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Abstract

Mathematical models are increasingly used in environmental science thus in-

creasing the importance of uncertainty and sensitivity analyses. In the present

study, an iterative parameter estimation and identifiability analysis methodology

is applied to an atmospheric model – the Operational Street Pollution Model

(OSPMr). To assess the predictive validity of the model, the data is split into

an estimation and a prediction data set using two data splitting approaches and

data preparation techniques (clustering and outlier detection) are analysed. The

sensitivity analysis, being part of the identifiability analysis, showed that some

model parameters were significantly more sensitive than others. The application

of the determined optimal parameter values was shown to succesfully equilibrate

the model biases among the individual streets and species. It was as well shown

that the frequentist approach applied for the uncertainty calculations under-

estimated the parameter uncertainties. The model parameter uncertainty was

qualitatively assessed to be significant, and reduction strategies were identified.
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1. Introduction

A few decades ago, the use of mathematical models was mainly limited to the

use internally in the scientific community, meaning that the model users to a larger

extend had an explicit or implicit understanding of the model uncertainty and

sensitivity1. Today, mathematical models are often routinely used by engineers,

consultants, and planners as well as scientists for environmental regulation and to

assess consequences of abatement strategies. This development supports the need

for explicit uncertainty and sensitivity analyses to facilitate the communication

among model stakeholders.

Within air pollution modelling there has been a growing number of pub-

lications on uncertainty and sensitivity analyses in recent years (for a review

see Hanna (2007)). Walker et al. (2003) defined six uncertainty categories, based

on the location of the uncertainty, of which some have been studied within air

pollution modelling. Model technical uncertainty (e.g. Franke et al. (2007)) and

model input uncertainty (Bei et al., 2012; Hanna et al., 2007; Manomaiphiboon

and Russell, 2004) have been studied previously, however, model parameter

uncertainty has received comparatively little attention (e.g. Marsik and Johnson

(2010)).

Vardoulakis et al. (2002) studied the local sensitivity of the Operational Street

Pollution Model (OSPMr) to marginal changes in ten model parameters for an

artificial dataset (parallel and perpendicular wind directions and a constant wind

speed). Silver et al. (2013) analysed the applicability of a dynamic parameter

estimation (Parameter estimates change along with changes in data) scheme to

OSPM for planning and forecasting. Secondarily, Silver et al. (2013) showed in

a preliminary application of static parameter estimation (One set of parameters

are estimated for all data points) that such an approach can be informative.

Silver et al. (2013) used between one and four years of data for five streets.

The parameter estimation scheme in Silver et al. (2013) was applied to one

model parameter and five multiplicative adjustment factors. This study can

thus be classified as being somewhere between analysis of model input and

1The analysis of change in model output of marginal changes in one model parameter at a
time. This is opposed to global sensitivity analysis which is the analysis of change in model
output of large changes of several model parameters at a time.
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model parameter uncertainty. The choice of model parameters and multiplicative

adjustment factors was based on the developers experience with the model. A

natural question is thus whether a more systematic approach would yield better

results?

Brun et al. (2002, 2001) developed a systematic parameter estimation and

identifiability analysis methodology, which has been applied among others in

lake modelling (Omlin et al., 2001), river modelling (Anh et al., 2006; Meier

and Reichert, 2005), modelling of waste-water treatment plants (Sin and Van-

rolleghem, 2007b), forest modelling (De Pauw et al., 2008), surface hydrology

modelling (Freni et al., 2009; Muñoz et al., 2014), and material science (Martinez-

Lopez et al., 2015) but has not been applied within atmospheric science before.

To analyse the applicability of, and to explore the potential advantages of, ap-

plying this methodology to a model within atmospheric science, the methodology

of Brun et al. (2002, 2001) was applied to the Operational Street Pollution Model

(OSPMr). The application utilizes more years of data and more parameters

compared to the analysis performed in Silver et al. (2013).

This paper explains the appropriate data preparation techniques, reports the

results of the application of, and explores the advantages of this methodology

through exploratory data analysis of the results.

The working principles behind OSPM are described in Section 2. The model

input, the measurements, and the methodologies for data preparation, parameter

estimation, and identifiability analysis are likewise explained in Section 2. The

results and discussion of the various sub-analyses performed in the present

study are presented in Section 3. The conclusions are subsequently presented in

Section 4.

2. Model description and Methods

The applied methodology, as illustrated on Fig. 1, consists of running param-

eter estimation and identifiability analysis in an iterative series. This is done

until convergence between the obtained parameters and the identifiability of the

parameters is achieved. Following the steps outlined in Fig. 1, the model defini-

tion has been done in Berkowicz et al. (1997); Hertel and Berkowicz (1989a,b,c)

as briefly described in Section 2.1. The experimental layout is defined by the
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Figure 1: Schematic representation of the parameter estimation and identifiability analysis
methodology applied in the present study (figure based on Brun et al. (2002)). θk is the model
parameter vector.
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data available through the Danish national air quality monitoring programme

and as part of the prior analysis, data preparation has been performed.

2.1. Model description

OSPM is a model for vehicle induced urban street pollution. The model is

designed to take differences in atmospheric conditions and types of street into

account. The main characteristics of OSPM are:

• The applied version of OSPM consists of emissions calculated with COP-

ERT IV (EMEP/EEA, 2009) and a dispersion model running in series. To

limit the scope of the present study the focus is on the parameters related

to the dispersion model.

• OSPM models the resulting hourly averaged pollution concentrations, of a

specific species, at the side of the street. This is calculated as a sum of

a direct contribution (Cdir) and a recirculating contribution (Crec) plus

a background concentration. The direct contribution is modelled using

a simplified Gaussian plume model with a top hat distribution applied

to the emission plume. The recirculating contribution is modelled using

a trapezium shaped box model (Berkowicz, 2000; Berkowicz et al., 1997;

Hertel and Berkowicz, 1989b).

• The wind direction, especially for low wind speeds, cannot be assumed

constant over a full hour. To account for this, a numerical wind direction

averaging procedure is implemented in the model (Hertel and Berkowicz,

1989c).

• The model also contains an algebraic expression for traffic produced tur-

bulence. The expression depends on the number of cars in the street,

their respective driving speeds, and the traffic composition (Hertel and

Berkowicz, 1989c).

• Most traffic pollutants are assumed to be inert on the time scale of the

residence time in a street canyon. However, the conversion of NO to NO2

in the presence of ozone happens faster. It is therefore included in the

model in the form of an algebraic chemical conversion scheme (Hertel and

Berkowicz, 1989a; Palmgren et al., 1996). The majority of the parameters
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of the chemical conversion module are left out of the subsequent parameter

estimation to limit the scope of the study.

A total of 16 model parameters have been identified in the model. These are

briefly summarized in Table 1. A more detailed description of the model can be

found at www.au.dk/ospm or in Berkowicz et al. (1997); Ottosen et al. (2015).

2.2. Model Inputs

The concentration and meteorology input data come from the Danish national

air quality monitoring programme (Ellermann et al., 2013). In this programme

hourly air quality measurements have been performed since 1994. Measurements

are performed in two streets in Copenhagen (Jagtvej and H. C. Andersens

Boulevard (hereafter referred to as HCAB)) and in one street in respectively

Aarhus, Aalborg, and Odense. A map of the streets can be found in Silver et al.

(2013) and the characteristics of the five streets are summed up in Table 2. An

analysis of the representativity of the streets for other streets in the cities can

be found in the supplementary material. Details of the number of input data as

a function of wind speed and atmospheric stability can likewise be found in the

supplementary material.

It was important to include several pollutants in the analysis in order to

prevent that optimal model performance for one species leads to poorer model

performance for other species. Since NO2 is both directly emitted and converted

from NO, in the presence of ozone, it will have a different set of biases compared

to NOx . NOx is treated as a separate species, since the group of NO and

NO2 can thus be assumed to be inert. For these two compounds (NOx and

NO2) it has been shown that the ratio is not the same in the model and the

measurements (Ketzel et al., 2012). Both species were thus included in the

analysis to counterbalance the biases of the other species.

NOx and NO2 are measured continuously in the streets and at urban back-

ground stations in the four cities. NO2 and NOx are measured by chemilumi-

nescence on Aerodyne API instruments. The detection limits are 200 pptv and

300 pptv respectively for NOx and NO2. The measurement uncertainty for NOx

6
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Table 1: Table of model parameters in OSPM version 5.2.15 (June 2014).

Parameter: Initial value: Description:

α 0.1

Slope of emission dispersion plume. Pro-
portion between roof level wind speed
and roof level vertical turbulence. Ele-
ment of denominator in the calculation
of chemical residence time.

c 2.0
Length of recirculation zone divided by
the upwind building height for wind
speeds higher than g.

Lt 0.5 Upper length of the recirculation trapez-
ium divided by the length of the baseline.

d 0.5 Angle of integration in radians for wind
speeds higher than i.

froof 0.4 Scale factor to reduce the wind speed
from a meteorological mast to roof level.

h0 2.0 m Initial dispersion height in the wake of
a car.

z0 0.6 m
Aerodynamic roughness height used to
relate roof level wind to street level wind
in a logarithmic profile.

g 2.0 m
s

Wind speed where the recirculation zone
reaches its full extent.

i 1.0 m
s

Upper limit for increased wind direction
averaging.

j 180.0 °
Upper limit of interval for which the
general building height is taken as the
average.

Hmin 5.0 m Minimum general building height.

Sp 2.0 m2 Aerodynamic frontal area of light duty
vehicles.

St 16.0 m2 Aerodynamic frontal area of heavy duty
vehicles.

b 0.3 Scale factor for traffic produced turbu-
lence.

k 0.4

Scale factor to reduce the impact of traf-
fic produced turbulence at the top of
the street canyon. Element in the de-
nominator in the calculation of chemical
residence time.

γ 0.2
Scale factor for ground level wind speed
reduction from parallel to perpendicular
wind directions.
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is estimated to 2 % and NO2 to 5 % on a 95 % confidence interval2 (Based on

results in Skov et al. (1997); the laboratory holds an EN 17025 accreditation).

The term measurement uncertainty is used as defined in ISO 20988:2007 Air

quality – Guidelines for estimating measurement uncertainty where the mea-

surement uncertainty is calculated from measurement uncertainty budgets and

represents the total measurement uncertainty on the measurand. Thus in the

present study the measurement uncertainty (as mentioned to be 2 % for NOx

and 5 % for NO2) is considered to be negligible compared to model uncertainty.

Details of the traffic input to the analysis can be found in the supplementary

material.

2.3. Data preparation

In order for the applied methodology to give meaningful results, proper

data preparation has to be performed. For the present study outlier detection,

data splitting3 and pseudo-replicate4 removal were analysed as potential data

preparation strategies. The description of these data preparation techniques is

collected and summarized in the supplementary material. The exact application

of the data preparation techniques to the present study is likewise described in

the supplementary material.

2.4. Identifiability analysis

In order to be able to asses the identifiability of the model parameters, a

reasonable estimate of the parameters has to be defined in the prior analysis.

In the present case, the original model parameters were chosen since they have

shown good performance in earlier validation studies (Ketzel et al., 2011, 2012).

The identifiability measures are summed up in Table 3 (Brun et al., 2001). Based

on literature (Brun et al., 2002, 2001; Ruano et al., 2007; Sin et al., 2010; Sin

and Vanrolleghem, 2007a) a collinearity index threshold of 10 was chosen.

2The Uncertainty is referring to the general EN 17025 standard and more specifically to
EN 14211:2012 Ambient air. Standard method for the measurement of the concentration of
nitrogen dioxide and nitrogen monoxide by chemiluminescence

3using two data splitting methodologies known as the DUPLEX and seasonal data split.
4Identical or almost identical data points.
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Table 3: Overview of the applied identifiability analysis. yl stands for the lth model variable,
θk stands for the kth model parameter, and SCl is a scaling factor for the variable yl. SCl is
used to normalize the sensitivities of the different model outputs, and in the present study
the mean value of the model output is used. K stands for the index of the parameter subset,
which is a combinatorial function of the parameter vector, θ. Table modified from Sin et al.
(2010) based on Brun et al. (2002, 2001).

Steps: Description:

Absolute sensitivity Sa= {sa,lk} where sa,lk=
(
∂yl

∂θk

)
θi6=k

Non dimensional sensitivity Snd= {snd,lk} where snd,lk= ∂yl

∂θk
· θk

SCl

Sensitivity measure, δmsqr δmsqr=

√
1
N

N∑
l=1

(snd,lk)2

Normalized sensitivity Snorm= {snorm,lk} where snorm,lk= snd,lk
‖snd,lk‖

Collinearity index, γK γK= 1√
minλK

where
λK= eigen

(
snorm,K

T snorm,K
)

The sensitivities of the model to changes in the parameters were calculated

using the finite difference approximation. The size of the perturbation factor for

the individual parameters was determined using the method of De Pauw (2005).

2.5. Parameter Estimation

For the parameter estimation, the non-linear regression approach as described

by Seber and Wild (1989) was used. The fundamental assumption is that the

measurements can be described as independent random variables with a normally

distributed associated probability. These random variables are assumed to have

mean values equal to the exact model results and known standard deviations.

If this is the case, maximizing the probability of modelling the measurements

corresponds to minimizing the difference between model and measurements (χ2):

χ2 =
n∑
i=1

Wi
(ymeas,i−yM,i(PM ))2

σ2
meas,i

(1)

Where n is the number of measurements, ymeas,i is the measurements, yM,i(PM )

is the model results as a function of the parameter vector PM , M is the number

of parameters in the model, σ2
meas,i is the variance of the corresponding measure-

ment, and Wi is the weight assigned to the individual observation.

10



The above theoretical framework was originally designed for laboratory ex-

periments, and the above assumptions can thus in general not be expected to

be valid when transferred to models in environmental science. In laboratory

experiments the experiments can be repeated. As described in Section 2.2, the

same measurement of respectively NOx or NO2 was not repeated in the present

study. The variance of the individual measurement was therefore substituted by

the mean value of the measurement of the individual species. This is a common

approach applied in e.g. Silver et al. (2013). In this way, it was avoided that

the pollutants appearing in high concentrations dominated over the pollutants

appearing in low concentrations.

As shown in the supplementary material, the amount of available measure-

ments vary between streets and for different pollutants. The weight (Wi) was

thus used to assign equal weight to the two species in the analysis. The dis-

cussion of different weights applied to the different streets was assessed to be

outside the scope of this work and thus no street dependent weighing was applied.

To minimize Eq. (1) an iterative minimization procedure in the form of a

generalized pattern search algorithm (MathWorks Inc., 2013) was used. This was

applied through the ”patternsearch” function of the Matlab Global Optimization

Toolbox. Bounds were imposed on the individual parameters based on physical

principles in order to ensure physically realistic solutions.

2.6. Exploration of potential bias problems

Snee (1977), quoting Draper and Smith (1966), recommended analysing the

stability of the fitted parameters by splitting the data into each year and fitting

the data to each split. In this way, an indication of whether the parameters are

constants or functions of other parameters can be obtained. Moreover, this also

gives an indication of the parameter spread and the temporal variation in the

parameters. For the present case, the years 2004–2010 were chosen since all five

streets have measurements in these years. Furthermore, there are approximately

the same number of NOx and NO2 measurements in the data set for these

years. The data have furthermore been split according to street, wind speed,

and atmospheric stability.

11



Both data splitting algorithms, the parameter estimation and the identifia-

bility analysis have been implemented in Matlab by the authors. To implement

the DUPLEX algorithm (Snee, 1977) for a large dataset as used in the present

study, various computational techniques had to be applied. These are described

in the supplementary material. The identifiability analysis was based on the

source code from the study by Sin et al. (2010).

3. Results and discussion

Following the methodology illustrated in Fig. 1, the results of the local

sensitivity analysis (step 5 and 6) are presented in Sections 3.1 and 3.2. The

results of the identifiability analysis (step 7 and 8) are found in Sections 3.3

and 3.4, and the results of the parameter estimation (step 9) are described

in Section 3.5. Lastly, the bias and sources of error (step 10) are explored in

Section 3.6.

3.1. Determination of perturbation factor to use in the local sensitivity analysis

The local sensitivity analysis, and thereby the calculation of δmsqr and the

collinearity index γK , is based on the finite difference approximation. In order

for the subsequent analyses to be as valid as possible, the calculated derivatives

have to be as close to linear as possible. As shown by De Pauw (2005); De Pauw

and Vanrolleghem (2003), the optimal perturbation interval can be parameter

and output dependent. Using the same methodology the perturbation factor

used in the finite difference approximation was analysed by calculating the sum

of squared errors (SSE) between the positive and negative perturbation as a

function of perturbation interval from 10−1 to 10−7.

A set of perturbation factors for the individual parameters were chosen. This

was done based on a visual inspection of the plot of error functions, as a function

of perturbation interval, for respectively NOx and NO2. The perturbation factors

were chosen to be smaller than 10−1 in order for the sensitivity analysis to remain

local. The same perturbation factor was used for both NOx and NO2 since the

error functions turned out to be relatively similar. If the minimum of the error

function was at two different values for the two output parameters, the mean

12



Table 4: Optimal perturbation factors for the individual model parameters calculated on the
DUPLEX data split. Similar results were obtained for the seasonal data split.

Parameter: Perturbation factor:
α 0.1
c 0.01
Lt 0.1
d 0.1
froof 0.05
h0 0.1
z0 0.1
g 0.01
i 0.1
Sp 0.05
St 0.1
b 0.01
k 0.1
γ 0.1

value was chosen following the approach of De Pauw (2005). An overview of the

perturbation factors for the DUPLEX data split for the model parameters is

shown in Table 4.

The results presented in Table 4 are in general larger than the results reported

by De Pauw (2005). The reason is that OSPM, compared to the differential

equation models analysed by De Pauw (2005), is not very sensitive to changes in

the parameters.

The above analysis was as well performed for the data splits of streets, wind

speeds, and atmospheric stabilities with similar results as shown in Table 4.

3.2. Local sensitivity analysis

For a model to be identifiable, as defined by Brun et al. (2001), the model

has to be sensitive to minute changes in parameter values.

A box plot of the relative local sensitivities of the model with respect to

concentrations of NOx is shown in Fig. 2 in descending order of sensitivity (δmsqr)

for the DUPLEX data split.

13
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Figure 2: Box plots of the absolute values of the local (relative) non-dimensional sensitivities
of the NOx concentrations to a change in model parameters. The results of the DUPLEX data
split are plotted in blue and of the seasonal data split in red. The boxes are the 25th and 75th
percentile, the whiskers correspond to 99.3 % of a normal distribution, the black lines are the
median, the mean value of the distribution is represented by yellow triangles, and δmsqr is
plotted as black dots

The model is most sensitive to changes in the parameter b, the scale factor

for traffic produced turbulence. b is an important model parameter since it

figures in the calculation of street level turbulence, and as such, it influences the

calculation of every data point.

froof, the factor reducing the wind speed from the mast to the roof level,

also has a large influence on the model output. froof has been the subject of a

previous examination (Silver et al., 2013) and influences the street level wind

speed and thus all the data points. For NO2 froof is the most sensitive model

parameter (results for NO2 are found in the supplementary material).

As can be seen from Fig. 2, the parameter h0, the initial dispersion height of

the plume in the wake of a car, is also a very sensitive model parameter. This

means that the concentrations are assumed to be homogeneously mixed below the

level of h0. The receptor height on all five streets is set to 2 m corresponding to

the value of h0. This feature is increasing the model sensitivity to h0. Moreover,

h0 influences the street level wind speed such that the larger h0 the larger the

street level wind speed compared to the roof level wind speed. I can thus be

seen that the most sensitive parameters in a semi-parametric air pollution model

14



are the ones affecting the street level wind speed and turbulence.

It can likewise be seen that the model is very sensitive to changes in c. c

determines the length of the recirculation zone and thus the integration length

of the direct contribution. This is especially important for wide streets and

near parallel wind directions. In these situations the length of the recirculation

zone is not reduced due to the presence of a downwind building. However, as

can be seen from Fig. 2 the parameter c has a very large spread, with a low

number of points increasing the value of δmsqr substantially. The importance of

this parameter might therefore be overestimated using the δmsqr criterion. This

feature is repeating for many of the model parameters, and indicates that there

is a large variability in the model parameter sensitivity.

In general, the sensitivity of the parameters is declining approximately lin-

early. This is in opposition to the results found by Sin et al. (2010) where the

model output was very sensitive to a few model parameters and almost insensitive

to the rest of the parameters. This difference could be explained by the difference

in model, but is more likely the result of a difference in the data points used for

calculating the sensitivity. The present analysis is built on a large data set with

good coverage of the different situations the model is designed to handle. This

means that all model parameters influence at least some data points (with the

exception of j and Hmin, the two parameters controlling the general building

height, where the model has zero sensitivity for all perturbation factors). This is

a general feature of large data sets, where the coverage of different situations

is better. Therefore, most model parameters have a sensitivity proportional to

their influence in the data set.

Figure 2 could indicate that the local sensitivity is marginally larger in the

seasonal data split compared to the DUPLEX data split. This is caused by

the larger spread in the seasonal data split indicating the more heterogeneous

composition of the dataset. The general trend between sensitive and less sensitive

model parameters is however reproduced in both data splitting approaches.
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The local sensitivity of the parameters with respect to street and wind speed

was as well explored, and the results are reported in the supplementary material.

3.3. Correlation analysis

A heat map of the correlation matrix for the DUPLEX and seasonal data

split is presented in Fig. 3. The parameters controlling the general building

height (j and Hmin) are excluded from the figure due to zero sensitivity. The

model parameters with correlation higher than 0.5 have been highlighted in red

colours to illuminate potential identifiability issues.

A general look at Fig. 3 shows that only a few parameters have potential iden-

tifiability problems. This is again in opposition to the results found by Sin et al.

(2010). The difference is most likely once again due to the large data set used for

the present analysis. This means that parameters that are related in the model

do not compensate each other numerically due to differences in input parameters.

h0 and z0 appear in the same formula in the model and that the two param-

eters show correlation is therefore not surprising. The same is true for b, Sp,

and St. The correlations among these sets of parameters is so high that it could

indicate identifiability issues.

The correlation between froof and g is because both parameters have similar

wind direction dependencies. The two parameters follow approximately the

same pattern for Vesterbro, Banegaardsgade, and Albanigade whereas they are

diverging more for HCAB and Jagtvej (results shown in the supplementary

material). This is thus not assessed to constitute an identifiability problem.

The correlation between froof and i comes from the dependence of the aver-

aging interval for wind speeds lower than i. Indirectly, these two parameters are

thus linked in the same equation for calculating the averaging interval.

There is also a noticeable correlation between γ and α; however, the sensitivity

of γ is so low that the correlation between the two parameters is not considered

the largest identifiability issue for these parameters.
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Figure 3: Heatmap of the correlation matrix for the DUPLEX data split (lower triangular
matrix) and the seasonal data split (upper triangular matrix). Correlations smaller than ±0.5
are plotted on the blue part of the colour scale and correlations larger than ±0.5 are plotted
on the red part of the colour scale. Only parameters with non-zero sensitivity are included in
this analysis.

3.4. Collinearity analysis

The results of the calculation of the collinearity index γK for all parameter

subsets are shown in Table 5. As can be seen, the more parameters included

the more collinear the combination becomes. This is obvious since including

more parameters means a better chance of a change in one parameter being

compensated by a change in the other parameters. Especially the lower boundary

of the γK range is increasing whereas the upper boundary is almost stable from

three parameters and upwards. As can be seen, the largest number of parameters

with γK < 10 is 12; however, several different combinations of 12 parameters are

identifiable.
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By comparing Table 5 to Table 1, it can be seen that the least collinear

parameters are the ones representing very different aspects of the model. E.g. the

parameter c describes the recirculation zone, and thereby the direct contribution,

and the parameter i represent the limit for increased wind direction averaging.

This is also seen by that the related parameters for traffic produced turbulence

Sp, St, and b have high collinearities.

Among the combinations of 12 parameters with a collinearity index lower

than 10, the parameters with collinearity problems were h0 and z0; and St, Sp,

and b, as also seen from Fig. 3. The combinations of froof and respectively g

and i and the combination of α and γ, that indicated identifiability problems

in Fig. 3, are therefore correlated without being collinear, a phenomenon also

observed by Brun et al. (2001) in a different branch of science. z0 is a standard

value used in many different atmospheric models. It was therefore assessed that

fixing this parameter would not mean a great loss of information in the analysis.

Moreover, this parameter also has a lower sensitivity compared to h0.

For the traffic produced turbulence the parameter St was set fixed. This was

chosen because the model has the lowest sensitivity to this parameter across the

dataset among the three parameters related to traffic produced turbulence. In

order to generate comparative results, the same parameters were estimated for

the seasonal data split. The same combination of parameters also satisfy the

collinearity criterion for the seasonal data split.

3.5. Parameter Estimation

The results of the parameter estimation for the DUPLEX and the seasonal

data split are shown in Table 6 in the order of decreasing δmsqr for the DUPLEX

data split for NOx . From the table it can be seen that the two data splitting

approaches have resulted in quite different sets of parameter values.

The two data split have approximately 43 % shared data points, but analysing

the histograms of the unique part of the two sets show no significant differences.

There is, however, a trend towards that the seasonal data split has a more repre-
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Table 5: Collinearity results for different subsets of the DUPLEX data split

Sizea Combi-
nationsb

γK rangec γK < 10 (%)d Parameters subset for γmin

2 91 0.71 – 9.29 100.0 c, Lt
3 364 0.78 – 42.28 97.8 c, Lt, i
4 1001 0.84 – 42.30 93.3 c, Lt, i, k
5 2002 1.00 – 42.30 86.8 d, g, i, k, γ
6 3003 1.07 – 42.33 78.4 α, Lt, g, i, k, γ
7 3432 1.13 – 42.43 68.4 α, Lt, d, g, i, k, γ
8 3003 1.53 – 42.48 56.6 α, Lt, d, g, i, St, k, γ
9 2002 2.08 – 42.50 43.7 α, Lt, d, g, i, Sp, St, k, γ

10 1001 2.66 – 42.52 30.2 α, c, Lt, d, g, i, Sp, St, k, γ
11 364 4.92 – 42.52 17.3 α, c, Lt, d, z0, g, i, Sp, St, k, γ
12 91 8.41 – 42.53 6.6 α, c, Lt, d, froof, z0, g, i, Sp, St, k, γ
13 14 20.47 – 42.54 0.0 α, c, Lt, d, froof, h0, z0, g, i, St, b, k, γ
14 1 42.54 – 42.54 0.0 α, c, Lt, d, froof, h0, z0, g, i, Sp, St, b, k, γ

aSize of the parameter combination set
bTotal number of combinations of a given size
cHighest and lowest value for γK
dPercentage of combinations with a γK value less than 10

Table 6: Parameter estimates for both the DUPLEX and the seasonal data split plus confidence
intervals for the parameters estimated on the basis of the DUPLEX data splitting procedure.

θ Original
value

Limits Estimate
Seasonal

Estimate
DUPLEX

% Difference 95 % CL
% of mean θ

b 0.3 [10−5 : 0.999] 0.212 0.288 30.5 ±0.6
froof 0.4 [10−5 : 0.999] 0.427 0.422 1.2 ±1.2
h0 2.0 m [0.6 : 10] 2.177 1.422 42.0 ±0.9
c 2.0 [0.25 : 10.00] 6.607 5.685 15.0 ±1.5
SP 2.0 m2 [10−5 : 10] 1.198 0.360 107.5 ±2.5
g 2.0 m

s [10−5 : 10] 0.116 0.085 31.5 ±18.5
d 0.5 [10−5 : 2π] 1.873 1.105 51.6 ±0.3
i 1.0 m

s [10−5 : 10] 0.455 0.713 44.3 ±1.4
α 0.1 [0.05 : 2.00] 0.277 0.292 5.5 ±1.0
Lt 0.5 [10−5 : 0.999] 0.008 1.335 ·10−5 199.3 ±1.3 · 105

γ 0.2 [10−5 : 0.999] 0.789 0.017 191.5 ±52.1
k 0.4 [0.04 : 0.999] 0.999 0.999 0.0 ±8.7
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sentative coverage of the data points. The DUPLEX data split has conversely a

better coverage of the input parameter space.

Likewise, an analysis of the correlation between the input data show no

significant difference in correlation structure for the two data set. However, the

input data of the seasonal data split tends to be more correlated with each other.

It can be seen from Table 6 that the percentage difference (with a few ex-

ceptions) is much larger than the 95% confidence interval. This is an indication

that the 95 % confidence interval, calculated via linear error propagation, under-

estimates the uncertainty on the parameters. The cause of the underestimation

is the linear approximation applied to a non linear model in the calculation

of the 95 % confidence interval (Joshi et al., 2006). Whether the percentage

difference is representative for the uncertainty on the model parameters, in the

form of e.g. the standard deviation, could be examined through a bootstrapping

approach (Efron, 1979; Wu et al., 2012); however, this was deemed infeasible

due to the long run times of the parameter estimation algorithm.

From Table 6 a trend can be seen towards higher percentage difference on the

parameters with low sensitivity. This is natural since these parameters have to

change significantly for the least squares to be reduced. Comparing the results

of Table 6 with Fig. 2 shows that, the parameters being estimated to the limits

of the estimation interval are the ones with very low sensitivity.

The wind speed parametrization in OSPM, connecting the parameters froof,

h0, and γ, means that one should be careful in the interpretation of the parameter

uncertainties. froof has an almost constant minimum close to the original model

value. This leaves the other two parameters to determine the street level wind

speed. Increasing γ will lead to a lower street level wind speed (at least for per-

pendicular wind directions); whereas, increasing h0 will lead to increasing street

level wind speeds. Comparing the result of the two data splitting approaches

shows exactly this phenomenon. An analysis of the relative difference in wind

speed between the two sets of parameters shows that it is approximately 12%.

This is valid for the input data from both the DUPLEX and the seasonal data
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split. This shows that the difference in wind speed is smaller than the difference

in parameters as indicated in Table 6.

The parameter c has increased substantially in both data splitting approaches.

The fitted parameters of 6–6.5 building heights should not be taken as the phys-

ical length of the recirculation zone. Rather, this should be seen as a parameter

yielding the best fit to data. Referring to Table 2, the only two streets with

sufficient lengths to accommodate a recirculation zone of six building heights

are Vesterbro and HCAB. Increasing c will lead to increased concentrations,

especially for near parallel wind directions. Increasing the value of α will cancel

this effect to a certain extent. This will at the same time reduce the concentration

of NO2 due to the decreased residence time in the canyon.

The results of the parameter estimation on the weekly diurnal concentration

profile can be found in the supplementary material.

3.6. Exploration of potential bias problems

In the following sections an exploration of the parameters estimated in

Section 3.5 is presented. The general validity of the parameters, in the form of

their respective identifiability, is presented in Section 3.6.1. The stability of the

parameter estimates with respect to street geometry and traffic is analysed in

Section 3.6.2. The performance of the parameters with respect to the weekly

diurnal variation and atmospheric stability is analysed in the supplementary

material, and the stability of the parameters with respect to wind speed is

analysed in Section 3.6.3.

3.6.1. Identifiability Analysis

The relative local sensitivity of the original and estimated parameters are

presented in Fig. 4. The parameter estimation procedure has significantly altered

the relative sensitivity of the parameters. Some parameters such as b, froof, and

h0 are, however, still very sensitive, and parameters such as Lt, k, and i are still

insensitive.

The collinearity index γK for the DUPLEX data split is 10.12 and 12.05

for the seasonal data split. The two sets of parameters can thus be seen not
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Figure 4: Comparison of the relative sensitivity for NOx before (blue) and after (red) parameter
estimation. Figure 4a are for the DUPLEX data split and corresponding parameter values, and
Fig. 4b are for the seasonal data split. The blue colour represent the original model parameters
and the red colour represent the estimated parameters. The box plots are designed similarly
to Fig. 2.

to be collinear measured on their respective data set. The collinearity indices

for the two data split are slightly above the limit set in Section 2.4. This was,

however, deemed acceptable since the limit on collinearity has a certain element

of subjectivity in it.

3.6.2. Influence of street geometry

The correlation coefficient(R2), the fractional bias (FB), and the normalised

mean square error (NMSE) for the two data splits and the individual streets

without data splitting for the NOx concentrations are shown in Fig. 5 and for

NO2 in Fig. 6.
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As can be seen, for both estimation and prediction sets, the estimated pa-

rameters perform noticeably better than the original model parameters. This is

seen for all three statistical quantities. This is especially the case for NO2 where

the large fractional bias in the original model parameters has disappeared. For

the DUPLEX data split, the statistical quantities are almost identical from the

estimation to the prediction set. Contrary to this, the seasonal data split has

noticeably lower performance for the prediction set compared to the estimation

set on all three statistical parameters. For the individual streets it can be seen

that there are some significant differences in the model performance across the

streets. The highest and lowest correlation coefficient for the original model

parameters are respectively found for Jagtvej and HCAB. The low correlation

coefficient for HCAB is caused by the physics governing irregular street canyons

not being properly accounted for in the model. This also means that there is

not much model improvement using parameter estimation for this street, as

also seen on Figs. 5 and 6. For Jagtvej the correlation coefficient for NOx has

declined slightly as a result of the parameter estimation. However, the overall

trend is still towards model improvement considering that the statistics for the

vast majority of the other streets have increased significantly. This indicates that

the model could in the past have been calibrated against NOx data from Jagtvej.

The results of this being optimal performance for this street on behalf of less

optimal performance for the other streets and the other species. The parameter

estimation scheme has thus served to distribute the errors homogeneously among

the individual street canyons and the individual species.

The parameter estimation procedure was repeated on the individual streets

(results found in the supplementary material). The results indicate that the

uncertainty on the model parameters is larger than indicated by the percentage

difference in Table 6. The parameters obtained in Table 6 can thus be seen as

average parameters converging when averaged over many streets with different

properties. Moreover, this indicates that the model parameters depend in com-

plicated ways on the street geometry and the traffic conditions on the individual

street. More accurate results could thus be obtained by making the parameters

dependent on street geometry and traffic conditions.
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Overall, it can be seen from Figs. 5 and 6 that the DUPLEX and seasonal

estimated parameter sets perform approximately equally well on the various

streets. The phenomenon, that two or more parameter sets give approximately

equal model performance, has been coined equifinality by Beven (2006). The

phenomenon arises in the interplay between model and measurements. Here,

the combination of model input uncertainty, model structural uncertainty, and

model parameter uncertainty is converted to uncertainty in the fitted parameter

values. None of the aforementioned types of uncertainty have previously been

assessed for OSPM and the present input data before. It is therefore difficult to

judge how much of the variance is caused by which form of uncertainty.

The equifinality of the model and the measurements appears to be a type of

identifiability problem, also sometimes known as non-uniqueness (Beven, 2002).

This type of identifiability problem has not been accounted for by the identifia-

bility analysis applied in the present study. The identifiability analysis of Brun

et al. (2001) is based on local sensitivity, and as such, is not designed to analyse

this type of global identifiability problems. One could thus argue that a smaller

subset of parameters should have been estimated. However, to the best of the

authors knowledge, there exists no method to determine a globally identifiable

parameter subset. Moreover, this would make the estimated parameters depen-

dent on the (poorly defined?) fixed parameters.

3.6.3. Influence of wind speed

The correlation coefficient (R2), the fractional bias (FB), and the normalized

mean square error (NMSE) of the model with estimated (based on the DUPLEX

and seasonal data split) and original model parameters for NOx are shown in

Fig. 7. As can be seen, the original model parameters have a systematic bias as

a function of wind speed. The FB is almost zero for wind speeds of 1 m
s –3 m

s , but

higher for calm winds and higher wind speeds. The NMSE of the original model

parameters are also increasing sharply as the wind speed increases to more than

3 m
s . The FB of the estimated model parameters is also increasing with higher

wind speeds albeit at a much slower rate. The same trend is also found to a
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lesser extent in the correlation coefficient. Again, this shows that the parameter

estimation procedure equilibrates the errors among the different situations the

model is exposed to.

The results of the parameter estimation applied to the respective wind speed

classes can be found in the supplementary material.

4. Conclusions

In this study, it is shown that it is possible to apply the methodology of Brun

et al. (2001) to atmospheric models and obtain informative results that can be

used for reduction of model outcome uncertainty. It was shown in Section 3.6.2

that the parameter estimation procedure successfully equilibrated the bias among

the individual streets and among the individual species. This should be compared

to the more heterogeneous performance of the original model parameters. Thus

it was shown that this methodology could serve to improve this type of model.

When applied to the two data splitting approaches, the methodology revealed

that the estimated parameters were much more uncertain than indicated by

their 95 % confidence intervals. This shows that the frequentist approach to

uncertainty analysis, as applied here, tends to underestimate the uncertainty of

the parameters. Other methods, such as bootstrapping or Bayesian approaches

to uncertainty analysis, should be used to validate the results of the frequentist

approach. The methodology of Brun et al. (2001) do not include application to

different realisations of the data set, but does neither preclude this element. It is

therefore recommended that a bootstrapping approach is used for the parameter

estimation part of the methodology.

The large uncertainty of the parameters were confirmed by fitting the pa-

rameters to the individual streets and the individual years. As discussed in

Section 3.6, the large uncertainties could be interpreted as an identifiability

problem. It was however shown in the local sensitivity analysis and the extensive

validation performed in this study that there could be various ways to reduce

the large uncertainty. This could be done through reductions in model structural
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uncertainty and model input uncertainty besides model parameter uncertainty.

In this way, the applicability and advantage of the methodology for this type of

model is shown.
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