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Abstract

Many model based scientific and engineering methodologies, such as sys-
tem identification, sensitivity analysis, optimization and control, require a
large number of model evaluations. In particular, model based real-time con-
trol of urban water infrastructures and online flood alarm systems require
fast prediction of the network response at different actuation and/or param-
eter values. General purpose urban drainage simulators are too slow for this
application. Fast surrogate models, so-called emulators, provide a solution
to this efficiency demand. Emulators are attractive, because they sacrifice
unneeded accuracy in favor of speed. However, they have to be fine-tuned to
predict the system behavior satisfactorily. Also, some emulators fail to ex-
trapolate the system behavior beyond the training set. Although, there are
many strategies for developing emulators, up until now the selection of the
emulation strategy remains subjective. In this paper, we therefore compare
the performance of two families of emulators for open channel flows in the
context of urban drainage simulators. We compare emulators that explic-
itly use knowledge of the simulator’s equations, i.e. mechanistic emulators
based on Gaussian Processes, with purely data-driven emulators using ma-
trix factorization. Our results suggest that in many urban applications, naive
data-driven emulation outperforms mechanistic emulation. Nevertheless, we
discuss scenarios in which we think that mechanistic emulation might be fa-
vorable for i) extrapolation in time and ii) dealing with sparse and unevenly
sampled data. We also provide many references to advances in the field of
Machine Learning that have not yet permeated into the Bayesian environ-
mental science community.

1 Introduction
For many real-world systems with a nonlinear response, model based tasks
such as sensitivity analysis, learning model parameters from data (i.e. sys-
tem identification or model calibration), and real-time control, are hampered
by the long runtime of the employed numerical simulators. Even if runtimes

1

ar
X

iv
:1

60
9.

08
39

5v
2 

 [
st

at
.M

E
] 

 3
 F

eb
 2

01
7



are short, these methods require a large number of model runs, which can
take a prohibitive long time. One way of speeding up these tasks is to build
fast surrogate models, so called emulators, to replace the computationally ex-
pensive simulators. An emulator is a numerical model that is tailored to ap-
proximate the results of a computationally expensive simulator with a huge
reduction in the time needed to run a simulation [O’Hagan, 2006], i.e. it is
a metamodel. These ideas also belong to the technique of Reduced-Order
Models (ROM), specially for models based on Partial Differential Equations
(PDE) [Baur et al., 2014, Quarteroni et al., 2016], and emulation as described
below.

To ground ideas, imagine that the flow at the outlet of a drainage network
is limited using a flow limiting gate or by activating water storage systems
(Fig. 1). The position of the gate and the activation of storage is controlled us-
ing a model predictive controller [Xi et al., 2013]. Such a scenario is relevant
in performance optimization of water treatment plants [Fu et al., 2008]. The
signals used to control the flows could be the current intensity and duration
of rain events from several rain gauges within the catchment. The controller
needs to estimate an optimal course of action by predicting the flows induced
by the rain and many possible actuations. This optimization generally re-
quires thousands of model runs, which can take a prohibitive long time when
running a physically detailed simulator of the sewer network, such as a EPA
Storm Water Management Model (SWMM) model [Rossman, 2010]. How-
ever, the simulator is just used to estimate the relation between the rain,
the actuation, and the flow. The full details of the simulator might not be
required to obtain an accurate estimation of this relation. Feedback control
might further reduce the required accuracy of the estimated relation.

Emulation and interpolation are equivalent problems. An emulator is
built using the best available simulator to sample the space of actuations
and/or parameters (henceforth the latter will include actuations). The train-
ing data is then used to build an interpolation function which should predict
values at unseen parameters with an acceptable degree of accuracy, which is
case dependent. That is, we reconstruct an unknown function F :R|γ|+1 →R,
that takes a parameter vector of size |γ| and a time instant, and generates
the value of the magnitude of interest. When this function is evaluated at the
inputs used for training, the results are the same as the training outputs1,
i.e. this is the meaning of interpolation of the training data adopted herein.
Stated in this way, no distinction is needed between the parameters and the
time components in the input. However, knowing that the data is generated
by a dynamical system, we separate time from the other parameter compo-
nents. Thus, we can find one interpolant in time and one in parameter space,
which might be coupled to each other. This parameter-time coupling emerges
naturally in mechanistic emulation, as will be shown in Sec. 2.2.

When the simulator is based on differential equations, the link between
Gaussian Processes (GP) and linear stochastic differential equations (SDE) [Pog-
gio and Girosi, 1990, Steinke and Schölkopf, 2008, Albert, 2012, Särkkä et al.,
2013, González et al., 2014, Solin, 2014], permits the creation of GP based
emulators that include knowledge about the simulator dynamics; these are
called mechanistic emulators (MEMs). Conceptually, mechanistic emulation
seeks a function that interpolates the training data whithin a class of func-
tions defined by an SDE. The importance of GPs for MEMs stems from the
fact that they are the formal solution of this SDE. Hence when the simu-
lator is linear the emulator gives exact results; while for nonlinear simula-

1Herein considered noiseless since they are generated by a deterministic simulator.
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Figure 1: An imaginary drainage network with flow limiting gate and/or water storage
systems. The interesting singal is the level/flow at the outlet of the network, marked with
a circle. Isometric tiles from www.kenney.nl.
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tors, the MEM will provide only an approximation. Increasing the accuracy
of this approximation and the efficiency of the methods are two fundamental
challenges in GP based emulation [O’Hagan, 2006, Rasmussen and Williams,
2006, Ch. 8].

Reichert et al. [2011] enumerated four overlapping approaches for devel-
oping emulators of dynamic simulators:

i) Gaussian Processes

ii) Basis function decompositions

iii) State space transition function approximation

iv) Stochastic linear model conditioned on data using Kalman smoothing.

In particular approaches i) and iv) are two different implementations of the
same problem [Steinke and Schölkopf, 2008]. Roughly speaking the Kalman
smoothing algorithm used in iv) is an iterative implementation of the con-
ditioning of the GP in i). The iteration in iv) avoids the ill-conditioned co-
variance matrices [Hansen, 1998] involved in GP when sampling rates are
high [Steinke and Schölkopf, 2008, Reichert et al., 2011] and it is faster than
direct matrix inversion in a serial implementation. The GP approach i) is bet-
ter suited for parallelization, speedups and energy saving via approximated
computing [Angerer et al., 2015].

Approaches i) (or iv)) and ii) are similar with respect to their implemen-
tation. That is, approach ii) can be implemented using GP regression [Ras-
mussen and Williams, 2006, sec. 2.7]. Therefore, the essential difference
between i) and ii) is that the former explicitly introduces mechanistic knowl-
edge. It will be shown here that approach i) is currently constrained to
linear mechanistic knowledge, while popular methods based on maximum
entropy [Victor and Johannesma, 1986, Christakos, 1998, Harte, 2011] can
handle nonlinear knowledge. The difference between GP based mechanistic
emulation and maximum entropy methods is that in the latter, the mecha-
nistic knowledge is added as constraints on the moments of the predictive
or posterior distribution, while in the former its is added as the dynamics of
the prior model. Adding constraints to predictive distributions require expert
knowledge available at the level of the emerging behavior of the simulator,
while adding dynamic information requires knowledge about the constitutive
elements parts of the simulator. The latter is likely to be readily available
from the development of the simulator itself.

Herein we compare the performance of GP emulators built using approaches i),
which we call mechanistic emulation, and ii) which we call data-driven emu-
lation. The basis function that will be used for data-driven emulation will be
derived solely from the data using matrix factorization, i.e. they will not ex-
plicitly include mechanistic knowledge. In this article we use singular value
decomposition (SVD) and nonnegative matrix factorization (NMF) to extract
these bases (Sec. 2.1), but more general basis extraction methods like Proper
Orthogonal Decomposition (POD) could be used [Hesthaven et al., 2016]. We
compare results in an academic emulation problem to highlight the differ-
ences between the approaches (Sec. 3.1-3.2). We also provide emulation ex-
amples pertinent to the fields of hydrology and urban water management
(Sec. 3.3-3.4). In all of these, data-driven emulation outperforms mechanistic
emulation. The objective of this comparison is to provide intuition about the
suitability of each approach, which is not available to date to the best of our
knowledge, to highlight the need of enhancements of our emulators, and to
motivate research questions in the field of emulation. This is relevant, be-
cause, as described above, many applications in the field of urban drainage
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and flood predictions to date are hampered by slow models. To a lesser de-
gree, this is one of the few NMF applications in hydrology [Alexandrov and
Vesselinov, 2014].

2 Methods and Materials
In the subsequent sections we firstly describe the two emulation approaches
used herein (Sec. 2.1-2.2). Aiming at a wide readership, mathematical de-
tail and rigor are kept at a minimum required level. References are provided
for the interested reader. Secondly, we describe the datasets used for training
and testing the emulators (Sec. 2.3). These include models of two small catch-
ments in Switzerland, that we use to thoroughly evaluate the performance of
the emulators.

We use the word data to refer to the input and output pairs provided by
the simulator being emulated, e.g. in the case of a hydrodynamic simula-
tor, inputs could be time and physical parameters of a sewer network, and
outputs water levels or flows.

2.1 Data-driven emulators
In this approach we make the following assumptions about the simulation
data used to build the emulator:

a) The data contains the most significant dynamic features of the system
response and these can be used as a time varying basis to reproduce the
data.

b) Unseen system responses are well approximated by a linear combina-
tion of the features in a), i.e. there exist a solution manifold that can be
well approximated with low dimensional sets [Quarteroni et al., 2016,
Hesthaven et al., 2016].

c) There exists a "smooth" mapping between inputs and the coefficients of
the linear combinations of features.

With these assumptions in mind we define the approximation strategy:

y(t,γ)'
q∑

i=1
βi(γ)φi(t), (1)

βi(γ)∼GP
(
m i(γ),K i(γ,γ′)

)
(2)

where y(t,γ) is the output of the simulator at time t and parameters γ, βi
is a mapping between these parameters and the components of the output in
the basis function set

{
φi(t)

}
. Following Rasmussen and Williams [2006, Sec.

2.7] this could be generalized to a full GP regression problem. However, as
stated here the problem is simpler and it is justified by the performance it
provides in the examples showcased in Sec. 3.

The procedure to build a data-driven emulator follows:

i. Extract the first q ≤ ntrn features
{
φi(t)

}
using the training set

{
yi(t,γi)

}ntrn
i=1.

This gives a q×ntrn matrix B of coefficients (q coefficients for each sim-
ulation used for training) and the basis evaluated at the observed time
points Φi j =φ j(ti), i = 1, . . . , N, j = 1, . . . , q.

ii. Interpolate the B coefficients from step i. using a GP to obtain a func-
tion of the inputs B = f (γ).
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iii. Evaluate f (γ) on the parameters in test set, use eq. (1) to predict out-
puts, and compare them with the output test set

{
yi(t,γi)

}ntst
i=1.

The features
{
φi(t)

}
are extracted from the training data itself via matrix

factorization, which allows us to impose some general constraints on the fea-
tures, e.g. nonnegativity. Herein we use the singular value decomposition
(SVD) and nonnegative matrix factorization (NMF), which are explained in
later pragraphs.

These methods provide the basis evaluated only at the observed time
points, Φ, and to predict at unobserved times we linearly interpolate them
over time. The implications of this interpolation will be discussed in Sec. 4.
This approach decouples the interpolation in time with the interpolation in
parameter space.

SVD is a robust factorization to calculate the eigenvectors of the covari-
ance of the data matrix, i.e. the principal components. Given the matrix Y ∈
RN×n, SVD calculates the orthogonal matrices Φ ∈ RN×n and W ∈ Rn×n, and
the element-wise nonnegative diagonal matrix Σ ∈ Rn×n+ with only Σii 6= 0.
These matrices fulfill the relation

Y =ΦΣW>. (3)

Using this factorization to calculate the covariance of the data matrix gives

Y Y> =ΦΣΣ>Φ>. (4)

Showing that Φ are eigenvectors of the covariance matrix, i.e the principal
components of the data. A decomposition of Y in the form of eq. (1) is obtained
by defining B as the follows:

B =ΣW>, (5)

Y =ΦB. (6)

The quality of approximation of the data degrades graciously with decreas-
ing number of principal components. Hence, only the first q < ntrn principal
components are used in general. This reduces the size of the representation
of the training data. In the context of ROM and PDE, this decomposion is
also know as Proper Orthogonal Decomposition (POD).

NMF provides an approximate minimum norm positive decomposition of
the data [Kim and Park, 2008]2. Formally it solves the following problem:

Problem 1 (NMF). Given the matrix Y ∈ RN×n and q ∈ N with q ≤ n, find
matrices Φ ∈RN×q

+ and B ∈Rq×n
+ such that they minimize

‖Y −ΦB‖2 +a‖Φ‖2 +b‖B‖2. (7)

Where ‖ ·‖ is the Frobenius matrix norm and R+ is the set of nonnegative real
numbers.

Intuitively, NMF works as SVD but constraining the principal components
and the mixing coefficients to be nonnegative. The decomposition controls
the norm of the basis and its coefficients using two regularization terms
parametrized with weights a and b, which are manually tuned. The non-
negative basis provided by NMF might be readily interpreted in physical
terms in hydrological applications, yet the method is not widespread in the
community.

2function nmf_bpas of GNU Octave’s linear-algebra package http://octave.sourceforge.net/
linear-algebra/.
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2.2 GP based mechanistic emulator (MEM)
The predictive mean of a GP in x conditioned on data observed at x′, has the
following structure

y(x)=K (x, x′)α+m (x), (8)

α= (
K (x′, x′)+κI

)−1(
y(x′)−m (x′)

)
. (9)

where K and m stand for the covariance and the mean function of the prior
GP, respectively. The weights vector α is learned from the data at the con-
ditioning step, requiring the inversion of the matrix obtained by evaluating
the covariance function at the observed inputs, shown in eq. (9). The regular-
ization parameter κ encodes our trust on the prior knowledge and the error,
if any, of the observations y(x′)3.

A MEM is the GP in time and simulator parameters associated with an
input-driven linear stochastic ordinary differential equation (SODE) with a
multidimensional state space. Each component of the state space is defined
by an observed simulator’s parameter vector (γi). Extra components are re-
served for prediction at unseen simulator’s parameter vectors4.

The process of building a MEM requires the definition of

i. A linear prior model.

ii. The covariance and mean functions of the GP.

iii. A mapping from the parameters of the simulator to the parameters of
the GP.

In the following sections we obtain the mathematical expression of the covari-
ance and mean functions of a first order linear time invariant (LTI) SODE,
and explain the construction of the mapping between parameter spaces. LTI
systems often arise, for example, from a finite element modeling of partial
differential equations.

For a rigorous and more general development, that include time varying
parameters, see Albert [2012]. The development for periodic difference equa-
tions was presented in Steinke and Schölkopf [2008] and extended to a more
general setting in González et al. [2014].

A LTI SODE in the vector-valued function

s(t) :R+ →RM , (10)

with initial condition s(0)= s0 ∼N (s̄0,Σ0), is defined by the equation

ds
dt

(t)=As(t)+u(t)+ξ(t), (11)

where A ∈ RM×M , u(t) is a deterministic exogenous actuation, and ξ(t) ∼
N

(
0,Σξ(t, t′)

)
is a Gaussian noise term with covariance function

Σξ(t, t′)=Σδ(t− t′) Σ ∈RM×M . (12)

The general solution of this equation is

s(t)= eAts0 +
∫ t

0
eA(t−τ) (u(τ)+ξ(τ))dτ. (13)

3In the MEMs used herein, to obtain interpolation of the training data, we set the regularization
parameter to the machine epsilon.

4typically only one component is reserved for this, but more could be used in a parallel setting.
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where the first term is the solution of the homogenous ODE, i.e. with u(t)
and ξ both zero. The second term is the response of the ODE to the noisy
actuation.

As mentioned above, this system depends on the simulator’s parameters.
In general this means A(γ), Σξ(γ,γ′), u(t,γ), and potentially s0(γ).

2.2.1 Covariance function

We calculate the covariance function of the trajectories in eq. (13) using the
formula

K (t, r)= E
[
(s(t)−E[s(t)]) (s(r)−E[s(r)])>

]
, (14)

where s> indicates transposition and E is the ensemble average over initial
conditions and noise realizations.

The ensemble average of the solutions, E[s(t)], is solely determined by the
average of the homogeneous part (depending only on the initial condition)
and the deterministic actuation u, because the contribution of the noise term
ξ vanishes due to its zero mean value:

E[s(t)]= eAt s̄0 +
∫ t

0
eA(t−τ)u(τ)dτ. (15)

That is, the mean function is the solution to the deterministic (noise-free)
inhomogeneous ODE.

From eqs. (13) and (15) we obtain the factors in the expectation in eq. (14),

s(t)−E[s(t)]= eAt (s− s̄0)+
∫ t

0
eA(t−τ)ξ(τ)dτ. (16)

Inserting this in the expression for the covariance function, eq. (14), we ob-
tain four terms. The first term is the covariance of the initial conditions. The
second term is a product of the integral of the noise term. The last two terms
are products of the initial conditions and the noise term; these terms will
vanish due to the independence of the initial condition and the noise term,
and due to the zero mean of the latter. Finally, we obtain:

K (t, r)= eAtΣ0eA
>r+∫ t

0

∫ r

0
eA(t−τ)Σδ(τ−ρ)eA

>(r−ρ)dρdτ=

eAtΣ0eA
>r+

∫ min(t,r)

0
eA(t−µ)ΣeA

>(r−µ)dµ.

(17)

The second term can be recognized as the property of the covariance under
a linear transformation:

s=Gv Σs =G(GΣv)> , (18)

where the matrix product should be interpreted as the application of the
integral

(Av)(t)=
∫ ∞

0
A(t,µ)v(µ)dµ, (19)

(AB)(t, r)=
∫ ∞

0
A(t,µ)B(µ, r)dµ. (20)

In our case G stands for the Green’s function of the linear operator

d
dt

−A, (21)
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which is
G(t, r)=H(t− r)eA(t−r), (22)

with H the Heaviside or Step function. Its transpose (adjoint) is

G†(t, r)=H(r− t)eA
>(r−t). (23)

giving (
G

(
GΣξ

)†
)
(t, r)=∫ ∞

0
G(t,µ)

(∫ ∞

0
G(µ,τ)Σδ(τ− r)dτ

)†
dµ=∫ ∞

0
G(t,µ)ΣG†(µ, r)dµ=∫ ∞

0
H(t−µ)H(r−µ)eA(t−µ)ΣeA

>(r−µ)dµ=∫ min(t,r)

0
eA(t−µ)ΣeA

>(r−µ)dµ

(24)

This implies that if the differential operator has a known Green’s func-
tion, then the covariance function of the GP can be calculated by transform-
ing the covariance function Σ of the noisy input ξ. A more general and formal
treatment of this process is described in Kimeldorf and Wahba [1970] and the
relation between differential operators and kernels is summarized in Steinke
and Schölkopf [2008]. This covariance function computes the statistical in-
teractions between the components of the LTI SODE. In other words, it pro-
vides the coupling of components of what is know as multi-output GP in the
machine learning community and cokriging in geostatistics [Rasmussen and
Williams, 2006, Sec. 9.1]. In Fricker et al. [2013] different structures of the
coupling between output components were studied, MEMs automatically de-
rive the coupling structure from the available prior knowledge.

2.2.2 Linear prior

To determine the elements in the system matrix A in (11), we select a linear
model for each output in the training data corresponding to a simulator’s
parameter vector, which we call the linear proxy:

Li :R+×Rq →Rd , (25)

t,θi 7→ z(t,θi). (26)

The q dimensional parameter vector θi of the proxy depends on the simula-
tor’s parameters used for the ith simulation, i.e. θi(γi). The proxy’s output
dimension d is equal to dimension of each output in the training data, usu-
ally d = 1. The concatenated set of proxies defines the linear prior of the
MEM.

Herein, the proxies will be m dimensional linear time invariant (LTI)
ODEs, i.e. in state space form

ds
dt

(t)= A(θ)s(t)+u(t,θ) A ∈Rm×m,u ∈Rm (27)

z(t)=Cs(t) C ∈Rd×m (28)

Here all proxies have the same dimension m. Although this is not required
by the method, it is the simplest structure of MEMs [Albert, 2012]. Nev-
ertheless, proxies with different dimensions might be better suited for dy-
namical systems with bifurcations, e.g. training data containing a mixture of
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oscillating and converging time series, due to the presence of a Supercritical
Andronov-Hopf bifurcation [Kuznetsov, 2006] in the simulator.

The emulator’s linear prior is constructed by aggregating the proxies and
by coupling them with a noise term with a covariance that depends on the
simulator’s parameters, i.e

dS
dt

(t)=A(Θ)S(t)+U(t,Θ)+ξ(t,Γ), (29)

Z(t)= C(Θ)S(t), (30)

A ∈Rmn×mn, U ,ξ ∈Rmn×1C ∈Rd×mn.

Where Θ= {
θi

}
and Γ= {

γi
}

contain the corresponding n parameter vectors.
The matrix A is block diagonal, C is a horizontal concatenation, and U a
vertical concatenation:

A(Θ)=


A(θ1)

. . .
A(θn)

 ,

U(t,Θ)=


u(t,θ1)

...
u(t,θn)

 ,

C(Θ)= [
C(θ1) . . . C(θn)

]
.

(31)

2.2.3 Parameter mapping

To evaluate the matrices in eq. (31) we need a mapping from simulator’s
parameters γ to proxy’s parameters θ, , i.e. Γ 7→ Θ. It can be an ad-hoc
function derived from knowledge about the simulator, as was done in [Albert,
2012, Machac et al., 2016a,b] or it can be learned directly from the data. The
latter is especially useful if proxies with different dimensions are combined
to form the linear prior of the emulator.

A proxy’s parameter θi can be learned from the data via optimization,
e.g. least squares fit of the data yi(T,γi) using z(T,θi). Alternatively, Θ
can be left as hyperparameters in the GP and estimated by maximizing the
likelihood. In any case, the obtained pairs (γi ,θi) are then used to learn a
mapping between the simulator’s and emulator’s parameter spaces.

2.2.4 Warped MEM

It is possible to add some nonlinear knowledge to a mechanistic emulator
when the simulator’s equations can be approximated with a Wiener model,
i.e. a time independent nonlinear function applied to the states of a linear
dynamical system. To do this we use Warped GPs [Snelson et al., 2003].
This modification does not affect the structure of the emulator, only the data
on which it is trained. In addition to the linear dynamical system parame-
ters defining the prior, the parameters of the nonlinear function need to be
learned as well unless this mapping is explicitly given, e.g. from the lin-
earization of a nonlinear ODE via a change of variables as in the Bernoulli
ODE [Hairer et al., 1993].
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2.3 Datasets description
Simulated data used to build emulators are provided in a set of scalar signals
yi(t j ,γi) with i = 1, . . . ,n, all of them sampled at the same time points, i.e.
T = {

t j
}
, j = 1, . . . , N. For all emulators reported here, the time series in the

datasets were subsampled as much as possible, without deteriorating their
relevant dynamic features, e.g. oscillations and/or peaks. In all cases, the
datasets are randomly separated in a training set of size ntrn and a test set
of size ntst, with ntrn +ntst = n. Table 1 summarizes the properties of the data
used.

Dataset Nonlinear DS I & II Wartegg Adliswil
# parameters, |γ| 1 2 8
Time samples, N(used/total) 6/40 52/2880 193/601
Training set, ntrn 10 200 128
Test set, ntst 190 700 128

Table 1: Summary of datasets used herein.

2.3.1 Nonlinear dynamical system dataset I & II

To illustrate the virtues of MEMs, we first consider a didactical example us-
ing data generated by the model

dx
dt

= a(x0)x+b(x0), x(0)= x0, (32)

a(x)=−a0e−a1(x−sign(x))2 , (33)

b(x)= b0 tanh(x). (34)

The parameters values are a0 = 12.616,a1 = 5,b0 = 2.
The time evolution of this contrived system is linear. The parameters

defining the evolution depend nonlinearly on the initial condition, i.e. the pa-
rameters of the linear system are nonlinear functions of the initial condition.
Therefore an emulator of this system takes time and the initial condition
(|γ| = 1) as inputs. The behavior of this system meets the above assumptions
underlying a MEM with a linear time-invariant prior. Thus an emulator
without coupling noise solves this system exactly.

The first dataset consists of simulated time series with 40 output obser-
vations for 200 initial conditions x0 ∈ [−1,1].

The second dataset is built by mixing the trajectories of the dynamical
system in eq. (32), specifically:

x̂(t, x0)=
∫
α

x(t, x0 +α)N
α

(x0,σ2)dα, (35)

where σ = 0.5. Although the nonlinearities in the dynamical system still
depend only on the initial condition, the smoothing couples neighboring tra-
jectories.

For the mechanistic emulation we will use a 1 dimensional linear proxy:

ds
dt

(t)= θ1(s0)s(t)+θ2(s0), (36)
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and use the knowledge from the first simulator to set s0 = x0, θ1(s0) = a(s0),
and θ2(s0) = b(s0). Since each proxy is the solution of the system in eq. (32),
no coupling of the components of the MEM is needed in the first case, i.e.
Σ = I . For the second simulator we will couple the components using a 1
dimensional Matérn covariance function and the parameters mapping will
be learned from the data.

2.3.2 Wartegg catchment dataset

This dataset was generated from a SWMM model of a 2.64km2 urban catch-
ment located in the city of Lucerne in the canton of Lucerne, Switzerland.
This model has been calibrated satisfactorily to observed rainfall-runoff and
used for hydrological studies of the site [Tokarczyk et al., 2015, detailed
model description provided therein].

The dataset consists of 900 time series with 2880 data points, simulating
24h of water levels in an open outlet during different rain events. To drive
the system into a highly nonlinear behavior we synthetically generated rain
events covering a wide range of return periods. These events were generated
following a block rain model [Gujer, 2007, Ch. 13.2] parametrized by inten-
sity (I) and duration (d), i.e. γ= (I,d) and |γ| = 2. The intensity of the event
spans 30 values in the range I ∈ [10, 100]mmh−1, with 30 different durations
(d ∈ [10, 240]min) for each intensity.

For the mechanistic emulation we will use a 1 dimensional linear proxy
for the water level:

dh
dt

(t)= θ1(γ)h(t)+θ2(γ)R(t,γ) (37)

where R(t,γ) is the rain event used in the simulation. The values of θ1(γ)
and θ2(γ) are obtained by a least squares fit of the data.

Due to the low performance achieved by standard MEMs in this dataset,
the actual MEM presented in Sec. 3.3 uses a Wiener model as proxy. This
is done using Warped GPs (Sec. 2.2.4), with a nonlinearity given by ĥ(t) =
a(γ)tanh(b(γ)h(t)+ c(γ)), where the parameters a, b and c are learned from
the data.

2.3.3 Adliswil catchment dataset

This dataset was generated from a SWMM model of a 1.63km2 urban catch-
ment located in the city of Adliswil in the canton of Zurich, Switzerland. The
dataset was used in Machac et al. [2016a](detailed model description pro-
vided therein) to create an emulator which was then used to speed-up the
calibration (identification) of the parameters in the simulator.

The dataset consist of 256 time series with 601 data points, all of them
corresponding to a single rain event, but with different 8 dimensional in-
put parameter vectors (|γ| = 8). The time series are simulations of inflow to
the local WWTP, and the parameters describe the physical properties of the
sewer network.

For the mechanistic emulation we will use the same linear proxy as in Machac
et al. [2016a], a 1 dimensional ODE for the discharge:

dQ
dt

(t)= θ1(γ)Q(t)+θ2(γ)R(t) (38)

where R(t) is the measured rain event.
Two MEMs will be built, the first uses the values of θ1(γ) and θ2(γ) using

the relation from Machac et al. [2016a], and the second will obtain them from
a least squares fit of the data.
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2.4 Performance assessment
To asses the quality of an emulator we compute the following emulation er-
rors on the data reserved for testing:

i. Maximum absolute error (MAE)

eMAE(γ j)=max
i

∣∣ ŷ(ti ,γ j)− y(ti ,γ j)
∣∣ (39)

where ŷ(t,γ) and y(t,γ) are the emulated and simulated responses, re-
spectively.

ii. Root mean square error (RMSE)

eRMSE(γ j)=
√√√√ 1

N

N∑
i=1

(
ŷ(ti ,γ j)− y(ti ,γ j)

)2 (40)

Error eMAE measures the error in reproducing extreme values and/or peaks
in the simulated signals, while error eRMSE measures an overall quality of
the emulation.

3 Results
3.1 Nonlinear system dataset
This dataset is used to highlight the value of the mechanistic over data-
driven emulation. It is suited for illustration purposes, since the surface
to be reconstructed can be plotted (|γ| = 1).

Fig. 2 shows the response of the system described in eqs. (32)-(34) as a
surface R2 →R. Fig. 2a illustrates the weakness of the SVD emulator, which
does not exploit the simulator’s parameter dependence. Moreover predictions
at unseen time points are provided by linear interpolation of the SVD basis.
To build the MEM we used the exact simulator’s parameter dependence. Al-
though training data is sparse in the time direction, since the MEM encodes
the right time evolution, the reconstruction quality is high, as can be seen
in Fig. 2b. Although the SVD emulator could be improved by using an ex-
ponential basis for time interpolation [Franz and Gehler, 2006], i.e. the one
provided by the covariance function of the MEM, the recovered parameter
dependence will still be poor due to the low sampling of the parameter space.

This example shows that mechanistic emulation is ideal for situations
where there is good prior knowledge and the training data is sparse. This is
even more striking when data corresponding to different simulator parame-
ters is sampled at different times, e.g. with adaptive stepsize simulators. In
this case mechanistic emulation can be applied directly, while SVD emulation
becomes complicated as a matrix completion problem needs to be solved be-
fore factorization can be applied [see Oh, 2010, for an SVD relevant analysis].
In a similar fashion the Kalman smoothing algorithm described in Reichert
et al. [2011] also requires a first step in which all the data is interpolated into
the same temporal grid, e.g. via interpolation.

3.2 Nonlinear system dataset II
Since the structure of the proxy of a MEM does not change once its dimension
m is set, we can optimize the proxy’s parameters to reduce epistemic biases.
The example shown in Fig. 3 illustrates the effect of mismatches between
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(a) SVD

(b) MEM

Figure 2: Nonlinear system emulation of didactical model. The colored surface shows the
behaviour of the simulator output. Red dots show the training data. The emulated surface
is shown with a black wireframe. In this contrived scenario a MEM (b) outperforms an
SVD emulator (a). The failure of SVD is mainly due to the linear interpolation in the time
direction.
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the dynamical system and the proxy, i.e. epistemic bias, and how it can be
mitigated. In Fig. 3a we show the performance of a MEM built with the same
proxy as in Fig. 2b, but used to emulate the nonlinear dynamical system
described at the end of Sec. 2.3.1. Comparing with Fig. 2b, we see that in the
regions where there is no observed data, the emulation is biased. A MEM
with proxies fitted to the data is shown in Fig. 3b. In this case the epistemic
bias is considerably reduced although we did not used mechanistic knowledge
to improve the parameters mapping.

Hence, if the mapping between the simulator parameters and the lin-
ear proxy’s parameters cannot be exactly determined from the mechanistic
knowledge, it is better to fit the proxy’s parameters to the data instead of
using and ad-hoc calculation based on on one’s best guess or expert opinion.
The latter can be improved a posteriori by studying the parameters mapping
emerging from the fit.

3.3 Wartegg catchment dataset
Results of these simulations can be seen in Fig. 4. For rains shorter than a
certain duration (about 20min for the intensity used in the plot, 41mmh−1)
the water level response shows the typical wave of runoff in an open channel.
After some critical duration, which corresponds to the catchment’s time of
concentration, the water level becomes constant and remains fixed for the
duration of the rain, defining the triangular region marked in the plot. After
the rain, the water level goes back to a lower fixed level and remains there
for a period of time which is a nonlinear function of the rain duration, e.g.
between 4-6h for a 4h event. This shows the nonlinear nature of the storage
involved in the effective discharge of the network. Finally there is a slow
decay in the level fueled by the residual water in the network, the rate of
this decay also depends nonlinearly on the rain’s duration.

Fig. 5 shows the distribution of the test error of a MEM5 and a NMF
emulator with 7 components. Table 2 summarizes the mean of the error dis-
tributions. The NMF emulator outperforms the mechanistic emulator. In
previous trials, an SVD emulator was also built and provided results compa-
rable with NMF (not shown here), however it produced negative predictions
just before the steep increase of the water level at the beginning of the rain
event.

Emulator MAE (m, %) RMSE (m, %)
NMF(1×104) 3.2×10−2, 7.7 0.94×10−2, 4.1
MEM(1×102) 22.6×10−2, 53.7 4.4×10−2, 17.4

Table 2: Mean emulation errors corresponding to the Wartegg catchment dataset. The
value in parenthesis is the simulation speed-up factor obtained with respect to the original
simulator, e.g. if SWMM simulation takes 3s, MNF emulator takes 0.3ms.

Fig. 6 shows the quality of the NMF emulation for three different rain
intensities.

3.4 Adliswil catchment dataset
In [Machac et al., 2016a] a SWMM model of the Adliswil catchment was em-
ulated using a MEM with a prior derived from a simplified version of the

5Warped MEM, see Sec. 2.3.2. MEMs with linear proxies were unable to reduce average RMSE
below 25%.
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(a) MEM

(b) MEM fitted proxy

Figure 3: Nonlinear system emulation II. The colored surface shows the surface to re-
construct. In this second contrived scenario the MEM (b) performs the same as the SVD
emulator (a). Red dots show the training data. The emulated surface is shown with a
black wireframe.
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Figure 4: Simulator output for a fixed intensity (41mmh−1) and varying duration. The
black bold lines label different runoff regimes: free-surface flows, runoff with activated
storage and emptying of storage in the catchment.

Figure 5: Test error distribution of the NMF emulator. The violin plots show the distri-
bution of the logarithm of the error for the maximum absolute error (MAE) and the root
mean square error (RMSE). Light colored plots corresponds to the NMF emulator, solid
colored plots to the MEM. The mean(median) error is indicated with filled(empty) circles.
See Table 2 for their numerical values.
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Figure 6: NMF emulation quality. The colored surface shows the simulation outputs for
three different rain intensities. The NMF emulated surface is shown with a black wire-
frame.
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simulator’s equations, with the aim of running a system identification task
from a single rain event.

Figure 7 shows the distribution of the test error of a MEM and a SVD
emulator with 6 components. Both errors are calculated on the same test set.

Figure 7: Test error distribution of the MEM from Machac et al. [2016a] and a SVD emu-
lator. The violin plots show the error distribution for the mean maximum absolute error
(MAE) and the root mean square error (RMSE). Light colored plots corresponds to the
SVD emulator, solid colored plots to the MEM. The mean(median) error is indicated with
filled(empty) circles. See Table 3 for their numerical values.

Table 3 summarizes the mean of the error distributions. In this example,
the SVD emulator also performs better than its mechanistic counter part.

Although the time interpolation of SVD does not respect the dynamics of
the system, the density of data is enough to provide a good estimation. The
simplicity of the SVD emulator, when compared with the mechanistic one,
makes this approach much more compelling for this application.

4 Discussion
The results presented in the previous sections seem to suggest that MEMs
are not useful for emulating complicated hydrological or hydrodynamic sim-
ulators and that they remain as an academic curiosity. However MEMs still
have many properties that can be exploited for better and faster emulation,
which should not be ignored only due to the early state of the method. These
known advantages include the suitability for parallelization and, speedups
and energy saving via approximated computing [Angerer et al., 2015].
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Emulator MAE (ls−1, %) RMSE (ls−1, %)
SVD(5×104) 18.3, 6.2 3.19, 2.6
MEM(1×103) 23.2, 7.9 4.94, 4.0
MEM-fit (1×103) 20.2, 6.9 3.42, 2.8

Table 3: Mean emulation errors corresponding to the Adliswil catchment dataset. MEM
refers to an emulator in Machac et al. [2016a], while MEM-fit to an emulator with the
same proxy structure but parameters fitted to the data. The value in parenthesis is the
simulation speed-up factor obtained with respect to the original simulator, e.g. if SWMM
simulation takes 3s, SVD emulator takes 60µs.

Table 4 summarizes the steps involved in the two approaches presented
here. There we indicate the relation between the method and the character-
istics of the dataset. On one side, although data-driven emulators are compu-
tationally and conceptually simpler than MEMs, they are more sensitive to
the sparseness of the data. On the other side, MEM’s performance is limited
by the linearity of the prior which might fail to express our knowledge about
the nonlinear simulator. If good prior knowledge is available, the mechanis-
tic emulation can incorporate correct dependencies, which could be exploited
to reduce the amount of data needed to achieve a desired performance.

Steps 1 and 2 of mechanistic emulation are the most sensitive to the mis-
match between prior and simulator. To mitigate this, we keep the model
structure provided by the prior and learn the parameter values from the
data, thus providing the best linear proxy for the dataset (Sec. 3.2). This
generally provides sharper error distributions than using the parameter val-
ues obtained directly from the prior [Albert, 2012]. Note that mitigating this
simulator-prior mismatch is not a question of data quantity, since more data
will override the prior and all mechanistic insights it provided, thus render-
ing mechanistic knowledge unnecessary [Steinke and Schölkopf, 2008]. More
data would also increase the memory and computational resources needed
by the emulator. Increasing the density of time samples will also reduce the
condition number of the covariance matrices and the inversion problem at
the training phase will be ill-posed, unless iterative condition methods are
used [Reichert et al., 2011].

In step 2 of a data-driven emulator we need to factorize the data. If the
data is very sparse the generalization quality of the factorization is expected
to be poor. For data that is sampled at different temporal grids the situa-
tion becomes even more delicate since data preprocessing is required to build
up a grid, e.g. via interpolation or matrix completion. Matrix factorization
also provide features only at the observed inputs, therefore an interpola-
tion method is required when emulating unseen time points at step 5. The
Kalman smoothing implementation of the mechanistic emulation used in Re-
ichert et al. [2011] will be similarly affected. Optimizing this interpolation
can be as hard as using a MEM directly (Sec. 3.1).

Equation (15) shows that the mean function of the prior GP is given by
the solution to the noise-free linear ODE obtained by removing the noisy
term of the SDE (11). This suggests a simple improvement of the emulator
in which the mean function is replaced with a better approximator of the
data. This is the underlying idea behind the work of González et al. [2014],
in which the actuation affecting the mean of the GP is replaced by a signal
generated by the nonlinear part of the model applied to a surrogate trajec-
tory. In that work however, the surrogate trajectory, e.g. built with matrix
factorization, does not encode mechanistic knowledge explicitly. This knowl-
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Step Mechanistic emulation Data-driven emulation
1 Define prior –

2 Obtain emulator parameters Factorize the data

3
Define/Build parameters

mapping
Build parameters mapping

4 Conditioning –

5 (Emulation) Matrix · vector
Matrix · vector +

time interpolation

Table 4: Steps involved in the two emulation approaches described in this article. Data-
driven approaches are simpler than mechanistic ones. Step 2 and 5 of data-driven ap-
proaches suffer if data is sparse or unevenly sampled. Steps 1 and 2 of the mechanistic
approach suffer from the lack of expressiveness of linear priors.

edge could be introduced via the analytical solution of a nonlinear differen-
tial equation, such as the nonlinear Bernoulli ODE, or analytical approxi-
mations of more general nonlinear differential equations [Adomian, 1991].
These enhancements would only affect the mean function of the predictive
GP, improving extrapolation quality and thus allowing for more sparse train-
ing sets. However, the estimation of uncertainties remains limited by the
covariance function associated with the linear prior. This can be improved by
including the mean function parameters in the conditioning step [Rasmussen
and Williams, 2006, sec. 2.7].

All these observations are derived from more general results on the re-
ducibility and emulation readinness of general simulators and not only valid
for the especific simulators we used here. This is specially true for the data-
driven approach, see for example Ch. 5 of Quarteroni et al. [2016].

5 Conclusions
We provided a comparison of mechanistic and data-driven emulation in sev-
eral examples pertinent to the field of hydrology and urban water manage-
ment. In all of these, data-driven emulation outperforms mechanistic emu-
lation. The current state of MEMs makes them advantageous to fully data-
driven emulators, when the training data is sparse and unevenly sampled.
This is the case when many simulation runs with high temporal resolution
are prohibitively expensive, or when adaptive stepsize simulators are used.
If the only objective of emulation is to obtain a fast tool to replace a simula-
tor, there seem to be no advantage in using mechanistic knowledge besides
the case of sparse and unevenly sampled data mentioned before. The gain
obtained from enhancements of MEMs discussed here, such as Wiener model
proxies, Nonlinear mean functions, and hybrid mechanistic/data-driven em-
ulators should be quantified in relation to the test error of an inexpensive
data-driven emulator.
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