integrationmethod, ode45 is used for numerical
solution of the two coupled differential equations. The parameters
are defined as additional state variables of the LotkaeVolterra
model so that their values can be passed directly to the inline
function within the built-on ODE solver.

Case study VII: limits of acceptability
The MATLAB function heat_flow returns the simulated time
series of soil temperatures at 5, 10 and 15 cm depth in the soil
profile.
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