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Abstract 

This paper provides a model based on Integrated Nested Laplace Approximation to 

predict the energy performance of existing residential building stocks. The energy 

demand and the discomfort hours for heating and cooling were taken as response 

variables and five parameters were considered as potentially significant to assess the 

building energy performance: urban block pattern, street height-width ratio, building 

class through the building shape factor, year of construction and solar orientation of the 

main façade. A total of 240 dynamic energy simulations were run varying these 

parameters, by using the EnergyPlus software with the Design Builder interface, which 

allowed the response variables to be determined for a set of sample buildings. 

Simulation results revealed the most and least significant parameters in the energy 

performance of the buildings. The model developed is a useful decision-making tool in 

assisting local authorities during energy refurbishment interventions at the urban scale.	
  

 

Highlights 

• A model to predict the energy performance of residential building stocks is 

developed. 

• The energy demand and the discomfort hours were considered as output of the 

model.	
  

• Bayesian inference based on INLA was the statistical framework of the model 

• The model is useful to identify urban areas that require urgent energy 

refurbishment.	
  

 

Keywords: energy efficiency; residential building stock; Bayesian inference; INLA	
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1. Introduction 

Knowing the dynamics of a current real system allows values to be predicted 

considering the effect of certain variables. This can be studied within the framework of 

inference by using systems of differential equations which enable the values to be 

forecast taking into account the influence of a set of particular variables. Particularly, 

this work uses Bayesian inference, which delivers an integrated approach to perform 

inference, prediction and decision. Modern Bayesian models use simulation methods to 

generate drawings from the posterior distribution. Markov Chain Monte Carlo (MCMC) 

combined with the Stochastic Partial Differential Equation (SPDE) approach were the 

motivation for the Integrated Nested Laplace Approximation (INLA) package for the R 

software (R Development Core Team, 2011). The library was initiated by Rue and 

Martino (2007) and subsequently improved through contributions by Rue et al. (2009). 

The use of INLA in computational time allows the user to work with relatively complex 

models in an efficient way. The INLA package for the R software was employed to 

conduct this study.	
  

The aim of this work is to develop a model to forecast the passive energy efficiency 

performance of the existing residential building stock, according to a set of specific 

parameters. Some examples of precursor methods aimed at conducting energy 

assessment of building stocks were found in the literature (Farahbakhsh et al., 1998; 

Huan and Berkeley, 2000; Shorrock and Dunster, 1997). More recently, some authors 

have based their studies on these previous ones in order to improve them (Johnston et 

al., 2005; Boardman, 2007; Natarajan and Levermore, 2007) and others have 

developed new more complex models that enhance the energy efficiency assessment 

process (Gouveia et al., 2012; McKenna et al., 2013). In the context of building energy 

efficiency, many aspects can be assessed, but generally those related to energy use 

are the most common. For example, Cheng and Steemers (2011) estimated the energy 

consumption and CO2 emissions of English building stocks considering the size of 

buildings, internal and external temperatures, thermal characteristics of the envelope 

and gas boiler efficiency, as input parameters. Their model also allowed them to 

determine the influence of different energy efficiency measures on dwellings to assist 

energy policies at local and national levels. Florio and Teissier (2015) proposed a 

model to estimate the energy performance certificate (EPC) of the French housing 

stock based on the building typology and conducted a statistical analysis of the French 

EPC database. Other items have been assessed by Mauro et al. (2015), who predicted 

the energy demand (ED) and the discomfort hours (DH) taking into account the building 
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geometry, orientation and physical characteristics of the envelope. At the same time, 

they analysed the influence of different energy efficiency measures.	
  

Taking into account this framework, this study provides a model based on INLA, aimed 

at predicting the energy demand and discomfort hours (considered as response 

variables) for the heating and cooling, respectively, of the existing residential building 

stock, considering five parameters that affect the energy efficiency (considered as 

covariates), namely: year of construction, building shape, solar orientation of the main 

façade, street height-width ratio and urban block pattern. The data set for this study 

was obtained by modelling the energy performance of sample buildings of an urban 

district located in Castellón de la Plana (Spain) by using EnergyPlus software (U.S. 

DOE, 2015).	
  

The work is structured as follows. Section 2 draws the methodological approach of the 

study based on INLA, broken down into three different stages. Section 3 presents the 

selection of the response variables and covariates used to conduct the study. Section 4 

provides the data set, describes the response variables and covariates, and then 

presents the configuration of the simulations run. Section 5 deals with the INLA 

modelling process and provides the configuration of the battery of prediction models 

and a comparison among them in order to finally choose the most accurate ones. This 

section also addresses a statistical analysis to outline the significance of the covariates 

in the models. The paper ends with a final Section 6 offering the conclusions.	
  

2. Methodology 

With the aim of obtaining the prediction models (based on INLA) for characterising the 

energy demand and discomfort hours for the heating and cooling of an existing 

residential building stock, the stages showed in Figure 1 were applied: 	
  

• Stage I: Response variables and covariates selection. Based on a literature 

review, the response variables and the covariates that characterise the energy 

performance of an existing building stock needed to be selected.	
  

• Stage II: Data set. After analysing the advantages and disadvantages of 

different software applications available for simulating the energy efficiency of 

buildings and building stocks (Machairas et al., 2014), Design Builder Software 

(2014) was chosen to obtain the values of the response variables against a 

combination of the selected covariates. After this, a descriptive analysis of the 

data results was conducted.	
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• Stage III: Modelling the data set with R-INLA in order to obtain the functions for 

prediction of the response variables. Firstly, the models that include all the 

possible combinations of response variables and covariates were obtained. 

Then, the correlation coefficients and the root mean square error (RMSE) were 

calculated, which allowed the models to be compared. Subsequently, the 

significance of the covariates was explored in order to identify the most and 

least significant ones. Finally, the four models with the best fit for determining 

the response variables were selected, according to the correlation coefficients 

and RMSE.	
  

	
  

Figure 1. Methodological approach 

3. Selection of response variables and covariates  

The selection of the response variables and covariates that mainly characterise the 

passive energy efficiency of an existing residential building stock was based on the 

literature review. As Table 1 reports, four response variables are the key variables 

considered to assess the energy performance of the residential building stock: 	
  

• Energy demand for heating (EDh) and energy demand for cooling (EDc). Both 

variables measure the amount of energy that the thermal installations of the 

building have to provide in order to ensure inner comfort conditions according to 
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the building use and climatic zone (CTE, 2013), for heating and cooling, 

respectively. Both are measured in kWh/m2·year.	
  

• Discomfort heating hours (DHh) and discomfort cooling hours (DHc). Both 

variables measure the time when the combination of the zone humidity ratio 

and the operative temperature is not in the ASHRAE 55-2004 summer or winter 

clothes region (DB, 2015), for heating and cooling, respectively. They are 

expressed in h/year.	
  

These response variables mainly depend on the performance of five parameters 

related to the building or city scale that will be considered as covariates in this study. 

These covariates are described below and the values for each one are presented in 

Table 2.	
  

• Year of construction (Y). The year of construction of the building implies the 

typical construction techniques employed for the envelope (façades, roofs, 

floors and windows). The thermal transmittance of the envelope elements 

improves over time, when the introduction of thermal insulation materials in the 

building process presumably contributed to enhance the energy performance of 

buildings. This covariate involves data at the building scale.	
  

• Building typology through the building shape factor (S/V). The S/V ratio 

represents the compactness of the building and it is defined as the ratio of the 

building’s total external surface area (∑ iS ) to its internal volume (V ) 

(Granadeiro et al., 2013), 	
  

[ ]32 // mm
V
SVS i∑=  

 

Lower S/V values mean more compact buildings. This covariate implies the 

building typology, which is identified by three aspects: the type of occupancy 

(multi-family (MF) or single-family (SF)), the number of floors (≤4 or >4), and the 

type of adjacency (terraced (T) or detached (D)) (Braulio-Gonzalo et al., 

2015).Three building typologies were identified in the district under study 

(MFT(≤4), MFT(>4) and SFT(≤4)) and therefore, three sample buildings were 

selected to run simulations, which are representative of the building typologies. 

The dimensional characteristics of these three sample buildings are presented 

in Table 3. Their floor area is in accordance with the average floor area of each 

building typology existing in the district. This covariate is related to the building 

scale.	
  



7 
	
  

• Solar orientation of the main façade (O). This covariate, related to the building 

scale, determines the orientation against the position of geographic North (0º) 

and is measured in degrees.	
  

• Street height-width ratio (H/W). This represents the relation between the height 

of the buildings situated in front of the building under study and the street width, 

and involves the opportunities for solar access in the buildings. Higher H/W 

ratios imply more shaded streets and, thus, less possibilities of solar access for 

the surrounding buildings. This covariate is considered a city scale one.	
  

• Urban block pattern (UB). This refers to the geometry of the urban block where 

the building is situated. The fact of having a big courtyard or not in the middle of 

the urban block (surrounded by the buildings that make up the block) implies 

the possibility of solar access in the façades of the buildings. It is thus related to 

the city scale.	
  

By considering the street height-width ratio, the urban block pattern and the solar 

orientation, not only the building features but also urban characteristics and the 

morphology of the surrounding built environment are taken into account in the study.	
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Table 1. Response variables and covariates 

Variables Description Reference 
Response variables*  
EDc Cooling energy demand 

(KWh/m2·year) 
Snäkin (2000); Natarajan and Levermore 
(2007); Florio and Teissier (2015); Gouveia et 
al. (2012)  

EDh Heating energy demand 
(KWh/m2·year) 

Snäkin (2000); Natarajan and Levermore 
(2007); Florio and Teissier (2015); Gouveia et 
al. (2012)  

DHc Discomfort hours for cooling 
(hours/year) 

Mauro et al. (2015)  

DHh Discomfort hours for heating 
(hours/year) 

Mauro et al. (2015)  

Covariates  
Y Year of construction of building Boardman (2007; Natarajan and Levermore 

(2007); Hens et al. (2001); Dascalaki et al. 
(2011); Theodoridou et al. (2011); Dall’O’ et al. 
(2012); Florio and Teissier (2015); Aksoezen et 
al. (2015)  

S/V Building shape factor (compactness) Hens et al. (2011); Dall’O’ et al. (2012); Penna 
et al. (2014); Granadeiro et al. (2013); Florio 
and Teissier (2015); Aksoezen et al. (2015); A. 
L. Martins et al. (2014)  

O Solar orientation of the main façade Mauro et al. (2015); Košir et al. (2014)  

H/W Street height-width ratio  artins et al. (2014) 

UB Urban block type Okeil (2010); Futcher and Mills (2013); Košir et 
al. (2014); Yezioro et al. (2006) ** 

* Heating season runs from October 1st to May 31st and cooling season operates from June 1st to September 30th.	
  
** These references use the urban block to conduct the studies but do not develop any model that includes it as a 
covariate. 
 

This study has been applied to analyse the energy performance in an urban district 

belonging to Castellón de la Plana (Spain), a medium-sized city with 180,690 

inhabitants (INE, 2015). This city is located at a latitude of 39º 59’ 11” North and a 

longitude of 0º 2’ 12” East, which means it has a mild climate with temperate winters 

and warm summers. Table 2 describes the covariates considered in this research, for 

this specific case study. 
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Table 2. Description of covariates for the case study	
  

Covariate Value Characteristics Description 

Y 1 Before 1940 Absence of thermal insulation 

One layer thick walls with thermal inertia  

2 1940 – 1959 Absence of thermal insulation 

Two layer light walls  

3 1960 – 1979 Absence of thermal insulation 

Two layer light walls  

4 1980 - 2006 Poor thermal insulation 

Two layer light walls 

5 After 2006 Poor thermal insulation 

Two layer light walls 

S/V 0.3 MFT(≤4) MF terraced building with 4 or less than 4 
floors (see Table 3) 

0.26 MFT(>4) MF terraced building with more than 4 floors 
(see Table 3) 

0.4 SFT(≤4) SF terraced building with 4 or less than 4 
floors (see Table 3) 

O 0º North Indirect solar radiation 

90º East Direct solar radiation at mornings; low 
elevation angle 

180º South Direct solar radiation at noon; maximum 
elevation angle 

270º West Direct solar radiation at afternoons; low 
elevation angle 

H/W 2.4 Hu=24m; WU=10m Narrow streets that imply low solar access 

1.2 Hu=24m; WU=20m Wide streets that imply high solar access 

UB 1 

 

Big internal courtyard which allows solar 
gains in South, East and West façades of 
the buildings with an inward orientation 
towards the courtyard 

2 

 

No big courtyard, but smaller own light wells 
as internal element of the building 
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Table 3. Properties of the sample buildings 

Building properties MFT(>4) MFT(≤4) SFT(≤4) 

 

 
Building sketch 

 

   
Occupancy MF MF SF 

S/V (m-1) 0.26 0.30 0.40 

Floors above ground 8 3 4 

HB Height (m) 25 13.50 14.50 

WB Width (m) 15.90 11.80 4.00 

DB Depth (m) 28.50 14.70 30.50 

Conditioned floor area (m2) 2006.61 337.98 165.24 

Conditioned volume (m3) 4931.69 1628.72 473.05 

Building external area (m2) 1282.83 478.19 160.38 

Opaque façade surface (m2) 741.50 272.90 94.00 

Glazing surface (m2) 293.80 102.90 32.10 

Glazing rate (%) 39.60 37.70 34.15 

 

By using a Geographical Information System (GIS) (gvSIG, 2014), it was possible to 

represent how these covariates are distributed in the neighbourhood under study in 

Castellón de la Plana. As an example, Figure 2 and Figure 3 show the urban block 

distribution according to covariates Y and S/V reported in Table 2. 
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Figure 2. GIS map representing building classification of the district per year of 

construction (Y) 

 

Figure 3. GIS map representing building classification of the district per shape factor 

(S/V) 
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4. Data set 

4.1 Data set collection 

To obtain the value of the response variables, the EnergyPlus software with the Design 

Builder interface was applied. This application makes it possible to obtain the response 

variables (energy demand for heating and cooling ‒ EDc and EDh, respectively) and 

discomfort hours for heating and cooling (DHc and DHh, respectively), for a set of 

sample buildings characterised by a combination of the covariates (year of construction 

(Y), building shape factor (S/V), solar orientation (O), street height-width ratio (H/W), 

urban block type (UB)). 	
  

In accordance with Figure 4, 240 combinations can be performed by combining the 

values for the covariates presented in the case study. So, 240 simulations were 

modelled and processed with EnergyPlus software to obtain the response variables for 

each one. Table 4 present the boundary conditions assumed for energy simulations. By 

analysing the behaviour of each variable response against each combination of 

covariates, it is possible to identify the most and least significant parameters in the 

energy performance of the buildings, after conducting a statistical analysis. 

	
  

 

Figure 4. Simulations set-up scheme for determining EDc, EDh, DHc and DHh 
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Table 4. Boundary conditions for energy simulations 

Parameter (unit) Value 

Occupancy 

Density (person/m2) 0.03 

Schedule pattern Weekdays: 7:00-15:00h [25%];  
15:00-23:00h [50%];  
23:00-7:00h [100%] 

Weekends 0:00-24:00h [100%] 

Metabolic rate (W/person) 117.2 

Clothing (clo) winter/summer 

 

1/0.5 

Temperatures (ºC) 

Heating set point  20 

Cooling set point  25 

Natural ventilation set point  

 

24 

Internal gains 

Internal loads (W/m2) 8.8 

Lighting (W/m2 – 100 lux) 4.4 

Miscellaneous gains (W/m2) 

 

4.4 

Solar gains  

Shading calculations include all surrounding buildings 

Calculations include modelling reflections and shading of ground reflected 
solar 

 

Domestic hot water demand 

DHW demand (l/m2day) 

 

0.84 

 

 

4.2 Descriptive analysis of data set 

The data obtained from the simulations mark the starting point in this study. 

Representing the data in boxplots allows us identifying some very high and low values 

outside the distribution (outliers), which can be removed before conducting the 

statistical modelling, if necessary. Thus, the observed values for the response variables 

obtained from the simulations are described numerically and graphically in Table 5. As 
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denoted, the data present strong variability. While EDc acquires values close to 0, EDh, 

DHc and DHh adopt notably higher values, substantially high in the case of DHh. In spite 

of there being a notable variability of data, the methodology could be implemented in 

every case, that is, for every response variable.	
  

Table 5. Description of response variables (EDc, EDh, DHc and DHh) 

Variable Minimun 1st Quartile Median Mean 3rd Quartile Maximun 

EDc 0.02 0.65 1.33 1.66 2.45 5.58 

EDh 22.19 64.46   96.54 96.50 122.70 211.90  

DHc 117.60 438.70 637.40   722.60 1029.00 1597.00  

DHh 3830.00 4735.00 4911.00 4859.00 5049.00 5303.00 

 

Figure 5 presents the empirical probability of all the input and output variables. These 

distributions demonstrate that none of the variables follows the normal distribution, as 

concluded after performing Shapiro-Wilk. Figure 6 shows the same data broken down 

into the two existing urban block types. In this case, the data distribution follows the 

same distribution pattern. It therefore denotes the coherency in the fact of modelling 

the data all together and separately, in the two urban blocks. Figure 7 displays the 

scatter plots for each of the covariates with each of the response variables. 

  

Figure 5. Histogram (left) and boxplot (right) of response variables (EDc, EDh, DHc and 

DHh) 
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Figure 6. Histogram (top) and boxplot (bottom) of response variables (EDc, EDh, DHc 

and DHh) for UB1=1 (left) and UB2=2 (right) 
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Figure 7. Scatter plot: response variables vs. covariates 
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5. INLA modelling 

5.1 Statistical framework 

The data can be idealised as realisations of a stochastic process indexed by	
  

{ }RyY ∈≡ (·)(·)  

where (·)y  is a temporal subset of R . 

The advantages of using INLA over other methods, such as basic statistical methods or 

more complex ones (like Markov Chain Monte Carlo (MCMC), Generalized Linear 

Models (GLM)), are the following: 

• It works with reasonable computational times, allowing the user to work with 

complex models quickly and efficiently. 

• It allows integrating as many covariates as desired, and also incorporating 

new covariates in the model in later steps. 

• It allows analysing the level of significance of covariates. 

• It does not require to work with normal distributions exclusively, due to it is 

based on Bayesian inference. 

The data can be presented by a collection of observations { }nyyy ,...,1= (Blangiardo et 

al., 2013; Cameletti et al., 2013). A temporal correlation structure is a complicated 

mathematical entity and its practical estimation is very difficult if the covariates are 

included (Vlad et al., 2015). In statistical analysis, to estimate a general model it is 

useful to model the mean for the unit using an additive linear predictor, defined on a 

suitable scale	
  

( )li
L

l
lmi

M

m
mi vfz ∑∑

==

++=
11

0 ββη  

where 0β  is a scalar, which represents the intercept, ( )Mβββ ,...,1=  are the 

coefficients of the linear effects of the covariates ( )Mzzz ,...,1=  on the response, and 

{ }(.)(.),...1 Lfff =  is a collection of functions defined in terms of a set of covariates

),...,( 1 Lvvvv = .	
  

We have considered the parameters of Figure 4 as covariates: Y, S/V, O, H/W, UB. 



18 
	
  

The first step in defining the structure of the data { }nyyy ,...,1= . A very general approach 

consists in specifying a distribution for 1y  characterised by a parameter iφ (usually the 

mean ( )iyE ) defined as a function of a structured additive predictor iη  through a link 

function ( ).g , such that ( ) iig ηφ = . The additive linear predictor iη  is defined as follows 

(Blangiardo and Camaletti, 2015): 

 

∑
=

+=
M

m
mimi X

1
0 ββη  

where 1β  represents the coefficient that quantifies the effect of the covariates in the 

response iX . 

5.2 Modelling results 

All analyses were carried out using the R freeware statistical package (version 3.1) (R 

Development Core Team, 2011) and the R-INLA package (R-INLA project, 2012). By 

combining all the covariates, 64 models were obtained. Firstly, in order to compare the 

results of energy performance in both types of urban block, a first set of 32 models 

were designed, where the covariate UB is combined with the remaining four covariates 

(H/W, Y, O and S/V), separately. Secondly, these four covariates were studied all 

together, obtaining a second set of eight models. Thirdly, UB was considered another 

covariate (like H/W, Y, O and S/V), which resulted in a third set of 20 models. Finally, 

the five covariates were studied all together, obtaining the fourth set of the last four 

models.	
  

Once the battery of competing models has been obtained, we compare them using the 

deviance information criterion (DIC) (Spiegelhalter et al., 2002), which is a Bayesian 

model comparison criterion given by	
  

( ) DpDcomplexityfitofgoodnessDIC 2"""" +=+= θ  

where ( )θD  is the deviance evaluated at the posterior mean of the parameters and 

Dp denotes the effective number of parameters, which measures the complexity of the 

model. 
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When the model is true, ( )θD should be approximately equal to the effective degrees 

of freedom, Dpn− . DIC may underpenalise complex models with many random 

effects.	
  

On the other hand, the conditional predictive ordinate (CPO) (Pettit, 1990) is also 

analysed, which expresses the posterior probability of observing the value (or set of 

values) of iy  when the model is fitted to all the data except iy  

( )iobs
ii yyCPO −= |π . 

Here, iy−  denotes the observations y  with the i th component removed. This facilitates 

computation of the cross-validated log-score (Gneiting and Raftery, 2007) for model 

choice ( )( )( )( )cpomean log− . Therefore the lowest values of DIC and 

( )( )( )( )cpomean log−  suggest the model with the best fit. A large number of parameters 

means more complexity. The best models are those with a high level of complexity and 

a high goodness-of-fit. In general, the model showing the lowest CPO and DIC should 

be chosen.	
  

Tables 6, 7, 8 and 9 show the summary results related to goodness-of-fit for the battery 

of models. 

Table 6. DIC for the battery of 40 models comparing both UB types11 

  1st set of 32 models 2nd set of 8 
models 

  H/W Y O S/V H/W; Y; O; S/V 

EDc UB1 289.88 253.31 296.38 240.38 126.08 

EDh  1035.85 1059.57 1045.48 1020.27 996.10 

DHc  524.74 396.55 526.40 512.92 381.15 

DHh  445.38 404.37 447.70 431.22 384.18 

EDc UB2 247.17 203.51 251.64 224.21 151.56 

EDh  1029.79 1047.36 1040.28 1014.11 983.74 

DHc  547.11 442.83 548.57 532.85 425.85 

DHh  -411.06 -446.00 -408.79 -419.93 430.52 
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Table 7. DIC for the battery of 24 models considering all covariates together 

 3rd set of 20 models 4th set of 4 models 

 H/W Y O S/V UB H/W; Y; O; S/V; UB 

EDc 550.98 483.59 560.92 490.49 558.99 319.82 

EDh 2050.29 1971.48 2049.33 2026.12 2057.42 1942.99 

DHc 1070.93 849.77 1073.99 1045.44 1071.33 804.58 

DHh 920.70 848.46 927.74 899.20 922.71 815.43 

 

Table 8. CPO for the battery of 40 models comparing both UB types 

  1st set of 32 models 2nd set of 8 models 

  H/W Y O S/V H/W; Y; O; S/V 

EDc UB1 1.541498 1.319262 1.508144 1.250554 0.658676 

EDh  5.394913 5.520670 5.445634 5.313597 5.1877487 

DHc  2.731860 2.063948 2.740482 2.670111 1.9854350 

DHh  2.321519 2.109037 2.333540 2.247051 2.0020945 

EDc UB2 1.309396 1.060710 1.286546 1.165767 0.788749 

EDh  5.364257 5.457064 5.419085 5.282162 5.124821 

DHc  2.848420 2.304734 2.856211 2.773782 2.218651 

DHh  2.470266 2.289598 2.480160 2.422938 2.244737 

 

Table 9. CPO for the battery of 24 models considering all covariates together 

 3rd set of 20 models 4th set of 4 models 

 H/W Y O S/V UB H/W; Y; O; S/V; UB 

EDc 1.434107 1.259472 1.459823 1.276742 1.455178 0.833192 

EDh 5.339549 5.135604 5.337008 5.276180 5.358084 5.059606 

DHc 2.788211 2.212131 2.796270 2.721721 2.789244 2.095318 

DHh 2.398959 2.211349 2.417017 2.342444 2.404779 2.124434 

 

From the results obtained, it can be deduced that in every case the inclusion of a 

higher number of covariates improves the model because DIC and CPO become lower, 

which indicates that these models enable better prediction. For example, when we 

analyse the values of DIC and CPO for the four models that relate UB1 with every 

single covariate to predict EDc (first row in Tables 5 and 7), we realise that the best 

model is EDc(UB1↔S/V). However, when the model includes all the covariates 
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(EDc(UB1↔H/W-Y-O-S/V), last column in Table 9), the DIC and CPO is even lower, which 

shows it is a better model.	
  

On the other hand, if we compare those models that integrate UB as a covariate, we 

can observe the same behaviour. The last four models are better than the previous 20, 

because of the inclusion of all the covariates; for instance EDc (H/W-Y-O-S/V-UB) versus EDc 

(S/V).	
  

The next step is the comparison between the observed and predicted values and this 

could be performed by the correlation coefficients and the root mean square error 

(RMSE). The correlation coefficient between the predicted and observed values and 

the RMSE for all the models has been calculated and is shown in Tables 10 and 11. 

These tables highlighted the fact that models which include all the covariates are those 

that best fit the data. 

 
Table 10. Correlation and RMSE for the battery of 40 models comparing both UB types 

  1st set of 32 models 2nd set of 8 models 

  H/W Y O S/V H/W; Y; O; S/V 

EDc UB1 0.3272/1.2473 0.5828/1.0727 0.2069/1.2893 0.6624/0.9872 0.90770.5673 

EDh  0.04242/52.3090 -0.7130/59.2891 0.03917/54.8400 0.1555/48.3402 0.5210/41.5530 

DHc  0.1321/3.6207 0.8611/1.8569 0.02381/3.6517 0.3611/3.4065 0.8906/1.6608 

DHh  0.2088/2.3945 0.6129/1.9341 0.1388/2.4237 0.4184/2.2249 0.7242/1.6874 

EDc UB2 0.2956/1.1434 0.5739/1.0097 0.1532/1.1867 0.6006/0.9662 0.8303/0.6799 

EDh  0.0436/50.6284 -0.7411/55.6610 -0.0159/53.3735 0.1809/46.8202 0.5689/38.9334 

DHc  0.1335/4.0682 0.8177/2.3630 0.0546/4.0989 0.3905/3.7796 0.8597/2.0965 

DHh  0.1807/2.7722 0.5719/2.3111 0.0981/2.8032 0.3433/2.6493 0.6465/2.1484 

 
 
Table 11. Correlation and RMSE for the battery of 24 models considering all covariates 

together 

 3rd set of 20 models 4th set of 4 
models 

 H/W Y O S/V UB H/W; Y; O; S/V; 
UB 

EDc 0.3038/1.2305 0.5562/1.0776 0.1795/1.2712 0.6168/1.0187 0.2239/1.2587 0.8815/0.6336 

EDh 0.0429/49.8644 0.7257/40.6334 0.0119/49.6547 0.1678/46.9283 -0.0557/50.799 0.6266/37.0674 

DHc 0.1316/3.8814 0.8303/2.1820 0.0397/3.9124 0.3731/3.6327 0.1236/3.8854 0.8744/1.8996 

DHh 0.1907/2.6246 0.8303/2.1745 0.0119/2.6732 0.3723/2.4819 0.16197/2.6384 0.6824/1.9539 

 

On observing the first set of models in Table 10, it can be seen that the models that 

better predict the value of the response variables are those which include the 
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covariates Y (year of construction) and S/V (building shape factor), due to the fact that 

they have higher correlation coefficients. Nevertheless, it can be observed that the 

second set of models are clearly the most homogeneous ones and have the highest 

correlations, because they include all the covariates for each UB type. Thus, these 

would present a lower RMSE between the observed and the predicted values.	
  

From Table 11, where UB type is included as a covariate, we can draw a similar 

conclusion as above. The models that include all the covariates (fourth set of models) 

are better than those which include the covariates separately (third set of models). 

Consequently, as we add more covariates in the model, the model improves the 

prediction. Finally, on comparing the second and fourth sets of models we can 

conclude that the fourth, which includes the UB as a covariate, is the best one, as the 

four models included have the highest correlation coefficients and the lowest RMSE.	
  

In the same way, Figure 8 represents graphically the correlation between the predicted 

and observed data for the last four models, which include all covariates. It is noted that 

the model with the best fit is EDc(H/W-Y-O-S/V-UB), with a correlation coefficient of 0.88, 

followed by DHc(H/W-Y-O-S/V-UB) with 0.87, , DHh(H/W-Y-O-S/V-UB) with 0.68 and finally EDh(H/W-Y-

O-S/V-UB) with 0.63. 
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EDc(H/W-Y-O-S/V-UB) 

 

EDh(H/W-Y-O-S/V-UB) 

 

DHc(H/W-Y-O-S/V-UB)

 

DHh(H/W-Y-O-S/V-UB)  

 

Figure 8. Correlations between the predicted and observed data for the selected 

models 

Figure 9 shows graphically, as an example, the correlation between the predicted and 

observed data for two of the models designed for the response variable EDc, 

comparing both urban block types. We can observe a higher correlation in the model 

for UB1, with a correlation coefficient of 0.91 against 0.83. 
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EDc(UB1↔H/W-Y-O-S/V) 

 

EDc(UB2↔H/W-Y-O-S 

 

Figure 9. Example of correlations between the predicted and observed data for two of 

the models that compare UB1 and UB2 

5.3 Identification of significant covariates	
  

In this section, the impact of every single variable on the results was analysed. Fixed 

effects for all the models (and denoted by!i ) are expected to have a systematic and 

predictable influence on data. 

Interactions between covariates for each response variable have been tested as 

suggested Tsanas and Xifara (2012), concluding from the obtained results that any of 

them was significant. After this analysis, Tables 12, 13, 14 and 15 present the models 

whose covariates are significant. 

Table 12. Fixed effects: !i  (mean [0.025quant, 0.975quant]). 1st set of 32 models 

  1st set of 32 models 

  H/W Y O S/V 

EDc UB1 -0.3745 [-0.5955, -0.1538] 0.3238 [0.2428, 0.4041] 0.0014 [0.0000, 0.0028] -8.2477 [-10.0081, -6.4818] 

EDh 36.8255 [26.7441, 47.0489] 7.5230 [1.5431, 14.0321] 0.2333 [0.1391, 0.3322] 139.2179 [95.5385, 182.7811] 

DHc 0.8402 [-0.3677, 2.0482] -2.2046 [-2.4676, -1.9416] -0.0007 [-0.0080, 0.0066] 21.3303 [10.2201, 32.4048] 

DHh 0.9917 [0.1900, 1.7977] -1.0224 [1.2959, -0.7478] 0.0038 [-0.0011, 0.0086] 18.8925 [11.5351, 26.3047] 

EDc UB2 -0.4397 [-0.328, -0.1469] 0.4700 [0.3601, 0.5777] 0.0020 [0.0000, 0.0040] -7.8284 [-10.3440, -5.3079] 

EDh 34.2280 [24.3390, 44.2917] 5.2809 [-0.5471, 11.4892] 0.1986 [0.1060, 0.2956] 134.4105 [90.9687, 177.7394] 

DHc 0.9653 [-0.3888, 2.3199] -2.3467 [-2.6810, -2.0123] -0.0020 [-0.0102, 0.0062] 25.6614 [13.4154, 37.8582] 

DHh 0.0085 [-0.0008, 0.0178] -0.0113 [-0.0146, -0.0081] 0.0000 [-0.0001, 0.0000] 0.1620 [0.0726, 0.2512] 
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Table 13. Fixed effects: !i  (mean [0.025quant, 0.975quant]). 2nd set of 8 models 
  2nd set of 8 models 

  H/W; Y; O; S/V 

EDc UB1 -0.4137 [-0.5125, -0.3149]; 0.2725 [0.2297, 0.3152]; 0.0009 [0.0003, 0.0015]; -7.2562 [-8.2794, -6.2303] 

EDh 31.6630 [20.1911, 43.5282]; -13.3457 [-18.5742, -7.9547]; 0.0984 [0.0177, 0.1805]; 100.4968 [48.2215, 152.0663] 

DHc 0.8170 [0.2512, 1.3828]; -2.1055 [-2.3496, -1.8613]; -0.0008 [-0.0042, 0.0025]; 11.6464 [5.8796, 17.4134] 

DHh 0.9203 [0.3459, 1.4967]; -0.9111 [-1.1589, -0.6623]; 0.0036 [0.0017, 0.0036]; 13.7288 [7.8825, 19.6182] 

EDc UB2 -0.5189 [-0.7086, -0.3293]; 0.4091 [0.3210, 0.4969]; 0.0020 [0.0007, 0.0032]; -5.7667 [-7.6639, -3.8597] 

EDh 30.0743 [19.1843, 41.4377]; -14.2590 [-19.1722, -9.1602]; 0.0673 [-0.0081, 0.1445]; 108.4249 [56.8547, 159.093] 

DHc 0.9335 [0.2202, 1.6469]; -2.2142 [-2.5219, -1.9065]; -0.0022 [-0.0064, 0.0021]; 15.8751 [8.6411, 23.1090] 

DHh 0.9645 [0.2336, 1.6991]; -0.9780 [-1.2932, -0.6609]; -0.0024 [-0.0068, 0.0019]; 13.2601 [5.8608, 20.7335] 

 

Table 14. Fixed effects: !i  (mean [0.025quant, 0.975quant]). 3rd set of 20 models 

 3rd set of 20 models     

 H/W Y O S/V UB 

EDc -0.401 [-0.589, -0.213] 0.377 [0.306, 0.448] 0.002 [0.0004, -0.003] -8.071 [-9.81, -6.458] -0.352 [-0.581, -0.123] 

EDh 28.331 [19.987, 36.818] -8.485 [-12.444, -4.231] 0.126 [0.061, 0.192] 142.972 [102.013, 183.879] 29.941 [19.739, 40.307] 

DHc 0.881 [-0.034, 1.796] -2.281 [-2.499, -2.063] -0.0015 [-0.007, 0.004] 23.964 [15.484, 32.427] 0.995 [-0.105, 2.095] 

DHh 0.934 [0.314, 1.555] -1.073 [-1.290, -0.856] 0.0006 [-0.003, 0.004] 17.791 [11.950, 23.647] 0.969 [0.221, 1.718] 

 

Table 15. Fixed effects: !i  (mean [0.025quant, 0.975quant]). 4th set of 4 models 

 4th set of 4 models 

 H/W; Y; O; S/V; UB 

EDc -0.464 [-0.573, -0.354]; 0.334 [0.285, 0.382]; 0.001 [0.0007, 0.002]; -6.581 [-7.693, -5.467]; -0.437 [-0.569, -0.306] 

EDh 19.828 [11.871, 27.959]; -17.633 [-21.094, -14.116]; 0.051 [-0.0009, 0.102]; 118.441 [73.168, 163.323]; 14.505 [4.988, 24.228] 

DHc 0.866 [0.412, 1.320]; -2.164 [-2.360, -1.968]; -0.001 [-0.004, 0.001]; 13.646 [9.002, 18.288]; 0.976 [0.431, 1.521] 

DHh 0.895 [0.429, 1.362]; -0.968 [-1.169, -0.766]; 0.0004 [-0.002, 0.003]; 12.578 [7.816, 17.351]; 0.920 [0.361, 1.480] 

 

Those significant covariates have the mean, 0.025 quant and 0.975 quant without a 

change of sign. The positive sign implies that the response variable increases when the 

covariate does, while the negative sign implies that the response variable decreases 

when the covariates does. For instance, the shape factor (S/V) is always positive, 

whereas the year of construction (Y) is mostly negative.	
  

On analysing the fixed effects, we note that all covariates become significant at some 

point. The most significant one is the S/V. Higher values of S/V mean less 

compactness and lead to a higher heat transfer of the building with the outdoor 

environment. We can observe that as the S/V is higher, all response variables (EDc, 

EDh, DHc, DHh) increase, which means that buildings with lower compactness require 

more energy to acquire indoor comfort.	
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Regarding Y, we observe that the discomfort hours per year for heating and cooling 

decrease when the year of construction is more recent. This is in accordance with the 

fact that the thermal characteristics of the building envelope elements improved over 

time, and younger buildings, which include thermal insulation materials with better 

performance in the façades, roofs, floors and windows, require less energy than the 

older ones.	
  

In relation to the street H/W ratio, we note that as the H/W becomes higher, the 

response variables increase. For EDh, this means that higher H/W ratios lead to a 

higher energy demand for heating because of the poor solar access that impedes 

natural solar gains. For EDc, higher H/W ratios lead to a lower energy demand for 

cooling (values closer to 0), also due to the lower solar access (especially during the 

summer season), although, in this case, with a positive effect.	
  

The urban block also has a relationship with solar access. UB1 refers to a block with a 

big inner courtyard surrounded by the buildings that make up the block, while UB2 

refers to a block without a big courtyard but where the buildings have their own smaller 

light wells. UB1 offers the possibility of bigger solar gains in the inner façades of the 

buildings than in the case of UB2, where the smaller and taller light wells considerably 

reduce the solar access. Regarding the urban block, the fixed effects indicate that this 

covariate is significant and in the four best models that consider all the covariates, the 

response variables increase in the UB2 case. 	
  

The least significant covariate is O, which is only significant for EDc but with values 

extremely close to 0. On considering the orientation we observe that the models 

improve and the RMSE is lower. However, a deeper analysis is required to study the 

effect of orientation in the energy performance of buildings, as it represents a more 

complex performance than the other covariates. 

5.4. Selection of prediction models for response variables 

In accordance with the correlation coefficients and the RMSE, the four models with the 

best fit for predicting the response variables were selected, which are defined by four 

functions 
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( ) ( ) ( ) ( ) ( )UBHWOSVYEDc ⋅+⋅+⋅+⋅−+⋅+= 4372.04637.00013.05815.63336.06480.2
 

( ) ( ) ( ) ( ) ( )UBHWOSVYEDh ⋅+⋅+⋅−+⋅+⋅−+= 5047.148277.190505.04408.1186330.178932.46  

( ) ( ) ( ) ( ) ( )UBHWOSVYDHc ⋅+⋅+⋅−+⋅+⋅−+= 9760.08659.00015.06464.131639.29152.6  

( ) ( ) ( ) ( ) ( )UBHWOSVYDHh ⋅+⋅+⋅−+⋅+⋅−+= 9202.08951.0004.05778.129679.05077.44  

By varying the values of the covariates, the energy demand and the discomfort hours 

for cooling and heating, respectively, can be obtained for every single building in the 

district under study. The aggregation of these results makes it possible to measure the 

total energy demand and the total number of discomfort hours at the urban scale. 

	
  

6. Conclusions 

This work has presented the development of four models for predicting the energy 

performance of the existing residential building stock at an urban scale. The energy 

demand and the discomfort hours were taken as response variables and five 

covariates, at both the building and the urban scale, were considered as potentially 

significant for conducting an accurate prediction. The proposed methodology was 

applied to an urban district in the city of Castellón de la Plana (Spain) and the specific 

characteristics of the district were taken as input parameters to conduct the study. A 

total of 240 dynamic simulations were run with the EnergyPlus software, considering a 

combination of the five covariates, which allowed the response variables to be 

determined for a set of sample buildings. The results obtained were taken as input data 

to develop the prediction models by using the R-INLA package. The statistical analysis 

also made it possible to identify the fact that the shape factor of the building and the 

year of construction were the most significant parameters, as they present the highest 

correlation coefficients. The least significant is the solar orientation of the main façade 

of the building. However, all covariates are significant at some point and the inclusion 

of all of them notably improves the accuracy of the models, as the CPO and DIC 

demonstrated.	
  

The method proposed in this paper allows the energy performance of individual 

buildings to be determined by taking into account not only the physical features of the 

building, but also the features of the surrounding area, thereby demonstrating that the 

urban morphology has a relevant influence on the building’s passive energy efficiency. 

By aggregation of the results obtained for individual buildings, it is possible to estimate 
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the energy performance of buildings at the urban scale for a specific neighbourhood or 

even an entire city. Thus, the methodology can be extrapolated to any other urban 

area, by implementing the stages described above. 

In addition, the methodology could be extended to integrate additional covariates with 

the aim of investigating their influence on the response variables (energy demand and 

discomfort hours). Similarly, new response variables related to the energy performance 

of residential stocks could be explored, following the approach developed in this study. 

Moreover, the presented methodology is applicable regardless of the simulation 

software that generates data collection.	
  

The implementation of the models developed in a city allows the identification of those 

urban areas that require a higher energy demand and that incur in major thermal 

discomfort for the buildings’ occupants. Thus, the models establish a useful decision-

making tool for the local authorities, architects, urban planners and developers to make 

it easier for them to identify those urban areas that require more urgent intervention 

and energy refurbishment. 
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Abbreviations 
Nomenclature 
 
MCMC  Markov Chain Monte Carlo 
INLA  Integrated Nested Laplace Approximation 
SPEDE Stochastic Partial Differential Equation 
RMSE  root mean square error 
DIC  deviance information criterion 
CPO  conditional predictive ordinate 
S  building external envelope surface area (m2) 
V  building conditioned volume (m3) 
S/V  shape factor (m-1) 
EPC  energy performance certificate 
MF  multi-family 
SF  single-family 
H  Height 
W  Width 
ED  energy demand (kWh/m2year) 
DH  discomfort hours (h/year) 
GIS  Geographic Information System 
N  North 
S  South 
E  East 
W  West 
 
 
Subscripts 
 

h  heating 
c  cooling 
B  building 
U  urban 
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