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Automating agent-based modeling:
data-driven generation and application of innovation diffusion models
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bDelft University of Technology, P.O. Box 5015, 2600 GA Delft, The Netherlands

Abstract

Simulation modeling is useful to understand the mechanisms of the diffusion of innovations, which can be used for forecasting

the future of innovations. This study aims to make the identification of such mechanisms less costly in time and labor. We

present an approach that automates the generation of diffusion models by: (1) preprocessing of empirical data on the diffusion

of a specific innovation, taken out by the user; (2) testing variations of agent-based models for their capability of explaining the

data; (3) assessing interventions for their potential to influence the spreading of the innovation. We present a working software

implementation of this procedure and apply it to the diffusion of water-saving showerheads. The presented procedure successfully

generated simulation models that explained diffusion data. This progresses agent-based modeling methodologically by enabling

detailed modeling at relative simplicity for users. This widens the circle of persons that can use simulation to shape innovation.

Keywords: Agent-based modeling, automated model generation, diffusion of innovations, data-analysis tool, policy simulation

1. Introduction

Understanding the prospects of innovations and how they

spread is powerful. Mechanistic understanding of the diffu-

sion of an innovation can help explaining their success. For

instance, the Theory of Diffusion of Innovations by Rogers [1]

allows understanding diffusions based on general mechanisms

of interpersonal interactions. From these, it is possible to infer

general patterns and key actors of innovation diffusion. Further,

the explanatory power of the general mechanisms of innovation

diffusion has been confirmed in empirical cases of diffusing in-

novations [2, 3].

Beyond understanding, found mechanisms can be used for

guiding practical actions. Persons and organizations often want

to know “how to speed up the rate of diffusion of an innova-
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Jensen), E.J.L.Chappin@tudelft.nl (Émile J.L. Chappin)
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tion” [1]. Actions that achieve this can directly be derived from

causal mechanisms of the spreading of an innovation. Further,

simulation can be used to project and estimate the impact of

practical actions. This allows forecasting the impact of these ac-

tions from the underlying mechanisms. This paper will focus in

particular on simulating innovation diffusion with agent-based

modeling (ABM). This approach represents real-world actors

with computer agents, whose actions towards innovations are

modeled by explicit decision models [5, 6].

However, mechanistic understanding is particularly chal-

lenging to gain. It is harder to achieve than statistical infer-

ence, which reveals co-occurrence of events in a set of obser-

vations. Requirements for gaining it also exceed sole causal

understanding, which ‘only’ requires knowing that one event

generally causes another one [7]. Instead, mechanistic under-

standing implies to know if one event (likely) “leads to a spe-

cific, deterministic behavior in another” [8].

ABM can illuminate mechanisms of the diffusion of inno-http://chappin.com/emile ( ́Emile J.L. Chappin)
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vations, but is challenged by time and labor intensive model

building [9]. Via simulation, ABM links micro-level actions of

actors to ‘emergent dynamics’, e.g. innovation diffusion [10].

Thereby, macro-dynamics of innovation diffusion are ‘decoded’

by being explained by micro behavior of agents [11, 12]. Un-

fortunately, ABM is commonly more time-intensive than its al-

ternatives (e.g. system dynamics [13] and statistical analysis).

This limits its practical applicability. In line with these chal-

lenges, Garcia and Jager [14] emphasize the current “challenge

of defining AMSs (i.e. agent-based simulation models) that are

useful (to) managers without programming skills.”

We propose to enable agent-based modeling to overcome

these limitations by automated model generation. Several ap-

proaches to automation exist, which we propose to combine:

(1) Translating simple specifications into executable models.

Examples are http://m.modelling4all.org and the MAIA

framework [15], which automatically generate simulation mod-

els from specifications by domain-experts. (2) Model build-

ing from existing components. A methodology for this idea is

‘TAPAS’1, via which previously validated models are reused

for new applications [16]. (3) Using data for model-building in

a structured way. Grimm et al. [11] proposed ‘Pattern-oriented

Modeling’ to falsify model variants that fail to reproduce a set

of patterns from empirical data. This replaces ad-hoc decisions

and informed guesses about adequate model structures and pa-

rameters with rigid testing against empirical data.

Therefore, the target of this study is to present a process that

systematically builds ABMs via the following steps: (1) ex-

tracting driving mechanisms from empirical observations on in-

novation diffusion; (2) projecting diffusions into the future; and

(3) assessing the effects of real-world actions and policies ex-

ante, via simulation. This study aims to answer the following

question: “Can automated generation of agent-based models

on the diffusion of innovation be achieved, and how could this

be useful?” This question will be addressed by specifying an

automated software procedure for this task. To further provide

proof of concept, application of an implementation of this pro-

1‘TAPAS’ abbreviates “Take A Previous model and Add Something”.

cedure to the diffusion of sustainable products among house-

holds will be presented.

The remainder of this paper is structured as follows. First,

we provide background on agent-based modeling of the diffu-

sion of innovations. Second, the procedure that automates the

building of such models is presented. Finally, this procedure is

applied to a case of innovation diffusion.

2. Agent-based modeling of innovation diffusion

This section will provide details on agent-based modeling

of innovation diffusion, which is the application domain of the

proposed automation procedure. We will show that there exists

a high degree of standardization of existing diffusion models.

This standardization helps automated modeling.

According to Geels and Johnson [17], there exist four gen-

eral types of dynamic innovation diffusion models. We hereby

focus on innovation models that are dynamic, because innova-

tion itself is a process of change [18]. (1) Adoption models

capture spreading of an innovation among potential adopters,

e.g. how the user base of a new product increases via word-of-

mouth. (2) Models of up-scaling and system building describe

a small system expanding to a larger one, e.g. an electricity sys-

tem expanding from a decentralized ones to a single centralized

system. (3) Replication and circulation models emphasize the

replication of an adoption during its circulation to other loca-

tion. Considering replication emphasizes adapting an innova-

tion to other local conditions. (4) Societal embedding models

consider the embedding of an innovation in business, societal,

policy, and user environments.

‘Adoption’ type models are of special interest to this study.

This is because their modeling of “independent adopters mak-

ing (adoption) decisions” [17, p. 12] fits well with the actor-

centric perspective of agent-based modeling. Adoption type

models are represented by ‘aggregated’ and ‘individual level’

models [18]. Aggregated models directly model the overall

adoption dynamics of an entire population. This approach is

represented by the ‘Bass model’ and commonly modeled with

system dynamics [18]. Conversely, ‘individual level’ models
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capture the adoption decisions of individuals in a population,

from which overall adoption dynamics ‘emerge’.

In this study, we will focus on the individual level models,

because of their capability to incorporate more aspects of real-

ity. According to Kiesling et al. [18], ‘individual level’ models

are superior to ‘aggregated’ ones (such as system dynamics).

(1) Explanatory power is greater for ‘individual level’ mod-

els, because they explicitly connect behavior and decisions of

agents with aggregated diffusion dynamics. (2) Population het-

erogeneity can be captured more detailed in ‘individual level’

models. (3) Social processes (e.g. interactions between con-

sumers) are modeled explicitly. This process can have great

impact on diffusion success [5]. Agent-based ‘individual level’

models are particularly suited to model social interactions. In

contrast to discrete-event simulation, they are capable of mod-

eling detailed social interaction topologies in a computationally

efficient way [13]. Consequently, this study will focus on inno-

vation diffusion models that are agent-based.
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Fig. 1. Meta-model of agent-based models of innovation diffusion. Based

on review by Kiesling et al. [18, Fig. 3].

Automating the building of agent-based innovation diffusion

models is facilitated by their similar structure. A review by

Kiesling et al. [18] finds that most ‘individual level’ diffusion

models have such a common structure. Accordingly, virtually

all agent-based innovation diffusion models are variations of

one meta-model, shown in Fig. 1. This meta-model comprises

the following elements: (1) Consumer agents represent the en-

tities than can adopt an innovation. These can be individual

persons, households, or groups of households. (2) Social struc-

ture is the heterogeneity of consumer agents, e.g. dividing them

in different consumer groups. (3) Decision making processes

(formalized as decision models) are the key actions of consumer

agents to model the adoption of an innovation. (4) Social influ-

ence between agents (from peers, social groups or overall pop-

ulation) can affect decision making of consumers and is com-

monly modeled as a social network graph. This overall simi-

larity simplifies automated model generation. This is because

there is less variation in input data and less structural variation

than needs to be considered.

3. Methods

In this section, we will present in detail the automation pro-

cedure to building agent-based models on innovation diffusion.

We regard this approach as innovative, because it meets a pre-

viously unmet demand and was apparently not met this was

previously. According to Garcia and Jarger [14], a “versatile

method of easily testing managerial strategies that influence the

degree and speed of diffusion processes is not currently avail-

able.” When querying the Scopus database for ‘agent-based

AND innovation AND automat*’, no existing similar approach

was found.

The automation procedure will be presented by describing

it conceptually and by giving details on its implementation.2

Thereafter, proof of concept is given with an application case.

3.1. Automation procedure concept

We coin a method as specified in Fig. 2, comprising the three

phases preprocessing, inverse modeling, and policy simulation.

Preprocessing. This phase is coined preprocessing, because in-

put by the user is not given as raw data, but has to be prepro-

cessed. The following types of input data are strictly required

for the presented method to execute:

(1) Input data is provided on agents (i.e. the decision-making

entities in an agent-based model). For each agent, its location

2Source code of the prototype implementation can be accessed at

https://github.com/ThorbenJensen/automated-model-generation
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Fig. 2. Overview of phases of automation procedure. The procedure is

sub-divided into the subsequent phases preprocessing of input data, inverse

modeling of potentially explaining models, and policy modeling of models that

were accepted based on the previous phase.

and social group are defined. This attribute of a social group en-

ables us to capture the heterogeneity of agents. Social influence

is defined by a social network graph. For generating a social

network graph, we used the algorithm described by Jensen et

al. [4, Appendix A.2].

Agents have to be defined by a CSV file with the columns ID,

X and Y coordinates, and name of the social group they may

belong to. The network graph is provided as a CSV file with

the columns FROM and TO, defining directed links between

two agents identified by their IDs. For instance, bidirectional

influence between two agents would require two lines in this

file.

(2) Innovation properties are provided that represent how

an innovation is perceived by households. This idea follows

Rogers [1], according to whom diffusion success of innovations

depends on generalizable properties. Examples of the innova-

tion properties are relative compatibility, complexity, and trial-

ability.

Innovation properties each have to be provided as NetLogo

source files. Each file contains a NetLogo method that sets in-

novation properties of an innovation as global variables.

(3) Patterns are provided that characterize the dynamics of

the real-world process that shall be modeled. These patterns are

“indicators of essential underlying processes and structures”

[11]. Each additional pattern reduces uncertainty about which

mechanisms could explain the diffusion of an innovation. An

example for a relevant pattern is the exponentially increasing

adoption share of a successful innovation during its initial dif-

fusion [1].

Patterns are formalized by provided as NetLogo functions

that calculate how well a simulation run matches each pattern.

The values returned from these functions represent how well a

simulation run suffices a pattern. A returned value of 0 signals

a perfect fit with a pattern. With greater divergence from the

pattern, this returned value increases. At simulation runtime,

these functions query simulation runs and return fitness values

for the following matching function.

(4) A ‘matching function’ describes the desired behavior of

an accepted simulation model in terms of the provided patterns.

This function weights and combines patterns to describe model

output that would be considered realistic. This function assists

in finding simulation runs that represent the empirical patterns

best.

The matching function has to be defined by the user and

passed as in a character sequence. Variables of this function are

the names of the provided empirical patterns (and the functions

that calculate matching with these patterns). For an example,

see Eq. 2 at the application case below.

Inverse modeling. The inverse modeling phase identifies mod-

els that satisfy the provided matching function.

Within a range of plausibility, pre-defined models are var-

ied in their structure and parameter values. For this, the Net-

Logo tool BehaviorSearch was used [20]. It repeatedly runs
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each potential model, thereby varying its structure and parame-

ters, searching for an optimal fit with the pattern. The optimum

that this search converges to is defined by the user-provided

matching function. For the application case, we executed Be-

haviorSearch with a simulated annealing optimization (see Ta-

ble 1 for search settings).

At the end of this phase, the user has to choose which tested

models from the model library with which structural variation

shall be accepted. Accepted model variants should be those that

generate realistic results. This decision can be based on the best

fitness values and respective parameters, which are reported for

each structural variation of each tested model. If a model re-

produced all provided empirical patterns, then it can be consid-

ered a potential explanation of these input data. Because the

user has pre-defined this ideal behavior via the matching func-

tion, the fitness value is a strong indicator for this judgement. If

model variants of multiple complexity levels match the patterns

well, the simplest ones of these variants should be preferred.

This serves to manage the risk of ‘overfitting’ at high structural

complexity [19]. If required, the reported parameters settings

for the best fit of each model variation allow the user to simu-

late and assess these model settings more closely in NetLogo.

Table 1

Search setting of simulated annealing optimization. Applied search tool was

the NetLogo extension BehaviorSearch. Search parameters are names as in

this tool.

Search parameter Value

Mutation rate 0.05

Temperature change factor 0.95

Initial temperature 1.0

Restart after stall count 0

Evaluation limit 300

Optimization goal ‘Minimize Fitness’

Collected measure ‘MEDIAN ACROSS STEPS’

Fixed sampling 5

Combine replicates ‘MEDIAN’

Policy simulation. The proposed automation procedure pro-

vides the useful function of semi-automatically assessing poli-

cies. Here, policies are those actions that aim at systematically

supporting the diffusion of an innovation. Polices are provided

in a policy library, which can be extended by the user. Such

automated policy modeling is useful, first, because it frees the

user from redundant, manual work. Further, running the same

set of policies across all models that are accepted by the user

based on the inverse modeling results increases robustness of

the policy assessment. This can for instance be achieved by

averaging over all these forecasts.

Policies are pre-implemented as NetLogo functions and

stored as individual NetLogo source files. Users have to choose

from a set of policies that support innovation diffusion or de-

fine other policy options. The user is recommended to test

those policies for all diffusion models that resulted in a suffi-

cient fit with the provided empirical patterns. Each policy sim-

ulation is executed from an XML file with the ‘BehaviorSpace’

tool in NetLogo. These files are derived from a template, but

parsed based on the user choices on policies and models, and

the respective parameterizations that previously resulted in a

best match with the empirical data.

3.2. Application case: diffusion of water-saving appliances

We applied the here presented automation procedure to the

diffusion of water-saving showerheads. This was motivated by

available empirical data of high quality for this case. We used

the proposed automation procedure to generate models that ex-

plain these data and to test policies. This served as a proof

of concept and illustrates the proposed automation procedure.

Also, it informs us about the mechanisms with which water-

saving showerheads could spread. Policy simulation shows how

this spreading could be effectively influenced.

3.2.1. Empirical data on application case

Empirical data on the diffusion of water-saving showerheads

was used, as presented by Schwarz [21].

(1) Agents data. Previous research found a significant rela-

tionship between lifestyle group and adoption behavior regard-

ing water-saving appliances [21]. Accordingly, three consumer

groups could be clustered: ‘Leading Lifestyles’, which are of

higher social status, are most interested in the adoption of such
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appliances; ‘Mainstream and Traditional’ households show in-

termediate interest in them; and ‘Hedonists’ are least interested

in water-saving appliances.

(2) Innovation properties. Properties of water-saving show-

erheads and conventional showerheads were surveyed. For each

lifestyle group, the relative importance of these properties was

also surveyed. This allows modeling the choice of consumers

regarding the adoption of water-saving showerheads.

(3) Diffusion patterns. Two empirical patterns on the diffu-

sion of water-saving showerheads emerged. First, marketing

shares in Germany after 15 years of product diffusion show dif-

ference in adoption between these consumer groups. Second,

the adoption diffusion curve during the first 15 years of innova-

tion diffusion has an exponential shape.

3.2.2. Existing model on showerheads diffusion

An agent-based simulation model was previously built based

on some of this empirical data [21]. We will here coin it the

‘Schwarz’ model. This model describes the decision making of

agents regarding the adoption of feedback devices. According

to the model, initially no household uses water-saving shower

heads. At a monthly deliberation probability of 0.004, each

household decides whether to adopt the water-saving option.

There is a probability at which agents adopt the technology op-

tion that is adopted by the majority of their peers. This prob-

ability is differentiated by the three lifestyle groups [22]: (1)

Leading Lifestyles always adopt the device, regardless of their

peers; (2) Mainstream agents adopt devices in 50% of the cases,

and imitate their peers otherwise; and (3) Hedonists always im-

itate the majority of their peers.

3.2.3. Evaluated agent-based models

We created a generic model library of two further models.

We coined these models ‘Schwarz flexible’ and ‘TPB’, which

abbreviates Theory of Planned Behavior.

‘Schwarz flexible’ model. This model is structurally similar to

the ‘Schwarz’ model, but its parameterization was made ‘flex-

ible’ in two ways. First, the monthly deliberation probability

became a flexible parameter between 0.004 and 0.04. Second,

the probability of agents to adopt according to the majority of

their peers also became a flexible parameter (between 0 and 1)

for each social group.

‘Theory of Planned Behavior’ model. The second decision

model is based on Ajzen’s [23] Theory of Planned Behavior

(TPB). Modeled adoption is based on three factors: the attitude

towards an innovation (ATT), the perceived behavioral control

(PBC) over adopting it, and the subjective norm (SN) towards

adoption from the social environment. For water-saving show-

erheads, this means that adoption is more likely if first, attitude

towards this product is more positive, second, if the adoption

is perceived as easy and feasible, and third, if adoption is more

common among peers. We used the formalization shown in Eq.

1 [21].

adoption intentioni = (1 − s) · (ATTi + PBCi) + s · SNi (1)

According to this model, an agent calculates utility for each

option i and adopts the one with the highest adoption intention,

based on the following factors. ‘ATTi’ is the product of two

vectors: properties of innovation i and weights (i.e. importance)

that the agent’s social group assigns to these characteristics. An

example of such a characteristic is environmental-friendliness

of an innovation. ‘PBCi’ is a product of innovation characteris-

tics (that translate into the ease of adoption) and the respective

weights of importance for the social group. An example is the

purchasing cost. ‘SNi’ is the ratio of peers of a household that

use product ‘i’. The parameter ‘s’ is the importance to practice

the same behavior as its peers, motivated by a need for social

cohesion or uncertainty about the product.

We differentiated these two models by an optional word-of-

mouth (WOM) mechanism. Without this mechanism being ac-

tive, all agents can principally deliberate on adoption at any

time. If this mechanism is active, agents only consider adopt-

ing feedback devices if they are aware of them. At adoption,

an agent makes the peers that it influences aware of the device.

The activation of this mechanism thus becomes an additional
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degree of freedom to the structure of both models. In the inverse

modeling phase of the automation procedure, this will become

subject to structural model variation.

3.2.4. Automated policy simulation

In addition to enhancing mechanistic understanding, we as-

sessed the impact of policy actions towards innovation diffu-

sion. A policy (i.e. “course or principle of action” [24]) re-

garding innovations often aims at directing their diffusion [6].

Typically, this is increasing their rate of diffusion.

The above presented automation procedure can automati-

cally project the impact of policies on diffusion. This could

be used to test implementations of new policies, as well as the

termination of previous ones. The automation phase only uses

those models for projections of policy impacts that were ac-

cepted based on the inverse modeling phase.

As policies to be tested, we chose two marketing strategies at

which free products are given away. (1) After 15 years of device

diffusion, an additional 10% of households receive a free water-

saving shower head. (2) The same policy is applied, but to

those households who influence most other households. These

selected households can be framed as households of opinion

leaders, who are highly connected and influential [18]. They

have thus shown particular potential to leverage innovation dif-

fusion [1, 18, 25, 26]. Simulation of this second policy relies

on the explicit modeling of the social network. Consequently, it

could not directly be tested by some simulation approaches that

lack a modeled social network, e.g. system dynamics.

The tested policies have the potential to promote further

adoption of this product by social influence and WOM. Time of

policy implementation is 15 years after the beginning of prod-

uct diffusion. From this point in time, no empirical data were

available. Policy simulation thus projects the uncertain future

diffusion.

4. Results and discussion

We conducted two simulation experiments, each representing

one of the two automated phases of the procedure.

• Experiment 1 simulates the simulation models from the

model library and compares simulation results to the orig-

inal ‘Schwarz’ model.

• Experiment 2 demonstrates automated policy simulation

with the models that were accepted as sufficiently realistic

in the first experiment.

4.1. Experiment 1: Inverse modeling

In this experiment, two diffusion models (‘Schwarz flexible’

and ‘Schwarz TPB’) were tested for their ability to explain the

historical diffusion of water-saving showerheads. This testing

is taken out by the inverse modeling phase of the proposed

automation procedure. Each of these two models was simu-

lated at two structural variations (with and without the WOM

mechanism) and at varied parameters. Simulation results were

tested against two empirical patterns: the exponential takeoff of

adoption and the empirical market shares of the three consumer

groups after 15 years.

The provided matching function that was minimized in order

to search for realistic models is shown in Eq. 2. Mainly, the

simulated adoption shares are compared to the provided em-

pirical ones. In the inverse modeling phase, mismatching with

empirical market shares is minimized. Further, if the shape of

the adoption curve is not exponential, then a significant penalty

is added to the matching function. Basis for this is the over-

all adoption share over all agents and the length of a simulation

run of 15 years. Matching results (i.e. best fitness and according

parameters) are shown in Table 2.

minimize {‘adoption shares’ + 1000 · ‘exponential’} (2)

Results of best matches, shown in Fig. 3, revealed that model

versions without WOM were less able to match the patterns: the

Schwarz flexible model, was not able to generate an exponen-

tial pattern, while the TPB model could generate exponential

increase in adoption, but was not able to match the adoption

data at the same time. With the WOM mechanism being ac-

tive, both models were able to match both patterns. The only
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R es ults of i n v ers e m o d eli n g p h as e: b est fit a n d p ar a m et eriz ati o ns. O pti mi z e d

fit n ess f or t h e m o d els ‘ S c h w ar z fl e xi bl e’ a n d ‘ T P B’ wit h a n d wit h o ut

w or d- of- m o ut h ( W O M) is s h o w n. P ar a m et er c o m bi n ati o ns ( e x c e pt t h os e t h at

r es ult e d i n n o a d o pti o n at all) wit h b est fit ar e s h o w n: t h e m o nt hl y d eli b er ati o n

pr o b a bilit y a n d s o ci al i n fl u e n c e ( δ α ) i n a d o pti o n ar e gi v e n f or t h e c o ns u m er

gr o u p ‘ L e a di n g Lif est yl es’, ‘ M ai nstr e a m a n d Tr a diti o n als’, a n d ‘ H e d o nists’

(sL L , sM S , sH D ).

M o d el  W O M fit n ess δ α s L L s M S s H D

‘ S c h w ar z’ n o - 0. 0 0 4 0 0. 5 1

‘ S c h w ar z fl e x.’ n o 1 9. 1 2 0. 0 2 9 0. 7 2 3 1 0. 9 9 6

‘ S c h w ar z fl e x.’ y es 5. 9 1 0. 0 1 3 0 0. 6 7 9 0. 9 2 8

‘ T P B’ n o 2 6. 6 1 0. 0 1 3 0. 2 8 8 0. 4 2 8 0

‘ T P B’ y es 5. 7 2 0. 0 1 6 0 0. 4 5 6 0. 2 0 0

li mit ati o n t o t his m at c hi n g is a r el ati v el y b a d r e pr o d u cti o n of

t h e e m piri c al m ar k et s h ar e of t h e H e d o nists gr o u p. B as e d o n

t h es e r es ults, w e r e g ar d b ot h si m ul at e d m o d els g e n er all y s uit e d

t o e x pl ai n t h e diff usi o n of w at er-s a vi n g s h o w er h e a ds, b ut o nl y

if t h e W O M m e c h a nis m is i n cl u d e d.

4. 2. E x p eri m e nt 2: P oli c y si m ul ati o n

I n t his e x p eri m e nt, w e a p pli e d t h e pr o p os e d pr o c e d ur e t o a u-

t o m ati c all y ass ess t h e i m p a ct of a p oli c y o n i n n o v ati o n diff u-

si o n. T his ass ess m e nt o nl y b as e d o n t h os e m o d el v ari a nts t h at

m at c h e d t h e e m piri c al p att er ns i n t h e pr e vi o us e x p eri m e nt. I n-

st e a d of t esti n g p oli c y i nt er v e nti o ns f or o n e si m ul ati o n m o d el,

p oli ci es ar e t est e d f or all m o d els t h at w er e t h us a c c e pt e d i n t h e

i n v ers e m o d eli n g p h as e. T h e si m ul at e d p oli ci es (s e e S e cti o n

3. 2. 4) ar e as f oll o ws: ( 1) t o gi v e a w a y fr e e w at er-s a vi n g s h o w-

er h e a ds t o 1 0 % of h o us e h ol ds aft er 1 5 y e ars of i n n o v ati o n dif-

f usi o n; a n d ( 2) gi vi n g a w a y w at er-s a vi n g s h o w er h e a ds at t h e

s a m e p oi nt i n ti m e t o 1 0 % of h o us e h ol ds, w h o ar e i n fl u e n c-

i n g t h e m ost ot h er h o us e h ol ds (i. e. w h o h a v e o ut g oi n g n et w or k

c o n n e cti o ns t o m ost ot h er h o us e h ol ds).

Fi g ur e 4 a n d 5 s h o w t h e i m p a ct of t h e ass ess e d p oli ci es,

w hi c h l e d t o t h e f oll o wi n g fi n di n gs. First, i m p a cts f or t h e t w o

m o d els ar e r el ati v el y si mil ar: gi vi n g a w a y fr e e d e vi c es at t h e

a d v a n c e d st a g e of pr o d u ct di ff usi o n m a k es t h e s c e n ari os wit h

a n d wit h o ut p oli c y i nt er v e nti o n i niti all y di v er g e q ui c kl y. F ol-

l o wi n g t h e i nt er v e nti o ns, t h e i n n o v ati o n s pr e a ds at a si mil ar

r at e, c o m p ar e d t o t h e r ef er e n c e s c e n ari o wit h o ut i nt er v e nti o n.

S e c o n d, f or b ot h m o d els, t h e hi g h er a d o pti o n d u e t o t h e i nt er-

v e nti o n l e d t o a gr a d u al s at ur ati o n i n a d o pti o n at t h e e n d of 2 5

y e ars of di ff usi o n. A d o pti o n o v er ti m e t h us f or ms a n S- c ur v e,

w hi c h is pr e di ct e d b y t h e T h e or y of Di ff usi o n of I n n o v ati o ns

[ 1]. T his s h o ws t h at (i n t his r e g ar d), t h e si m ul at e d m o d els ar e

i n li n e wit h pr e v aili n g t h e or y. O v er all, t h e si mil ar a d diti o n al

i m p a ct f or t h e t w o m o d els u n d erli n es t h e r o b ust n ess of t h e pr o-

p os e d pr o c e d ur e.

T h e t w o ass ess e d p oli ci es h a d a di ff er e nt i m p a ct. F or b ot h

us e d m o d els, a d dr essi n g o pi ni o n l e a d ers g e n er at e d a hi g h er i m-

p a ct t h a n a d dr essi n g r a n d o m h o us e h ol ds. F urt h er, t h e si mil arit y

i n p oli c y i m p a ct f or t h e t w o si m ul at e d m o d els a n d t h e diff er-

e n c e b et w e e n t h e p oli ci es is u n d erli n e d i n Ta bl e 3. It s h o ws
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Fi g. 4. I m p a cts of p oli c y t h at a d d r ess es all h o us e h ol ds ( c o nti n u o us li n e)

c o m p ar e d t o b as eli n e s c e n ari o ( d as h e d li n e). W his k ers s h o w t h e q u artil es.

R es ults r el y t h e t w o m ost r e alisti c m o d el str u ct ur es wit h p ar a m et eri z ati o ns t h at

m at c h e d e m piri c al p att er ns b est.

t h e s a m e r el ati v e or d er of i m p a ct of t h e t w o ass ess e d p oli ci es.

F or b ot h m o d els, t h e m ar k eti n g str at e g y of a d dr essi n g o pi ni o n

l e a d ers h as a hi g h er i m p a ct. F urt h er, t h e i m p a ct of e a c h p ol-

i c y ( c o m p ar e d b et w e e n b ot h m o d els it w as t est e d wit h) is r el-

ati v el y si mil ar. At t his p oi nt, it w o ul d b e p ossi bl e t o e xtr a ct

st atisti c al pr o p erti es of pr e di ct e d p oli c y i m p a cts o v er all t est e d

m o d els. F or esti m ati n g t h e e x p e ct e d i m p a ct, a v er a gi n g of pr e-

di cti o ns w o ul d b e a d vis a bl e. Alt er n ati v el y, mi ni m u m a n d m a x-

i m u m of s u c h a n e ns e m bl e w o ul d gi v e i nsi g hts i nt o d e gr e e of

u n c ert ai nt y. O v er all, t his i n di c at es t h at t h e p oli c y ass ess m e nt

b as e d o n m ulti pl e m o d els i n cr e as e d t h e r o b ust n ess of t h e pr o-

p os e d pr o c e d ur e.

4. 3. Li mit ati o ns
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Dis c ussi o n of li mit ati o ns will f o c us o n t w o as p e cts of t h e

pr o p os e d a ut o m ati o n pr o c e d ur e r at h er t h a n t h e a p pli c ati o n c as e.

T his is b e c a us e t his pr o c e d ur e is t h e k e y c o ntri b uti o n of t his

Fi g. 5. I m p a cts of p oli c y t h at a d d r ess es o pi ni o n l e a d e rs ( c o nti n u o us li n e)

c o m p ar e d t o b as eli n e s c e n ari o ( d as h e d li n e). W his k ers s h o w t h e q u artil es.

R es ults r el y t h e t w o m ost r e alisti c m o d el str u ct ur es wit h p ar a m et eri z ati o ns t h at

m at c h e d e m piri c al p att er ns b est.

st u d y.

( 1) T h e pr o p os e d a ut o m ati o n pr o c e d ur e mi g ht n ot b e a p pli c a-

bl e t o v er y u n c ert ai n pr o c ess es or m o d els. It a p p e ars li mit e d t o

c as es w h er e p ot e nti al e x pl a n ati o ns ar e r estri ct e d t o a b o u n d e d

s p a c e of o pti o ns. T his is t h e c as e f or e. g. i n n o v ati o n di ff usi o n.

N e v ert h el ess, t h e pr o p os e d pr o c e d ur e h as b e e n a bl e t o h a n dl e

str u ct ur al u n c ert ai nt y. H o w e v er, u p t o w hi c h li mit s u c h u n c er-

t ai nt y c a n b e m a n a g e d is n ot k n o w n at t his p oi nt.

( 2) T h e pr o p os e d pr o c e d ur e is n ot e asil y a p pli c a bl e b y e v-

er y o n e. It r e q uir es d at a pr o c essi n g s kills i n t h e pr e pr o c essi n g

p h as e. T his mi g ht li mit t h e cir cl e of p ot e nti al us ers. Yet, t h e

pr o c e d ur e still wi d e ns t his cir cl e of us ers, c o m p ar e d t o t h e pr e-

v aili n g m o d el b uil di n g ‘fr o m s cr at c h’.

( 3) F urt h er, t h e pr o c e d ur e mi g ht r e q uir e c a uti o us a p pli c ati o n

b y t h e us er. E v e n t h o u g h t h e pr es e nt e d m et h o d is m ostl y a u-

t o m at e d, k e y d e cisi o ns still h a v e t o b e m a d e b y t h e us er. T his

criti c al r ol e of us er d e cisi o ns is a c o m m o n f e at ur e of a ut o m at e d

9



Table 3

Results of policy simulations based on selected, sufficiently realistic

models (with word-of-mouth). Impact is shown as additional percentage of

product adoption 15 years after policy implementation.

Model WOM Policy Add. adoption (10 yrs)

‘Schwarz flex.’ yes ‘give away to 10%’ 10.5%

‘Schwarz flex.’ yes
‘give away to 10%

(opinion leaders)’
13.3%

‘TPB’ yes ‘give away to 10%’ 6.0%

‘TPB’ yes
‘give away to 10%

(opinion leaders)’
7.7%

data-analysis tools, e.g. statistical tests [27]. If these decisions

are not cautiously made in the presented automation procedure,

quality of results might be compromised. For instance, tested

diffusion models might be selected by the user without under-

standing their functioning.

5. Conclusion

The question guiding this study has been how the generation

of agent-based innovation diffusion models can be automated

and how this could be useful. This question has been addressed

by specifying and presenting an automation procedure to the

generation of agent-based models on innovation diffusion and

by applying to a case study.

Implementation and application of the proposed design

showed that the automation procedure is applicable to the dif-

fusion of water-saving showerheads. It further enabled high

efficiency of time and labor for this case. This serves as a proof

of concept and adds weight of evidence to its suitability to au-

tomate the generation of agent-based models of innovation dif-

fusion.

This application further revealed several advantages of the

proposed automation procedure. Present practices of building

agent-based models on innovation diffusion are highly diverse.

Therefore, it does not seem informative to compare the here

proposed procedure against any specific existing practice. In-

stead, we will conclude on the presented method by re-iterating

its advantages. We stress that, in combination, these benefits

validate the proposed design.

At application, the procedure proved helpful for improv-

ing existing diffusion models from empirical data. The pre-

viously empirically validated ‘Schwarz model’ on the diffu-

sion of water-saving showerheads could be refined to increase

its realism. For this refinement, word-of-mouth mechanism of

communication between consumers was found plausible—both

theoretically and data-wise. This role of word-of-mouth adds

weight of evidence to the importance of future marketing ef-

forts that leverage this mechanism.

The rigid use of data in the proposed procedure creates model

validation by design. The procedure is driven by comparing

model output to empirical data, which is central to validation

[28]. Further, systematically comparing multiple models (and

mechanisms) enables the good scientific practice of being able

to falsify those that can not explain empirical observations.

Overall, this has the potential to make agent-based modeling

more rigorous than in common practice [11].

The presented approach allows using relatively complex sim-

ulation modeling at low complicatedness for the user. Provided

a library of potential mechanisms has previously been imple-

mented, a user would only need to provide key data on a dy-

namic, potentially complex system. The automated procedure

then simulates bottom-up models and then tests their matching

with the provided data. This procedure selects potentially ex-

plaining mechanisms and thus supporting gaining mechanistic

understanding.

Due to this relative ease of use, the presented automation ap-

proach helps increasing the circle of persons that could inde-

pendently build agent-based simulation models on innovation

diffusion. We see the classical role of the modeler extended by

the role of the user (also referred to as ‘thematician’ [29, 30]).

Such a user can build and apply diffusion models without re-

quiring programming or simulation skills. Except for extending

a library of model components, the commonly required imple-

mentation by modelers and computer scientists [29, 30] is not

required. A user only has to process and provide the required in-

put data, as well as interpret the generated model results. From

10



a perspective of innovation diffusion, we regard this widening

of the circle of adopters a crucial service to the spreading of

agent-based modeling as an innovative forecasting method.

5.1. Future research

We suggest to progress this study in three directions.

First, the central phase of inverse modeling is crucial to the

proposed automation procedure and could be improved. We

propose to support anticipated users of this automation proce-

dure to make good choices on matching functions. For this,

different designs of the inverse modeling phase should be com-

pared. Those that are robust in providing good results over sev-

eral applications cases should be preferred. One such variation

would be to withhold for validation some of the data that is

now used for model calibration. For choosing between alter-

nating model hypothesis, various statistical approaches should

be tested. Candidate methodologies for this are, for instance,

Akaike Information Criterion and Bayes factors.

Second, user-friendliness of the procedure can be increased

by accepting unstructured input data. The presented application

case used structured empirical data. Approaches from data sci-

ence could allow us to execute the procedure with un-structured

data. Overall, increased user-friendliness further increases the

circle of potential users.

Finally, we suggest to expand the application of the proposed

automation procedure to more cases. This could be facilitated

by finding a way for the automation procedure to be as gen-

erally applicable as possible. For instance, this could even in-

clude generating models from far smaller components than are

currently in the modeling library. Application to more cases

would eventually help establish reference models on the diffu-

sion of innovations, which can further support the development

of sound innovation diffusion models.

Overall, we believe these future development and applica-

tions will encourage users who are not model builders to apply

the proposed automation approach. The here presented design

is meant to assist them in exploiting the merits of agent-based

modeling of innovation diffusion.
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